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Abstract

One of the main challenges in computational simulations ofag detonation propagation
is that negative density or negative pressure may emerge thy the time evolution, which
will cause blow-ups. Therefore, schemes with provable pibgty-preserving of density and
pressure are desired. First order and second order positypreserving schemes were well
studied, e.g., [6, 10]. For high order discontinuous Galark(DG) method, even though the
characteristicwise TVB limiter in [1, 2] can Kill oscillations, it is not su cient to maintain
the positivity. A simple solution for arbitrarily high order positivity-preserving schemes
solving Euler equations was proposed recently in [22]. Inithpaper, we rst discuss an
extension of the technique in [22, 23, 24] to design arbiti&r high order positivity-preserving
DG schemes for reactive Euler equations. We then present angler and more robust
implementation of the positivity-preserving limiter than the one in [22]. Numerical tests,
including very demanding examples in gaseous detonatiomsdicate that the third order DG
scheme with the new positivity-preserving limiter produce satisfying results even without
the TVB limiter.
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1 Introduction

Gas detonation is a supersonic ow phenomenon that consist§a precursor shock igniting a
combustible mixture gas, with a thin reaction zone behind ta shock. Although detonation
has been studied for many years, it remains an active area asearch in both theoretical
studies and numerical simulations due to its practical imptance. To study the gaseous
detonation numerically, the governing equations could behosen as the Euler equations
describing inviscid compressible ow with the chemical redion added. There are many
di culties in designing stable numerical schemes solving general hyperbolic system with
source terms accurately. For example, the width of reactiomone attached to the shock
might be very narrow, see [3], and the source term might indacsti ness, see [9].

In this paper, we focus on how to render numerical schemeslg&for gaseous detonation
simulation. In practice, it is quite often to encounter sitwations in which the density or
pressure of the numerical solutions becomes negative. Fostance, highly energetic ows
may contain regions with a dominant kinetic energy, and a ratively small internal energy
which is easy to become negative in the simulation. Anothexample is the computational
simulation of gas detonation propagation through di erentgeometries. The shock di raction
may result in very low density and pressure. Under such conidins, it has been observed
that numerical schemes may produce negative density or psese, even for non-reactive gas
ows, which can lead to blow-ups. This phenomenon tends to bempli ed by the chemical
activity. Crude replacement of negative values by positivenes not only destroys local and
global conservation, but also often does not cure the instdity. Therefore, it is strongly
desirable to design schemes with a provable positivity-perving property. Moreover, a
conservative positivity-preserving scheme can be easilyoped to beL !-stable.

First order and second order positivity-preserving scheraavere well studied in the litera-
ture [6, 10]. So we are mainly interested in high order posiity-preserving schemes. On the
one hand, low order schemes have been used in the simulatidrdetonation waves [12, 13],

but numerical results have some deviation from the experim&l results. On the other hand,
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some high order schemes have been developed in recent yearg [16, 19, 20]. Successful
high order numerical schemes for hyperbolic conservaticaaws, for example, the Runge-Kutta
discontinuous Galerkin (RKDG) method in [1, 2], the esserdily non-oscillatory (ENO) -
nite volume and nite di erence schemes in [7, 18], and the vughted ENO (WENO) nite
volume and nite di erence schemes in [11, 8], do not automatally satisfy a strict positivity-
preserving property. In fact, they may all fail for very demading low density or low pressure
test cases. Special treatments for di erent schemes may te#o positivity-preserving and
conservation, but it is very di cult to simultaneously also maintain high order accuracy for
smooth solutions with such treatments. Constructing high mer schemes which automati-
cally preserve the positivity of density and pressure is hidy nontrivial. In [22, 23], two of the
authors proposed an arbitrarily high order positivity-preserving Runge-Kutta discontinuous
Galerkin method for compressible Euler equations, which weeextensions and applications
of [21, 15]. The main idea is to nd some straightforward su g¢ent condition for the DG
method of any spatial order of accuracy with rst order Eulerforward time discretization to
keep positivity. A simple limiter which is easy and inexpenge to implement will enforce the
su cient condition without destroying conservation and acuracy. Strong stability preserv-
ing (SSP) high order Runge-Kutta or multi-step methods [1817] will still keep the positivity
since they are convex combinations of Euler forward. With ik limiter, high order RKDG
methods will be positivity-preserving of density and presse during the time evolution.

