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In this paper we investigate the superconvergence of local discontinuous Galerkin (LDG) methods for
solving one-dimensional linear time-dependent fourth-order problems. We prove that the error between
the LDG solution and a particular projection of the exact solution, ēu , achieves

(
k + 3

2

)
th-order supercon-

vergence when polynomials of degree k (k � 1) are used. Numerical experiments with Pk polynomials,
with 1 � k � 3, are displayed to demonstrate the theoretical results, which show that the error ēu actually
achieves (k +2)th-order superconvergence, indicating that the error bound for ēu obtained in this paper is
suboptimal. Initial boundary value problems, nonlinear equations and solutions having singularities, are
numerically investigated to verify that the conclusions hold true for very general cases.

Keywords: local discontinuous Galerkin method; superconvergence; fourth-order problems; error
estimates.

1. Introduction

In this paper we are interested in the superconvergence of local discontinuous Galerkin (LDG) methods
for a class of one-dimensional linear fourth-order problems formulated as

ut + αux + βuxx + uxxxx = 0, (1.1)

where α and β are arbitrary constants. Note that, for β > 0, there is an antidiffusion term βuxx in the
equation, which is, however, dominated by the higher-order diffusion term uxxxx . The general problem
(1.1) includes the following linear time-dependent biharmonic equation

ut + uxxxx = 0, (1.2)
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and the linearized Cahn–Hilliard equation

ut + uxx + uxxxx = 0, (1.3)

as its special cases.
The discontinuous Galerkin (DG) method is a class of finite element methods using discontinuous

piecewise polynomials as the solution and the test spaces. It was first introduced by Reed & Hill (1973)
for solving a first-order steady-state linear conservation law and later developed by Cockburn et al.
(Cockburn & Shu, 1989, 1998b; Cockburn et al., 1989, 1990) for solving time-dependent nonlinear
equations. Motivated by the successful numerical experiments of Bassi & Rebay (1997) for the com-
pressible Navier–Stokes equations, the LDG methods were developed for solving nonlinear convection–
diffusion equations (Cockburn & Shu, 1998a) containing second-order spatial derivatives in which L2

stability and a suboptimal L2 error estimates were obtained for linear equations with smooth solutions.
Later, the LDG methods were generalized to solve various partial differential equations (PDEs) involv-
ing higher-order derivatives. For Korteweg-de Vries-type equations containing third-order derivatives,
an LDG method was developed in Yan & Shu (2002a), where a suboptimal error estimate was proved
for the linear case, and more recently, an optimal L2 error estimate was obtained in Xu & Shu (in press).
In Yan & Shu (2002b), Xu & Shu (2004); Xu & Shu (2006) and Xia et al. (2007), LDG techniques were
developed for solving other types of high-order PDEs including the time-dependent biharmonic equa-
tions, the fully nonlinear K (n, n, n) equations, the Kuramoto–Sivashinsky-type equations, the Cahn–
Hilliard-type equations and so on. In Dong & Shu (2009), optimal error estimates for the LDG method
applied to the linear biharmonic equation and linearized Cahn–Hilliard-type equations were obtained in
one dimension and in multidimensions for Cartesian and triangular meshes. For more details of the DG
and LDG methods we refer to the lecture notes, Cockburn (1999), and review papers, Cockburn & Shu
(2001); Xu & Shu (2010).

Apart from the LDG methods mentioned above, there are also other finite element methods in the lit-
erature for solving fourth-order time-dependent problems. For example, Elliott & Zheng (1986) applied
a conforming finite element method to the Cahn–Hilliard equation and obtained optimal error estimates
in L2 and L∞ norms provided the approximate solution is bounded in L∞ and the polynomial degree
k � 3. Feng & Prohl (2004) applied a mixed finite element method for solving Cahn–Hillard equations
on quasiuniform triangular meshes and obtained an optimal error estimate under minimum regularity
assumptions on the initial data and the domain.

Adjerid & Issaev (2005) and Adjerid & Klauser (2005) showed that the LDG solution is super-
convergent at Radau points for solving convection- or diffusion-dominant time-dependent equations.
Based on Fourier analysis, Cheng & Shu (2008, 2009) proved superconvergence of the DG and LDG
solutions towards a particular projection of the exact solution in the case of piecewise linear polyno-
mials on uniform meshes for the linear conservation law and heat equation, respectively. The results
were later improved, using a different technique, in Cheng & Shu (2010) for arbitrary nonuniform reg-
ular meshes and schemes of any order. In this paper we follow the approach in Cheng & Shu (2010)
to obtain the superconvergence property of the LDG method for a class of fourth-order problems. An
important motivation for studying such superconvergence is to set a firm theoretical foundation for the
excellent behaviour of DG and LDG methods for long-time simulations, which have been repeatedly
observed by practitioners. Indeed, if superconvergence for the error between the DG or LDG solution
and a particular projection of the exact solution of the order

(
k + 3

2

)
, with linear growth in time, can be

shown for polynomials of degree k, then the error between the numerical solution and the exact solution
does not grow for a long time t = O( 1√

h

)
, where h is the mesh size (Cheng & Shu, 2010). The gen-

eralization from first- and second-order equations in Cheng & Shu (2010) to the fourth-order equation
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in this paper involves several technical difficulties, including the estimate of different combinations of
the LDG solution and auxiliary variables that approximate derivatives of different orders, and the design
and analysis of a special operator to guarantee the superconvergence property of the initial condition.

This paper is organized as follows. In Section 2 we define the LDG scheme for fourth-order time-
dependent problems, state the main results and present the details of the proof of the superconvergence
property. In Section 3 various numerical experiments, including linear equations, nonlinear equations,
initial boundary value problems and solutions having singularities, are shown to demonstrate that the
conclusions hold true for very general cases. Concluding remarks and comments on future work are
given in Section 4. The proofs for some of the technical lemmas are collected in Appendix.

2. LDG scheme for fourth-order problems

We consider the following linear fourth-order equation

ut + αux + βuxx + uxxxx = 0 (2.1a)

with initial condition

u(x, 0) = u0(x) (2.1b)

and periodic boundary conditions

u(0, t) = u(2π, t). (2.1c)

We would like to remark that the assumption of periodic boundary conditions is for simplicity only and
not essential: see Cheng & Shu (2010) for discussion related to initial boundary value problems for
conservation laws.

2.1 The LDG scheme

We assume the following mesh to cover the computational domain I = [0, 2π ], consisting of cells

I j =
(

x j− 1
2
, x j+ 1

2

)
, for 1 � j � N , where

0 = x 1
2

< x 3
2

< · · · < xN+ 1
2

= 2π.

The cell centre is denoted by x j =
(

x j− 1
2
+x j+ 1

2

)/
2. We also set h j = x j+ 1

2
−x j− 1

2
and h = max j h j .

We denote by (vh)−
j+ 1

2
and (vh)+

j+ 1
2

the values of vh at the discontinuity point x j+ 1
2

from the left cell,

I j , and from the right cell, I j+1, respectively. The following piecewise polynomial space is chosen as
the finite element space:

V k
h = {v: v|I j ∈ Pk(I j ), j = 1, . . . , N },

where Pk(I j ) denotes the set of polynomials of degree up to k defined on the cell I j . Note that functions
in V k

h are allowed to have discontinuities across element interfaces.
In order to construct the LDG scheme, firstly, we introduce some auxiliary variables approximating

various order derivatives of the solution and rewrite equation (2.1a) as a first-order system,

ut + (αu + βq + r)x = 0, r − px = 0, p − qx = 0, q − ux = 0.

