Superconvergence of the local discontinuous Galerkin method for linear fourth-order time-dependent problems in one space dimension

XIONG MENG
Department of Mathematics, Harbin Institute of Technology, Harbin, Heilongjiang 150001, People’s Republic of China
*Corresponding author: xiongmeng@hit.edu.cn

CHI-WANG SHU
Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
shu@dam.brown.edu

AND

BOYING WU
Department of Mathematics, Harbin Institute of Technology, Harbin, Heilongjiang 150001, People’s Republic of China
mathwby@hit.edu.cn

[Received on 2 April 2011; revised on 13 September 2011]

In this paper we investigate the superconvergence of local discontinuous Galerkin (LDG) methods for solving one-dimensional linear time-dependent fourth-order problems. We prove that the error between the LDG solution and a particular projection of the exact solution, \(\bar{e}_u \), achieves \((k + \frac{3}{2})\)th-order superconvergence when polynomials of degree \(k \) \((k \geq 1)\) are used. Numerical experiments with \(P^k \) polynomials, with \(1 \leq k \leq 3 \), are displayed to demonstrate the theoretical results, which show that the error \(\bar{e}_u \) actually achieves \((k + 2)\)th-order superconvergence, indicating that the error bound for \(\bar{e}_u \) obtained in this paper is suboptimal. Initial boundary value problems, nonlinear equations and solutions having singularities, are numerically investigated to verify that the conclusions hold true for very general cases.

Keywords: local discontinuous Galerkin method; superconvergence; fourth-order problems; error estimates.

1. Introduction

In this paper we are interested in the superconvergence of local discontinuous Galerkin (LDG) methods for solving one-dimensional linear time-dependent fourth-order problems formulated as

\[
 u_t + \alpha u_x + \beta u_{xx} + u_{xxxx} = 0,
\]

where \(\alpha \) and \(\beta \) are arbitrary constants. Note that, for \(\beta > 0 \), there is an antidiffusion term \(\beta u_{xx} \) in the equation, which is, however, dominated by the higher-order diffusion term \(u_{xxxx} \). The general problem (1.1) includes the following linear time-dependent biharmonic equation

\[
 u_t + u_{xxxx} = 0,
\]

© The author 2012. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
and the linearized Cahn–Hilliard equation

\[u_t + u_{xx} + u_{xxxx} = 0, \quad (1.3) \]

as its special cases.

The discontinuous Galerkin (DG) method is a class of finite element methods using discontinuous piecewise polynomials as the solution and the test spaces. It was first introduced by Reed & Hill (1973) for solving a first-order steady-state linear conservation law and later developed by Cockburn et al. (Cockburn & Shu, 1989, 1998b; Cockburn et al., 1989, 1990) for solving time-dependent nonlinear equations. Motivated by the successful numerical experiments of Bassi & Rebay (1997) for the compressible Navier–Stokes equations, the LDG methods were developed for solving nonlinear convection–diffusion equations (Cockburn & Shu, 1998a) containing second-order spatial derivatives in which L^2 stability and a suboptimal L^2 error estimates were obtained for linear equations with smooth solutions. Later, the LDG methods were generalized to solve various partial differential equations (PDEs) involving higher-order derivatives. For Korteweg-de Vries-type equations containing third-order derivatives, an LDG method was developed in Yan & Shu (2002a), where a suboptimal error estimate was proved for the linear case, and more recently, an optimal L^2 error estimate was obtained in Xu & Shu (in press). In Yan & Shu (2002b), Xu & Shu (2004); Xu & Shu (2006) and Xia et al. (2007), LDG techniques were developed for solving other types of high-order PDEs including the time-dependent biharmonic equations, the fully nonlinear $K(n, n, n)$ equations, the Kuramoto–Sivashinsky-type equations, the Cahn–Hilliard-type equations and so on. In Dong & Shu (2009), optimal error estimates for the LDG method applied to the linear biharmonic equation and linearized Cahn–Hilliard-type equations were obtained in one dimension and in multidimensions for Cartesian and triangular meshes. For more details of the DG and LDG methods we refer to the lecture notes, Cockburn (1999), and review papers, Cockburn & Shu (2001); Xu & Shu (2010).

Apart from the LDG methods mentioned above, there are also other finite element methods in the literature for solving fourth-order time-dependent problems. For example, Elliott & Zheng (1986) applied a conforming finite element method to the Cahn–Hilliard equation and obtained optimal error estimates in L^2 and L^∞ norms provided the approximate solution is bounded in L^∞ and the polynomial degree $k \geq 3$. Feng & Prohl (2004) applied a mixed finite element method for solving Cahn–Hillard equations on quasuniform triangular meshes and obtained an optimal error estimate under minimum regularity assumptions on the initial data and the domain.

Adjerid & Issaev (2005) and Adjerid & Klauser (2005) showed that the LDG solution is superconvergent at Radau points for solving convection- or diffusion-dominant time-dependent equations. Based on Fourier analysis, Cheng & Shu (2008, 2009) proved superconvergence of the DG and LDG solutions towards a particular projection of the exact solution in the case of piecewise linear polynomials on uniform meshes for the linear conservation law and heat equation, respectively. The results were later improved, using a different technique, in Cheng & Shu (2010) for arbitrary nonuniform regular meshes and schemes of any order. In this paper we follow the approach in Cheng & Shu (2010) to obtain the superconvergence property of the LDG method for a class of fourth-order problems. An important motivation for studying such superconvergence is to set a firm theoretical foundation for the excellent behaviour of DG and LDG methods for long-time simulations, which have been repeatedly observed by practitioners. Indeed, if superconvergence for the error between the DG or LDG solution and a particular projection of the exact solution of the order $k + \frac{3}{2}$, with linear growth in time, can be shown for polynomials of degree k, then the error between the numerical solution and the exact solution does not grow for a long time $t = O\left(\frac{1}{\sqrt{h}}\right)$, where h is the mesh size (Cheng & Shu, 2010). The generalization from first- and second-order equations in Cheng & Shu (2010) to the fourth-order equation...
in this paper involves several technical difficulties, including the estimate of different combinations of the LDG solution and auxiliary variables that approximate derivatives of different orders, and the design and analysis of a special operator to guarantee the superconvergence property of the initial condition.

This paper is organized as follows. In Section 2 we define the LDG scheme for fourth-order time-dependent problems, state the main results and present the details of the proof of the superconvergence property. In Section 3 various numerical experiments, including linear equations, nonlinear equations, initial boundary value problems and solutions having singularities, are shown to demonstrate that the conclusions hold true for very general cases. Concluding remarks and comments on future work are given in Section 4. The proofs for some of the technical lemmas are collected in Appendix.

2. LDG scheme for fourth-order problems

We consider the following linear fourth-order equation

\[u_t + \alpha u_x + \beta u_{xx} + u_{xxxx} = 0 \]

with initial condition

\[u(x, 0) = u_0(x) \]

and periodic boundary conditions

\[u(0, t) = u(2\pi, t). \]

We would like to remark that the assumption of periodic boundary conditions is for simplicity only and not essential: see Cheng & Shu (2010) for discussion related to initial boundary value problems for conservation laws.

2.1 The LDG scheme

We assume the following mesh to cover the computational domain \(I = [0, 2\pi] \), consisting of cells \(I_j = (x_{j-1/2}, x_{j+1/2}) \), for \(1 \leq j \leq N \), where

\[0 = x_{1/2} < x_{3/2} < \cdots < x_{N+1/2} = 2\pi. \]

The cell centre is denoted by \(x_j = (x_{j-1/2} + x_{j+1/2})/2 \). We also set \(h_j = x_{j+1/2} - x_{j-1/2} \) and \(h = \max_j h_j \).

We denote by \((u_h)_{j+1/2}^- \) and \((u_h)_{j+1/2}^+ \) the values of \(u_h \) at the discontinuity point \(x_{j+1/2} \) from the left cell, \(I_j \), and from the right cell, \(I_{j+1} \), respectively. The following piecewise polynomial space is chosen as the finite element space:

\[V^k_h = \{ v: v|_{I_j} \in P^k(I_j), j = 1, \ldots, N \}, \]

where \(P^k(I_j) \) denotes the set of polynomials of degree up to \(k \) defined on the cell \(I_j \). Note that functions in \(V^k_h \) are allowed to have discontinuities across element interfaces.

In order to construct the LDG scheme, firstly, we introduce some auxiliary variables approximating various order derivatives of the solution and rewrite equation (2.1a) as a first-order system,

\[u_t + (\alpha u + \beta q + r)_x = 0, \quad r - p_x = 0, \quad p - q_x = 0, \quad q - u_x = 0. \]
Then, the semidiscrete LDG scheme is defined as follows: find $u_h, q_h, p_h, r_h \in V_h^k$, such that

\[\int_{I_j} (u_h)_t \rho \, dx - \int_{I_j} a u_h \rho_x \, dx + a \tilde{u}_h \rho^-|_{j+\frac{1}{2}} - a \tilde{u}_h \rho^+|_{j-\frac{1}{2}} - \int_{I_j} \beta q_h \rho_x \, dx \\
+ \beta \hat{q}_h \rho^-|_{j+\frac{1}{2}} - \beta \hat{q}_h \rho^+|_{j-\frac{1}{2}} - \int_{I_j} r_h \rho_x \, dx + \hat{r}_h \rho^-|_{j+\frac{1}{2}} - \hat{r}_h \rho^+|_{j-\frac{1}{2}} = 0, \tag{2.2a} \]

\[\int_{I_j} r_h \eta \, dx + \int_{I_j} p_h \eta_x \, dx - \hat{p}_h \eta^-|_{j+\frac{1}{2}} + \hat{p}_h \eta^+|_{j-\frac{1}{2}} = 0, \tag{2.2b} \]

\[\int_{I_j} p_h \xi \, dx + \int_{I_j} q_h \xi_x \, dx - \hat{q}_h \xi^-|_{j+\frac{1}{2}} + \hat{q}_h \xi^+|_{j-\frac{1}{2}} = 0, \tag{2.2c} \]

\[\int_{I_j} q_h \psi \, dx + \int_{I_j} u_h \psi_x \, dx - \hat{u}_h \psi^-|_{j+\frac{1}{2}} + \hat{u}_h \psi^+|_{j-\frac{1}{2}} = 0 \tag{2.2d} \]

hold for any $\rho, \psi, \xi, \eta \in V_h^k$, where \tilde{u}_h is the upwind flux depending on the sign of α. Without loss of generality we assume that $\alpha \geq 0$ and take $\tilde{u}_h = u_h^-$ and then choose alternating fluxes for the diffusion terms as follows:

\[\hat{u}_h = u_h^- \quad \hat{q}_h = q_h^+ \quad \hat{p}_h = p_h^- \quad \hat{r}_h = r_h^+. \tag{2.3} \]

2.2 Notation and auxiliary results

To prove superconvergence of the LDG method, we would like to introduce the following notation, definitions and useful lemmas.

2.2.1 Notation for the DG discretization. First, we use $[\xi] = \xi^+ - \xi^-$ to denote the jump in the function ξ at each cell boundary point. For the linear problems discussed in this paper, we introduce the DG discretization operator D as in Xu & Shu (in press): for each cell $I_j = \left(x_{j-\frac{1}{2}}, x_{j+\frac{1}{2}} \right)$,

\[D_{I_j}(\xi, \eta; \hat{\xi}) = - \int_{I_j} \xi \eta_x \, dx + \hat{\xi} \eta^-|_{j+\frac{1}{2}} - \hat{\xi} \eta^+|_{j-\frac{1}{2}}. \]

We also use the notation

\[D(\xi, \eta; \hat{\xi}) = \sum_j D_{I_j}(\xi, \eta; \hat{\xi}). \]

Using the definition of this operator, we have the following lemmas, whose proof is straightforward (see Xu & Shu, in press and also Zhang & Shu, 2010).

Lemma 2.1 (Xu & Shu, in press) Choosing different numerical fluxes the DG discretization operator satisfies the equalities

\[D(\xi, \eta; \hat{\xi}) + D(\eta, \xi; \hat{\eta}) = 0, \tag{2.4a} \]
\[\mathcal{D}(\xi, \eta; \xi^+) + \mathcal{D}(\eta, \xi; \eta^-) = 0, \quad (2.4b) \]
\[\mathcal{D}(\xi, \eta; \xi^+) + \mathcal{D}(\eta, \xi; \eta^+) = -\sum_j [\xi]_{j+\frac{1}{2}} [\eta]_{j+\frac{1}{2}}, \quad (2.4c) \]
\[\mathcal{D}(\xi, \eta; \eta^-) + \mathcal{D}(\eta, \xi; \eta^-) = \sum_j [\xi]_{j+\frac{1}{2}} [\eta]_{j+\frac{1}{2}}, \quad (2.4d) \]
\[\mathcal{D}(\xi, \eta; \eta^-) = \frac{1}{2} \sum_j [\xi]_{j+\frac{1}{2}}^2, \quad (2.4e) \]
\[\mathcal{D}(\xi, \eta; \xi^+) = -\frac{1}{2} \sum_j [\xi]_{j+\frac{1}{2}}^2. \quad (2.4f) \]

Lemma 2.2 By integration by parts we also have
\[\mathcal{D}_{I_j}(\xi, \eta; \xi^-) = \int_{I_j} \xi_\tau \eta \, dx + [\xi]_{\frac{1}{2}, j} \eta_{j-\frac{1}{2}}, \quad (2.5) \]
\[\mathcal{D}_{I_j}(\xi, \eta; \xi^+) = \int_{I_j} \xi_\tau \eta \, dx + [\xi]_{\frac{1}{2}, j} \eta_{j+\frac{1}{2}}. \quad (2.6) \]

2.2.2 **Projections and interpolation properties.** In what follows we define two special projections, \(P_h^\pm \) into \(V_h^k \), which are commonly used in the analysis of DG methods. For any given function \(u \in H^1(I) \) and arbitrary subinterval \(I_j = (x_{j-\frac{1}{2}}, x_{j+\frac{1}{2}}) \), the special projections of \(u \), denoted by \(P_h^+ u \) and \(P_h^- u \), are the unique functions in the finite element space \(V_h^k \) satisfying, for each \(j \),
\[\int_{I_j} (P_h^+ u(x) - u(x)) \rho(x) \, dx = 0 \quad \forall \rho \in P^{k-1}(I_j), \quad (P_h^+ u)^{+}_{j-\frac{1}{2}} = u(x_{j-\frac{1}{2}}), \quad (2.7) \]
\[\int_{I_j} (P_h^- u(x) - u(x)) \rho(x) \, dx = 0 \quad \forall \rho \in P^{k-1}(I_j), \quad (P_h^- u)^-_{j+\frac{1}{2}} = u(x_{j+\frac{1}{2}}). \quad (2.8) \]

For the special projections mentioned above, we have, by the standard approximation theory (Ciarlet, 1978), that
\[\| P_h^\pm u(\cdot) - u(\cdot) \|_{L^2} \leq C h^{k+1}, \quad (2.9) \]
where both here and below \(C \) is a positive constant (which may have a different value at each occurrence) depending solely on \(u \) and its derivatives but independent of \(h \). In particular, in equation (2.9), \(C = C' \| u \|_{k+1} \), where \(\| u \|_{k+1} \) is the standard Sobolev \((k + 1) \) norm and \(C' \) is a positive constant independent of \(u \).
In the proof of the error estimates the following inverse properties are needed: for any \(v_h \in V_k^h \) there exists a positive constant \(C \) independent of \(h \), such that

\[
\|v_h\|_F \leq Ch^{-\frac{1}{2}}\|v_h\|_{L^2},
\]

\[
\|\partial_x v_h\|_{L^2} \leq Ch^{-1}\|v_h\|_{L^2},
\]

where \(\|v_h\|_F \) is the usual \(L^2 \) norm on the cell interfaces of the mesh.