We will show an extension of this method to Euler system withra Arrhenius form of
chemical reaction source term and an additional equation rfahe evolution of the reaction
rate, which are typical governing equations for modeling # gaseous detonation. Besides
density and pressure, our scheme can also maintain the posty of the reaction rate, which is
crucial to the stability of schemes in this model. We also ppmse a more robust implementa-
tion of the positivity-preserving limiter. The DG scheme wih this new positivity-preserving
limiter is stable even for very strong shocks without the neeof additional TVB limiters.

Extensive numerical tests of the third order DG method are morted to demonstrate the



e ectiveness of our scheme.

2 Positivity-preserving high order discontinuous Galerki n
method for two-dimensional reactive Euler equations

2.1 Preliminaries

We consider the dimensionless two-dimensional compressikuler equations with a source

term representing chemical reactions for the ideal gas,

wi + f(w)y + g(W)y =s(w); t 0(xy)2 2; (2.1)
0 1 0 0 0 1
m 0
m uz+p 0
w = n ;o f(w) = uv ;o g(w) = vZ+ p ;o s(w) = 0
E (E + p)u (E + p)v 0
Y uyY !
(2.2)
with
_ — _1 .. 15 P .
m= u;, n=yv; E—2u +2v+ 1+ qy;

whereq is the heat release of reaction, is the speci c heat ratio andY denotes the reactant

mass fraction. The source term is assumed to be in an Arrhesifiorm
I = Ye ¥T:

whereT = P is the temperature, ¥ is the activation temperature andi€ is a constant. The
eigenvalues of the Jacobiah{w) areu c;u;u; u;u+ c and the eigenvalues of the Jacobian
gqw) arev c;v;v;Vv;v+ ¢, wherec = e

We de ne the set of admissible states by

0 1 9

% % m g E
G=_w-= n >0 and pw) O, Y O0_;

2 O :

then G is a convex set since is a concave function ofw. We are interested in schemes

for (2.1) producing the numerical solutions in the admisslb set G. We start with the
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one-dimensional non-reactive equatiow; + f(w), = 0 and the rst order Lax-Friedrichs

scheme
witt = wl o Pww) P ) (2.3)
bu;v) = %[f(U)+ f(v) a(v u)l; a=k(uj+c)ks; (2.4)
where n refers to the time step andj to the spatial cell, and = —}( is the ratio of time

and space mesh sizes. Following Remark 2.4 in [22], it is e&g\ycheck that, for the scheme
(2.3), wi,w]' ; 2 G implies wjn+1 2 G under the CFL condition a 1. Other examples
of positivity preserving uxes include the Godunov ux, the Boltzmann type ux [14], and

the HLLE ux, which may all be used in our framework. The discgsion of two-dimensional

schemes below uses these one-dimensional rst order meth@s building blocks.

2.2 Discontinuous Galerkin method

We review the formulation of the DG method in [2] brie y. Assume T, is a triangulation of
the spatial domain . For simplicity, we use x to denote (x;y) and dx to denotedxdy in this

subsection. For eacht 0, we seek the approximatiorw(x;t) in the piecewise polynomial
space

Vi = fvn 2 LY ()1 whjk 2 PX(K);8K 2 Thg;

where PX denotes all the polynomials of degrek. The weak formulation of DG method

solving (2.1) is, nd wy 2 V;, satisfying, 8v, 2 V,;
Z x Z Z Z

— wpVhdX + hice (Wit C w2 vnd F(Wp) 5vhdXx = s(Wp)VpdX;
K

dt K e2@K € K

(2.5)
whereF = Hf;gi, .k Is the outward normal vector of the edges on the elementK. The
superscripts \int (K )" and \ ext(K )" refer to values of the solution from inside the elemeri
and outside the elemenK (or inside the neighboring elemenk 9. The consistent numerical

ux satises hge(Uu;Vv; )= hgoe(v;u; ) whereK?is the neighboring element sharing

the edgee with the element K. We will drop the subscripts \K;e" from the ux h when



it does not cause confusion. We consider the Lax-Friedrichsx as an example throughout

the rest of this paper,
h(u;v; )= %[F(u) + F(v) alv. u); a=k(jhu;vij +c) k; :

Except the rst integral (which is evaluated exactly), the integrals in (2.5) can be approx-
imated by proper quadrature rules. Time discretizations gabe achieved by the strong
stability preserving (also called TVD) Runge-Kutta or multi-step time discretizations. See
[2] for more details.

