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Abstract

One of the main challenges in computational simulations of gas detonation propagation

is that negative density or negative pressure may emerge during the time evolution, which

will cause blow-ups. Therefore, schemes with provable positivity-preserving of density and

pressure are desired. First order and second order positivity-preserving schemes were well

studied, e.g., [6, 10]. For high order discontinuous Galerkin (DG) method, even though the

characteristicwise TVB limiter in [1, 2] can kill oscillations, it is not su�cient to maintain

the positivity. A simple solution for arbitrarily high order positivity-preserving schemes

solving Euler equations was proposed recently in [22]. In this paper, we �rst discuss an

extension of the technique in [22, 23, 24] to design arbitrarily high order positivity-preserving

DG schemes for reactive Euler equations. We then present a simpler and more robust

implementation of the positivity-preserving limiter than the one in [22]. Numerical tests,

including very demanding examples in gaseous detonations,indicate that the third order DG

scheme with the new positivity-preserving limiter produces satisfying results even without

the TVB limiter.
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1 Introduction

Gas detonation is a supersonic 
ow phenomenon that consistsof a precursor shock igniting a

combustible mixture gas, with a thin reaction zone behind the shock. Although detonation

has been studied for many years, it remains an active area of research in both theoretical

studies and numerical simulations due to its practical importance. To study the gaseous

detonation numerically, the governing equations could be chosen as the Euler equations

describing inviscid compressible 
ow with the chemical reaction added. There are many

di�culties in designing stable numerical schemes solving ageneral hyperbolic system with

source terms accurately. For example, the width of reactionzone attached to the shock

might be very narrow, see [3], and the source term might induce sti�ness, see [9].

In this paper, we focus on how to render numerical schemes stable for gaseous detonation

simulation. In practice, it is quite often to encounter situations in which the density or

pressure of the numerical solutions becomes negative. For instance, highly energetic 
ows

may contain regions with a dominant kinetic energy, and a relatively small internal energy

which is easy to become negative in the simulation. Another example is the computational

simulation of gas detonation propagation through di�erentgeometries. The shock di�raction

may result in very low density and pressure. Under such conditions, it has been observed

that numerical schemes may produce negative density or pressure, even for non-reactive gas


ows, which can lead to blow-ups. This phenomenon tends to beampli�ed by the chemical

activity. Crude replacement of negative values by positiveones not only destroys local and

global conservation, but also often does not cure the instability. Therefore, it is strongly

desirable to design schemes with a provable positivity-preserving property. Moreover, a

conservative positivity-preserving scheme can be easily proved to beL1-stable.

First order and second order positivity-preserving schemes were well studied in the litera-

ture [6, 10]. So we are mainly interested in high order positivity-preserving schemes. On the

one hand, low order schemes have been used in the simulation of detonation waves [12, 13],

but numerical results have some deviation from the experimental results. On the other hand,
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some high order schemes have been developed in recent years [5, 4, 16, 19, 20]. Successful

high order numerical schemes for hyperbolic conservation laws, for example, the Runge-Kutta

discontinuous Galerkin (RKDG) method in [1, 2], the essentially non-oscillatory (ENO) �-

nite volume and �nite di�erence schemes in [7, 18], and the weighted ENO (WENO) �nite

volume and �nite di�erence schemes in [11, 8], do not automatically satisfy a strict positivity-

preserving property. In fact, they may all fail for very demanding low density or low pressure

test cases. Special treatments for di�erent schemes may lead to positivity-preserving and

conservation, but it is very di�cult to simultaneously also maintain high order accuracy for

smooth solutions with such treatments. Constructing high order schemes which automati-

cally preserve the positivity of density and pressure is highly nontrivial. In [22, 23], two of the

authors proposed an arbitrarily high order positivity-preserving Runge-Kutta discontinuous

Galerkin method for compressible Euler equations, which were extensions and applications

of [21, 15]. The main idea is to �nd some straightforward su�cient condition for the DG

method of any spatial order of accuracy with �rst order Eulerforward time discretization to

keep positivity. A simple limiter which is easy and inexpensive to implement will enforce the

su�cient condition without destroying conservation and accuracy. Strong stability preserv-

ing (SSP) high order Runge-Kutta or multi-step methods [18,17] will still keep the positivity

since they are convex combinations of Euler forward. With this limiter, high order RKDG

methods will be positivity-preserving of density and pressure during the time evolution.