X. MENG ET AL.1296

 at B
row

n U
niversity on O

ctober 16, 2012
http://im

ajna.oxfordjournals.org/
D

ow
nloaded from

 

http://imajna.oxfordjournals.org/


Then, the semidiscrete LDG scheme is defined as follows: find uh, qh, ph, rh ∈ V k
h , such that∫

I j

(uh)tρ dx −
∫

I j

αuhρx dx + αũhρ−| j+ 1
2

− αũhρ+| j− 1
2

−
∫

I j

βqhρx dx

+βq̂hρ−| j+ 1
2

− βq̂hρ+| j− 1
2

−
∫

I j

rhρx dx + r̂hρ−| j+ 1
2

− r̂hρ+| j− 1
2

= 0, (2.2a)

∫
I j

rhη dx +
∫

I j

phηx dx − p̂hη−| j+ 1
2

+ p̂hη+| j− 1
2

= 0, (2.2b)

∫
I j

phξ dx +
∫

I j

qhξx dx − q̂hξ−| j+ 1
2

+ q̂hξ+| j− 1
2

= 0, (2.2c)

∫
I j

qhψ dx +
∫

I j

uhψx dx − ûhψ−| j+ 1
2

+ ûhψ+| j− 1
2

= 0 (2.2d)

hold for any ρ,ψ, ξ, η ∈ V k
h , where ũh is the upwind flux depending on the sign of α. Without loss of

generality we assume that α � 0 and take ũh = u−
h and then choose alternating fluxes for the diffusion

terms as follows:

ûh = u−
h , q̂h = q+

h , p̂h = p−
h , r̂h = r+

h . (2.3)

2.2 Notation and auxiliary results

To prove superconvergence of the LDG method, we would like to introduce the following notation,
definitions and useful lemmas.

2.2.1 Notation for the DG discretization. First, we use [ξ ] = ξ+ − ξ− to denote the jump in the
function ξ at each cell boundary point. For the linear problems discussed in this paper, we introduce the

DG discretization operator D as in Xu & Shu (in press): for each cell I j =
(

x j− 1
2
, x j+ 1

2

)
,

DI j (ξ, η; ξ̂ ) = −
∫

I j

ξηx dx + ξ̂η−| j+ 1
2

− ξ̂η+| j− 1
2
.

We also use the notation

D(ξ, η; ξ̂ ) =
∑

j

DI j (ξ, η; ξ̂ ).

Using the definition of this operator, we have the following lemmas, whose proof is straightforward
(see Xu & Shu, in press and also Zhang & Shu, 2010).

LEMMA 2.1 (Xu & Shu, in press) Choosing different numerical fluxes the DG discretization operator
satisfies the equalities

D(ξ, η; ξ−) +D(η, ξ ; η+) = 0, (2.4a)
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D(ξ, η; ξ+) +D(η, ξ ; η−) = 0, (2.4b)

D(ξ, η; ξ+) +D(η, ξ ; η+) = −
∑

j

[ξ ] j+ 1
2
[η] j+ 1

2
, (2.4c)

D(ξ, η; ξ−) +D(η, ξ ; η−) =
∑

j

[ξ ] j+ 1
2
[η] j+ 1

2
, (2.4d)

D(ξ, ξ ; ξ−) = 1

2

∑
j

[ξ ]2
j+ 1

2
, (2.4e)

D(ξ, ξ ; ξ+) = −1

2

∑
j

[ξ ]2
j+ 1

2
. (2.4f)

LEMMA 2.2 By integration by parts we also have

DI j (ξ, η; ξ−) =
∫

I j

ξxη dx + [ξ ]η+| j− 1
2
, (2.5)

DI j (ξ, η; ξ+) =
∫

I j

ξxη dx + [ξ ]η−| j+ 1
2
. (2.6)

2.2.2 Projections and interpolation properties. In what follows we define two special projections,
P±

h into V k
h , which are commonly used in the analysis of DG methods. For any given function u ∈

H1(I ) and arbitrary subinterval I j = (
x j− 1

2
, x j+ 1

2

)
, the special projections of u, denoted by P+

h u and

P−
h u, are the unique functions in the finite element space V k

h satisfying, for each j ,

∫
I j

(P+
h u(x) − u(x))ρ(x) dx = 0 ∀ ρ ∈ Pk−1(I j ), (P+

h u)+
j− 1

2
= u

(
x j− 1

2

)
, (2.7)

∫
I j

(P−
h u(x) − u(x))ρ(x) dx = 0 ∀ ρ ∈ Pk−1(I j ), (P−

h u)−
j+ 1

2
= u

(
x j+ 1

2

)
. (2.8)

For the special projections mentioned above, we have, by the standard approximation theory (Ciarlet,
1978), that

‖P±
h u(·) − u(·)‖L2 � Chk+1, (2.9)

where both here and below C is a positive constant (which may have a different value at each occurrence)
depending solely on u and its derivatives but independent of h. In particular, in equation (2.9), C =
C ′‖u‖k+1, where ‖u‖k+1 is the standard Sobolev (k +1) norm and C ′ is a positive constant independent
of u.
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In the proof of the error estimates the following inverse properties are needed: for any vh ∈ V k
h there

exists a positive constant C independent of h, such that

‖vh‖Γ � Ch− 1
2 ‖vh‖L2 , (2.10)

‖∂xvh‖L2 � Ch−1‖vh‖L2 , (2.11)

where ‖vh‖Γ is the usual L2 norm on the cell interfaces of the mesh.

2.2.3 Functionals related to the L2 norm. To get the superconvergence property of the method two
functionals related to the L2 norm of a function on I j are needed as defined in Cheng & Shu (2010):

B−
j ( f ) =

∫
I j

f (x)
x − x j− 1

2

h j

d

dx

(
f (x)

x − x j

h j

)
dx,

B+
j ( f ) =

∫
I j

f (x)
x − x j+ 1

2

h j

d

dx

(
f (x)

x − x j

h j

)
dx .

The functionals defined above have the following properties, which are essential to the proof of super-
convergence.

LEMMA 2.3 (Cheng & Shu, 2010) For any function f (x) ∈ C1 on I j we have

B−
j ( f ) = 1

4h j

∫
I j

f 2(x) dx +
f 2(x j+ 1

2
)

4
, (2.12)

B+
j ( f ) = − 1

4h j

∫
I j

f 2(x) dx −
f 2(x j− 1

2
)

4
. (2.13)

The proof of this lemma is straightforward; see Cheng & Shu (2010).

2.2.4 Initial condition. To obtain the superconvergence property of the method, the initial condition
of the numerical scheme should be chosen carefully to be compatible with the superconvergence error
estimate. To this end we define an operator P∗

h as follows: for any function u, then P∗
h u ∈ V k

h , and
suppose qh, ph, rh ∈ V k

h are the unique solutions (with given P∗
h u) to∫

I j

rhη dx +
∫

I j

phηx dx − p−
h η−| j+ 1

2
+ p−

h η+| j− 1
2

= 0, (2.14a)

∫
I j

phξ dx +
∫

I j

qhξx dx − q+
h ξ−| j+ 1

2
+ q+

h ξ+| j− 1
2

= 0, (2.14b)

∫
I j

qhψ dx +
∫

I j

P∗
h uψx dx − (P∗

h u)−ψ−| j+ 1
2

+ (P∗
h u)−ψ+| j− 1

2
= 0, (2.14c)
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for any ψ, ξ, η ∈ V k
h , then we require

∫
I j

((P−
h u − P∗

h u) − (P+
h q − qh) + (P+

h r − rh))ρ dx = 0 (2.15)

for any ρ ∈ Pk−1 on I j and

(P−
h u − P∗

h u)− = (P+
h q − qh)+ − (P+

h r − rh)+ at x j− 1
2
. (2.16)

For the regular mesh considered in this paper we denote λ = max j h j/ min j h j , which is a constant
during mesh refinements. As to the operator defined above we have the following lemma.