To construct conservative positivity-preserving schemeshe most important step is to
achieve positivity for the cell averages. We only need to digss Euler forward time dis-
cretization because high order SSP time discretizations eaconvex combinations of Euler
forward thus will keep the positivity due to the convexity ofG. Taking the test function as
Vh = 1in (2.5), we get the scheme satis ed by the cell averages the DG method. Consider

the Euler forward time discretization,
x £ z

(WQH- WK ) + h(W;,]nt (K);WﬁXt(K); e)d — S(Wh)dx; (26)
e2@K © K

K]
t

wherewy denotes the cell average ofi, on K at time level n and jKj is the area ofK .

2.3 Rectangular meshes

For simplicity we assume we have a uniform rectangular mesht time level n, we have the
DG polynomials of degreek, wy (x;y) = ( (G Y): my (X Y); ny (% ¥);Ej (6 y); Yi (6y))'

with the cell averagew; on the (j;j ) cell [, %;xi,,%] Iy, %;yj+%]. Letwi+ L (y);wi+%;j (y),

W.+J %(x), Wi, %(x) denote the traces ofw; (x;y) on the four edges respectively.

Assume that we use d_-point Gauss quadrature for the line integral and tensor ofwo
one-dimensionalL -point Gauss quadratures for the double integral in (2.6) wdreL  k+1
(see [2] for an analysis of the requirement of the numericaladrature for the accuracy
of the DG solution). Let S* = fx; : =1; ;Lg denote the Gauss quadrature points

on [x; %;XH%], and Sjy = fy; © =1; ;Lg denote the Gauss quadrature points on
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[y, %;yj+%]. For instance, ; LY, )( =1; ;L) are the Gauss quadrature points on the
left edge of the (;j ) cell. The subscript will denote the values at the Gauss quadrature
points, for instance,wi+ L S Wi+ L (y; )- Also, w denotes the corresponding quadrature
weight on the interval [ %;%], so that L:1 w = 1. We also need to use theN -point
Gauss-Lobatto quadrature rule wherd is the smallest integer such thatR 3 k, and we
distinguish the two quadrature rules by adding hats to the Gass-Lobatto points, i.e.,@iX =
fB : =1; ;Ngwill denote the Gauss-Lobatto quadrature points onxj %;xi,,%], and

ij =fy : =1; ;Ngwill denote the Gauss-Lobatto quadrature points onyf LY+ %].

Then (2.6) becomes

X h !
—n+l  _ .
Wirj1+ — WIJ 1 W hl Wi+l ’Wi++% hl Wi % 'Wi+ %;
=1
x h !
oyt -wt
2 w h2 WJ+1'W;j+% h2 WJ %'W;j %
=1
X X
+ t W w s(W(X; ;) (2.7)
=1 =1

hauiv) = ST+ F(v) a(v  u)]

hauiv) = S [o(u)+ o) a(v  w)l:

We use to denote the tensor product, for instanceS S’ = f(x;y): x 2 Sy 2 §'g.

De ne the setS; as
S =(S L& I (s 9 (2.8)

Theorem 2.1. Let a; and a, be two arbitrary positive numbers satisfying; + a, = 1. If the
DG polynomial wj (x;y) 2 G, 8(x;y) 2 S, then the scheme (2.7) is positivity-preserving,
namely, Wi’j‘+1 2 G under the time step restriction

n 0
a( 1+ ) alyy; max ti€e T gy



where the maximum is taken ove$’ SJ-y for all the rectangles. In practice, one may use

a = a =

N[

Proof. We can rewrite (2.7) asW{j”l = a;C + a,S where

1 X h i
- wh ot +
C = wj & 1 _1W hq Wi+% ,Wi+% hq w, . LW, L
1 X h i
— 2 W hy w_ wh o . hy w, ;who
j o+ i+ 3 i 3 %
1 - 2 2 2
and
1 XX
S=W{j‘+a—2 t w W s(W(X;;Y;)):
=1 =1