We will show an extension of this method to Euler system with an Arrhenius form of

chemical reaction source term and an additional equation for the evolution of the reaction

rate, which are typical governing equations for modeling the gaseous detonation. Besides

density and pressure, our scheme can also maintain the positivity of the reaction rate, which is

crucial to the stability of schemes in this model. We also propose a more robust implementa-

tion of the positivity-preserving limiter. The DG scheme with this new positivity-preserving

limiter is stable even for very strong shocks without the need of additional TVB limiters.

Extensive numerical tests of the third order DG method are reported to demonstrate the
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e�ectiveness of our scheme.

2 Positivity-preserving high order discontinuous Galerki n
method for two-dimensional reactive Euler equations

2.1 Preliminaries

We consider the dimensionless two-dimensional compressible Euler equations with a source

term representing chemical reactions for the ideal gas,

w t + f (w)x + g(w)y = s(w); t � 0; (x; y) 2 R

2; (2.1)
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with

m = �u; n = �v; E =
1
2

�u 2 +
1
2

�v 2 +
p


 � 1
+ �qY;

whereq is the heat release of reaction,
 is the speci�c heat ratio andY denotes the reactant

mass fraction. The source term is assumed to be in an Arrhenius form

! = � eK�Y e � eT =T ;

whereT = p
� is the temperature, eT is the activation temperature and eK is a constant. The

eigenvalues of the Jacobianf 0(w) are u � c; u; u; u; u+ c and the eigenvalues of the Jacobian

g0(w) are v � c; v; v; v; v+ c, wherec =
q


 p
� .

We de�ne the set of admissible states by
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� > 0 and p(w) � 0; Y � 0

9
>>>>=

>>>>;

;

then G is a convex set sincep is a concave function ofw. We are interested in schemes

for (2.1) producing the numerical solutions in the admissible set G. We start with the
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one-dimensional non-reactive equationw t + f (w)x = 0 and the �rst order Lax-Friedrichs

scheme

wn+1
j = wn

j � � [bf (wn
j ; wn

j +1 ) � bf (wn
j � 1; wn

j )]; (2.3)

bf (u; v) =
1
2

[f (u) + f (v) � a(v � u)]; a = k (juj + c) k1 ; (2.4)

where n refers to the time step andj to the spatial cell, and � = � t
� x is the ratio of time

and space mesh sizes. Following Remark 2.4 in [22], it is easyto check that, for the scheme

(2.3), wn
j ; wn

j � 1 2 G implies wn+1
j 2 G under the CFL condition �a � 1. Other examples

of positivity preserving 
uxes include the Godunov 
ux, the Boltzmann type 
ux [14], and

the HLLE 
ux, which may all be used in our framework. The discussion of two-dimensional

schemes below uses these one-dimensional �rst order methods as building blocks.

2.2 Discontinuous Galerkin method

We review the formulation of the DG method in [2] brie
y. Assume Th is a triangulation of

the spatial domain 
. For simplicity, we use x to denote (x; y) and dx to denotedxdy in this

subsection. For eacht � 0, we seek the approximationwh(x; t) in the piecewise polynomial

space

Vh = f vh 2 L1 (
) : vh jK 2 P k(K ); 8K 2 Thg;

where P k denotes all the polynomials of degreek. The weak formulation of DG method

solving (2.1) is, �nd wh 2 Vh satisfying, 8vh 2 Vh;

d
dt

Z

K
whvhdx +

X

e2 @K

Z

e
hK;e (w int (K )

h ; wext (K )
h ; � e;K )vhd� �

Z

K
F(wh) � 5 vhdx =

Z

k
s(wh)vhdx;