2.2.3 Functionals related to the \(L^2 \) norm. To get the superconvergence property of the method two functionals related to the \(L^2 \) norm of a function on \(I_j \) are needed as defined in Cheng & Shu (2010):

\[
B_j^-(f) = \int_{I_j} f(x) \frac{x - x_{j-\frac{1}{2}}}{h_j} \frac{d}{dx} \left(f(x) \frac{x - x_j}{h_j} \right) dx,
\]

\[
B_j^+(f) = \int_{I_j} f(x) \frac{x - x_{j+\frac{1}{2}}}{h_j} \frac{d}{dx} \left(f(x) \frac{x - x_j}{h_j} \right) dx.
\]

The functionals defined above have the following properties, which are essential to the proof of superconvergence.

Lemma 2.3 (Cheng & Shu, 2010) For any function \(f(x) \in C^1 \) on \(I_j \) we have

\[
B_j^-(f) = \frac{1}{4h_j} \int_{I_j} f^2(x) dx + \frac{f^2(x_{j+\frac{1}{2}})}{4},
\]

\[
B_j^+(f) = -\frac{1}{4h_j} \int_{I_j} f^2(x) dx - \frac{f^2(x_{j-\frac{1}{2}})}{4}.
\]

The proof of this lemma is straightforward; see Cheng & Shu (2010).

2.2.4 Initial condition. To obtain the superconvergence property of the method, the initial condition of the numerical scheme should be chosen carefully to be compatible with the superconvergence error estimate. To this end we define an operator \(P_h^* \) as follows: for any function \(u \), then \(P_h^* u \in V_k^h \), and suppose \(q_h, p_h, r_h \in V_k^h \) are the unique solutions (with given \(P_h^* u \)) to

\[
\int_{I_j} r_h \eta_x dx + \int_{I_j} p_h \eta_x dx - \eta_j^{-\frac{1}{2}} + \eta_j^{+\frac{1}{2}} = 0,
\]

\[
\int_{I_j} p_h \xi dx + \int_{I_j} q_h \xi_x dx - \xi_{j+\frac{1}{2}}^{-\frac{1}{2}} + \xi_{j+\frac{1}{2}}^{+\frac{1}{2}} = 0,
\]

\[
\int_{I_j} q_h \psi dx + \int_{I_j} P_h^* u \psi_x dx - (P_h^* u)^{-\frac{1}{2}}(x_{j+\frac{1}{2}}) + (P_h^* u)^{-\frac{1}{2}}(x_{j-\frac{1}{2}}) = 0.
\]
for any $\psi, \xi, \eta \in V^k_h$, then we require
\[
\int_{I_j} ((P_h^- u - P^+_h u) - (P_h^+ q - q_h) + (P_h^+ r - r_h)) \rho \, dx = 0 \quad (2.15)
\]
for any $\rho \in P^{k-1}$ on I_j and
\[
(P_h^- u - P^+_h u)^- = (P_h^+ q - q_h)^+ - (P_h^+ r - r_h)^+ \quad \text{at } x_{j - \frac{1}{2}}. \quad (2.16)
\]

For the regular mesh considered in this paper we denote $\lambda = \max_j h_j / \min_j h_j$, which is a constant during mesh refinements. As to the operator defined above we have the following lemma.

Lemma 2.4 $P^+_h u$ exists and is unique. Moreover, there holds the error estimate
\[
\| P_h^- u - P^+_h u \|_{L^2} \leq C(\lambda, \| u \|_{k+4}) h^{k+3/2}. \quad (2.17)
\]

The proof of this lemma is given in Appendix.

We would like to remark that the purpose for introducing the operator P^+_h is only theoretical: it is needed for the technical proof of superconvergence. In actual numerical computation we have observed that we can use the usual L^2 projection of u as the initial condition and still observe superconvergence; see the numerical experiments in Section 3. Of course, if the standard L^2 projection is used for the initial condition, then the superconvergence result does not hold at $t = 0$ nor for small t. For later time the dissipativity in the PDE and the numerical scheme seems to help to recover the superconvergent performance.

2.3 Main results

Before we state the main results we would like to introduce the following notation:
\[
e_u = u - u_h = (u - P^-_h u) + (P^-_h u - u_h) = e_u + \tilde{e}_u,
\]
\[
e_q = q - q_h = (q - P^+_h q) + (P^+_h q - q_h) = e_q + \tilde{e}_q,
\]
\[
e_p = p - p_h = (p - P^-_h p) + (P^-_h p - p_h) = e_p + \tilde{e}_p,
\]
\[
e_r = r - r_h = (r - P^+_h r) + (P^+_h r - r_h) = e_r + \tilde{e}_r.
\]

For the case $\alpha \geq 0$ we have the following error estimates.

Theorem 2.5 Let u, $p = u_{xx}$ be the exact solution of the fourth-order problem (2.1), which is assumed to be sufficiently smooth, i.e. $\| u \|_{k+4}$, $\| u_t \|_{k+4}$, $\| u_{tt} \|_{k+4}$ and $\| u_{ttt} \|_{k+1}$ are bounded uniformly for any time $t \in [0, T]$. Let u_h, p_h be the LDG solution of equation (2.2) when the diffusion alternating fluxes (2.3) are used. We choose the initial condition as $u_h(\cdot, 0) = P^+_h u_0$. For regular triangulations of $I = [0, 2\pi]$, if the finite element space V^k_h with $k \geq 1$ is used, then there holds the following error estimate:
\[
\| \tilde{e}_u(\cdot, t) \|_{L^2}^2 + \int_0^t \| \tilde{e}_p(\cdot, t) \|_{L^2}^2 \, dt \leq C e^{2C_1 t} h^{2k+3}, \quad (2.18)
\]
and, in particular,
\[\| \tilde{e}_u(\cdot, t) \|_{L^2} \lesssim C e^{C_1 t h^{k+3/2}}, \]
where \(C = C(\alpha, \beta, \lambda, \| u \|_{k+4}, \| u_t \|_{k+4}, \| u_{tt} \|_{k+4}, \| u_{ttt} \|_{k+1}) \) and both here and below \(C_1 = C_1(\alpha, \beta) \geq 0. \)

Remark 2.6 For the case \(\alpha \leq 0 \) we can choose \(\tilde{u}_h = u_h^+ \) and take the diffusion alternating fluxes as
\[\hat{u}_h = u_h^+, \quad \hat{q}_h = q_h^-, \quad \hat{p}_h = p_h^+, \quad \hat{r}_h = r_h^- \quad (2.19) \]
Theorem 2.5 still holds in this case with the obvious change of the projections.

For the case \(\alpha = \beta = 0 \) equation (2.1a) reduces to the biharmonic equation (1.2), and we have the following result.

Theorem 2.7 Let \(u, p = u_{xx} \) be the exact solution of the fourth-order problem (1.2), which is assumed to be sufficiently smooth, i.e. \(\| u \|_{k+4}, \| u_t \|_{k+4}, \| u_{tt} \|_{k+4} \) and \(\| u_{ttt} \|_{k+1} \) are bounded uniformly for any time \(t \in [0, T] \). Let \(u_h, p_h \) be the LDG solution of equation (2.2) when \(\alpha = \beta = 0 \) and diffusion alternating fluxes (2.3) are used. We choose the initial condition as \(u_h(\cdot, 0) = P_h^* u_0 \). For regular triangulations of \(I = [0, 2\pi] \), if the finite element space \(V_h^k \) with \(k \geq 1 \) is used, then there holds the following error estimate:
\[\| \tilde{e}_u(\cdot, t) \|_{L^2}^2 + \int_0^t \| \tilde{e}_p(\cdot, t) \|_{L^2}^2 e^t \leq C (1 + t)^2 h^{2k+3}, \]
and, in particular,
\[\| \tilde{e}_u(\cdot, t) \|_{L^2} \leq C (1 + t) h^{k+3/2}, \]
where \(C = C(\lambda, \| u \|_{k+4}, \| u_t \|_{k+4}, \| u_{tt} \|_{k+4}, \| u_{ttt} \|_{k+1}) \).

The proof of this theorem is similar to that for the previous theorem, except that we need to carefully evaluate and estimate several terms to obtain a linear growth bound without employing Gronwall’s inequality. The detailed proof is given in Appendix.

The case with the fluxes (2.19) is the same with the obvious change of the projections.

Note that, for the general cases including the antidiffusive case \(\beta > 0 \), the exponential growth of the constant with respect to time in Theorem 2.5 is expected, as the exact solution may have such growth in time for small wave numbers.

2.4 \textit{Proof of Theorem 2.5}

By using the DG discretization operator, the LDG scheme (2.2) with the fluxes (2.3) can be written as
\[\int_{I_j} (u_h)_t \rho \, dx + \alpha D_{I_j} (u_h, \rho; u_h^-) + \beta D_{I_j} (q_h, \rho; q_h^+) + D_{I_j} (r_h, \rho; r_h^+) = 0, \quad (2.20a) \]
\[\int_{I_j} r_h \eta \, dx - D_{I_j} (p_h, \eta; p_h^-) = 0, \quad (2.20b) \]
\[
\int_{I_j} p \zeta \, dx - \mathcal{D}_{I_j}(q_h, \zeta; q_h^+) = 0, \tag{2.20c}
\]

\[
\int_{I_j} q_h \psi \, dx - \mathcal{D}_{I_j}(u_h, \psi; u_h^-) = 0, \tag{2.20d}
\]

for any \(\rho, \psi, \zeta, \eta \in V_h^k \). Since the exact solutions \(u, q = u_x, p = u_{xx}, r = u_{xxx} \) also satisfy the scheme (2.2), we have therefore the error equations

\[
\int_{I_j} (e_u)_t \rho \, dx + \alpha \mathcal{D}_{I_j}(e_u, \rho; e_u^-) + \beta \mathcal{D}_{I_j}(e_q, \rho; e_q^+) + \mathcal{D}_{I_j}(e_r, \rho; e_r^+) = 0,
\]

\[
\int_{I_j} e_r \eta \, dx - \mathcal{D}_{I_j}(e_p, \eta; e_p^-) = 0,
\]

\[
\int_{I_j} e_p \zeta \, dx - \mathcal{D}_{I_j}(e_q, \zeta; e_q^+) = 0,
\]

\[
\int_{I_j} e_q \psi \, dx - \mathcal{D}_{I_j}(e_u, \psi; e_u^-) = 0,
\]

which, by the properties of the projections \(P_h^- \) and \(P_h^+ \), given in equations (2.7) and (2.8), is

\[
\int_{I_j} (\bar{e}_u)_t \bar{e}_u \, dx + \alpha \mathcal{D}_{I_j}(\bar{e}_u, \bar{e}_u; \bar{e}_u^-) + \beta \mathcal{D}_{I_j}(\bar{e}_q, \bar{e}_q; \bar{e}_q^+) + \mathcal{D}_{I_j}(\bar{e}_r, \bar{e}_r; \bar{e}_r^+) = 0, \tag{2.21a}
\]

\[
\int_{I_j} e_r \bar{\eta} \, dx - \mathcal{D}_{I_j}(\bar{e}_p, \bar{\eta}; \bar{e}_p^-) = 0, \tag{2.21b}
\]

\[
\int_{I_j} e_p \bar{\zeta} \, dx - \mathcal{D}_{I_j}(\bar{e}_q, \bar{\zeta}; \bar{e}_q^+) = 0, \tag{2.21c}
\]

\[
\int_{I_j} e_q \psi \, dx - \mathcal{D}_{I_j}(\bar{e}_u, \bar{\psi}; \bar{e}_u^-) = 0, \tag{2.21d}
\]

for any \(\rho, \psi, \zeta, \eta \in V_h^k \). Taking \((\rho, \psi, \zeta, \eta) = (\bar{e}_u, -\bar{e}_r, \bar{e}_p, \bar{e}_q)\) in equation (2.21), adding them up and summing over all \(j \), we obtain