LEMMA 2.4 P∗
h u exists and is unique. Moreover, there holds the error estimate

‖P−
h u − P∗

h u‖L2 � C(λ, ‖u‖k+4)h
k+3/2. (2.17)

The proof of this lemma is given in Appendix.
We would like to remark that the purpose for introducing the operator P∗

h is only theoretical: it is
needed for the technical proof of superconvergence. In actual numerical computation we have observed
that we can use the usual L2 projection of u as the initial condition and still observe superconvergence;
see the numerical experiments in Section 3. Of course, if the standard L2 projection is used for the
initial condition, then the superconvergence result does not hold at t = 0 nor for small t . For later time
the dissipativity in the PDE and the numerical scheme seems to help to recover the superconvergent
performance.

2.3 Main results

Before we state the main results we would like to introduce the following notation:

eu = u − uh = (u − P−
h u) + (P−

h u − uh) = εu + ēu,

eq = q − qh = (q − P+
h q) + (P+

h q − qh) = εq + ēq ,

ep = p − ph = (p − P−
h p) + (P−

h p − ph) = εp + ēp,

er = r − rh = (r − P+
h r) + (P+

h r − rh) = εr + ēr .

For the case α � 0 we have the following error estimates.

THEOREM 2.5 Let u, p = uxx be the exact solution of the fourth-order problem (2.1), which is assumed
to be sufficiently smooth, i.e. ‖u‖k+4, ‖ut‖k+4, ‖utt‖k+4 and ‖uttt‖k+1 are bounded uniformly for any
time t ∈ [0, T ]. Let uh , ph be the LDG solution of equation (2.2) when the diffusion alternating
fluxes (2.3) are used. We choose the initial condition as uh(·, 0) = P∗

h u0. For regular triangulations of
I = [0, 2π ], if the finite element space V k

h with k � 1 is used, then there holds the following error
estimate:

‖ēu(·, t)‖2
L2 +

∫ t

0
‖ēp(·, t)‖2

L2 dt � Ce2C1t h2k+3, (2.18)
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.

and, in particular,

‖ēu(·, t)‖L2 � CeC1t hk+3/2,

where C = C(α, β, λ, ‖u‖k+4, ‖ut‖k+4, ‖utt‖k+4, ‖uttt‖k+1) and both here and below C1 = C1(α, β)
� 0.

REMARK 2.6 For the case α � 0 we can choose ũh = u+
h and take the diffusion alternating fluxes as

ûh = u+
h , q̂h = q−

h , p̂h = p+
h , r̂h = r−

h . (2.19)

Theorem 2.5 still holds in this case with the obvious change of the projections.

For the case α = β = 0 equation (2.1a) reduces to the biharmonic equation (1.2), and we have the
following result.

THEOREM 2.7 Let u, p = uxx be the exact solution of the fourth-order problem (1.2), which is as-
sumed to be sufficiently smooth, i.e. ‖u‖k+4, ‖ut‖k+4, ‖utt‖k+4 and ‖uttt‖k+1 are bounded uniformly
for any time t ∈ [0, T ]. Let uh , ph be the LDG solution of equation (2.2) when α = β = 0 and dif-
fusion alternating fluxes (2.3) are used. We choose the initial condition as uh(·, 0) = P∗

h u0. For regular
triangulations of I = [0, 2π ], if the finite element space V k

h with k � 1 is used, then there holds the
following error estimate:

‖ēu(·, t)‖2
L2 +

∫ t

0
‖ēp(·, t)‖2

L2 et � C(1 + t)2h2k+3,

and, in particular,

‖ēu(·, t)‖L2 � C(1 + t)hk+3/2,

where C = C(λ, ‖u‖k+4, ‖ut‖k+4, ‖utt‖k+4, ‖uttt‖k+1).

The proof of this theorem is similar to that for the previous theorem, except that we need to carefully
evaluate and estimate several terms to obtain a linear growth bound without employing Gronwall’s
inequality. The detailed proof is given in Appendix.

The case with the fluxes (2.19) is the same with the obvious change of the projections.
Note that, for the general cases including the antidiffusive case β > 0, the exponential growth of the

constant with respect to time in Theorem 2.5 is expected, as the exact solution may have such growth in
time for small wave numbers.

2.4 Proof of Theorem 2.5

By using the DG discretization operator, the LDG scheme (2.2) with the fluxes (2.3) can be written as∫
I j

(uh)tρ dx + αDI j (uh, ρ; u−
h ) + βDI j (qh, ρ; q+

h ) +DI j (rh, ρ; r+
h ) = 0, (2.20a)

∫
I j

rhη dx −DI j (ph, η; p−
h ) = 0, (2.20b)
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∫
I j

phξ dx −DI j (qh, ξ ; q+
h ) = 0, (2.20c)

∫
I j

qhψ dx −DI j (uh, ψ ; u−
h ) = 0, (2.20d)

for any ρ,ψ, ξ, η ∈ V k
h . Since the exact solutions u, q = ux , p = uxx , r = uxxx also satisfy the scheme

(2.2), we have therefore the error equations

∫
I j

(eu)tρ dx + αDI j (eu, ρ; e−
u ) + βDI j (eq , ρ; e+

q ) +DI j (er , ρ; e+
r ) = 0,

∫
I j

erη dx −DI j (ep, η; e−
p ) = 0,

∫
I j

epξ dx −DI j (eq , ξ ; e+
q ) = 0,

∫
I j

eqψ dx −DI j (eu, ψ ; e−
u ) = 0,

which, by the properties of the projections P−
h and P+

h , given in equations (2.7) and (2.8), is

∫
I j

(eu)tρ dx + αDI j (ēu, ρ; ē−
u ) + βDI j (ēq , ρ; ē+

q ) +DI j (ēr , ρ; ē+
r ) = 0, (2.21a)

∫
I j

erη dx −DI j (ēp, η; ē−
p ) = 0, (2.21b)

∫
I j

epξ dx −DI j (ēq , ξ ; ē+
q ) = 0, (2.21c)

∫
I j

eqψ dx −DI j (ēu, ψ ; ē−
u ) = 0, (2.21d)

for any ρ,ψ, ξ, η ∈ V k
h . Taking (ρ, ψ, ξ, η) = (ēu, −ēr , ēp, ēq) in equation (2.21), adding them up and

summing over all j , we obtain

∫
I
(ēu)t ēu dx +

∫
I

ē2
p dx +

∫
I
(εu)t ēu dx +

∫
I
εpēp dx +

∫
I
εr ēq dx −

∫
I
εq ēr dx + αD(ēu, ēu ; ē−

u )

+ βD(ēq , ēu ; ē+
q ) +D(ēr , ēu ; ē+

r ) +D(ēu, ēr ; ē−
u ) −D(ēq , ēp; ē+

q ) −D(ēp, ēq ; ē−
p ) = 0.
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Using the property of the operator D in Lemma 2.1 we thus have∫
I
(ēu)t ēu dx +