(2.5)

where F = hf ; gi , � e;K is the outward normal vector of the edgee on the elementK . The

superscripts \int (K )" and \ ext(K )" refer to values of the solution from inside the elementK

and outside the elementK (or inside the neighboring elementK 0). The consistent numerical


ux satis�es hK;e (u; v ; � ) = � hK 0;e(v ; u; � � ) where K 0 is the neighboring element sharing

the edgee with the element K . We will drop the subscripts \K; e" from the 
ux h when
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it does not cause confusion. We consider the Lax-Friedrichs
ux as an example throughout

the rest of this paper,

h(u; v ; � ) =
1
2

[F(u) � � + F(v) � � � a(v � u)]; a = k (jhu; vij + c) k1 :

Except the �rst integral (which is evaluated exactly), the integrals in (2.5) can be approx-

imated by proper quadrature rules. Time discretizations can be achieved by the strong

stability preserving (also called TVD) Runge-Kutta or multi-step time discretizations. See

[2] for more details.

To construct conservative positivity-preserving schemes, the most important step is to

achieve positivity for the cell averages. We only need to discuss Euler forward time dis-

cretization because high order SSP time discretizations are convex combinations of Euler

forward thus will keep the positivity due to the convexity ofG. Taking the test function as

vh = 1 in (2.5), we get the scheme satis�ed by the cell averages inthe DG method. Consider

the Euler forward time discretization,

jK j
� t

(wn+1
K � wn

K ) +
X

e2 @K

Z

e
h(w int (K )

h ; wext (K )
h ; � e)d� =

Z

K
s(wh)dx; (2.6)

wherewn
K denotes the cell average ofwh on K at time level n and jK j is the area ofK .

2.3 Rectangular meshes

For simplicity we assume we have a uniform rectangular mesh.At time level n, we have the

DG polynomials of degreek, w ij (x; y) = ( � ij (x; y); mij (x; y); nij (x; y); E ij (x; y); �Y ij (x; y))T

with the cell averagewn
ij on the (i; j ) cell [x i � 1

2
; x i + 1

2
] � [yj � 1

2
; yj + 1

2
]. Let w+

i � 1
2 ;j

(y); w �
i + 1

2 ;j
(y),

w+
i;j � 1

2
(x), w �

i;j + 1
2
(x) denote the traces ofw ij (x; y) on the four edges respectively.

Assume that we use aL-point Gauss quadrature for the line integral and tensor of two

one-dimensionalL-point Gauss quadratures for the double integral in (2.6) whereL � k + 1

(see [2] for an analysis of the requirement of the numerical quadrature for the accuracy

of the DG solution). Let Sx
i = f x �

i : � = 1; � � � ; Lg denote the Gauss quadrature points

on [x i � 1
2
; x i + 1

2
], and Sy

j = f y�
j : � = 1; � � � ; Lg denote the Gauss quadrature points on
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[yj � 1
2
; yj + 1

2
]. For instance, (x i � 1

2
; y�

j ) ( � = 1; � � � ; L) are the Gauss quadrature points on the

left edge of the (i; j ) cell. The subscript � will denote the values at the Gauss quadrature

points, for instance,w+
i � 1

2 ;�
= w+

i � 1
2 ;j

(y�
j ). Also, w� denotes the corresponding quadrature

weight on the interval [� 1
2 ; 1

2 ], so that
P L

� =1 w� = 1. We also need to use theN -point

Gauss-Lobatto quadrature rule whereN is the smallest integer such that 2N � 3 � k, and we

distinguish the two quadrature rules by adding hats to the Gauss-Lobatto points, i.e.,bSx
i =

f bx �
i : � = 1; � � � ; N g will denote the Gauss-Lobatto quadrature points on [x i � 1

2
; x i + 1

2
], and

bSy
j = f by�

j : � = 1; � � � ; N g will denote the Gauss-Lobatto quadrature points on [yj � 1
2
; yj + 1

2
].