\[
\int_I (\bar{e}_u)_t \bar{e}_u \, dx + \int_I \bar{e}_p^2 \, dx + \int_I (e_u)_t \bar{e}_u \, dx + \int_I e_r \bar{e}_p \, dx + \int_I e_q \bar{e}_r \, dx - \int_I e_q \bar{e}_r \, dx + \alpha \mathcal{D}(\bar{e}_u, \bar{e}_u; \bar{e}_u^-) + \beta \mathcal{D}(\bar{e}_q, \bar{e}_u; \bar{e}_q^+) + \mathcal{D}(\bar{e}_u, \bar{e}_r; \bar{e}_r^-) - \mathcal{D}(\bar{e}_q, \bar{e}_q; \bar{e}_q^+) - \mathcal{D}(\bar{e}_p, \bar{e}_q; \bar{e}_q^-) = 0.
\]
Using the property of the operator D in Lemma 2.1 we thus have
\[
\int_I (\bar{e}_u_t, \bar{e}_u) \, dx + \int_I \bar{e}_p^2 \, dx + \int_I (\bar{e}_u) \bar{e}_u \, dx + \int_I e_p \bar{e}_p \, dx \\
+ \int_I e_r \bar{e}_q \, dx - \int_I e_q \bar{e}_r \, dx + \frac{\alpha}{2} \sum_j |\bar{e}_u|_{j + \frac{1}{2}}^2 + \beta D(\bar{e}_q, \bar{e}_u; \bar{e}_q^+) = 0. \tag{2.22}
\]
By taking $\bar{\xi} = \bar{e}_u$ in equation (2.21c) and summing over all j we get
\[
D(\bar{e}_q, \bar{e}_u; \bar{e}_q^+) = \int_I e_p \bar{e}_u \, dx. \tag{2.23}
\]
Combining equations (2.22) and (2.23) we arrive at
\[
\frac{1}{2} \frac{d}{dt} \| \bar{e}_u \|_2^2 + \| \bar{e}_p \|_2^2 \leq - \int_I (e_u)_t \bar{e}_u \, dx - \int_I e_p \bar{e}_p \, dx - \int_I e_r \bar{e}_q \, dx + \int_I e_q \bar{e}_r \, dx - \beta \int_I e_p \bar{e}_u \, dx. \tag{2.24}
\]
It follows from the Cauchy–Schwarz inequality that
\[
\frac{1}{2} \frac{d}{dt} \| \bar{e}_u \|_2^2 + \| \bar{e}_p \|_2^2 \leq \left| \int_I (e_u)_t \bar{e}_u \, dx \right| + \left| \int_I e_p \bar{e}_p \, dx \right| + \left| \int_I e_r \bar{e}_q \, dx \right| \\
+ \left| \int_I e_q \bar{e}_r \, dx \right| + |\beta| \left| \int_I e_p \bar{e}_u \, dx \right| + \frac{\beta^2}{2} \| \bar{e}_u \|_2^2. \tag{2.25}
\]
On the other hand, using Lemma 2.2, equation (2.21) can be rewritten as
\[
\int_{l_j} (e_u)_t \rho \, dx + \alpha D_{l_j}(\bar{e}_u, \rho; \bar{e}_u^-) + \int_{l_j} (\bar{e}_r + \beta \bar{e}_q)_x \rho \, dx + [\bar{e}_r + \beta \bar{e}_q] \rho^-|_{j + \frac{1}{2}} = 0, \tag{2.26a}
\]
\[
\int_{l_j} e_r \eta \, dx - \int_{l_j} (\bar{e}_p)_x \eta \, dx - [\bar{e}_p] \eta^+|_{j - \frac{1}{2}} = 0, \tag{2.26b}
\]
\[
\int_{l_j} e_p \xi \, dx - \int_{l_j} (\bar{e}_q)_x \xi \, dx - [\bar{e}_q] \xi^-|_{j + \frac{1}{2}} = 0, \tag{2.26c}
\]
\[
\int_{l_j} e_q \psi \, dx - \int_{l_j} (\bar{e}_u)_x \psi \, dx - [\bar{e}_u] \psi^+|_{j - \frac{1}{2}} = 0. \tag{2.26d}
\]
Denote
\[
\bar{e}_u = r_j + d_j(x)(x - x_j)/h_j, \quad \bar{e}_q = b_j + s_j(x)(x - x_j)/h_j, \\
\bar{e}_p = v_j + w_j(x)(x - x_j)/h_j, \quad \bar{e}_r = l_j + g_j(x)(x - x_j)/h_j,
\]
where r_j, b_j, v_j, l_j are constants and $d_j(x), s_j(x), w_j(x), g_j(x) \in P^{k-1}$. First, taking $\psi = d_j(x)(x - x_{j - \frac{1}{2}})/h_j$ in equation (2.26d), and using the definition of \mathcal{B}_j^-, we have
\[
\int_{l_j} e_q d_j(x)(x - x_{j - \frac{1}{2}})/h_j \, dx - \mathcal{B}_j^-(d_j) = 0.
\]
By the property of \(B_j^- \) in Lemma 2.3 we obtain

\[
\int_{I_j} d_j^2(x) \, dx \leq 4 \int_{I_j} e_q d_j(x)(x - x_{j-\frac{1}{2}}) \, dx.
\]

Defining piecewise polynomials \(d(x) \) and \(\phi_1(x) \), such that \(d(x) = d_j(x) \) and \(\phi_1(x) = x - x_{j-\frac{1}{2}} \) on \(I_j \), and summing the above inequality over \(j \), we get

\[
\|d\|_{L^2} \leq 4\|e_q\|_{L^2} \|\phi_1\|_{L^\infty} \leq 4h\|e_q\|_{L^2}, \tag{2.27}
\]

where we have used the fact that \(\|\phi_1\|_{L^\infty} = h \). Similarly, taking \(\zeta = s_j(x)(x - x_{j+\frac{1}{2}})/h_j \) in equation (2.26c), \(\eta = w_j(x)(x - x_{j-\frac{1}{2}})/h_j \) in equation (2.26b) and using the definition of \(B_j^- \) and \(B_j^+ \), we have

\[
\int_{I_j} e_r w_j(x)(x - x_{j-\frac{1}{2}})/h_j \, dx - B_j^- (w_j) = 0,
\]

\[
\int_{I_j} e_p s_j(x)(x - x_{j+\frac{1}{2}})/h_j \, dx - B_j^+(s_j) = 0.
\]

By the properties of \(B_j^- \) and \(B_j^+ \) in Lemma 2.3 we obtain

\[
\int_{I_j} w_j^2(x) \, dx \leq 4 \int_{I_j} e_r w_j(x)(x - x_{j-\frac{1}{2}}) \, dx,
\]

\[
\int_{I_j} s_j^2(x) \, dx \leq -4 \int_{I_j} e_p s_j(x)(x - x_{j+\frac{1}{2}}) \, dx.
\]

Defining piecewise polynomials \(w(x), s(x) \) and \(\phi_2(x) \), such that \(w(x) = w_j(x), s(x) = s_j(x) \) and \(\phi_2(x) = x - x_{j+\frac{1}{2}} \) on \(I_j \), and summing the above inequality over \(j \), we get

\[
\|w\|_{L^2} \leq 4\|e_r\|_{L^2} \|\phi_1\|_{L^\infty} \leq 4h\|e_r\|_{L^2}, \tag{2.28}
\]

\[
\|s\|_{L^2} \leq 4\|e_p\|_{L^2} \|\phi_2\|_{L^\infty} \leq 4h\|e_p\|_{L^2}, \tag{2.29}
\]

where we have used the fact that \(\|\phi_1\|_{L^\infty} = \|\phi_2\|_{L^\infty} = h \). Then, letting \(\rho = (g_j(x) + \beta s_j(x))(x - x_{j+\frac{1}{2}})/h_j \) in equation (2.26a), we have

\[
\int_{I_j} (e_u)_x \rho \, dx - \alpha \left[\int_{I_j} \tilde{e}_u \rho \, dx + \tilde{e}_u^+ \rho^+|_{x_{j-\frac{1}{2}}} \right] + \int_{I_j} (\tilde{e}_r + \beta \tilde{e}_q)_x \rho \, dx = 0,
\]

which can be written as

\[
\int_{I_j} (e_u)_x (g_j(x) + \beta s_j(x))(x - x_{j+\frac{1}{2}})/h_j \, dx - \alpha R_j^1 + R_j^2 = 0,
\]
where

\[R_j^1 = \int_{I_j} \tilde{e}_u ((g_j(x) + \beta s_j(x))(x - x_{j+\frac{1}{2}})/h_j) \, dx \]

\[\quad - \left[r_{j-1} + \frac{1}{2} d_{j-1}(x_{j-\frac{1}{2}}) \right] \times \left(g_j(x_{j-\frac{1}{2}}) + \beta s_j(x_{j-\frac{1}{2}}) \right) \]

\[= \int_{I_j} d_j(x) \frac{x - x_j}{h_j} ((g_j(x) + \beta s_j(x))(x - x_{j+\frac{1}{2}})/h_j) \, dx \]

\[+ \left[r_j - r_{j-1} - \frac{1}{2} d_{j-1}(x_{j-\frac{1}{2}}) \right] \left(g_j(x_{j-\frac{1}{2}}) + \beta s_j(x_{j-\frac{1}{2}}) \right) \]

and

\[R_j^2 = B_j^+(g_j + \beta s_j) = -\frac{1}{4h_j} \int_{I_j} (g_j(x) + \beta s_j(x))^2 \, dx - \frac{1}{4} \left(g_j(x_{j-\frac{1}{2}}) + \beta s_j(x_{j-\frac{1}{2}}) \right)^2. \]

Therefore,

\[\int_{I_j} (g_j(x) + \beta s_j(x))^2 \, dx \leq 4 \int_{I_j} (e_u)_r (g_j(x) + \beta s_j(x))(x - x_{j+\frac{1}{2}}) \, dx - 4\alpha h_j R_j^1. \]

Summing the above inequality over all \(j \) we arrive at

\[\|g + \beta s\|_{L^2}^2 \leq 4\left(\|e_u\|_{L^2} \|g + \beta s\|_{L^2} \phi_2 \|_{L^\infty} + 4\alpha \left| \sum_j h_j R_j^1 \right| \right). \]

(2.30)

Taking \(\psi = 1 \) in equation (2.26d) we get

\[r_j - r_{j-1} - \frac{1}{2} d_{j-1}(x_{j-\frac{1}{2}}) = \int_{I_j} e_q \, dx - \frac{1}{2} d_j(x_{j+\frac{1}{2}}). \]

So, the term \(h_j R_j^1 \) can be formulated as

\[h_j R_j^1 = \int_{I_j} d_j(x)(x - x_j)(g_j(x) + \beta s_j(x))/h_j \, dx \]

\[+ \int_{I_j} d_j(x)(x - x_j)(g_j'(x) + \beta s_j'(x))(x - x_{j+\frac{1}{2}})/h_j \, dx \]

\[+ h_j \left[\int_{I_j} e_q \, dx - \frac{1}{2} d_j(x_{j+\frac{1}{2}}) \right] \left(g_j(x_{j-\frac{1}{2}}) + \beta s_j(x_{j-\frac{1}{2}}) \right). \]

By the inverse properties (2.10) and (2.11) we have the estimate

\[\left| \sum_j h_j R_j^1 \right| \leq C(k) \|g + \beta s\|_{L^2} (\|d\|_{L^2} + h \|e_q\|_{L^2}), \]

(2.31)
where \(k \) is the degree of polynomials in the finite element space \(V_h^k \). Combining equations (2.27), (2.30) and (2.31) together and recalling that \(\| \phi_2 \|_{L^\infty} = \| x - x_{j+\frac{1}{2}} \|_{L^\infty} = h \), we conclude that
\[
\| g + \beta s \|_{L^2} \leq C(\alpha, k)h(\| (e_u)_t \|_{L^2} + \| e_q \|_{L^2}).
\] (2.32)

Thus,
\[
\| g \|_{L^2} \leq \| g + \beta s \|_{L^2} + |\beta| \| s \|_{L^2} \leq C(\alpha, \beta, k)h(\| (e_u)_t \|_{L^2} + \| e_q \|_{L^2} + \| e_p \|_{L^2}).
\] (2.33)

Now, we return to the error equation (2.25). Note that \((e_u)_t, e_q, e_p \) and \(e_r \) are orthogonal to any piecewise constant functions, then
\[
\left| \int_I (e_u)_t \tilde{e}_u \, dx \right| = \sum_j \int_{I_j} (e_u)_t d_j(x)(x - x_j)/h_j \, dx \leq \| (e_u)_t \|_{L^2} \| d \|_{L^2} \| \phi \|_{L^\infty},
\]
\[
\left| \int_I e_p \tilde{e}_p \, dx \right| = \sum_j \int_{I_j} e_p w_j(x)(x - x_j)/h_j \, dx \leq \| e_p \|_{L^2} \| w \|_{L^2} \| \phi \|_{L^\infty},
\]
\[
\left| \int_I e_r \tilde{e}_r \, dx \right| = \sum_j \int_{I_j} e_r s_j(x)(x - x_j)/h_j \, dx \leq \| e_r \|_{L^2} \| s \|_{L^2} \| \phi \|_{L^\infty},
\]
\[
\left| \int_I e_q \tilde{e}_q \, dx \right| = \sum_j \int_{I_j} e_q g_j(x)(x - x_j)/h_j \, dx \leq \| e_q \|_{L^2} \| g \|_{L^2} \| \phi \|_{L^\infty},
\]
\[
\left| \int_I e_p \tilde{e}_u \, dx \right| = \sum_j \int_{I_j} e_p d_j(x)(x - x_j)/h_j \, dx \leq \| e_p \|_{L^2} \| d \|_{L^2} \| \phi \|_{L^\infty},
\]
where \(\phi = (x - x_j)/h_j \). Then, equation (2.25) becomes
\[
\frac{1}{2} \frac{d}{dt} \| \tilde{e}_u \|_{L^2}^2 + \frac{1}{2} \| \tilde{e}_p \|_{L^2}^2 \leq \| \phi \|_{L^\infty} \left[\| (e_u)_t \|_{L^2} \| d \|_{L^2} + \| e_p \|_{L^2} \| w \|_{L^2} + \| e_r \|_{L^2} \| s \|_{L^2}
\right.
\[+ \| e_q \|_{L^2} \| g \|_{L^2} + |\beta| \| e_p \|_{L^2} \| d \|_{L^2} \] + \frac{\beta^2}{2} \| \tilde{e}_u \|_{L^2}^2.
\]
(2.34)

Using the approximation property of the projections (2.9) and the fact that \(\| \phi \|_{L^\infty} = \frac{1}{2} \), we get
\[
\frac{1}{2} \frac{d}{dt} \| \tilde{e}_u \|_{L^2}^2 + \frac{1}{2} \| \tilde{e}_p \|_{L^2}^2 \leq Ch^{k+1} (\| d \|_{L^2} + \| s \|_{L^2} + \| w \|_{L^2} + \| g \|_{L^2}) + \frac{\beta^2}{2} \| \tilde{e}_u \|_{L^2}^2,
\] (2.34)
where \(C = C(\beta, \| u \|_{k+4}, \| u_t \|_{k+1}). \) Substituting equations (2.27), (2.28), (2.29) and (2.33) into equation (2.34), we obtain
\[
\frac{1}{2} \frac{d}{dt} \| \tilde{e}_u \|_{L^2}^2 + \frac{1}{2} \| \tilde{e}_p \|_{L^2}^2 \leq C h^{k+2} (\| (e_u)_t \|_{L^2} + \| e_q \|_{L^2} + \| e_p \|_{L^2} + \| e_r \|_{L^2}) + \frac{\beta^2}{2} \| \tilde{e}_u \|_{L^2}^2,
\] (2.35)
where $C = C(\alpha, \beta, \|u\|_{k+4}, \|u_t\|_{k+1})$. Integrating the above inequality with respect to time and using the bound for initial error (2.17), we obtain
\[
\frac{1}{2} \|\bar{e}_u(t)\|_{L^2}^2 + \int_0^t \|\bar{e}_p(t)\|_{L^2}^2 \, dt \leq C h^{k+2} \int_0^t (\|e_u\|_{L^2} + \|e_q\|_{L^2} + \|e_p\|_{L^2} + \|e_r\|_{L^2}) \, dt + \frac{\beta^2}{2} \int_0^t \|\bar{e}_u(t)\|_{L^2}^2 \, dt + C h^{2k+3},
\]
(2.36)
where $C = C(\alpha, \beta, \lambda, \|u\|_{k+4}, \|u_t\|_{k+1})$.

To get the superconvergence result we need the following lemma.