∫
I

ē2
p dx +

∫
I
(εu)t ēu dx +

∫
I
εpēp dx

+
∫

I
εr ēq dx −

∫
I
εq ēr dx + α

2

∑
j

[ēu]2
j+ 1

2
+ βD(ēq , ēu ; ē+

q ) = 0. (2.22)

By taking ξ = ēu in equation (2.21c) and summing over all j we get

D(ēq , ēu ; ē+
q ) =

∫
I

epēu dx . (2.23)

Combining equations (2.22) and (2.23) we arrive at

1

2

d

dt
‖ēu‖2

L2 +‖ēp‖2
L2 � −

∫
I
(εu)t ēu dx−

∫
I
εpēp dx−

∫
I
εr ēq dx+

∫
I
εq ēr dx−β

∫
I

epēu dx . (2.24)

It follows from the Cauchy–Schwarz inequality that

1

2

d

dt
‖ēu‖2

L2 + 1

2
‖ēp‖2

L2 �
∣∣∣∣
∫

I
(εu)t ēu dx

∣∣∣∣ +
∣∣∣∣
∫

I
εpēp dx

∣∣∣∣ +
∣∣∣∣
∫

I
εr ēq dx

∣∣∣∣
+

∣∣∣∣
∫

I
εq ēr dx

∣∣∣∣ + |β|
∣∣∣∣
∫

I
εpēu dx

∣∣∣∣ + β2

2
‖ēu‖2

L2 . (2.25)

On the other hand, using Lemma 2.2, equation (2.21) can be rewritten as∫
I j

(eu)tρ dx + αDI j (ēu, ρ; ē−
u ) +

∫
I j

(ēr + β ēq)xρ dx + [ēr + β ēq ]ρ−| j+ 1
2

= 0, (2.26a)

∫
I j

erη dx −
∫

I j

(ēp)xη dx − [ēp]η+| j− 1
2

= 0, (2.26b)

∫
I j

epξ dx −
∫

I j

(ēq)xξ dx − [ēq ]ξ−| j+ 1
2

= 0, (2.26c)

∫
I j

eqψ dx −
∫

I j

(ēu)xψ dx − [ēu]ψ+| j− 1
2

= 0. (2.26d)

Denote

ēu = r j + d j (x)(x − x j )/h j , ēq = b j + s j (x)(x − x j )/h j ,

ēp = v j + w j (x)(x − x j )/h j , ēr = l j + g j (x)(x − x j )/h j ,

where r j , b j , v j , l j are constants and d j (x), s j (x), w j (x), g j (x) ∈ Pk−1. First, taking ψ =
d j (x) (x − x j− 1

2
)/h j in equation (2.26d), and using the definition of B−

j , we have∫
I j

eqd j (x)(x − x j− 1
2
)/h j dx − B−

j (d j ) = 0.
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By the property of B−
j in Lemma 2.3 we obtain

∫
I j

d2
j (x) dx � 4

∫
I j

eqd j (x)(x − x j− 1
2
) dx .

Defining piecewise polynomials d(x) and φ1(x), such that d(x) = d j (x) and φ1(x) = x − x j− 1
2

on I j ,

and summing the above inequality over j , we get

‖d‖L2 � 4‖eq‖L2‖φ1‖L∞ � 4h‖eq‖L2 , (2.27)

where we have used the fact that ‖φ1‖L∞ = h. Similarly, taking ξ = s j (x)(x − x j+ 1
2
)/h j in equation

(2.26c), η = w j (x)(x − x j− 1
2
)/h j in equation (2.26b) and using the definition of B−

j and B+
j , we have

∫
I j

erw j (x)(x − x j− 1
2
)/h j dx − B−

j (w j ) = 0,

∫
I j

eps j (x)(x − x j+ 1
2
)/h j dx − B+

j (s j ) = 0.

By the properties of B−
j and B+

j in Lemma 2.3 we obtain

∫
I j

w2
j (x) dx � 4

∫
I j

erw j (x)(x − x j− 1
2
) dx,

∫
I j

s2
j (x) dx � −4

∫
I j

eps j (x)(x − x j+ 1
2
) dx .

Defining piecewise polynomials w(x), s(x) and φ2(x), such that w(x) = w j (x), s(x) = s j (x) and
φ2(x) = x − x j+ 1

2
on I j , and summing the above inequality over j , we get

‖w‖L2 � 4‖er‖L2‖φ1‖L∞ � 4h‖er‖L2 , (2.28)

‖s‖L2 � 4‖ep‖L2‖φ2‖L∞ � 4h‖ep‖L2 , (2.29)

where we have used the fact that ‖φ1‖L∞ = ‖φ2‖L∞ = h. Then, letting ρ = (g j (x) + βs j (x))
(x − x j+ 1

2
)/h j in equation (2.26a), we have

∫
I j

(eu)tρ dx − α

[∫
I j

ēuρx dx + ē−
u ρ+| j− 1

2

]
+

∫
I j

(ēr + β ēq)xρ dx = 0,

which can be written as∫
I j

(eu)t (g j (x) + βs j (x))(x − x j+ 1
2
)/h j dx − αR1

j + R2
j = 0,
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where

R1
j =

∫
I j

ēu((g j (x) + βs j (x))(x − x j+ 1
2
)/h j )x dx

−
[

r j−1 + 1

2
d j−1

(
x j− 1

2

)]
×

(
g j

(
x j− 1

2

)
+ βs j

(
x j− 1

2

))

=
∫

I j

d j (x)
x − x j

h j
((g j (x) + βs j (x))(x − x j+ 1

2
)/h j )x dx

+
[

r j − r j−1 − 1

2
d j−1

(
x j− 1

2

)] (
g j

(
x j− 1

2

)
+ βs j

(
x j− 1

2

))
and

R2
j = B+

j (g j + βs j ) = − 1

4h j

∫
I j

(g j (x) + βs j (x))2 dx − 1

4

(
g j

(
x j− 1

2

)
+ βs j

(
x j− 1

2

))2
.

Therefore,∫
I j

(g j (x) + βs j (x))2 dx � 4
∫

I j

(eu)t (g j (x) + βs j (x))(x − x j+ 1
2
) dx − 4αh j R1

j .

Summing the above inequality over all j we arrive at

‖g + βs‖2
L2 � 4‖(eu)t‖L2‖g + βs‖L2‖φ2‖L∞ + 4α

∣∣∣∣∣∣
∑

j

h j R1
j

∣∣∣∣∣∣ . (2.30)

Taking ψ = 1 in equation (2.26d) we get

r j − r j−1 − 1

2
d j−1

(
x j− 1

2

)
=

∫
I j

eq dx − 1

2
d j

(
x j+ 1

2

)
.

So, the term h j R1
j can be formulated as

h j R1
j =

∫
I j

d j (x)(x − x j )(g j (x) + βs j (x))/h j dx

+
∫

I j

d j (x)(x − x j )(g′
j (x) + βs′

j (x))(x − x j+ 1
2
)/h j dx

+ h j

[∫
I j

eq dx − 1

2
d j

(
x j+ 1

2

)] (
g j

(
x j− 1

2

)
+ βs j

(
x j− 1

2

))
.