Then (2.6) becomes

wn+1
ij = wn

ij � � 1

LX

� =1

w�

h
h1

�
w �

i + 1
2 ;�

; w+
i + 1

2 ;�

�
� h1

�
w �

i � 1
2 ;�

; w+
i � 1

2 ;�

�i

� � 2

LX

� =1

w�

h
h2

�
w �

�;j + 1
2
; w+

�;j + 1
2

�
� h2

�
w �

�;j � 1
2
; w+

�;j � 1
2

�i

+� t
LX

� =1

LX

� =1

w� w� s(w(x �
i ; y�

j )) (2.7)

where � 1 = � t
� x , � 2 = � t

� y and

h1(u; v) =
1
2

[f (u) + f (v) � a(v � u)]

h2(u; v) =
1
2

[g(u) + g(v) � a(v � u)] :

We use
 to denote the tensor product, for instance,Sx
i 
 Sy

j = f (x; y) : x 2 Sx
i ; y 2 Sy

j g.

De�ne the set Sij as

Sij = ( Sx
i 
 bSy

j ) [ ( bSx
i 
 Sy

j ) [ (Sx
i 
 Sy

j ): (2.8)

Theorem 2.1. Let a1 and a2 be two arbitrary positive numbers satisfyinga1 + a2 = 1. If the

DG polynomial w ij (x; y) 2 G, 8(x; y) 2 Sij , then the scheme (2.7) is positivity-preserving,

namely, wn+1
ij 2 G under the time step restriction

a(� 1 + � 2) � a1 bw1; max
n

� t eKe � eT =T
o

� a2;
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where the maximum is taken overSx
i 
 Sy

j for all the rectangles. In practice, one may use

a1 = a2 = 1
2:

Proof. We can rewrite (2.7) aswn+1
ij = a1C + a2S where

C = wn
ij �

1
a1

� 1

LX

� =1

w�

h
h1

�
w �

i + 1
2 ;�

; w+
i + 1

2 ;�

�
� h1

�
w �

i � 1
2 ;�

; w+
i � 1

2 ;�

�i

�
1
a1

� 2

LX

� =1

w�

h
h2

�
w �

�;j + 1
2
; w+

�;j + 1
2

�
� h2

�
w �

�;j � 1
2
; w+

�;j � 1
2

�i

and

S = wn
ij +

1
a2

� t
LX

� =1

LX

� =1

w� w� s(w(x �
i ; y�

j )) :

By Theorem 3.1 in [22], we haveC 2 G. So it su�ces to prove S 2 G in order to conclude

the positivity of density and pressure forwn+1
ij . Gauss quadrature rule implies

wn
ij =

LX

� =1

LX

� =1

w� w� w(x �
i ; y�

j ): (2.9)

Thus,

S =
LX

� =1

LX

� =1

w� w�

�
w(x �

i ; y�
j ) +

1
a2

� ts
�

w(x �
i ; y�

j )
� �

Given w 2 G, then it is easy to check thatw + 1
a2

� ts(w) 2 G if � t eKe � eT =T � a2. So

S 2 G.

Remark 2.1. The result can be extended to a general equation of state or other types of

reaction rate (for instance, the Heaviside form) by following [23] as long as the source term

satis�es that w + � ts(w) 2 G for any w 2 G under a reasonable CFL condition.

2.4 Triangular meshes

For each triangleK we denote byl i
K (i = 1; 2; 3) the length of its three edgesei

K (i = 1; 2; 3),

with outward unit normal vector � i (i = 1; 2; 3). Assume the line integrals in (2.6) are solved

by the L-point Gauss quadrature whereL � k + 1, and the source integral is solved by a

M -point quadrature on a triangle with positive weights (for instance, 7-point quadrature
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should be used forP2 element, see [2] for more details) in whichx 

K and ew
 denote the

quadrature points and normalized weights with
P M


 =1 ew
 = 1.