Lemma 2.8 Under the same condition as in Theorem 2.5 we have
\[
\|e_u(t)\|_{L^2} + \|e_q(t)\|_{L^2} \leq C e^{C_1 t} h^{k+1},
\]
(2.37)
\[
\int_0^t (\|e_p\|_{L^2} + \|e_r\|_{L^2}) \, dt \leq C e^{C_1 t} h^{k+1},
\]
(2.38)
where $C = C(\alpha, \beta, \|u\|_{k+4}, \|u_t\|_{k+3})$. Moreover, we have
\[
\int_0^t \|e_u(t)\|_{L^2} \, dt \leq C e^{C_1 t} h^{k+1},
\]
(2.39)
where $C = C(\alpha, \beta, \|u\|_{k+4}, \|u_t\|_{k+4}, \|u_{tt}\|_{k+4}, \|u_{ttt}\|_{k+1})$.

The proof of this lemma is given in Appendix. Using Lemma 2.8 we get from equation (2.36) that
\[
\frac{1}{2} \|\bar{e}_u(t)\|_{L^2}^2 + \int_0^t \|\bar{e}_p(t)\|_{L^2}^2 \, dt \leq \frac{\beta^2}{2} \int_0^t \|\bar{e}_u(t)\|_{L^2}^2 \, dt + C e^{C_1 t} h^{2k+3}.
\]

Gronwall’s inequality gives us the desired result:
\[
\|\bar{e}_u(t)\|_{L^2}^2 + \int_0^t \|\bar{e}_p(t)\|_{L^2}^2 \, dt \leq C e^{2C_1 t} h^{2k+3}
\]
and, in particular,
\[
\|\bar{e}_u(t)\|_{L^2} \leq C e^{C_1 t} h^{k+3/2},
\]
where $C = C(\alpha, \beta, \lambda, \|u\|_{k+4}, \|u_t\|_{k+4}, \|u_{tt}\|_{k+4}, \|u_{ttt}\|_{k+1})$ and $C_1 = C_1(\alpha, \beta) > 0$.

3. Numerical examples

In this section we provide some numerical experiments to demonstrate the superconvergence of the LDG method for fourth-order problems. We do not pay attention to the efficiency of time discretizations, thus either the third-order explicit total variation diminishing (TVD) Runge–Kutta method (Shu & Osher, 1988) or the second-order implicit Crank–Nicholson method can be used in our calculation.
EXAMPLE 3.1 To demonstrate superconvergence as well as the long-time behaviour of the error, we consider the linear fourth-order problem

\[
\begin{align*}
 u_t + u_x + u_{xx} + u_{xxxx} &= 0, \\
 u(x, 0) &= \sin x,
\end{align*}
\]

(3.1)

with periodic boundary conditions. The exact solution to this problem is

\[
u(x, t) = \sin(x - t).
\]

(3.2)

Note that for problems containing high-order derivatives, such as problem (3.1), the popular explicit nonlinearly stable high-order TVD Runge–Kutta methods (Shu & Osher, 1988) will suffer from extremely small time step restriction due to the stiffness of the LDG spatial discretization operator. Thus, the second-order implicit Crank–Nicholson time discretization method is used to perform long-time simulations in this example. We consider both the special projection \(P^\ast_h\) and the usual \(L^2\) projection of the initial condition as our numerical initial conditions and get similar results. Uniform meshes and numerical fluxes (2.3) are used in the calculation.

Table 1 lists the numerical errors and their orders for \(k = 1\) at different final times \(T\) when the special projection \(P^\ast_h u\) is used as the initial condition. From the table we conclude that, at any time, we can observe third-order accuracy for \(\tilde{e}_u\) and \(\tilde{e}_p\), indicating that the error estimate obtained in equation (2.18) is not optimal. Even though we have derived an exponential growth result for \(\tilde{e}_u\) and \(\tilde{e}_p\), we

<table>
<thead>
<tr>
<th>N</th>
<th>(L^2) error</th>
<th>Order</th>
<th>(L^2) error</th>
<th>Order</th>
<th>(L^2) error</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tilde{e}_u)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>4.68 \times 10^{-04}</td>
<td>—</td>
<td>3.04 \times 10^{-03}</td>
<td>—</td>
<td>2.92 \times 10^{-02}</td>
<td>—</td>
</tr>
<tr>
<td>40</td>
<td>6.18 \times 10^{-05}</td>
<td>2.92</td>
<td>3.87 \times 10^{-04}</td>
<td>2.97</td>
<td>3.75 \times 10^{-03}</td>
<td>2.96</td>
</tr>
<tr>
<td>80</td>
<td>7.93 \times 10^{-06}</td>
<td>2.96</td>
<td>4.90 \times 10^{-05}</td>
<td>2.98</td>
<td>4.73 \times 10^{-04}</td>
<td>2.99</td>
</tr>
<tr>
<td>160</td>
<td>1.00 \times 10^{-06}</td>
<td>2.98</td>
<td>6.15 \times 10^{-06}</td>
<td>3.00</td>
<td>5.92 \times 10^{-05}</td>
<td>3.00</td>
</tr>
<tr>
<td>(e_u)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>4.27 \times 10^{-03}</td>
<td>—</td>
<td>5.25 \times 10^{-03}</td>
<td>—</td>
<td>2.96 \times 10^{-02}</td>
<td>—</td>
</tr>
<tr>
<td>40</td>
<td>1.06 \times 10^{-03}</td>
<td>2.01</td>
<td>1.13 \times 10^{-03}</td>
<td>2.22</td>
<td>3.90 \times 10^{-03}</td>
<td>2.93</td>
</tr>
<tr>
<td>80</td>
<td>2.65 \times 10^{-04}</td>
<td>2.00</td>
<td>2.70 \times 10^{-04}</td>
<td>2.07</td>
<td>5.42 \times 10^{-04}</td>
<td>2.85</td>
</tr>
<tr>
<td>160</td>
<td>6.64 \times 10^{-05}</td>
<td>2.00</td>
<td>6.66 \times 10^{-05}</td>
<td>2.02</td>
<td>8.89 \times 10^{-05}</td>
<td>2.61</td>
</tr>
<tr>
<td>(\tilde{e}_p)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>4.66 \times 10^{-04}</td>
<td>—</td>
<td>3.06 \times 10^{-03}</td>
<td>—</td>
<td>2.93 \times 10^{-02}</td>
<td>—</td>
</tr>
<tr>
<td>40</td>
<td>6.16 \times 10^{-05}</td>
<td>2.92</td>
<td>3.88 \times 10^{-04}</td>
<td>2.98</td>
<td>3.75 \times 10^{-03}</td>
<td>2.96</td>
</tr>
<tr>
<td>80</td>
<td>7.92 \times 10^{-06}</td>
<td>2.96</td>
<td>4.90 \times 10^{-05}</td>
<td>2.98</td>
<td>4.73 \times 10^{-04}</td>
<td>2.99</td>
</tr>
<tr>
<td>160</td>
<td>1.00 \times 10^{-06}</td>
<td>2.98</td>
<td>6.15 \times 10^{-06}</td>
<td>3.00</td>
<td>5.92 \times 10^{-05}</td>
<td>3.00</td>
</tr>
<tr>
<td>(e_p)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>4.27 \times 10^{-03}</td>
<td>—</td>
<td>5.26 \times 10^{-03}</td>
<td>—</td>
<td>2.96 \times 10^{-02}</td>
<td>—</td>
</tr>
<tr>
<td>40</td>
<td>1.06 \times 10^{-03}</td>
<td>2.01</td>
<td>1.13 \times 10^{-03}</td>
<td>2.22</td>
<td>3.90 \times 10^{-03}</td>
<td>2.93</td>
</tr>
<tr>
<td>80</td>
<td>2.65 \times 10^{-04}</td>
<td>2.00</td>
<td>2.70 \times 10^{-04}</td>
<td>2.07</td>
<td>5.42 \times 10^{-04}</td>
<td>2.85</td>
</tr>
<tr>
<td>160</td>
<td>6.64 \times 10^{-05}</td>
<td>2.00</td>
<td>6.66 \times 10^{-05}</td>
<td>2.02</td>
<td>8.89 \times 10^{-05}</td>
<td>2.61</td>
</tr>
</tbody>
</table>
can clearly observe that they actually grow linearly with respect to time for this particular example, which guarantees that the errors for \(e_u \) and \(e_p \) do not grow much with respect to time for a long time, \(t = O(h^{-1}) \). This is especially prominent for fine grids.

Table 2 lists the numerical errors and their orders for \(k = 2 \) at different final times \(T \) when the special projection \(P_h^* u \) is used as the initial condition. We can clearly see that both \(\tilde{e}_u \) and \(\tilde{e}_p \) achieve fourth-order accuracy at \(T = 1 \). For longer time, for example \(T = 10 \) and \(T = 50 \), the orders seem also to converge to four, if we keep on refining the mesh. We also observe that the errors for both \(\tilde{e}_u \) and \(\tilde{e}_p \) do not grow much until the final time we have run (\(T = 50 \)), especially for fine grids. For the case of \(k = 3 \) the results in Table 3 also demonstrate the superconvergence of \(\tilde{e}_u \) and \(\tilde{e}_p \).

If we use the \(L^2 \) projection of the initial condition as our numerical initial condition instead, we also obtain the superconvergence results for \(\tilde{e}_u \) and \(\tilde{e}_p \) and observe little difference compared to the case when \(P_h^* u \) is used as the numerical initial condition, indicating that the definition of the operator \(P_h^* \) is only for a technical purpose in the proof and not essential to the computation; see Tables 4–6.

We would like to mention that, apart from the superconvergence results for \(\tilde{e}_u \) and \(\tilde{e}_p \), we have also obtained similar superconvergence results for \(\tilde{e}_q \) and \(\tilde{e}_r \) in our numerical experiments, which are not listed here to save space.

Example 3.2 We consider problem (3.1) with exact solution (3.2) and the boundary conditions

\[
 u(0, t) = g_1(t), \quad u_x(2\pi, t) = g_2(t), \quad u_{xx}(0, t) = g_3(t), \quad u_{xxx}(2\pi, t) = g_4(t),
\]

where \(g_i(t) \) corresponds to the data from the exact solution.

Table 2 \(P^2 \) polynomials for Example 3.1 on a uniform mesh of \(N \) cells at different time \(T \). \(P_h^* \) projection of the initial condition

<table>
<thead>
<tr>
<th>(N)</th>
<th>(T = 1)</th>
<th>(T = 10)</th>
<th>(T = 50)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(L^2) error</td>
<td>Order</td>
<td>(L^2) error</td>
</tr>
<tr>
<td>(\tilde{e}_u)</td>
<td>10</td>
<td>(6.93 \times 10^{-5})</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>4.23 \times 10^{-6}</td>
<td>4.03</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>2.63 \times 10^{-7}</td>
<td>4.01</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>1.64 \times 10^{-8}</td>
<td>4.00</td>
</tr>
<tr>
<td>(e_u)</td>
<td>10</td>
<td>8.56 \times 10^{-4}</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.07 \times 10^{-4}</td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>1.34 \times 10^{-5}</td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>1.67 \times 10^{-6}</td>
<td>3.00</td>
</tr>
<tr>
<td>(\tilde{e}_p)</td>
<td>10</td>
<td>5.69 \times 10^{-5}</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>3.81 \times 10^{-6}</td>
<td>3.90</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>2.49 \times 10^{-7}</td>
<td>3.94</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>1.60 \times 10^{-8}</td>
<td>3.96</td>
</tr>
<tr>
<td>(e_p)</td>
<td>10</td>
<td>8.56 \times 10^{-4}</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.07 \times 10^{-4}</td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>1.34 \times 10^{-5}</td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>1.67 \times 10^{-6}</td>
<td>3.00</td>
</tr>
</tbody>
</table>
Table 3: P^3 polynomials for Example 3.1 on a uniform mesh of N cells; $T = 1$; P^*_h projection of the initial condition

<table>
<thead>
<tr>
<th>N</th>
<th>L^2 error</th>
<th>Order</th>
<th>e_u L^2 error</th>
<th>Order</th>
<th>e_p L^2 error</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6.60×10^{-05}</td>
<td>—</td>
<td>5.26×10^{-04}</td>
<td>—</td>
<td>5.63×10^{-05}</td>
<td>—</td>
</tr>
<tr>
<td>10</td>
<td>1.73×10^{-06}</td>
<td>5.25</td>
<td>3.30×10^{-05}</td>
<td>4.00</td>
<td>1.52×10^{-06}</td>
<td>5.22</td>
</tr>
<tr>
<td>20</td>
<td>5.39×10^{-08}</td>
<td>5.01</td>
<td>2.06×10^{-06}</td>
<td>4.00</td>
<td>5.02×10^{-08}</td>
<td>4.91</td>
</tr>
<tr>
<td>40</td>
<td>1.71×10^{-09}</td>
<td>4.98</td>
<td>1.29×10^{-07}</td>
<td>4.00</td>
<td>1.69×10^{-09}</td>
<td>4.89</td>
</tr>
</tbody>
</table>

Table 4: P^1 polynomials for Example 3.1 on a uniform mesh of N cells; $T = 1$; L^2 projection of the initial condition

<table>
<thead>
<tr>
<th>N</th>
<th>L^2 error</th>
<th>Order</th>
<th>e_u L^2 error</th>
<th>Order</th>
<th>e_p L^2 error</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>4.36×10^{-04}</td>
<td>—</td>
<td>4.26×10^{-03}</td>
<td>—</td>
<td>4.38×10^{-04}</td>
<td>—</td>
</tr>
<tr>
<td>40</td>
<td>5.63×10^{-05}</td>
<td>2.95</td>
<td>1.06×10^{-03}</td>
<td>2.00</td>
<td>5.64×10^{-05}</td>
<td>2.96</td>
</tr>
<tr>
<td>80</td>
<td>7.15×10^{-06}</td>
<td>2.98</td>
<td>2.66×10^{-04}</td>
<td>2.00</td>
<td>7.16×10^{-06}</td>
<td>2.98</td>
</tr>
<tr>
<td>160</td>
<td>9.00×10^{-07}</td>
<td>2.99</td>
<td>6.64×10^{-05}</td>
<td>2.00</td>
<td>9.01×10^{-07}</td>
<td>2.99</td>
</tr>
</tbody>
</table>

Table 5: P^2 polynomials for Example 3.1 on a uniform mesh of N cells; $T = 1$; L^2 projection of the initial condition

<table>
<thead>
<tr>
<th>N</th>
<th>L^2 error</th>
<th>Order</th>
<th>e_u L^2 error</th>
<th>Order</th>
<th>e_p L^2 error</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>6.90×10^{-05}</td>
<td>—</td>
<td>8.56×10^{-04}</td>
<td>—</td>
<td>5.66×10^{-05}</td>
<td>—</td>
</tr>
<tr>
<td>20</td>
<td>4.23×10^{-06}</td>
<td>4.03</td>
<td>1.07×10^{-04}</td>
<td>3.00</td>
<td>3.81×10^{-06}</td>
<td>3.89</td>
</tr>
<tr>
<td>40</td>
<td>2.62×10^{-07}</td>
<td>4.01</td>
<td>1.34×10^{-05}</td>
<td>3.00</td>
<td>2.49×10^{-07}</td>
<td>3.93</td>
</tr>
<tr>
<td>80</td>
<td>1.65×10^{-08}</td>
<td>3.99</td>
<td>1.67×10^{-06}</td>
<td>3.00</td>
<td>1.61×10^{-08}</td>
<td>3.95</td>
</tr>
</tbody>
</table>

Table 6: P^3 polynomials for Example 3.1 on a uniform mesh of N cells; $T = 1$; L^2 projection of the initial condition

<table>
<thead>
<tr>
<th>N</th>
<th>L^2 error</th>
<th>Order</th>
<th>e_u L^2 error</th>
<th>Order</th>
<th>e_p L^2 error</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5.58×10^{-05}</td>
<td>—</td>
<td>5.25×10^{-04}</td>
<td>—</td>
<td>4.43×10^{-05}</td>
<td>—</td>
</tr>
<tr>
<td>10</td>
<td>1.73×10^{-06}</td>
<td>5.01</td>
<td>3.30×10^{-05}</td>
<td>3.99</td>
<td>1.51×10^{-06}</td>
<td>4.88</td>
</tr>
<tr>
<td>20</td>
<td>5.39×10^{-08}</td>
<td>5.00</td>
<td>2.06×10^{-06}</td>
<td>4.00</td>
<td>5.02×10^{-08}</td>
<td>4.91</td>
</tr>
<tr>
<td>40</td>
<td>1.95×10^{-09}</td>
<td>4.79</td>
<td>1.29×10^{-07}</td>
<td>4.00</td>
<td>1.80×10^{-09}</td>
<td>4.80</td>
</tr>
</tbody>
</table>

Note that the above boundary conditions are matched with the alternating numerical fluxes (2.3). Both here and below, we use the third-order explicit TVD Runge–Kutta method and the L^2 projection of the initial condition as our numerical initial condition. Table 7 lists the results for both P^1 and P^2.