By the inverse properties (2.10) and (2.11) we have the estimate∣∣∣∣∣∣
∑

j

h j R1
j

∣∣∣∣∣∣ � C(k)‖g + βs‖L2(‖d‖L2 + h‖eq‖L2), (2.31)
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where k is the degree of polynomials in the finite element space V k
h . Combining equations (2.27), (2.30)

and (2.31) together and recalling that ‖φ2‖L∞ = ‖x − x j+ 1
2
‖L∞ = h, we conclude that

‖g + βs‖L2 � C(α, k)h(‖(eu)t‖L2 + ‖eq‖L2). (2.32)

Thus,

‖g‖L2 � ‖g + βs‖L2 + |β|‖s‖L2 � C(α, β, k)h(‖(eu)t‖L2 + ‖eq‖L2 + ‖ep‖L2). (2.33)

Now, we return to the error equation (2.25). Note that (εu)t , εq , εp and εr are orthogonal to any piece-
wise constant functions, then

∣∣∣∣
∫

I
(εu)t ēu dx

∣∣∣∣ =
∣∣∣∣∣∣
∑

j

∫
I j

(εu)t d j (x)(x − x j )/h j dx

∣∣∣∣∣∣ � ‖(εu)t‖L2‖d‖L2‖φ‖L∞ ,

∣∣∣∣
∫

I
εpēp dx

∣∣∣∣ =
∣∣∣∣∣∣
∑

j

∫
I j

εpw j (x)(x − x j )/h j dx

∣∣∣∣∣∣ � ‖εp‖L2‖w‖L2‖φ‖L∞ ,

∣∣∣∣
∫

I
εr ēq dx

∣∣∣∣ =
∣∣∣∣∣∣
∑

j

∫
I j

εr s j (x)(x − x j )/h j dx

∣∣∣∣∣∣ � ‖εr‖L2‖s‖L2‖φ‖L∞ ,

∣∣∣∣
∫

I
εq ēr dx

∣∣∣∣ =
∣∣∣∣∣∣
∑

j

∫
I j

εq g j (x)(x − x j )/h j dx

∣∣∣∣∣∣ � ‖εq‖L2‖g‖L2‖φ‖L∞ ,

∣∣∣∣
∫

I
εpēu dx

∣∣∣∣ =
∣∣∣∣∣∣
∑

j

∫
I j

εpd j (x)(x − x j )/h j dx

∣∣∣∣∣∣ � ‖εp‖L2‖d‖L2‖φ‖L∞ ,

where φ = (x − x j )/h j . Then, equation (2.25) becomes

1

2

d

dt
‖ēu‖2

L2 + 1

2
‖ēp‖2

L2 � ‖φ‖L∞
[‖(εu)t‖L2‖d‖L2 + ‖εp‖L2‖w‖L2 + ‖εr‖L2‖s‖L2

+ ‖εq‖L2‖g‖L2 + |β|‖εp‖L2‖d‖L2

] + β2

2
‖ēu‖2

L2 .

Using the approximation property of the projections (2.9) and the fact that ‖φ‖L∞ = 1
2 , we get

1

2

d

dt
‖ēu‖2

L2 + 1

2
‖ēp‖2

L2 � Chk+1(‖d‖L2 + ‖s‖L2 + ‖w‖L2 + ‖g‖L2) + β2

2
‖ēu‖2

L2 , (2.34)

where C = C(β, ‖u‖k+4, ‖ut‖k+1). Substituting equations (2.27), (2.28), (2.29) and (2.33) into
equation (2.34), we obtain

1

2

d

dt
‖ēu‖2

L2 + 1

2
‖ēp‖2

L2 � Chk+2(‖(eu)t‖L2 + ‖eq‖L2 + ‖ep‖L2 + ‖er‖L2) + β2

2
‖ēu‖2

L2 , (2.35)
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where C = C(α, β, ‖u‖k+4, ‖ut‖k+1). Integrating the above inequality with respect to time and using
the bound for initial error (2.17), we obtain

1

2
‖ēu(t)‖2

L2 + 1

2

∫ t

0
‖ēp(t)‖2

L2 dt � Chk+2
∫ t

0
(‖(eu)t‖L2 + ‖eq‖L2 + ‖ep‖L2 + ‖er‖L2) dt

+ β2

2

∫ t

0
‖ēu(t)‖2

L2 dt + Ch2k+3, (2.36)

where C = C(α, β, λ, ‖u‖k+4, ‖ut‖k+1).
To get the superconvergence result we need the following lemma.

LEMMA 2.8 Under the same condition as in Theorem 2.5 we have

‖eu(t)‖L2 + ‖eq(t)‖L2 � CeC1t hk+1, (2.37)

∫ t

0
(‖ep‖L2 + ‖er‖L2) dt � CeC1t hk+1, (2.38)

where C = C(α, β, ‖u‖k+4, ‖ut‖k+3). Moreover, we have

∫ t

0
‖(eu)t‖L2 dt � CeC1t hk+1, (2.39)

where C = C(α, β, ‖u‖k+4, ‖ut‖k+4, ‖utt‖k+4, ‖uttt‖k+1).

The proof of this lemma is given in Appendix. Using Lemma 2.8 we get from equation (2.36) that

1

2
‖ēu(t)‖2

L2 + 1

2

∫ t

0
‖ēp(t)‖2

L2 dt � β2

2

∫ t

0
‖ēu(t)‖2

L2 dt + CeC1t h2k+3.

Gronwall’s inequality gives us the desired result:

‖ēu(t)‖2
L2 +

∫ t

0
‖ēp(t)‖2

L2 dt � Ce2C1t h2k+3

and, in particular,

‖ēu(t)‖L2 � CeC1t hk+3/2,

where C = C(α, β, λ, ‖u‖k+4, ‖ut‖k+4, ‖utt‖k+4, ‖uttt‖k+1) and C1 = C1(α, β) > 0.

3. Numerical examples

In this section we provide some numerical experiments to demonstrate the superconvergence of the LDG
method for fourth-order problems. We do not pay attention to the efficiency of time discretizations, thus
either the third-order explicit total variation diminishing (TVD) Runge–Kutta method (Shu & Osher,
1988) or the second-order implicit Crank–Nicholson method can be used in our calculation.
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EXAMPLE 3.1 To demonstrate superconvergence as well as the long-time behaviour of the error, we
consider the linear fourth-order problem⎧⎨

⎩
ut + ux + uxx + uxxxx = 0,

u(x, 0) = sin x,
(3.1)

with periodic boundary conditions. The exact solution to this problem is

u(x, t) = sin(x − t). (3.2)

Note that for problems containing high-order derivatives, such as problem (3.1), the popular explicit
nonlinearly stable high-order TVD Runge–Kutta methods (Shu & Osher, 1988) will suffer from ex-
tremely small time step restriction due to the stiffness of the LDG spatial discretization operator. Thus,
the second-order implicit Crank–Nicholson time discretization method is used to perform long-time
simulations in this example. We consider both the special projection P∗

h and the usual L2 projection
of the initial condition as our numerical initial conditions and get similar results. Uniform meshes and
numerical fluxes (2.3) are used in the calculation.