Then (2.6) becomes

wn+1
K = wn

K �
� t
jK j

3X

i =1

LX

� =1

h(w int (K )
i;� ; wext (K )

i;� ; � i )w� l i
K + � t

MX


 =1

ew
 s(w(x 

K )) : (2.10)

We need a special quadrature on a triangle introduced in [24]. In the barycentric coor-

dinates, the setSk
K of quadrature points for polynomials of degreek on a triangle K can be

written as

Sk
K =

��
1
2

+ v� ; (
1
2

+ bu� )(
1
2

� v� ); (
1
2

� bu� )(
1
2

� v� )
�

;
�

(
1
2

� bu� )(
1
2

� v� );
1
2

+ v� ; (
1
2

+ bu� )(
1
2

� v� )
�

;
�

(
1
2

+ bu� )(
1
2

� v� ); (
1
2

� bu� )(
1
2

� v� );
1
2

+ v�

��
(2.11)

wherebu� (� = 1; � � � ; N ) and v� (� = 1; � � � ; L) are the Gauss-Lobatto and Gauss quadrature

points on the interval [� 1
2 ; 1

2] respectively. De�ne SK as the union ofSk
K and the M -point

quadrature on the triangleK . Following Theorem 5.1 in [24] and Theorem 2.1, we have

Theorem 2.2. Let a1 and a2 be two arbitrary positive numbers satisfyinga1 + a2 = 1. If the

DG polynomial wK (x; y) 2 G, 8(x; y) 2 SK , then the scheme (2.10) is positivity-preserving,

namely, wn+1
K 2 G under the time step restriction

a
� t
jK j

3X

i =1

l i
K �

2
3

a1 bw1; max
n

� t eKe � eT =T
o

� a2;

where the maximum is taken overx 

K ; 
 = 1; � � � ; M for all the triangles.

2.5 L1 stability

The limiter in [22] can be used to enforce the conditions in Theorem 2.1 and Theorem 2.2.

We will describe an improved implementation of this limiterin the next section.

With the limiter added, the full high order DG scheme will keep density, pressure and

reactant mass fraction non-negative in the mean during the time evolution.
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Theorem 2.3. Assuming vanishing, re
ective or periodic boundary conditions, suppose the

DG polynomial satis�eswK (x) 2 G; 8x 2 SK , then the scheme (2.10) satis�es the following

L1 stability:

X

K

j� n+1
K j =

X

K

j� n
K j;

X

K

jE
n+1
K j =

X

K

jE
n
K j;

X

K

j�Y
n+1
K j �

X

K

j�Y
n
K j:

Proof. Take the summation of (2.10) for allK , then we have

X

K

wn+1
K =

X

K

wn
K + � t

X

K

MX


 =1

ew
 s(w(x 

K )) :

The �rst component reads
P

K � n+1
K =

P
K � n

K . Theorem (2.2) and (2.9) imply that wn+1
K ;

wn+1
K 2 G, thus � n+1

K ; � n
K � 0. Therefore,

P
K j� n+1

K j =
P

K j� n
K j. Similarly, we get

P
K jE

n+1
K j =

P
K jE

n
K j. Notice that the �fth component of s(w(x 


K )) is non-positive, which

leads to the last inequality.

Remark 2.2. Even though there is noL1 stability for the momentum, theL2 norm of the

momentum can be controlled by theL2 norm of the total energy and density. Since positivity

implies that the internal energy is non-negative, we haveE K � 1
2

m2
K

� K
� 1

2
n2

K
� K

� 0: Thus

X

K

m2
K + n2

K �
X

K

2E K � K �
X

K

E
2
K + � 2

K :

3 An improved implementation of the positivity-preserving
limiter

3.1 Positivity-preserving limiter

At the time level n, given the DG polynomial wK (x) with the cell averagewK 2 G, we

would like to modify it into another polynomial

ewK (x) = � K (wK (x) � wK ) + wK (3.1)

where � K 2 [0; 1] is to be determined, such thatewK (x) 2 G; 8x 2 SK . If � K is the largest

number such that ewK (x) 2 G; 8x 2 SK (the smallest one is� K = 0), then this limiter will
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not destroy accuracy for smooth solutions, see [22]. Following [22], it can be implemented

as:

1. First, enforce the positivity of density (and reactant mass fraction). Pick a small

number " such that � K � " for all K . In practice, we can choose" = 10� 13. For each

elementK , compute

b� K (x) = � 1
K [� K (x) � � K ] + � K ; � 1

K = min
x 2 SK

�
1;

�
�
�
�

� K � "
� K � � K (x)

�
�
�
�

�
; (3.2)

c�Y K (x) = � 2
K

�
�Y K (x) � �Y K

�
+ �Y K ; � 2

K = min
x 2 SK

�
1;

�
�
�
�

�Y K

�Y K � �Y K (x)

�
�
�
�

�
: (3.3)

2. Second, enforce the positivity of pressure. De�nebwK = ( b� K ; mK ; nK ; EK ; c�Y K )T . For

eachx 2 SK , if p( bwK (x)) � 0 de�ne � x = 1; otherwise, de�ne � x as the solution of

p(� x ( bwK (x) � wK ) + wK ) = 0 : (3.4)

Then get the limited polynomial

ewK (x) = � K ( bwK (x) � wK ) + wK ; � K = min
x 2 SK

� x : (3.5)

Even though we only need to solve a quadratic equation of� x in (3.4), in practice � K

solved from (3.4) cannot guarantee the strict non-negativity of p( ewK (x)) numerically due to

the round o� errors for some wild data, e.g., blast waves. In [22], it was reported that for

problems with very strong shocks, positivity limiter aloneimplemented as above may not be

enough for stability, further application of a TVB limiter may be needed.

Here we propose a slightly di�erent but very robust implementation of (3.4) so that the

TVB limiter is no longer needed accordingly to our numericaltests. Notice that p is a

concave function ofw (the concavity can be checked by calculating the eigenvalues of the

Hessian matrix), thus we have the Jensen's inequality

p(� (w � w)+ w) = p(� w +(1 � � )w) � �p (w)+(1 � � )p(w); if � (w) > 0; � (w) > 0: (3.6)
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Therefore, if w 2 G, � (w) > 0 and p(w) < 0, then

� =
p(w)

p(w) � p(w)
(3.7)

satis�es that p(� (w � w) + w) � 0. Although � de�ned in (3.7) is smaller than the real

solution of p(� (w � w) + w) = 0, it is actually of the similar type as � 1
K in (3.2). It is

straightforward to prove the accuracy for smooth solutionsfollowing the argument in [22].

We can formulate the new robust implementation of the limiter as, for each elementK ,

1. Compute (3.2) and (3.3).

2. De�ne bwK = ( b� K ; mK ; nK ; EK ; c�Y K )T . For eachx 2 SK , if p( bwK (x)) � 0 set � x = 1;

otherwise, set

� x =
p(wK )

p(wK ) � p( bwK (x))
:

Then get the limited polynomial (3.5).

3.2 The algorithm for SSP Runge-Kutta time discretizations

Theoretically, there is a complication regarding the time step restriction in Theorem 2.1

and Theorem 2.2 for a Runge-Kutta time discretization. Consider the third order SSP

Runge-Kutta method. To enforce the CFL condition rigorously, we need to get an accurate

estimation of a = k (jhu; vij + c) k1 for all the three stages based only on the numerical

solution at time level n, which is highly nontrivial mathematically. An e�cient sol ution is, if

a preliminary calculation to the next time step produces negative density or pressure, then

recalculate from the time stepn with half the previous time step. This complication does

not exist if we use a SSP multi-step time discretization.

The algorithm 
ow chart for the third order SSP Runge-Kutta method on triangular

meshes is

1. Given the DG polynomialswK (x) at time step n satisfying the cell averagewn
K 2 G

and wK (x) 2 G; 8x 2 SK , calculatea = max k (jhu; vij + c) k, b= max eKe � eT =T where

12



the maximum is taken overSK for all K . Set the time step

� t = min

(
1
3

bw1jK j

a
P 3

i =1 l i
K

;
1
2b

)

:

2. Calculate the �rst stage with wK (x). Let w1
K (x) denote the solution of the �rst stage.

Modify it by the limiter (3.5) into ew1
K (x).