By Theorem 3.1 in [22], we hav€ 2 G. So it su ces to prove S 2 G in order to conclude

the positivity of density and pressure forv_v{j‘”. Gauss quadrature rule implies

X X
Wi = W W W(X; ;Y ): (2.9)
=1 =1
Thus,
X X 1
S= ww o w(X sy )t+t — ts w(X;y;)
=)
=1 =1
Given w 2 G, then it is easy to check thatw + é ts(w) 2 Gif tle T  a, So

S2G. 0

Remark 2.1. The result can be extended to a general equation of state ohesttypes of
reaction rate (for instance, the Heaviside form) by followig [23] as long as the source term

satises thatw + ts(w) 2 G for any w 2 G under a reasonable CFL condition.

2.4 Triangular meshes

For each triangleK we denote byl}, (i = 1;2;3) the length of its three edge®} (i =1;2;3),
with outward unit normal vector ' (i = 1;2;3). Assume the line integrals in (2.6) are solved
by the L-point Gauss quadrature wherd.  k + 1, and the source integral is solved by a

M -point quadrature on a triangle with positive weights (for hstance, 7-point quadrature
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should be used forP? element, see [2] for more details) in whick, and w denote the

P
guadrature points and normalized weights with le w =1.
Then (2.6) becomes
x3 X . _ . hd
Wyt = Wy J?tj hw ©5we ™ Hw il + 0w sw(xe)):  (2.10)
i=1 =1 =1

We need a special quadrature on a triangle introduced in [24]n the barycentric coor-

dinates, the setS of quadrature points for polynomials of degre& on a triangle K can be

written as
1 1 1 1 1
k  — - (T - (T - .
Sk = FViGrb)G V)G b)G V)
1 1 1 1 1
(é b)(é V),§+V,(§+b)(§ V)
1 1 1 1 1
G+b)G VG b)G V)itV (2.12)
whereb ( =1; ;N)andv ( =1; ;L)arethe Gauss-Lobatto and Gauss quadrature

points on the interval [ ;3] respectively. De neS¢ as the union ofSf and the M -point

guadrature on the triangleK . Following Theorem 5.1 in [24] and Theorem 2.1, we have

Theorem 2.2. Let a; and a, be two arbitrary positive numbers satisfying; + a, = 1. If the
DG polynomialwg (x;y) 2 G, 8(X;y) 2 Sk, then the scheme (2.10) is positivity-preserving,
namely, Wyt 2 G under the time step restriction

t)@_ 2 n 0]

oS Il JauWr;  max tlee T gy
i=1

where the maximum is taken ovex,; =1; ;M for all the triangles.

2.5 L! stability

The limiter in [22] can be used to enforce the conditions in T#orem 2.1 and Theorem 2.2.
We will describe an improved implementation of this limiterin the next section.
With the limiter added, the full high order DG scheme will kee density, pressure and

reactant mass fraction non-negative in the mean during theérhe evolution.
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Theorem 2.3. Assuming vanishing, re ective or periodic boundary condibns, suppose the
DG polynomial satis eswy (x) 2 G;8x 2 Sk, then the scheme (2.10) satis es the following
L1 stability:
_+_X__X__+1_X___X__+1_X___
[ R i S =0 S | =Y R R Y i
K K K K K K

Proof. Take the summation of (2.10) for allK , then we have

X o X . X
Wy = We + t & S(W (X )):
K K K =1
P —n+1l _ P —n ; wn+l.
The rst component reads , ™ = k. Theorem (2.2) and (2.9) imply thatw,™";

wit 2 G, thus ;% 0. Therefore Py = T Similarl

K : K+ K . v kTR « | TkJ. Similarly, we get

P —na. P . : . " .
K jEE lj = x jEEj. Notice that the fth component of s(w(x )) is non-positive, which

leads to the last inequality. O

Remark 2.2. Even though there is nd.! stability for the momentum, theL? norm of the
momentum can be controlled by thie? norm of the total energy and density. Since positivity