TABLE 7 P^1 and P^2 polynomials for Example 3.2 with boundary conditions (3.3) on a uniform mesh of N cells; $T = 0.5$

<table>
<thead>
<tr>
<th>P^k</th>
<th>$k = 1$</th>
<th>$k = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>L^2 error</td>
<td>Order</td>
</tr>
<tr>
<td>10</td>
<td>3.07×10^{-03}</td>
<td>—</td>
</tr>
<tr>
<td>20</td>
<td>3.95×10^{-04}</td>
<td>2.96</td>
</tr>
<tr>
<td>40</td>
<td>5.03×10^{-05}</td>
<td>2.98</td>
</tr>
<tr>
<td>80</td>
<td>6.34×10^{-06}</td>
<td>2.99</td>
</tr>
</tbody>
</table>

polynomials at $T = 0.5$ when fluxes (2.3) are used. To impose the given boundary conditions (3.3), the corresponding boundary fluxes are defined as

\[(u_h)^- = g_1(t), \quad (q_h)^- = g_2(t), \quad (p_h)^- = g_3(t), \quad (r_h)^- = g_4(t).\]

From the table we can clearly see that \tilde{e}_u achieves $(k + 2)$th-order superconvergence and the error e_u achieves the expected $(k + 1)$th order of accuracy.

EXAMPLE 3.3 We consider problem (3.1) with exact solution (3.2) and the boundary conditions

\[u(0, t) = h_1(t), \quad u(2\pi, t) = h_2(t), \quad u_x(0, t) = h_3(t), \quad u_x(2\pi, t) = h_4(t),\]

where $h_i(t)$ corresponds to the data from the exact solution.

In this example the minimal dissipation LDG method is used to deal with the Dirichlet boundary conditions (3.4). The distinctive feature of this method is that the stabilization parameters associated with the numerical fluxes are taken to be identically zero on all interior cell interfaces (that is, only the numerical fluxes at boundaries are penalized) and this is why its dissipation is said to be minimal; see, e.g. Castillo et al. (2002). More precisely, the numerical fluxes based on equation (2.3) for u_h, q_h, p_h, r_h are chosen as

\[
(u_h)^- = h_1(t), \quad (u_h)^+ = h_2(t), \quad (q_h)^- = h_3(t), \quad (q_h)^+ = h_4(t),
\]

and

\[(p_h)^+ = (p_h)^+ + \kappa_1 [q_h]^+, \quad (r_h)^- = (r_h)^- - \kappa_2 [u_h]^+,\]

with κ_1 and κ_2 positive constants that are $O(h^{-1})$ and $O(h^{-3})$, respectively. The numerical errors and their orders obtained by using P_1 and P_2 polynomials at $T = 0.5$ are listed in Table 8. From the table we can clearly see that \tilde{e}_u achieves $(k + 2)$th-order superconvergence and the error e_u achieves the
TABLE 8 \(P^1 \) and \(P^2 \) polynomials for Example 3.3 with boundary conditions (3.4) on a uniform mesh of \(N \) cells; \(T = 0.5; \kappa_1 = 30/h, \kappa_2 = 10/h^3 \)

<table>
<thead>
<tr>
<th>(P^k)</th>
<th>(k = 1)</th>
<th>(k = 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N)</td>
<td>(\bar{e}_u)</td>
<td>(e_u)</td>
</tr>
<tr>
<td>(L^2) error</td>
<td>Order</td>
<td>(L^2) error</td>
</tr>
<tr>
<td>10</td>
<td>2.82 \times 10^{-03}</td>
<td>—</td>
</tr>
<tr>
<td>20</td>
<td>3.53 \times 10^{-04}</td>
<td>3.00</td>
</tr>
<tr>
<td>40</td>
<td>4.43 \times 10^{-05}</td>
<td>2.99</td>
</tr>
<tr>
<td>80</td>
<td>5.58 \times 10^{-06}</td>
<td>2.99</td>
</tr>
</tbody>
</table>

expected \((k + 1)\)th order of accuracy. Based on the results in Examples 3.2 and 3.3, we conclude that the superconvergence property also holds true for initial boundary value problems.

EXAMPLE 3.4 To test the validity of the superconvergence property for solutions with singularities, we solve the equation \(u_t + u_x + u_{xx} + u_{xxxx} = 0 \) on the interval \([-1, 1]\) with discontinuous initial data

\[
u(x, 0) = \begin{cases}
1 & \text{if } |x| \leq 0.5, \\
0 & \text{otherwise,}
\end{cases}
\]

(3.6)

and periodic boundary conditions.

By Fourier analysis we can derive the exact solution of Example 3.4 in the form

\[
u(x, t) = \frac{1}{2} + 2 \sum_{\omega=1}^{\infty} e^{(\omega^2 \pi^2 - \omega^4 \pi^4) t} \frac{\sin \left(\frac{\omega \pi}{2} \right)}{\omega \pi} \cos(\omega \pi (x - t)).
\]

In our computation the exact solution is taken as

\[
u(x, t) = \frac{1}{2} + 2 \sum_{\omega=1}^{5} e^{(\omega^2 \pi^2 - \omega^4 \pi^4) t} \frac{\sin \left(\frac{\omega \pi}{2} \right)}{\omega \pi} \cos(\omega \pi (x - t))
\]

(3.7)

with negligible error. The numerical errors and their orders for Example 3.4 using both \(P^1 \) and \(P^2 \) polynomials at \(T = 0.05 \) are given in Table 9 from which we can clearly observe \((k+2)\)th and \((k+1)\)th orders of accuracy for \(\bar{e}_u \) and \(e_u \), respectively; that is, the conclusions also hold true for solutions with singularities in the initial condition, provided the singularities are located at cell boundaries.

EXAMPLE 3.5 In this example we solve the linear time-dependent biharmonic equation

\[
u_t + u_{xxxx} = 0,
\]

\[
u(x, 0) = \sin x,
\]

(3.8)

with periodic boundary conditions. The exact solution to this problem is

\[
u(x, t) = e^{-t} \sin x.
\]

(3.9)
TABLE 9 P^1 and P^2 polynomials for Example 3.4 with discontinuous initial data (3.6) on a uniform mesh of N cells; $T = 0.05$

<table>
<thead>
<tr>
<th>N</th>
<th>L^2 error</th>
<th>Order</th>
<th>L^2 error</th>
<th>Order</th>
<th>L^2 error</th>
<th>Order</th>
<th>L^2 error</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1.08×10^{-03}</td>
<td>—</td>
<td>1.18×10^{-03}</td>
<td>—</td>
<td>5.26×10^{-05}</td>
<td>—</td>
<td>1.08×10^{-04}</td>
<td>—</td>
</tr>
<tr>
<td>8</td>
<td>5.93×10^{-05}</td>
<td>4.19</td>
<td>2.21×10^{-04}</td>
<td>2.42</td>
<td>3.01×10^{-06}</td>
<td>4.13</td>
<td>1.34×10^{-05}</td>
<td>3.02</td>
</tr>
<tr>
<td>16</td>
<td>4.89×10^{-06}</td>
<td>3.60</td>
<td>5.34×10^{-05}</td>
<td>2.05</td>
<td>1.85×10^{-07}</td>
<td>4.02</td>
<td>1.67×10^{-06}</td>
<td>3.00</td>
</tr>
<tr>
<td>32</td>
<td>5.40×10^{-07}</td>
<td>3.18</td>
<td>1.33×10^{-05}</td>
<td>2.01</td>
<td>1.15×10^{-08}</td>
<td>4.00</td>
<td>2.09×10^{-07}</td>
<td>3.00</td>
</tr>
</tbody>
</table>

Note that the exact solution u is exponentially decaying with respect to time; let us denote by \tilde{e}_u a measure of the relative error between \tilde{e}_u and u, namely, $\|\tilde{e}_u\|_{L^2} = \|\tilde{e}_u\|_{L^2}/\|u\|_{L^2}$. The growth of the relative error in the L^2 norm, $\|\tilde{e}_u\|_{L^2}$, versus time, obtained by using P^1 polynomials on a uniform mesh of 40 cells, is plotted in Fig. 1. We can see that the relative error grows essentially linearly with respect to time from $T = 8$ to the final time $T = 20$ that we have run. This example demonstrates that not only the absolute error grows at most linearly with time, as proved in Theorem 2.7, but also the relative error grows only linearly in time.

FIG. 1. The growth of the relative error versus time using P^1 polynomials.
Example 3.6 In order to see the superconvergence of the method for nonlinear problems, we consider the Kuramoto–Sivashinsky equation

$$u_t + \left(\frac{u^2}{2} \right)_x + u_{xx} + \sigma u_{xxx} + u_{xxxx} = 0,$$

(3.10)

with the exact solution given by

$$u(x,t) = c + 9 - 15(\tanh(k(x - ct - x_0))) + \tanh^2(k(x - ct - x_0)) - \tanh^3(k(x - ct - x_0)),$$

(3.11)

where $\sigma = 4$, $c = 6$, $k = \frac{1}{2}$ and $x_0 = -10$.

The computational domain is $[-30, 30]$. Although the exact solution is not periodic, we can still use periodic boundary conditions in our computation since the exact solution is negligibly small at the boundary of the domain for short-time simulations, for example, $T = 2$, due to the large size of the computational domain. We use the Godunov flux, which is an upwind flux, for the nonlinear convection part, and alternating fluxes (2.3) for other parts. The projection is defined element by element as follows. If $u(x_j, t)$ is positive we choose P_h^- on the cell I_j; otherwise, we use P_h^+. We test this example using both P^1 and P^2 polynomials at $T = 0.5$. The numerical errors and orders of accuracy for \tilde{e}_u and e_u are given in Table 10. From the table we can see that the error \tilde{e}_u achieves $(k + 2)$th-order superconvergence and the error e_u achieves the expected $(k + 1)$th order of accuracy. This example shows that the superconvergence property also holds true for some nonlinear equations.

4. Concluding remarks

In this paper we have studied the superconvergence of the LDG method for linear fourth-order time-dependent problems. We prove that the error between the numerical solution and a particular projection of the exact solution achieves $(k + \frac{3}{2})$th-order superconvergence when polynomials of degree k ($k \geq 1$) are used. Various numerical experiments, including linear equations, nonlinear equations, initial boundary value problems and solutions having singularities, are shown to demonstrate that the conclusions hold true for very general cases. Even though we consider only the one-dimensional case in this paper,
similar results should hold for certain tensor product two-dimensional cases; see Cheng & Shu (2010) for related discussion for convection and second-order diffusion equations.

The theoretical study of the superconvergence of the DG or LDG method for nonlinear equations and for nonperiodic boundary conditions is more challenging and this will be carried out in the future.

Funding

NSF (DMS-0809086 and DMS-1112700); DOE (DE-FG02-08ER25863).

REFERENCES

Appendix

In this appendix we give the proofs for some of the technical lemmas and theorems.

A.1 The proof of Lemma 2.4

We will first prove the existence and uniqueness of $P_h^* u$. When using the DG discretization operator \mathcal{D}, equation (2.14) can be written as

\[\int_{I_j} r_h \eta \, dx - \mathcal{D}_{I_j}(p_h, \eta; p_h^-) = 0, \quad (A.1a) \]
\[\int_{I_j} p_h \xi \, dx - \mathcal{D}_{I_j}(q_h, \xi; q_h^+) = 0, \quad (A.1b) \]
\[\int_{I_j} q_h \psi \, dx - \mathcal{D}_{I_j}(P_h^* u, \psi; (P_h^* u)^-) = 0 \quad (A.1c) \]

for any $\psi, \xi, \eta \in V_h^k$. Since the exact solutions $u, q = u_x, p = u_{xx}, r = u_{xxx}$ also satisfy scheme (A.1), we thus have the error equations

\[\int_{I_j} (r - r_h) \eta \, dx - \mathcal{D}_{I_j}(p - p_h, \eta; (p - p_h)^-) = 0, \quad (A.2a) \]
\[\int_{I_j} (p - p_h) \xi \, dx - \mathcal{D}_{I_j}(q - q_h, \xi; (q - q_h)^+) = 0. \quad (A.2b) \]
\[
\int_{I_j} (q - q_h) \psi \, dx - \mathcal{D}_{I_j} (u - P_h^* u, \psi; (u - P_h^* u)^{-}) = 0, \tag{A.2c}
\]
for any \(\psi, \zeta, \eta \in V_h^k \). Denote
\[
\begin{align*}
 u - P_h^* u &= (u - P_h^- u) + (P_h^- u - P_h^* u) = \varepsilon_u + E_u, \\
 q - q_h &= (q - P_h^+ q) + (P_h^+ q - q_h) = \varepsilon_q + E_q, \\
 p - p_h &= (p - P_h^- p) + (P_h^- p - p_h) = \varepsilon_p + E_p, \\
 r - r_h &= (r - P_h^+ r) + (P_h^+ r - r_h) = \varepsilon_r + E_r.
\end{align*}
\]
By virtue of the properties of the projections \(P_h^+ \) and \(P_h^- \) given in equations (2.7) and (2.8), equation (A.2) becomes
\[
\begin{align*}
 \int_{I_j} (\varepsilon_r + E_r) \eta \, dx - \mathcal{D}_{I_j} (E_p, \eta; E_p^-) &= 0, \tag{A.3a} \\
 \int_{I_j} (\varepsilon_p + E_p) \zeta \, dx - \mathcal{D}_{I_j} (E_q, \zeta; E_q^+) &= 0, \tag{A.3b} \\
 \int_{I_j} (\varepsilon_q + E_q) \psi \, dx - \mathcal{D}_{I_j} (E_u, \psi; E_u^-) &= 0. \tag{A.3c}
\end{align*}
\]
Also, conditions (2.15) and (2.16) are equivalent to
\[
\int_{I_j} (E_u - E_q + E_r) \rho \, dx = 0 \tag{A.4}
\]
for any \(\rho \in P^{k-1} \) on \(I_j \) and
\[
E^-_u = (E_q - E_r)^+ \text{ at } x_{j-\frac{1}{2}}. \tag{A.5}
\]
Note that equations (A.3), (A.4) and (A.5) are a linear system for \(E_u, E_q, E_p, E_r \in V_h^k \). To prove the existence and uniqueness of \(P_h^* u \), we need only to prove the uniqueness of \(E_u \), then \(P_h^* u = P_h^- u - E_u \) will exist and is unique.