3. Calculate the second stage withew1
K (x). Let w2

K (x) denote the solution of the second

stage. If its cell average is not inG (by Theorem 2.2, this means thata or b calculated

based onwK (x) is smaller than the ones ofew1
K (x)), then go back to step two and

restart with half time step; otherwise, modify it by the limiter (3.5) into ew2
K (x).

4. Calculate the third stage with ew2
K (x). Let w3

K (x) denote the solution of the third

stage. If its cell average is not inG (by Theorem 2.2, this means thata or b calculated

based onwK (x) is smaller than the ones ofew2
K (x)), then go back to step two and

restart with half time step; otherwise, modify it by the limiter (3.5) into ew3
K (x).

4 Numerical Tests

4.1 Euler equations

We test the robustness of the new implementation of the positivity-preserving limiter for

non-reactive Euler equations by using the algorithm in the previous section.

In [1, 2], the TVB limiter was used to kill oscillations for high order DG schemes solving

Euler equations with strong shocks. For smooth solutions, the TVB limiter will not destroy

the accuracy. However, TVB limiter is not su�cient for stabi lizing high order schemes solving

Euler equations when low density or low pressure emerges. In[22, 24, 23], the third order

DG scheme with TVB limiter and positivity-preserving limiter performed very well for all

test cases for which DG method with only TVB limiter will blow up due to the presence of

negative density or negative pressure.

By the following numerical tests, we will see that the positivity-preserving limiter itself

can stabilize the high order DG schemes without the TVB limiter. We test the third order DG

13



method and the third order SSP Runge-Kutta time discretization with only the positivity-

preserving limiter (3.5) , solving the one-dimensional andtwo-dimensional compressible Euler

equations for ideal gas with
 = 1:4.

Example 4.1. Shock tube problems.

See Figure 4.1 for the results of Sod and Lax problems using 100 cells, which are compa-

rable to the results of the RKDG method with the characteristicwise TVB limiter in [1].

Example 4.2. Interaction of blast waves.

This example is the same as the one in [1]. See Figure 4.2 for the comparison of results

of the two limiters. As can be expected, the TVB limiter can kill oscillations while the

positivity limiter cannot, however, the positivity limite r alone will smear the discontinuity

less.

Example 4.3. Sedov point blast.

The initial and boundary conditions are the same as in [22]. See Figure 4.3 for the result

of DG with only the positivity limiter.

4.2 The reactive Euler equations

In this subsection, we show the test results for the third order RKDG method with only

the positivity-preserving limiter solving (2.1). The parameters are
 = 1:2, q = 50, eT = 50,

eK = 2566:4. For all the test cases in this subsection, the RKDG method with only TVB

limiter may blow up at a certain time.

Example 4.4. Numerical convergence study.

We test the numerical (grid) convergence of our scheme in this example. The domain is

[0; 2] � [0; 2]. The initial condition is, if x2 + y2 � 0:36, then (�; u; v; p; Y ) = (1 ; 0; 0; 80; 0);

otherwise, (�; u; v; p; Y ) = (1 ; 0; 0; 10� 9; 1). The boundary conditions for the bottom and the

left are re
ective. The terminal time is t = 0:2. The mesh is uniformly rectangular. See the
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Figure 4.1: Shock tube problems.P2 element DG with only the positivity-preserving limiter.
The solid lines are the exact solutions. The symbols are the numerical solutions.
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Figure 4.2: Interaction of blast waves.P2 element DG with two di�erent limiters on 400
cells. The solid line is computed by the �fth order WENO on a very �ne mesh. The symbols
are the numerical solutions. The region [0:8; 0:9] � [0:2; 1] of (a) and (b) are zoomed in (c)
and (d).
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Figure 4.3: 2D Sedov Problem.P2 element DG with only the positivity limiter on a 160� 160
mesh. The solid line is the exact solution.

comparison of results of �x = � y = 1
60 and � x = � y = 1

120 in Figure 4.4. We observe good

grid convergence on these two meshes.