implies that the internal energy is non-negative, we hawe %,—K % 0: Thus

X X X

_— —2
mz + Nz 2E« ~« Ex + 2

K K K

3 Animproved implementation of the positivity-preserving
limiter

3.1 Positivity-preserving limiter

At the time level n, given the DG polynomial w (x) with the cell averagewy 2 G, we

would like to modify it into another polynomial
Wi (X) = k(Wk(X) Wk)+ Wy (3.1)

where ¢ 2 [0;1] is to be determined, such thatey (x) 2 G;8x 2 Sk. If « is the largest

number such thatwy (x) 2 G;8x 2 Sk (the smallest one is ¢ = 0), then this limiter will
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not destroy accuracy for smooth solutions, see [22]. Follmg [22], it can be implemented
as:
1. First, enforce the positivity of density (and reactant mas fraction). Pick a small

number " such that =, " for all K. In practice, we can choosé = 10 3. For each

elementK , compute

b (x) = }1<[K(X) I+ Tk &:)Erz]igl 1 ﬁ ; (3.2)
. _ _ Y
V0= E Yk Vi + Vi kemn ki o @)

2. Second, enforce the positivity of pressure. De iy = (bc;mi;nk;Ex; ¥ ). For

eachx 2 S, if p(Wwk (X)) 0 dene 4 =1; otherwise, de ne , as the solution of
P( x(Wk (X) Wg)+ W) =0: (3.4)
Then get the limited polynomial

Wk (X) = K (\bK (X) WK) + Wk, K = )r(glg( X - (35)

Even though we only need to solve a quadratic equation of in (3.4), in practice g
solved from (3.4) cannot guarantee the strict non-negatityi of p(&y (x)) numerically due to
the round o errors for some wild data, e.g., blast waves. In2p], it was reported that for
problems with very strong shocks, positivity limiter alonamplemented as above may not be
enough for stability, further application of a TVB limiter may be needed.

Here we propose a slightly di erent but very robust implemetation of (3.4) so that the
TVB limiter is no longer needed accordingly to our numericatests. Notice that p is a
concave function ofw (the concavity can be checked by calculating the eigenvai®f the

Hessian matrix), thus we have the Jensen's inequality

p( (w W)+w)=p(w+(1 w) pw)+@ )pWw);, if (w)>0; (w)> 0 (3.6)
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Therefore, ifw 2 G, (w) > 0 andp(w) < 0, then

= % (3.7)
satises that p( (w W)+ w) 0. Although dened in (3.7) is smaller than the real
solution of p( (w W)+ W) = 0, it is actually of the similar type as % in (3.2). ltis
straightforward to prove the accuracy for smooth solution$ollowing the argument in [22].

We can formulate the new robust implementation of the limiteas, for each elemenk ,
1. Compute (3.2) and (3.3).

2. Dene Wy = (bq;mg;ng;Ex; ¥ «)T. For eachx 2 S, if p(wk (X)) 0 set , =1;

otherwise, set
_ pP(Wk ) .
p(Wx) pbk (x))

Then get the limited polynomial (3.5).

X

3.2 The algorithm for SSP Runge-Kutta time discretizations

Theoretically, there is a complication regarding the time tep restriction in Theorem 2.1
and Theorem 2.2 for a Runge-Kutta time discretization. Conder the third order SSP
Runge-Kutta method. To enforce the CFL condition rigorous, we need to get an accurate
estimation of a =k (jhu;vij + ¢) k; for all the three stages based only on the numerical
solution at time leveln, which is highly nontrivial mathematically. An e cient sol ution is, if
a preliminary calculation to the next time step produces negjive density or pressure, then
recalculate from the time stepn with half the previous time step. This complication does
not exist if we use a SSP multi-step time discretization.

The algorithm ow chart for the third order SSP Runge-Kutta method on triangular

meshes is

1. Given the DG polynomialswy (x) at time step n satisfying the cell averagavy 2 G

and wg (x) 2 G;8x 2 Sk, calculatea = max k (jhu; vij + ¢) k, b= max e *=T where

12



the maximum is taken overSg for all K. Set the time step

1 wjK) 1
3a Iy 2

2. Calculate the rst stage with wy (x). Let wi (x) denote the solution of the rst stage.

Modify it by the limiter (3.5) into & (x).