Plugging conditions (A.4) and (A.5) into (A.3), we obtain
\[
\begin{align*}
 \int_{I_j} (\varepsilon_r + E_r) \eta \, dx - \mathcal{D}_{I_j} (E_p, \eta; E_p^-) &= 0, \tag{A.6a} \\
 \int_{I_j} (\varepsilon_p + E_p) \zeta \, dx - \mathcal{D}_{I_j} (E_q, \zeta; E_q^+) &= 0, \tag{A.6b} \\
 \int_{I_j} (\varepsilon_q + E_q) \psi \, dx - \mathcal{D}_{I_j} (E_q - E_r, \psi; (E_q - E_r)^+) &= 0. \tag{A.6c}
\end{align*}
\]
which is
\[
\int_{I_j} E_r \eta \, dx - D I_j (E_p, \eta; E_p^-) = - \int_{I_j} \epsilon_r \eta \, dx,
\]
(A.7a)
\[
\int_{I_j} E_p \xi \, dx - D I_j (E_q, \xi; E_q^+) = - \int_{I_j} \epsilon_p \xi \, dx,
\]
(A.7b)
\[
\int_{I_j} E_q \psi \, dx - D I_j (E_q - E_r, \psi; (E_q - E_r)^+) = - \int_{I_j} \epsilon_q \psi \, dx,
\]
(A.7c)
for any \(\psi, \xi, \eta \in V_h^k \). Note that equation (A.7) is a linear system, hence the existence of \((E_q, E_p, E_r)\) follows by the uniqueness.

We claim that the solution \((E_q, E_p, E_r)\) to equation (A.7) is unique. Suppose both \((E_q^1, E_p^1, E_r^1)\) and \((E_q^2, E_p^2, E_r^2)\) satisfy equation (A.7) and denote \(g_q = E_q^1 - E_q^2\), \(g_p = E_p^1 - E_p^2\), \(g_r = E_r^1 - E_r^2\), then equation (A.7) yields
\[
\int_{I_j} g_r \eta \, dx - D I_j (g_p, \eta; g_p^-) = 0,
\]
(A.8a)
\[
\int_{I_j} g_p \xi \, dx - D I_j (g_q, \xi; g_q^+) = 0,
\]
(A.8b)
\[
\int_{I_j} g_q \psi \, dx - D I_j (g_q - g_r, \psi; (g_q - g_r)^+) = 0,
\]
(A.8c)
for any \(\psi, \xi, \eta \in V_h^k \). Now taking \((\psi, \xi, \eta) = (g_q - g_r, g_p, g_q)\) in equation (A.8), adding them up and summing over all \(j\), we get
\[
\|g_q\|_{L^2}^2 + \|g_p\|_{L^2}^2 - D(g_p, g_q; g_p^-) - D(g_q, g_p; g_q^+) - D(g_q - g_r, g_q - g_r; (g_q - g_r)^+) = 0.
\]
By the property of the operator \(D\) in Lemma 2.1, we have
\[
\|g_q\|_{L^2}^2 + \|g_p\|_{L^2}^2 + \frac{1}{2} \sum_j [g_q - g_r]_{j+\frac{1}{2}}^2 = 0,
\]
which implies \(g_q = g_p = 0\) and further, \(g_r = 0\). We have thus proved the existence and uniqueness of \(E_q\) and \(E_r\), then conditions (A.4) and (A.5) lead to the existence and uniqueness of \(E_u\) and thus \(P_h^*u\).

We obtain the error estimate (2.17) in three steps.

Step 1. By Lemma 2.2 equation (A.6) can be rewritten as
\[
\int_{I_j} (\epsilon_r + E_r) \eta \, dx - \int_{I_j} (E_p) \eta \, dx - [E_p] \eta^+_{j-\frac{1}{2}} = 0,
\]
(A.9a)
\[
\int_{I_j} (\epsilon_p + E_p) \xi \, dx - \int_{I_j} (E_q) \xi \, dx - [E_q] \xi^-_{j+\frac{1}{2}} = 0,
\]
(A.9b)
\[
\int_{I_j} (\epsilon_q + E_q) \psi \, dx - \int_{I_j} (E_q - E_r) \psi \, dx - [E_q - E_r] \psi^-_{j+\frac{1}{2}} = 0.
\]
(A.9c)
Define $E_q = b_j + s_j(x)(x - x_j)/h_j$, $E_p = v_j + w_j(x)(x - x_j)/h_j$, $E_r = l_j + g_j(x)(x - x_j)/h_j$ on I_j, where b_j, v_j, l_j are constants and $s_j(x), w_j(x), g_j(x) \in P^{k-1}$. First, we let $\psi = (s_j(x) - g_j(x))(x - x_j + \frac{1}{2})/h_j$ in equation (A.9c) and get, by the definition of B_j^+,
\[
\int_{I_j} (e_q + E_q)(s_j(x) - g_j(x))(x - x_j + \frac{1}{2})/h_j \, dx - B_j^+(s_j - g_j) = 0.
\]

Using the property of B_j^+ in Lemma 2.3, we have
\[
\int_{I_j} (e_q + E_q)(s_j(x) - g_j(x))(x - x_j + \frac{1}{2})/h_j \, dx + \frac{1}{4h_j} \int_{I_j} (s_j(x) - g_j(x))^2 \, dx + \frac{1}{4}(s_j(x_j - \frac{1}{2}) - g_j(x_j - \frac{1}{2}))^2 = 0.
\]
Thus,
\[
\int_{I_j} (s_j(x) - g_j(x))^2 \, dx \leq -4 \int_{I_j} (e_q + E_q)(s_j(x) - g_j(x))(x - x_j + \frac{1}{2}) \, dx.
\]

Define piecewise polynomials $s(x), g(x)$ and $\phi_2(x)$, such that $s(x) = s_j(x), g(x) = g_j(x), \phi_2(x) = x - x_j + \frac{1}{2}$ on I_j, then summing equation (A.10) over all j,
\[
\|s - g\|_{L^2} \leq 4\|e_q + E_q\|_{L^2}\|\phi_2\|_{L^\infty}.
\]

By approximation results (2.9) and the fact that $\|\phi_2\|_{L^\infty} = h$ we get
\[
\|s - g\|_{L^2} \leq 4h\|e_q + E_q\|_{L^2} \leq Ch^{k+2} + Ch\|E_q\|_{L^2},
\]
where $C = C(\|u\|_{k+2})$. Similarly, letting $\xi = s_j(x)(x - x_j + \frac{1}{2})/h_j$ in equation (A.9b) and $\eta = w_j(x)(x - x_j + \frac{1}{2})/h_j$ in equation (A.9a), and using the definition of B_j^- and B_j^+, we get
\[
\int_{I_j} (e_r + E_r)w_j(x)(x - x_j - \frac{1}{2})/h_j \, dx - B_j^-(\xi) = 0,
\]
\[
\int_{I_j} (e_p + E_p)s_j(x)(x - x_j + \frac{1}{2})/h_j \, dx - B_j^+(\xi) = 0.
\]

Using the properties of B_j^- and B_j^+ in Lemma 2.3, we have
\[
\int_{I_j} (e_r + E_r)w_j(x)(x - x_j - \frac{1}{2})/h_j \, dx - \frac{1}{4h_j} \int_{I_j} w_j^2(x) \, dx - \frac{w_j^2(x_j + \frac{1}{2})}{4} = 0,
\]
\[
\int_{I_j} (e_p + E_p)s_j(x)(x - x_j + \frac{1}{2})/h_j \, dx + \frac{1}{4h_j} \int_{I_j} s_j^2(x) \, dx + \frac{s_j^2(x_j - \frac{1}{2})}{4} = 0.
\]
Thus,
\[
\int_{I_j} w_j^2(x) \, dx \leq 4 \int_{I_j} (\varepsilon_r + E_r) w_j(x)(x - x_{j-\frac{1}{2}}) \, dx,
\]
\[
\int_{I_j} s_j^2(x) \, dx \leq -4 \int_{I_j} (\varepsilon_p + E_p) s_j(x)(x - x_{j+\frac{1}{2}}) \, dx.
\]

Define piecewise polynomials \(w(x) \) and \(\phi_1(x) \), such that \(w(x) = w_j(x) \), \(\phi_1(x) = x - x_{j-\frac{1}{2}} \) on \(I_j \); thus, \(\| \phi_1 \|_{L^\infty} = h \), and finally, we get
\[
\| w \|_{L^2} \leq 4\| \varepsilon_r + E_r \|_{L^2} \| \phi_1 \|_{L^\infty} \leq 4h \| \varepsilon_r + E_r \|_{L^2} \leq Ch^{k+2} + Ch \| E_r \|_{L^2},
\]
\[
\| s \|_{L^2} \leq 4\| \varepsilon_p + E_p \|_{L^2} \| \phi_2 \|_{L^\infty} \leq 4h \| \varepsilon_p + E_p \|_{L^2} \leq Ch^{k+2} + Ch \| E_p \|_{L^2},
\]
where \(C = C(\| u \|_{k+4}) \).

Step 2. On the one hand, taking \((\psi, \xi, \eta) = (E_q - E_r, E_p, E_q) \) in equation (A.7), adding them up and summing over all \(j \), we obtain
\[
\| E_q \|_{L^2}^2 + \| E_p \|_{L^2}^2 - 2 \sum_j [E_q - E_r]_j^2 + 2 = -\int I \varepsilon_r E_q \, dx - \int I \varepsilon_p E_p \, dx - \int I \varepsilon_q (E_q - E_r) \, dx.
\]

By the property of the operator \(D \) in Lemma 2.1, we have
\[
\| E_q \|_{L^2}^2 + \| E_p \|_{L^2}^2 + \frac{1}{2} \sum_j [E_q - E_r]_j^2 = -\int I \varepsilon_r E_q \, dx - \int I \varepsilon_p E_p \, dx - \int I \varepsilon_q (E_q - E_r) \, dx,
\]
and thus
\[
\| E_q \|_{L^2}^2 + \| E_p \|_{L^2}^2 \leq \int \varepsilon_r E_q \, dx + \int \varepsilon_p E_p \, dx + \int \varepsilon_q (E_q - E_r) \, dx.
\]

Note that \(\varepsilon_q, \varepsilon_p \) and \(\varepsilon_r \) are orthogonal to any piecewise constant functions, then
\[
\left| \int I \varepsilon_r E_q \, dx \right| = \sum_j \int I_j \varepsilon_r s_j(x)(x - x_j)/h_j \, dx \leq \| \varepsilon_r \|_{L^2} \| s \|_{L^2} \| \phi \|_{L^\infty},
\]
\[
\left| \int I \varepsilon_p E_p \, dx \right| = \sum_j \int I_j \varepsilon_p w_j(x)(x - x_j)/h_j \, dx \leq \| \varepsilon_p \|_{L^2} \| w \|_{L^2} \| \phi \|_{L^\infty},
\]
\[
\left| \int I \varepsilon_q (E_q - E_r) \, dx \right| = \sum_j \int I_j \varepsilon_q (s_j(x) - g_j(x))(x - x_j)/h_j \, dx \leq \| \varepsilon_q \|_{L^2} \| s - g \|_{L^2} \| \phi \|_{L^\infty},
\]
where \(\phi = (x - x_j)/h_j \). Therefore,

\[
\|E_q\|_{L^2}^2 + \|E_p\|_{L^2}^2 \leq \|\phi\|_{L^\infty} (\|\varepsilon_r\|_{L^2} \|s\|_{L^2} + \|\varepsilon_p\|_{L^2} \|w\|_{L^2} + \|\varepsilon_q\|_{L^2} \|s - g\|_{L^2}).
\]

From the approximation results (2.9) and employing \(\|\phi\|_{L^\infty} = \frac{1}{2} \), we conclude that

\[
\|E_q\|_{L^2}^2 + \|E_p\|_{L^2}^2 \leq C h^{k+1} (\|s\|_{L^2} + \|w\|_{L^2} + \|s - g\|_{L^2}).
\]

Collecting (A.11)–(A.13) into (A.14) we arrive at

\[
\|E_q\|_{L^2}^2 + \|E_p\|_{L^2}^2 \leq C h^{k+3} + C h^{k+2} (\|E_q\|_{L^2} + \|E_p\|_{L^2} + \|E_r\|_{L^2}),
\]

where \(C = C(\|u\|_{k+4}) \).