Example 4.5. Detonation di�raction problems.

The simulation of gaseous detonation waves through di�erent geometries is numerically

challenging especially for the high order schemes mainly because the pressure or density

may drop very close to zero when the shock wave is di�racted. Here we test the detonation

di�raction at three di�erent angles.

The �rst one is ninety degrees. The initial conditions are, if x < 0:5, (�; u; v; E; Y ) =

(11; 6:18; 0; 970; 1); otherwise, (�; u; v; E; Y ) = (1 ; 0; 0; 55; 1). The boundary conditions are

re
ective except that at x = 0, ( �; u; v; E; Y ) = (11 ; 6:18; 0; 970; 1). The terminal time is

t = 0:6. The mesh is uniformly rectangular. See Figure 4.5 for the result of � x = � y = 1
48.

The second one is one hundred and twenty degrees. The initialconditions are, ifx < 0:6

and y � 2, (�; u; v; E; Y ) = (11 ; 6:18; 0; 970; 1); otherwise, (�; u; v; E; Y ) = (1 ; 0; 0; 55; 1).

The boundary conditions are re
ective except that atx = 0, ( �; u; v; E; Y ) = (11 ; 6:18; 0; 970; 1).

The terminal time is t = 0:68. The mesh is nonuniform, mixed with rectangles and triangles.
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Figure 4.4: Convergence study. The colored contour and the solid line on the right are the
results of � x = � y = 1

120. The symbols on the right denote the result of �x = � y = 1
60.
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Figure 4.5: Detonation di�raction at a 90� corner.
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See Figure 4.6(a) for the illustration of the mesh. See Figure 4.7 for the result where the

length of the smallest edge in the mesh is1
32
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(b) 135� corner

Figure 4.6: Illustrations of the meshes.

The third one is one hundred and thirty-�ve degrees. The initial conditions are, ifx < 1:5

and y � 2, (�; u; v; E; Y ) = (11 ; 6:18; 0; 970; 1); otherwise, (�; u; v; E; Y ) = (1 ; 0; 0; 55; 1).

The boundary conditions are re
ective except that atx = 0, ( �; u; v; E; Y ) = (11 ; 6:18; 0; 970; 1).

The terminal time is t = 0:68. The mesh is uniform, mixed with rectangles and triangles.

See Figure 4.6(b) for the illustration of the mesh. See Figure 4.8 for the result of the mesh

size 1
24.

Example 4.6. Multiple obstacles.

The initial condition is, if x2 + y2 � 0:36, then (�; u; v; E; Y ) = (7 ; 0; 0; 200; 0); otherwise,

(�; u; v; E; Y ) = (1 ; 0; 0; 55; 1). The boundary conditions are re
ective everywhere. The

location of the �rst obstacle is [1:3; 3:3] � [0; 2:6] and the second one is [5:1; 8:3] � [0; 4:3].

The terminal time is t = 1:4. The parameters are set as
 = 1:2, q = 50, eT = 20, eK = 2410:2.

The mesh is non-uniformly rectangular. See Figure 4.9 for the result where the length of the

smallest edge in the mesh is0:85
32 .
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Figure 4.7: Detonation di�raction at a 120� corner.
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Figure 4.8: Detonation di�raction at a 135� corner.
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Figure 4.9: Multiple obstacles
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5 Concluding remarks

We have shown an extension of the positivity-preserving techniques in [22, 24, 23] to construct

robust high order RKDG schemes for reactive Euler equationsmodeling gaseous detonations.

Numerical tests suggest that the positivity-preserving limiter is su�cient to stabilize the

high order DG method without the TVB limiter, and robust high order RKDG schemes

can successfully simulate detonation di�raction cases in which the density or pressure of the

numerical solution may become negative easily without the positivity-preserving limiter. In

future work, we will use the RKDG schemes to carry out numerical simulation on gaseous

detonation in more complex geometrical con�gurations in order to have more comprehensive

insight of its propagation mechanism.
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