3. Calculate the second stage withw: (x). Let wZ (x) denote the solution of the second
stage. If its cell average is not irG (by Theorem 2.2, this means that or b calculated
based onwy (x) is smaller than the ones ofe (x)), then go back to step two and

restart with half time step; otherwise, modify it by the limiter (3.5) into w3 (x).

4. Calculate the third stage withwZ (x). Let wg (x) denote the solution of the third
stage. If its cell average is not irG (by Theorem 2.2, this means that or b calculated
based onwy (x) is smaller than the ones ofe? (x)), then go back to step two and

restart with half time step; otherwise, modify it by the limiter (3.5) into w3 (x).

4 Numerical Tests

4.1 Euler equations

We test the robustness of the new implementation of the posiity-preserving limiter for
non-reactive Euler equations by using the algorithm in the qr@vious section.

In [1, 2], the TVB limiter was used to kill oscillations for hgh order DG schemes solving
Euler equations with strong shocks. For smooth solutionshé TVB limiter will not destroy
the accuracy. However, TVB limiter is not su cient for stabilizing high order schemes solving
Euler equations when low density or low pressure emerges. [R2, 24, 23], the third order
DG scheme with TVB limiter and positivity-preserving limiter performed very well for all
test cases for which DG method with only TVB limiter will blow up due to the presence of
negative density or negative pressure.

By the following numerical tests, we will see that the positity-preserving limiter itself

can stabilize the high order DG schemes without the TVB limier. We test the third order DG
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method and the third order SSP Runge-Kutta time discretizabn with only the positivity-
preserving limiter (3.5) , solving the one-dimensional anvo-dimensional compressible Euler

equations for ideal gas with =1:4.
Example 4.1. Shock tube problems.

See Figure 4.1 for the results of Sod and Lax problems using1¢ells, which are compa-

rable to the results of the RKDG method with the characteriscwise TVB limiter in [1].
Example 4.2. Interaction of blast waves.

This example is the same as the one in [1]. See Figure 4.2 foe tomparison of results
of the two limiters. As can be expected, the TVB limiter can Kl oscillations while the
positivity limiter cannot, however, the positivity limite r alone will smear the discontinuity

less.
Example 4.3. Sedov point blast.

The initial and boundary conditions are the same as in [22].€8 Figure 4.3 for the result

of DG with only the positivity limiter.

4.2 The reactive Euler equations

In this subsection, we show the test results for the third ot RKDG method with only
the positivity-preserving limiter solving (2.1). The paraneters are =1:2, q=50, ¥ =50,
K = 2566:4. For all the test cases in this subsection, the RKDG methoditih only TVB

limiter may blow up at a certain time.
Example 4.4. Numerical convergence study.

We test the numerical (grid) convergence of our scheme in thexample. The domain is
[0;2] [0;2]. The initial condition is, if x>+ y?>  0:36, then (;u;v;p;Y) = (1;0;0; 80, 0);
otherwise, (;u;v;p;Y) =(1;0;0;10 % 1). The boundary conditions for the bottom and the

left are re ective. The terminal time ist = 0:2. The mesh is uniformly rectangular. See the
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Figure 4.1: Shock tube problemsP? element DG with only the positivity-preserving limiter.

The solid lines are the exact solutions. The symbols are theimerical solutions.
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Figure 4.2: Interaction of blast waves.P? element DG with two di erent limiters on 400
cells. The solid line is computed by the fth order WENO on a vey ne mesh. The symbols
are the numerical solutions. The region [8;0:9] [0:2;1] of (a) and (b) are zoomed in (c)
and (d).
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Figure 4.3: 2D Sedov ProblemP? element DG with only the positivity limiter on a 160 160
mesh. The solid line is the exact solution.

comparison of results of x =y = % and x= y= ﬁ in Figure 4.4. We observe good

grid convergence on these two meshes.
Example 4.5. Detonation di raction problems.

The simulation of gaseous detonation waves through di erérgeometries is numerically
challenging especially for the high order schemes mainly dagise the pressure or density
may drop very close to zero when the shock wave is diracted. éfe we test the detonation
di raction at three di erent angles.