Table 1 lists the numerical errors and their orders for k = 1 at different final times T when the
special projection P∗

h u is used as the initial condition. From the table we conclude that, at any time, we
can observe third-order accuracy for ēu and ēp, indicating that the error estimate obtained in equation
(2.18) is not optimal. Even though we have derived an exponential growth result for ēu and ēp, we

TABLE 1 P1 polynomials for Example 3.1 on a uniform mesh of N cells at different times T ; P∗
h pro-

jection of the initial condition

T = 1 T = 10 T = 100

N L2 error Order L2 error Order L2 error Order

ēu

20 4.68 × 10−04 — 3.04 × 10−03 — 2.92 × 10−02 —
40 6.18 × 10−05 2.92 3.87 × 10−04 2.97 3.75 × 10−03 2.96
80 7.93 × 10−06 2.96 4.90 × 10−05 2.98 4.73 × 10−04 2.99

160 1.00 × 10−06 2.98 6.15 × 10−06 3.00 5.92 × 10−05 3.00

eu

20 4.27 × 10−03 — 5.25 × 10−03 — 2.96 × 10−02 —
40 1.06 × 10−03 2.01 1.13 × 10−03 2.22 3.90 × 10−03 2.93
80 2.65 × 10−04 2.00 2.70 × 10−04 2.07 5.42 × 10−04 2.85

160 6.64 × 10−05 2.00 6.66 × 10−05 2.02 8.89 × 10−05 2.61

ēp

20 4.66 × 10−04 — 3.06 × 10−03 — 2.93 × 10−02 —
40 6.16 × 10−05 2.92 3.88 × 10−04 2.98 3.75 × 10−03 2.96
80 7.92 × 10−06 2.96 4.90 × 10−05 2.98 4.73 × 10−04 2.99

160 1.00 × 10−06 2.98 6.15 × 10−06 3.00 5.92 × 10−05 3.00

ep

20 4.27 × 10−03 — 5.26 × 10−03 — 2.96 × 10−02 —
40 1.06 × 10−03 2.01 1.13 × 10−03 2.22 3.90 × 10−03 2.93
80 2.65 × 10−04 2.00 2.70 × 10−04 2.07 5.42 × 10−04 2.85

160 6.64 × 10−05 2.00 6.66 × 10−05 2.02 8.89 × 10−05 2.61
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.

can clearly observe that they actually grow linearly with respect to time for this particular example,
which guarantees that the errors for eu and ep do not grow much with respect to time for a long time,
t = O(h−1). This is especially prominent for fine grids.

Table 2 lists the numerical errors and their orders for k = 2 at different final times T when the
special projection P∗

h u is used as the initial condition. We can clearly see that both ēu and ēp achieve
fourth-order accuracy at T = 1. For longer time, for example T = 10 and T = 50, the orders seem also
to converge to four, if we keep on refining the mesh. We also observe that the errors for both ēu and ēp

do not grow much until the final time we have run (T = 50), especially for fine grids. For the case of
k = 3 the results in Table 3 also demonstrate the superconvergence of ēu and ēp.

If we use the L2 projection of the initial condition as our numerical initial condition instead, we
also obtain the superconvergence results for ēu and ēp and observe little difference compared to the case
when P∗

h u is used as the numerical initial condition, indicating that the definition of the operator P∗
h is

only for a technical purpose in the proof and not essential to the computation; see Tables 4–6.
We would like to mention that, apart from the superconvergence results for ēu and ēp, we have also

obtained similar superconvergence results for ēq and ēr in our numerical experiments, which are not
listed here to save space.

EXAMPLE 3.2 We consider problem (3.1) with exact solution (3.2) and the boundary conditions

u(0, t) = g1(t), ux (2π, t) = g2(t), uxx (0, t) = g3(t), uxxx (2π, t) = g4(t), (3.3)

where gi (t) corresponds to the data from the exact solution.

TABLE 2 P2 polynomials for Example 3.1 on a uniform mesh of N cells at different time T . P∗
h projec-

tion of the initial condition

T = 1 T = 10 T = 50

N L2 error Order L2 error Order L2 error Order

ēu

10 6.93 × 10−05 — 1.17 × 10−04 — 4.72 × 10−04 —
20 4.23 × 10−06 4.03 5.20 × 10−06 4.49 1.54 × 10−05 4.93
40 2.63 × 10−07 4.01 2.79 × 10−07 4.22 5.30 × 10−07 4.86
80 1.64 × 10−08 4.00 1.64 × 10−08 4.08 1.90 × 10−08 4.80

eu

10 8.56 × 10−04 — 8.62 × 10−04 — 9.76 × 10−04 —
20 1.07 × 10−04 3.00 1.07 × 10−04 3.01 1.08 × 10−04 3.18
40 1.34 × 10−05 3.00 1.34 × 10−05 3.00 1.34 × 10−05 3.01
80 1.67 × 10−06 3.00 1.67 × 10−06 3.00 1.67 × 10−06 3.00

ēp

10 5.69 × 10−05 — 1.10 × 10−04 — 4.71 × 10−04 —
20 3.81 × 10−06 3.90 4.87 × 10−06 4.50 1.53 × 10−05 4.94
40 2.49 × 10−07 3.94 2.66 × 10−07 4.19 5.24 × 10−07 4.87
80 1.60 × 10−08 3.96 1.60 × 10−08 4.06 1.87 × 10−08 4.81

ep

10 8.56 × 10−04 — 8.62 × 10−04 — 9.76 × 10−04 —
20 1.07 × 10−04 3.00 1.07 × 10−04 3.01 1.08 × 10−04 3.18
40 1.34 × 10−05 3.00 1.34 × 10−05 3.00 1.34 × 10−05 3.01
80 1.67 × 10−06 3.00 1.67 × 10−06 3.00 1.67 × 10−06 3.00
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TABLE 3 P3 polynomials for Example 3.1 on a uniform mesh of N cells; T = 1; P∗
h projection of the

initial condition

ēu eu ēp ep

N L2 error Order L2 error Order L2 error Order L2 error Order

5 6.60 × 10−05 — 5.26 × 10−04 — 5.63 × 10−05 — 5.27 × 10−04 —
10 1.73 × 10−06 5.25 3.30 × 10−05 4.00 1.52 × 10−06 5.22 3.30 × 10−05 4.00
20 5.39 × 10−08 5.01 2.06 × 10−06 4.00 5.02 × 10−08 4.91 2.06 × 10−06 4.00
40 1.71 × 10−09 4.98 1.29 × 10−07 4.00 1.69 × 10−09 4.89 1.29 × 10−07 4.00

TABLE 4 P1 polynomials for Example 3.1 on a uniform mesh of N cells; T = 1; L2 projection of the
initial condition

ēu eu ēp ep

N L2 error Order L2 error Order L2 error Order L2 error Order

20 4.36 × 10−04 — 4.26 × 10−03 — 4.38 × 10−04 — 4.26 × 10−03 —
40 5.63 × 10−05 2.95 1.06 × 10−03 2.00 5.64 × 10−05 2.96 1.06 × 10−03 2.00
80 7.15 × 10−06 2.98 2.66 × 10−04 2.00 7.16 × 10−06 2.98 2.66 × 10−04 2.00

160 9.00 × 10−07 2.99 6.64 × 10−05 2.00 9.01 × 10−07 2.99 6.64 × 10−05 2.00

TABLE 5 P2 polynomials for Example 3.1 on a uniform mesh of N cells; T = 1; L2 projection of the
initial condition

ēu eu ēp ep

N L2 error Order L2 error Order L2 error Order L2 error Order

10 6.90 × 10−05 — 8.56 × 10−04 — 5.66 × 10−05 — 8.56 × 10−04 —
20 4.23 × 10−06 4.03 1.07 × 10−04 3.00 3.81 × 10−06 3.89 1.07 × 10−04 3.00
40 2.62 × 10−07 4.01 1.34 × 10−05 3.00 2.49 × 10−07 3.93 1.34 × 10−05 3.00
80 1.65 × 10−08 3.99 1.67 × 10−06 3.00 1.61 × 10−08 3.95 1.67 × 10−06 3.00