On the other hand, taking \((\psi, \xi, \eta) = (-E_p, E_q, E_r - E_q)\) in equation (A.7), adding them up and summing over all \(j \), we obtain

\[
\|E_r\|_{L^2}^2 + \{D(E_p, E_q - E_r; E_p) + D(E_q - E_r, E_p; (E_q - E_r)^+) - D(E_q, E_q; E_q^+) \}
\]

\[
= - \int_I \varepsilon_r(E_r - E_q) \, dx - \int_I \varepsilon_p E_q \, dx + \int_I \varepsilon_q E_p \, dx + \int_I E_q E_r \, dx.
\]

By the property of the operator \(D \) in Lemma 2.1, we have

\[
\|E_r\|_{L^2}^2 + \frac{1}{2} \sum_j [E_q]^2_{j+\frac{1}{2}} = - \int_I \varepsilon_r(E_r - E_q) \, dx - \int_I \varepsilon_p E_q \, dx + \int_I \varepsilon_q E_p \, dx + \int_I E_q E_r \, dx,
\]

and thus

\[
\frac{1}{2} \|E_r\|_{L^2}^2 \leq \left| \int_I \varepsilon_r(E_r - E_q) \, dx \right| + \left| \int_I \varepsilon_p E_q \, dx \right| + \left| \int_I \varepsilon_q E_p \, dx \right| + \frac{1}{2} \|E_q\|_{L^2}^2.
\]

Note that \(\varepsilon_q, \varepsilon_p, \varepsilon_r \) are orthogonal to any piecewise constant functions, then

\[
\left| \int_I \varepsilon_r(E_r - E_q) \, dx \right| = \left| \sum_j \int_{I_j} \varepsilon_r(g_j(x) - s_j(x))(x - x_j)/h_j \, dx \right| \leq \|\varepsilon_r\|_{L^2} \|g - s\|_{L^2} \|\phi\|_{L^\infty},
\]

\[
\left| \int_I \varepsilon_p E_q \, dx \right| = \left| \sum_j \int_{I_j} \varepsilon_p s_j(x)(x - x_j)/h_j \, dx \right| \leq \|\varepsilon_p\|_{L^2} \|s\|_{L^2} \|\phi\|_{L^\infty},
\]

\[
\left| \int_I \varepsilon_q E_p \, dx \right| = \left| \sum_j \int_{I_j} \varepsilon_q w_j(x)(x - x_j)/h_j \, dx \right| \leq \|\varepsilon_q\|_{L^2} \|w\|_{L^2} \|\phi\|_{L^\infty},
\]

we recall that \(\phi = (x - x_j)/h_j \). Therefore,

\[
\frac{1}{2} \|E_r\|_{L^2}^2 \leq \|\phi\|_{L^\infty} (\|\varepsilon_r\|_{L^2} \|s\|_{L^2} + \|\varepsilon_p\|_{L^2} \|s\|_{L^2} + \|\varepsilon_q\|_{L^2} \|w\|_{L^2}) + \frac{1}{2} \|E_q\|_{L^2}^2.
\]

From the approximation results (2.9) and employing \(\|\phi\|_{L^\infty} = \frac{1}{2} \), we conclude that

\[
\frac{1}{2} \|E_r\|_{L^2}^2 \leq C h^{k+1} (\|g - s\|_{L^2} + \|s\|_{L^2} + \|w\|_{L^2}) + \frac{1}{2} \|E_q\|_{L^2}^2.
\]

(A.16)
Collecting (A.11)–(A.13) into (A.16), we arrive at
\[\frac{1}{2} \| E_r \|_{L^2}^2 \leq C h^{k+3} + C h^{k+2} (\| E_q \|_{L^2} + \| E_p \|_{L^2} + \| E_r \|_{L^2}) + \frac{1}{2} \| E_q \|_{L^2}^2, \] (A.17)
where \(C = C(\| u \|_{k+4}) \). Then, equations (A.15) and (A.17) produce
\[\frac{1}{2} \| E_q \|_{L^2}^2 + \| E_p \|_{L^2}^2 + \frac{1}{2} \| E_r \|_{L^2}^2 \leq C h^{2k+3} + C h^{k+2} (\| E_q \|_{L^2} + \| E_p \|_{L^2} + \| E_r \|_{L^2}), \]
which implies
\[\| E_q \|_{L^2} + \| E_p \|_{L^2} \leq C(\| u \|_{k+4}) h^{k+3/2}. \] (A.18)

Step 3. Suppose that
\[E_u = \sum_{n=0}^{k} a_n P_n \left(\frac{2(x - x_j)}{h_j} \right), \quad E_q - E_r = \sum_{n=0}^{k} b_n P_n \left(\frac{2(x - x_j)}{h_j} \right) \]
on \(I_j \), where \(P_n(\cdot) \) denotes the \(n \)th-order Legendre polynomial. By using the technique in Cheng & Shu (2010), conditions (A.4) and (A.5) yield the relationship
\[\| E_u \|_{L^2} \leq C(\lambda) \| E_q - E_r \|_{L^2}. \] (A.19)
We recall that \(\lambda \) is the maximum of two different two different arbitrary mesh sizes. A combination of equations (A.18) and (A.19) gives us a bound for \(E_u \),
\[\| E_u \|_{L^2} \leq C(\lambda) (\| E_q \|_{L^2} + \| E_r \|_{L^2}) \leq C(\lambda, \| u \|_{k+4}) h^{k+3/2}. \]

A.2 The proof of Lemma 2.8

If we can prove
\[\| \tilde{e}_u(t) \|_{L^2} + \| \tilde{e}_q(t) \|_{L^2} + \int_0^t (\| \tilde{e}_p \|_{L^2} + \| \tilde{e}_r \|_{L^2}) \, dt \leq C e^{C_1 t} h^{k+1}, \] (A.20)
with \(C = C(\alpha, \beta, \| u \|_{k+4}, \| u_t \|_{k+3}) \), then the estimates (2.37) and (2.38) in Lemma 2.8 will follow by the approximation error estimates (2.9) and the triangle inequality. To this end, on the one hand, we rewrite equation (2.24) as
\[\frac{1}{2} \frac{d}{dt} \| \tilde{e}_u \|_{L^2}^2 + \| \tilde{e}_p \|_{L^2}^2 \leq - \int (e_u) t \tilde{e}_u \, dx - \int e_p \tilde{e}_p \, dx - \int e_r \tilde{e}_r \, dx + \int e_q \tilde{e}_q \, dx \]
\[- \beta \int e_p \tilde{e}_u \, dx + \beta^2 \| \tilde{e}_u \|_{L^2}^2 + \frac{1}{4} \| \tilde{e}_p \|_{L^2}^2. \] (A.21)
On the other hand, taking the time derivative in equation (2.21d), letting $(\rho, \psi, \varepsilon, \eta) = (-\bar{\varepsilon}_p, \bar{\varepsilon}_q, (\bar{\varepsilon}_u)_t, \bar{\varepsilon}_r)$ in equation (2.21), adding them up and summing over all j, we obtain

$$\frac{1}{2} \frac{d}{dt} \|\bar{\varepsilon}_q\|_{L^2}^2 + \|\bar{\varepsilon}_r\|_{L^2}^2 + \int_I (e_{q,t}) \bar{\varepsilon}_q \, dx + \int_I e_r \bar{\varepsilon}_r \, dx - \int_I (e_{u,t}) \bar{\varepsilon}_p \, dx + \int_I e_p (\bar{\varepsilon}_u)_t \, dx - \alpha \mathcal{D}(\bar{\varepsilon}_u, \bar{\varepsilon}_p; \bar{\varepsilon}_u^-)$$

$$- \beta \mathcal{D}(\bar{\varepsilon}_q, \bar{\varepsilon}_p; \bar{\varepsilon}_q^+) - \mathcal{D}(\bar{\varepsilon}_r, \bar{\varepsilon}_p; \bar{\varepsilon}_r^+) - \mathcal{D}(\bar{\varepsilon}_q, \bar{\varepsilon}_r; \bar{\varepsilon}_r^-) - \mathcal{D}((\bar{\varepsilon}_u)_t, \bar{\varepsilon}_q; (\bar{\varepsilon}_u)_t^-) = 0.$$

Using the property of the operator \mathcal{D} in Lemma 2.1, we have

$$\frac{1}{2} \frac{d}{dt} \|\bar{\varepsilon}_q\|_{L^2}^2 + \|\bar{\varepsilon}_r\|_{L^2}^2 + \int_I (e_{q,t}) \bar{\varepsilon}_q \, dx + \int_I e_r \bar{\varepsilon}_r \, dx - \int_I (e_{u,t}) \bar{\varepsilon}_p \, dx$$

$$+ \int_I e_p (\bar{\varepsilon}_u)_t \, dx - \alpha \mathcal{D}(\bar{\varepsilon}_u, \bar{\varepsilon}_p; \bar{\varepsilon}_u^-) - \beta \mathcal{D}(\bar{\varepsilon}_q, \bar{\varepsilon}_p; \bar{\varepsilon}_q^+) = 0. \quad (A.22)$$

By taking $\psi = \bar{\varepsilon}_p$ in equation (2.21d) and summing over all j we get

$$\mathcal{D}(\bar{\varepsilon}_u, \bar{\varepsilon}_p; \bar{\varepsilon}_u^-) = \int_I e_q \bar{\varepsilon}_p \, dx. \quad (A.23)$$

Using the property of the operator \mathcal{D} in Lemma 2.1, and then taking $\eta = \bar{\varepsilon}_q$ in equation (2.21b) and summing over all j, we obtain

$$\mathcal{D}(\bar{\varepsilon}_q, \bar{\varepsilon}_p; \bar{\varepsilon}_q^+) = -\mathcal{D}(\bar{\varepsilon}_p, \bar{\varepsilon}_q; \bar{\varepsilon}_p^-) = -\int_I e_r \bar{\varepsilon}_q \, dx. \quad (A.24)$$

Plugging equations (A.23) and (A.24) into (A.22), then

$$\frac{1}{2} \frac{d}{dt} \|\bar{\varepsilon}_q\|_{L^2}^2 + \frac{1}{2} \|\bar{\varepsilon}_r\|_{L^2}^2 \leq \int_I (e_{q,t}) \bar{\varepsilon}_q \, dx - \int_I e_r \bar{\varepsilon}_r \, dx + \int_I (e_{u,t}) \bar{\varepsilon}_p \, dx - \int_I e_p (\bar{\varepsilon}_u)_t \, dx$$

$$+ \alpha \int_I e_q \bar{\varepsilon}_p \, dx - \beta \int_I e_r \bar{\varepsilon}_q \, dx + \frac{1}{4} \|\bar{\varepsilon}_p\|_{L^2}^2 + \left(\alpha^2 + \frac{\beta^2}{2}\right) \|\bar{\varepsilon}_q\|_{L^2}^2. \quad (A.25)$$

Combining equations (A.21) and (A.25) we arrive at

$$\frac{1}{2} \frac{d}{dt} \|\bar{\varepsilon}_u\|_{L^2}^2 + \frac{1}{2} \frac{d}{dt} \|\bar{\varepsilon}_q\|_{L^2}^2 + \frac{1}{2} \|\bar{\varepsilon}_p\|_{L^2}^2 + \frac{1}{2} \|\bar{\varepsilon}_r\|_{L^2}^2 \leq A + \Theta + \beta^2 \|\bar{\varepsilon}_u\|_{L^2}^2 + \left(\alpha^2 + \frac{\beta^2}{2}\right) \|\bar{\varepsilon}_q\|_{L^2}^2, \quad (A.26)$$

where

$$A = -\int_I e_p (\bar{\varepsilon}_u)_t \, dx$$
and

\[
\Theta = - \int_I (\varepsilon u_t) \tilde{e}_u \, dx - \int_I \varepsilon_p \tilde{e}_p \, dx - \int_I \varepsilon_r \tilde{e}_q \, dx + \int_I \varepsilon_q \tilde{e}_r \, dx - \beta \int_I \varepsilon_p \tilde{e}_u \, dx \\
- \int_I (\varepsilon q_t) \tilde{e}_q \, dx - \int_I \varepsilon_r \tilde{e}_r \, dx + \int_I (\varepsilon u_t) \tilde{e}_p \, dx + \alpha \int_I \varepsilon q \tilde{e}_p \, dx - \beta \int_I \varepsilon r \tilde{e}_q \, dx.
\]

Using the approximation property of the projections (2.9), we get

\[|\Theta| \leq C h^{k+1} (\|\tilde{e}_u\|_{L^2} + \|\tilde{e}_q\|_{L^2} + \|\tilde{e}_p\|_{L^2} + \|\tilde{e}_r\|_{L^2}).\]

Integrating \(A\) with respect to time, we get, after a simple integration by parts,

\[\int_0^t A \, dt = \int_0^t \int_I (\varepsilon p) \tilde{e}_u \, dx \, dt - \int_I (\tilde{e}_u(t) \varepsilon p(t) - \tilde{e}_u(0) \varepsilon p(0)) \, dx.\]

Thus, by the approximation results (2.9) and the choice of initial condition in Lemma 2.4, we conclude that

\[\left| \int_0^t A \, dt \right| \leq C h^{k+1} \int_0^t \|\tilde{e}_u\|_{L^2} \, dt + \frac{1}{4} \|\tilde{e}_u(t)\|_{L^2}^2 + Ch^{2k+2},\]

where \(C = C(\|u\|_{k+4}, \|u_t\|_{k+3})\). Integrating equation (A.26) with respect to time, we obtain

\[
\frac{1}{4} \|\tilde{e}_u(t)\|_{L^2}^2 + \frac{1}{2} \|\tilde{e}_q(t)\|_{L^2}^2 + \frac{1}{2} \int_0^t (\|\tilde{e}_p\|_{L^2}^2 + \|\tilde{e}_r\|_{L^2}^2) \, dt \\
\leq \frac{1}{2} \|\tilde{e}_u(0)\|_{L^2}^2 + \frac{1}{2} \|\tilde{e}_q(0)\|_{L^2}^2 + Ch^{k+1} \int_0^t (\|\tilde{e}_u\|_{L^2} + \|\tilde{e}_q\|_{L^2} + \|\tilde{e}_p\|_{L^2} + \|\tilde{e}_r\|_{L^2}) \, dt \\
+ \beta^2 \int_0^t \|\tilde{e}_u\|_{L^2}^2 \, dt + \left(\alpha^2 + \frac{\beta^2}{2}\right) \int_0^t \|\tilde{e}_q\|_{L^2}^2 \, dt + Ch^{2k+2},
\]

where \(C = C(\alpha, \beta, \|u\|_{k+4}, \|u_t\|_{k+3})\). Gronwall’s inequality and the estimates of the initial condition (2.17) and (A.18) give us the error estimate (A.20).