The rst one is ninety degrees. The initial conditions are,fix < 05, (;u;v;E;Y ) =
(11;6:18,0;970 1); otherwise, (;u;Vv;E;Y ) = (1;0;0;55 1). The boundary conditions are
re ective except that at x = 0, (;u;v;E;Y ) = (11;6:18,0;9701). The terminal time is
t =0:6. The mesh is uniformly rectangular. See Figure 4.5 for thesult of x= y= 4—18.

The second one is one hundred and twenty degrees. The init@nditions are, ifx < 0:6
andy 2, (5u;v;E;Y) = (11;6:180;970Q 1); otherwise, (;u;v;E;Y ) = (1;0;0;55;1).
The boundary conditions are re ective exceptthatax =0, ( ;u;Vv;E;Y )=(11;6:180;970Q 1).

The terminal time ist = 0:68. The mesh is nonuniform, mixed with rectangles and triates.

17



=
o
™1

DENSITY

00
—

(*2)
—

> 1

DENSITY
L=

0 1X
(a) Contour of density (b) Cutalong y=0

N
o
—

15}

PRESSURE
S

a1
——

(c) Contour of pressure (d) Cutalong y=0

Figure 4.4: Convergence study. The colored contour and thelsl line on the right are the
results of x= y= ﬁ The symbols on the right denote the result of x = y = 6—10
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Figure 4.5: Detonation di raction at a 90 corner.

19



See Figure 4.6(a) for the illustration of the mesh. See Figeird.7 for the result where the

length of the smallest edge in the mesh |§2-?s—§

5 5
4 4
> 3 > 3
2 2
1r 1r
0] : ' : ' : 0]
0 2 X 4 6 0 2 X 4 6
(@) 120 corner (b) 135 corner

Figure 4.6: lllustrations of the meshes.

The third one is one hundred and thirty- ve degrees. The inial conditions are, ifx < 1.5
andy 2, (;u;v;E;Y) = (11;6:180;970Q 1); otherwise, (;u;v;E;Y ) = (1;0;0;55;1).
The boundary conditions are re ective exceptthatax =0, ( ;u;Vv;E;Y )=(11;6:180;970Q 1).
The terminal time ist = 0:68. The mesh is uniform, mixed with rectangles and triangles
See Figure 4.6(b) for the illustration of the mesh. See Figar4.8 for the result of the mesh

size ;.
Example 4.6. Multiple obstacles.

The initial condition is, if x>+ y? 0:36, then (;u;V;E;Y ) = (7;0;0;20Q 0); otherwise,
(;u;v;E;Y) = (1;0;0;55/1). The boundary conditions are re ective everywhere. The
location of the rst obstacle is [13;3:3] [0;2:6] and the second one is {5 8:3] [0; 4:3].
The terminal time ist = 1:4. The parameters are set as=1:2,q= 50, ¥ = 20, € = 2410:2.
The mesh is non-uniformly rectangular. See Figure 4.9 forelresult where the length of the

smallest edge in the mesh i&2>.
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Figure 4.7: Detonation di raction at a 120 corner.

21



6_
4+
-
2 U
oy
X
(a) Colored contour of density (b) Contour line of density
6 PRESSURE: 034 11.74 23.15 34.56 45.96 6
4_
o |
2
S B <
X
(c) Colored contour of pressure (d) Contour line of pressure

Figure 4.8: Detonation di raction at a 135 corner.
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(a) Colored contour of density (b) Contour line of density

(c) Colored contour of pressure (d) Contour line of pressure

Figure 4.9: Multiple obstacles
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5 Concluding remarks

We have shown an extension of the positivity-preserving teoiques in [22, 24, 23] to construct
robust high order RKDG schemes for reactive Euler equatiomsodeling gaseous detonations.
Numerical tests suggest that the positivity-preserving thiter is su cient to stabilize the

high order DG method without the TVB limiter, and robust high order RKDG schemes
can successfully simulate detonation di raction cases inhich the density or pressure of the
numerical solution may become negative easily without thegsitivity-preserving limiter. In

future work, we will use the RKDG schemes to carry out numerad simulation on gaseous
detonation in more complex geometrical con gurations in ater to have more comprehensive

insight of its propagation mechanism.
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