TABLE 6 P3 polynomials for Example 3.1 on a uniform mesh of N cells; T = 1; L2 projection of the
initial condition

ēu eu ēp ep

N L2 error Order L2 error Order L2 error Order L2 error Order

5 5.58 × 10−05 — 5.25 × 10−04 — 4.43 × 10−05 — 5.25 × 10−04 —
10 1.73 × 10−06 5.01 3.30 × 10−05 3.99 1.51 × 10−06 4.88 3.30 × 10−05 3.99
20 5.39 × 10−08 5.00 2.06 × 10−06 4.00 5.02 × 10−08 4.91 2.06 × 10−06 4.00
40 1.95 × 10−09 4.79 1.29 × 10−07 4.00 1.80 × 10−09 4.80 1.29 × 10−07 4.00

Note that the above boundary conditions are matched with the alternating numerical fluxes (2.3).
Both here and below, we use the third-order explicit TVD Runge–Kutta method and the L2 projection
of the initial condition as our numerical initial condition. Table 7 lists the results for both P1 and P2
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TABLE 7 P1 and P2 polynomials for Example 3.2 with boundary conditions (3.3) on a uniform mesh
of N cells; T = 0.5

Pk k = 1 k = 2
ēu eu ēu eu

N L2 error Order L2 error Order L2 error Order L2 error Order

10 3.07 × 10−03 — 1.71 × 10−02 — 6.85 × 10−05 — 8.56 × 10−04 —
20 3.95 × 10−04 2.96 4.25 × 10−03 2.01 4.22 × 10−06 4.02 1.07 × 10−04 3.00
40 5.03 × 10−05 2.98 1.06 × 10−03 2.00 2.62 × 10−07 4.01 1.34 × 10−05 3.00
80 6.34 × 10−06 2.99 2.65 × 10−04 2.00 1.71 × 10−08 3.94 1.67 × 10−06 3.00

polynomials at T = 0.5 when fluxes (2.3) are used. To impose the given boundary conditions (3.3), the
corresponding boundary fluxes are defined as

(uh)−1
2

= g1(t), (qh)+
N+ 1

2
= g2(t), (ph)−1

2
= g3(t), (rh)+

N+ 1
2

= g4(t).

From the table we can clearly see that ēu achieves (k + 2)th-order superconvergence and the error eu

achieves the expected (k + 1)th order of accuracy.

EXAMPLE 3.3 We consider problem (3.1) with exact solution (3.2) and the boundary conditions

u(0, t) = h1(t), u(2π, t) = h2(t), ux (0, t) = h3(t), ux (2π, t) = h4(t), (3.4)

where hi (t) corresponds to the data from the exact solution.

In this example the minimal dissipation LDG method is used to deal with the Dirichlet boundary
conditions (3.4). The distinctive feature of this method is that the stabilization parameters associated
with the numerical fluxes are taken to be identically zero on all interior cell interfaces (that is, only the
numerical fluxes at boundaries are penalized) and this is why its dissipation is said to be minimal; see,
e.g. Castillo et al. (2002). More precisely, the numerical fluxes based on equation (2.3) for uh, qh, ph, rh

are chosen as

(ûh, q̂h, p̂h, r̂h) j+ 1
2

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(u−
h , q+

h , p−
h , r+

h ) j+ 1
2
, j = 1, . . . , N − 1,

(u−
h , q−

h , p̂h, r+
h ) 1

2
, j = 0,

(u+
h , q+

h , p−
h , r̂h)N+ 1

2
, j = N ,

(3.5)

where

(uh)−1
2

= h1(t), (uh)+
N+ 1

2
= h2(t), (qh)−1

2
= h3(t), (qh)+

N+ 1
2

= h4(t),

and

( p̂h) 1
2

= (ph)+1
2

+ κ1[qh] 1
2
, (r̂h)N+ 1

2
= (rh)−

N+ 1
2

− κ2[uh]N+ 1
2
,

with κ1 and κ2 positive constants that are O(h−1) and O(h−3), respectively. The numerical errors and
their orders obtained by using P1 and P2 polynomials at T = 0.5 are listed in Table 8. From the table
we can clearly see that ēu achieves (k + 2)th-order superconvergence and the error eu achieves the
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TABLE 8 P1 and P2 polynomials for Example 3.3 with boundary conditions (3.4) on a uniform mesh
of N cells; T = 0.5; κ1 = 30/h, κ2 = 10/h3

Pk k = 1 k = 2
ēu eu ēu eu

N L2 error Order L2 error Order L2 error Order L2 error Order

10 2.82 × 10−03 — 1.71 × 10−02 — 7.00 × 10−05 — 8.55 × 10−04 —
20 3.53 × 10−04 3.00 4.25 × 10−03 2.01 4.22 × 10−06 4.05 1.07 × 10−04 3.00
40 4.43 × 10−05 2.99 1.06 × 10−03 2.00 2.62 × 10−07 4.01 1.34 × 10−05 3.00
80 5.58 × 10−06 2.99 2.65 × 10−04 2.00 1.70 × 10−08 3.95 1.67 × 10−06 3.00

expected (k + 1)th order of accuracy. Based on the results in Examples 3.2 and 3.3, we conclude that
the superconvergence property also holds true for initial boundary value problems.

EXAMPLE 3.4 To test the validity of the superconvergence property for solutions with singularities, we
solve the equation ut + ux + uxx + uxxxx = 0 on the interval [−1, 1] with discontinuous initial data

u(x, 0) =
{

1 if |x | � 0.5,

0 otherwise,
(3.6)

and periodic boundary conditions.

By Fourier analysis we can derive the exact solution of Example 3.4 in the form

u(x, t) = 1

2
+ 2

∞∑
ω=1

e(ω2π2−ω4π4)t sin
(

ωπ
2

)
ωπ

cos(ωπ(x − t)).

In our computation the exact solution is taken as

u(x, t) = 1

2
+ 2

5∑
ω=1

e(ω2π2−ω4π4)t sin
(

ωπ
2

)
ωπ

cos(ωπ(x − t)) (3.7)

with negligible error. The numerical errors and their orders for Example 3.4 using both P1 and P2

polynomials at T = 0.05 are given in Table 9 from which we can clearly observe (k +2)th and (k +1)th
orders of accuracy for ēu and eu , respectively; that is, the conclusions also hold true for solutions with
singularities in the initial condition, provided the singularities are located at cell boundaries.

EXAMPLE 3.5 In this example we solve the linear time-dependent biharmonic equation⎧⎨
⎩

ut + uxxxx = 0,

u(x, 0) = sin x,
(3.8)

with periodic boundary conditions. The exact solution to this problem is

u(x, t) = e−t sin x . (3.9)
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TABLE 9 P1 and P2 polynomials for Example 3.4 with discontinuous initial data (3.6) on a uniform
mesh of N cells; T = 0.05

Pk k = 1 k = 2
ēu eu ēu eu

N L2 error Order L2 error Order L2 error Order L2 error Order

4 1.08 × 10−03 — 1.18 × 10−03 — 5.26 × 10−05 — 1.08 × 10−04 —
8 5.93 × 10−05 4.19 2.21 × 10−04 2.42 3.01 × 10−06 4.13 1.34 × 10−05 3.02

16 4.89 × 10−06 3.60 5.34 × 10−05 2.05 1.85 × 10−07 4.02 1.67 × 10−06 3.00
32 5.40 × 10−07 3.18 1.33 × 10−05 2.01 1.15 × 10−08 4.00 2.09 × 10−07 3.00

FIG. 1. The growth of the relative error versus time using P1 polynomials.