To prove the estimate (2.39), we first need to get a bound for \((\tilde{e}_u)_t(\cdot, 0)\). Using conditions (2.15) and (2.16), we have, at \(t = 0\),

\[D_{I_j}(\tilde{e}_r, \rho; \tilde{e}_r^+) = D_{I_j}(\tilde{e}_q, \rho; \tilde{e}_q^+) - D_{I_j}(\tilde{e}_u, \rho; \tilde{e}_u^-)\]

for any \(\rho \in V_k^h\). Then, equation (2.21a) becomes

\[\int_{I_j} (e_u)_t \rho \, dx + (\alpha - 1) D_{I_j}(\tilde{e}_u, \rho; \tilde{e}_u^-) + (\beta + 1) D_{I_j}(\tilde{e}_q, \rho; \tilde{e}_q^+) = 0.\]

It follows from equations (2.21c) and (2.21d) that, at \(t = 0\),

\[\int_{I_j} (e_u)_t \rho \, dx + (\alpha - 1) \int_{I_j} e_q \rho \, dx + (\beta + 1) \int_{I_j} e_p \rho \, dx = 0.\]
for any $\rho \in V_h^n$. Taking $\rho = (\bar{\rho}_u)_t(\cdot, 0)$ and summing the above equality over all j, we get, at $t = 0$,
$$
\| (\bar{\rho}_u)_t(\cdot, 0) \|_{L^2} \leq \| (\rho_u)_t(\cdot, 0) \|_{L^2} + |\alpha - 1| \| \rho_q(\cdot, 0) \|_{L^2} + |\beta + 1| \| \rho_p(\cdot, 0) \|_{L^2}.
$$

Then, the approximation results (2.9) and estimates for the initial data in equation (A.18) give us
$$
\| (\bar{\rho}_u)_t(\cdot, 0) \|_{L^2} \leq C h^{k+1},
$$
where $C = C(\alpha, \beta, \|u_0\|_{k+1}, \|u_1\|_{k+1})$. Then, taking the time derivative in equation (2.21), letting $(\rho, \psi, \xi, \eta) = ((\bar{\rho}_u)_t, -(\bar{\rho}_u)_t, (\bar{\rho}_p)_t, (\bar{\rho}_q)_t)$, adding them up and summing over all j, we obtain
$$
\int_I (\bar{\rho}_u)_t (\bar{\rho}_u)_t \, dx + \int_I (\bar{\rho}_p)_t \, dx + \int_I (\bar{\rho}_u)_t (\bar{\rho}_u)_t \, dx + \int_I (\bar{\rho}_p)_t (\bar{\rho}_p)_t \, dx + \int_I (\bar{\rho}_q)_t (\bar{\rho}_q)_t \, dx
- \int_I (\bar{\rho}_q)_t (\bar{\rho}_r)_t \, dx + \alpha \int D((\bar{\rho}_u)_t, (\bar{\rho}_u)_t; (\bar{\rho}_u)_t) + \beta \int D((\bar{\rho}_q)_t, (\bar{\rho}_q)_t; (\bar{\rho}_q)_t) + \int D((\bar{\rho}_r)_t, (\bar{\rho}_r)_t; (\bar{\rho}_r)_t) + \int D((\bar{\rho}_p)_t, (\bar{\rho}_p)_t; (\bar{\rho}_p)_t) + \int D((\bar{\rho}_q)_t, (\bar{\rho}_q)_t; (\bar{\rho}_q)_t) = 0.
$$
Using the property of the operator D in Lemma 2.1, we have
$$
\int_I (\bar{\rho}_u)_t (\bar{\rho}_u)_t \, dx + \int_I (\bar{\rho}_p)_t \, dx + \int_I (\bar{\rho}_u)_t (\bar{\rho}_u)_t \, dx + \int_I (\bar{\rho}_p)_t (\bar{\rho}_p)_t \, dx + \int_I (\bar{\rho}_q)_t (\bar{\rho}_q)_t \, dx
- \int_I (\bar{\rho}_q)_t (\bar{\rho}_r)_t \, dx + \frac{\alpha}{2} \sum_j [(\bar{\rho}_u)_t]_{j+\frac{1}{2}}^2 + \beta \int D((\bar{\rho}_q)_t, (\bar{\rho}_u)_t; (\bar{\rho}_q)_t) = 0.
$$
Note that
$$
D((\bar{\rho}_q)_t, (\bar{\rho}_u)_t; (\bar{\rho}_q)_t) = \int_I (\bar{\rho}_p)_t (\bar{\rho}_u)_t \, dx.
$$
Combining equations (2.29) and (3.10) we arrive at
$$
\frac{1}{2} \frac{d}{dt} \| (\bar{\rho}_u)_t \|_{L^2}^2 + \| (\bar{\rho}_p)_t \|_{L^2}^2 \leq - \int_I (\bar{\rho}_u)_t (\bar{\rho}_u)_t \, dx - \int_I (\bar{\rho}_p)_t (\bar{\rho}_p)_t \, dx - \int_I (\bar{\rho}_q)_t (\bar{\rho}_q)_t \, dx
+ \int_I (\bar{\rho}_q)_t (\bar{\rho}_r)_t \, dx - \beta \int I ((\bar{\rho}_p)_t + (\bar{\rho}_p)_t (\bar{\rho}_u)_t) \, dx.
$$
Integrating the above inequality with respect to time,
$$
\frac{1}{2} \| (\bar{\rho}_u)_t (t) \|_{L^2}^2 + \int_0^t \| (\bar{\rho}_p)_t (t) \|_{L^2}^2 \, dt \leq \frac{1}{2} \| (\bar{\rho}_u)_t (0) \|_{L^2}^2 + \mathcal{Y} + \mathcal{Z},
$$
where
$$
\mathcal{Y} = - \int_I \int_0^t (\bar{\rho}_p)_t (\bar{\rho}_p)_t \, dt \, dx - \beta \int_I \int_0^t (\bar{\rho}_p)_t (\bar{\rho}_u)_t \, dt \, dx
$$
and

\[
\Xi = - \int_0^t \int_0^t (e_u)_{tt} (\tilde{e}_u)_t \, dx \, dt - \int_0^t \int_0^t (e_r)_t (\tilde{e}_q)_t \, dx \, dt
\]

\[+ \int_0^t \int_0^t (e_q)_t (\tilde{e}_r)_t \, dx \, dt - \beta \int_0^t \int_0^t (e_p)_t (\tilde{e}_u)_t \, dx \, dt.
\]

By the Cauchy–Schwarz inequality and approximation results (2.9) we obtain

\[
|\gamma| \leq \int_0^t \| (\tilde{e}_p)_t (t) \|^2_{L^2} \, dt + \frac{1}{2} \int_0^t \| (e_p)_t \|^2_{L^2} \, dt + \frac{\beta^2}{2} \int_0^t \| (e_u)_t (t) \|^2_{L^2} \, dt
\]

\[
\leq \int_0^t \| (\tilde{e}_p)_t (t) \|^2_{L^2} \, dt + \frac{\beta^2}{2} \int_0^t \| (e_u)_t (t) \|^2_{L^2} \, dt + C h^{2k+2}. \tag{A.33}
\]

Using integration by parts with respect to time, we get

\[
|\Xi| \leq \int_0^t \| (e_u)_{ttt} \|_{L^2} \| \tilde{e}_u \|_{L^2} \, dt + \| (e_u)_{tt} (t) \|_{L^2} \| \tilde{e}_u (t) \|_{L^2} + \| (e_u)_{tt} (0) \|_{L^2} \| \tilde{e}_u (0) \|_{L^2}
\]

\[
+ \int_0^t \| (e_r)_tt \|_{L^2} \| \tilde{e}_q \|_{L^2} \, dt + \| (e_r)_t (t) \|_{L^2} \| \tilde{e}_q (t) \|_{L^2} + \| (e_r)_t (0) \|_{L^2} \| \tilde{e}_q (0) \|_{L^2}
\]

\[
+ \int_0^t \| (e_q)_tt \|_{L^2} \| \tilde{e}_r \|_{L^2} \, dt + \| (e_q)_t (t) \|_{L^2} \| \tilde{e}_r (t) \|_{L^2} + \| (e_q)_t (0) \|_{L^2} \| \tilde{e}_r (0) \|_{L^2}
\]

\[
+ |\beta| \left[\int_0^t \| (e_p)_tt \|_{L^2} \| \tilde{e}_u \|_{L^2} \, dt + \| (e_p)_t (t) \|_{L^2} \| \tilde{e}_u (t) \|_{L^2} + \| (e_p)_t (0) \|_{L^2} \| \tilde{e}_u (0) \|_{L^2} \right]
\]

\[
\leq C h^{k+1} \int_0^t (\| \tilde{e}_u \|_{L^2} + \| \tilde{e}_q \|_{L^2} + \| \tilde{e}_r \|_{L^2}) \, dt
\]

\[+ C h^{k+1} (\| \tilde{e}_u \|_{L^2} + \| \tilde{e}_q \|_{L^2} + \| \tilde{e}_r \|_{L^2}) + C h^{2k+5/2}. \tag{A.34}
\]

with \(C = C(\beta, \| u \|_{k+4}, \| u_t \|_{k+4}, \| u_{tt} \|_{k+4}, \| u_{ttt} \|_{k+4}) \), where we have used the approximation results (2.9) and estimates for the initial data (A.18) and (2.17) to obtain the last inequality. Plugging equations (A.33) and (A.34) into (A.32) and using estimates (A.20), (A.28), we have

\[
\frac{1}{2} \| (\tilde{e}_u)_t (t) \|^2_{L^2} \leq Ce^{C_1 t} h^{2k+2} + Ch^{k+1} \| \tilde{e}_r (t) \|_{L^2} + \frac{\beta^2}{2} \int_0^t \| (\tilde{e}_u)_t (t) \|^2_{L^2} \, dt. \tag{A.35}
\]

Denote \(\Xi(t) = \int_0^t \| (\tilde{e}_u)_t (t) \|^2_{L^2} \, dt \) and integrate over equation (A.35) with respect to time,

\[
\frac{1}{2} \Xi(t) \leq Ce^{C_1 t} h^{2k+2} + \frac{\beta^2}{2} \int_0^t \Xi(s) \, ds.
\]

Gronwall’s inequality gives us

\[
\Xi(t) = \int_0^t \| (\tilde{e}_u)_t (t) \|^2_{L^2} \, dt \leq Ce^{C_1 t} h^{2k+2}.
\]
where \(C = C(\alpha, \beta, \|u\|_{k+4}, \|u_t\|_{k+4}, \|u_{tt}\|_{k+4}, \|u_{ttt}\|_{k+4}) \) and \(C_1 = C_1(\alpha, \beta) > 0 \). Then, estimate (2.39) follows by taking into account the approximation error estimates (2.9) and the triangle inequality.

This finishes the proof for Lemma 2.8.

A.3 The proof of Theorem 2.7

To get the linear growth result for the case \(\alpha = \beta = 0 \), similarly to Lemma 2.8, we need to prove the following error estimates:

\[
\|\bar{e}_u(t)\|_{L^2} + \|\bar{e}_q(t)\|_{L^2} \leq C(1 + t)h^{k+1}, \tag{A.36}
\]

\[
\int_0^t (\|\bar{e}_p\|_{L^2} + \|\bar{e}_r\|_{L^2}) \, dt \leq C(1 + t)^{3/2}h^{k+1}, \tag{A.37}
\]

where \(C = C(\|u\|_{k+4}, \|u_t\|_{k+4}) \). Note that, if equations (A.36) and (A.37) hold, we can easily get a bound for \((\bar{e}_u)_t(t) \),

\[
\int_0^t \| (\bar{e}_u)_t(t) \|_{L^2} \, dt \leq C(1 + t)^2h^{k+1}, \tag{A.38}
\]

and thus equation (2.36) will give us the desired result in Theorem 2.7 by combining with the approximation error estimates (2.9). First, let us prove the error estimate (A.36).

If \(\alpha = \beta = 0 \), then equation (A.27) reduces to

\[
\frac{1}{4} \|\bar{e}_u(t)\|_{L^2}^2 + \frac{1}{2} \|\bar{e}_q(t)\|_{L^2}^2 + \frac{1}{2} \int_0^t (\|\bar{e}_p\|_{L^2}^2 + \|\bar{e}_r\|_{L^2}^2) \, dt \\
\leq \frac{1}{2} \|\bar{e}_u(0)\|_{L^2}^2 + \frac{1}{2} \|\bar{e}_q(0)\|_{L^2}^2 + Ch^{k+1} \int_0^t (\|\bar{e}_u\|_{L^2} + \|\bar{e}_q\|_{L^2} + \|\bar{e}_p\|_{L^2} + \|\bar{e}_r\|_{L^2}) \, dt + Ch^{2k+2},
\]

which, by using the bounds for the initial error (2.17) and (A.18), is

\[
\frac{1}{4} \|\bar{e}_u(t)\|_{L^2}^2 + \frac{1}{2} \|\bar{e}_q(t)\|_{L^2}^2 + \frac{1}{2} \int_0^t (\|\bar{e}_p\|_{L^2}^2 + \|\bar{e}_r\|_{L^2}^2) \, dt \\
\leq Ch^{k+1} \int_0^t (\|\bar{e}_u\|_{L^2} + \|\bar{e}_q\|_{L^2}) \, dt + Ch^{k+1} \int_0^t (\|\bar{e}_p\|_{L^2} + \|\bar{e}_r\|_{L^2}) \, dt + Ch^{2k+2}. \tag{A.39}
\]

By using the Cauchy–Schwarz inequality we get

\[
(\|\bar{e}_u(t)\|_{L^2} + \|\bar{e}_q(t)\|_{L^2})^2 \leq Ch^{k+1} \int_0^t (\|\bar{e}_u\|_{L^2} + \|\bar{e}_q\|_{L^2}) \, dt + Ch^{2k+2},
\]

where \(C = C(\|u\|_{k+4}, \|u_t\|_{k+4}) \). Since \(\|u\|_{k+4} \) and \(\|u_t\|_{k+4} \) are bounded uniformly for any time \(t \in [0, T] \), thus we can assume that \(C = C(\|u\|_{k+4}, \|u_t\|_{k+4}) \leq \tilde{C} \) with \(\tilde{C} \) a positive constant independent of time. Denote \(\bar{E}(t) = \|\bar{e}_u(t)\|_{L^2} + \|\bar{e}_q(t)\|_{L^2} \), then we have

\[
\tilde{E}^2(t) \leq \tilde{C}h^{k+1} \int_0^t \bar{E}(s) \, ds + \tilde{C}h^{2k+2}.
\]
Define $z(t) = \tilde{C} h^{k+1} \int_0^t \tilde{E}(s) \, ds + \tilde{C} h^{2k+2}$, thus $\sqrt{z(0)} \leq \tilde{C} h^{k+1}$, and the above inequality gives us

$$\tilde{E}(t) \leq \sqrt{z(t)}.$$

Therefore,

$$\frac{dz(t)}{dt} = \tilde{C} h^{k+1} \tilde{E}(t) \leq \tilde{C} h^{k+1} \sqrt{z(t)}.$$

We integrate the above inequality with respect to time between 0 and t and use the estimate for $\sqrt{z(0)}$ to obtain a bound on $\tilde{E}(t)$,

$$\tilde{E}(t) \leq \sqrt{z(t)} \leq \sqrt{z(0)} + \tilde{C} h^{k+1} t \leq \tilde{C} h^{k+1} (1 + t),$$

that is,

$$\|\tilde{e}_u(t)\|_{L^2} + \|\tilde{e}_q(t)\|_{L^2} \leq \tilde{C} h^{k+1} (1 + t).$$

Finally, the error estimate (A.37) follows by combining equations (A.36) and (A.39). This completes the proof of Theorem 2.7.