Note that the exact solution u is exponentially decaying with respect to time; let us denote by ērel
u a

measure of the relative error between ēu and u, namely, ‖ērel
u ‖L2 = ‖ēu‖L2

‖u‖L2
. The growth of the relative

error in the L2 norm, ‖ērel
u ‖L2 , versus time, obtained by using P1 polynomials on a uniform mesh of

40 cells, is plotted in Fig. 1. We can see that the relative error grows essentially linearly with respect to
time from T = 8 to the final time T = 20 that we have run. This example demonstrates that not only
the absolute error grows at most linearly with time, as proved in Theorem 2.7, but also the relative error
grows only linearly in time.
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TABLE 10 P1 and P2 polynomials for Example 3.6 solving the Kuramoto–Sivashinsky equation (3.10)
on a uniform mesh of N cells; T = 0.5

Pk k = 1 k = 2
ēu eu ēu eu

N L2 error Order L2 error Order L2 error Order L2 error Order

80 2.32 × 10−02 — 7.04 × 10−02 — 2.16 × 10−03 — 5.30 × 10−03 —
160 4.26 × 10−03 2.44 1.64 × 10−02 2.11 1.24 × 10−04 4.12 6.59 × 10−04 3.01
320 5.65 × 10−04 2.91 3.99 × 10−03 2.03 7.56 × 10−06 4.04 8.23 × 10−05 3.00
640 7.19 × 10−05 2.97 9.92 × 10−04 2.01 4.74 × 10−07 4.00 1.03 × 10−05 3.00

EXAMPLE 3.6 In order to see the superconvergence of the method for nonlinear problems, we consider
the Kuramoto–Sivashinsky equation

ut +
(

u2

2

)
x

+ uxx + σuxxx + uxxxx = 0, (3.10)

with the exact solution given by

u(x, t) = c + 9 − 15(tanh(k(x − ct − x0)) + tanh2(k(x − ct − x0))

− tanh3(k(x − ct − x0))), (3.11)

where σ = 4, c = 6, k = 1
2 and x0 = −10.

The computational domain is [−30, 30]. Although the exact solution is not periodic, we can still
use periodic boundary conditions in our computation since the exact solution is negligibly small at
the boundary of the domain for short-time simulations, for example, T = 2, due to the large size
of the computational domain. We use the Godunov flux, which is an upwind flux, for the nonlinear
convection part, and alternating fluxes (2.3) for other parts. The projection is defined element by element
as follows. If u(x j , t) is positive we choose P−

h on the cell I j ; otherwise, we use P+
h . We test this

example using both P1 and P2 polynomials at T = 0.5. The numerical errors and orders of accuracy
for ēu and eu are given in Table 10. From the table we can see that the error ēu achieves (k + 2)th-order
superconvergence and the error eu achieves the expected (k + 1)th order of accuracy. This example
shows that the superconvergence property also holds true for some nonlinear equations.

4. Concluding remarks

In this paper we have studied the superconvergence of the LDG method for linear fourth-order time-
dependent problems. We prove that the error between the numerical solution and a particular projection
of the exact solution achieves (k + 3

2 )th-order superconvergence when polynomials of degree k (k � 1)
are used. Various numerical experiments, including linear equations, nonlinear equations, initial bound-
ary value problems and solutions having singularities, are shown to demonstrate that the conclusions
hold true for very general cases. Even though we consider only the one-dimensional case in this paper,
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similar results should hold for certain tensor product two-dimensional cases; see Cheng & Shu (2010)
for related discussion for convection and second-order diffusion equations.

The theoretical study of the superconvergence of the DG or LDG method for nonlinear equations
and for nonperiodic boundary conditions is more challenging and this will be carried out in the future.
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Appendix

In this appendix we give the proofs for some of the technical lemmas and theorems.

A.1 The proof of Lemma 2.4

We will first prove the existence and uniqueness of P∗
h u.

When using the DG discretization operator D, equation (2.14) can be written as∫
I j

rhη dx −DI j (ph, η; p−
h ) = 0, (A.1a)

∫
I j

phξ dx −DI j (qh, ξ ; q+
h ) = 0, (A.1b)

∫
I j

qhψ dx −DI j (P∗
h u, ψ ; (P∗

h u)−) = 0 (A.1c)

for any ψ, ξ, η ∈ V k
h . Since the exact solutions u, q = ux , p = uxx , r = uxxx also satisfy scheme

(A.1), we thus have the error equations∫
I j

(r − rh)η dx −DI j (p − ph, η; (p − ph)−) = 0, (A.2a)

∫
I j

(p − ph)ξ dx −DI j (q − qh, ξ ; (q − qh)+) = 0, (A.2b)

X. MENG ET AL.1316

 at B
row

n U
niversity on O

ctober 16, 2012
http://im

ajna.oxfordjournals.org/
D

ow
nloaded from

 

http://imajna.oxfordjournals.org/


∫
I j

(q − qh)ψ dx −DI j (u − P∗
h u, ψ ; (u − P∗

h u)−) = 0, (A.2c)

for any ψ, ξ, η ∈ V k
h . Denote

u − P∗
h u = (u − P−

h u) + (P−
h u − P∗

h u) = εu + Eu,

q − qh = (q − P+
h q) + (P+

h q − qh) = εq + Eq ,

p − ph = (p − P−
h p) + (P−

h p − ph) = εp + E p,

r − rh = (r − P+
h r) + (P+

h r − rh) = εr + Er .

By virtue of the properties of the projections P+
h and P−

h given in equations (2.7) and (2.8), equation
(A.2) becomes ∫

I j

(εr + Er )η dx −DI j (E p, η; E−
p ) = 0, (A.3a)

∫
I j

(εp + E p)ξ dx −DI j (Eq , ξ ; E+
q ) = 0, (A.3b)

∫
I j

(εq + Eq)ψ dx −DI j (Eu, ψ ; E−
u ) = 0. (A.3c)

Also, conditions (2.15) and (2.16) are equivalent to∫
I j

(Eu − Eq + Er )ρ dx = 0 (A.4)

for any ρ ∈ Pk−1 on I j and

E−
u = (Eq − Er )

+ at x j− 1
2
. (A.5)

Note that equations (A.3), (A.4) and (A.5) are a linear system for Eu, Eq , E p, Er ∈ V k
h . To prove the

existence and uniqueness of P∗
h u, we need only to prove the uniqueness of Eu , then P∗

h u = P−
h u − Eu

will exist and is unique.
Plugging conditions (A.4) and (A.5) into (A.3), we obtain∫

I j

(εr + Er )η dx −DI j (E p, η; E−
p ) = 0, (A.6a)

∫
I j

(εp + E p)ξ dx −DI j (Eq , ξ ; E+
q ) = 0, (A.6b)

∫
I j

(εq + Eq)ψ dx −DI j (Eq − Er , ψ ; (Eq − Er )
+) = 0, (A.6c)
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which is ∫
I j

Erη dx −DI j (E p, η; E−
p ) = −

∫
I j

εrη dx, (A.7a)

∫
I j

E pξ dx −DI j (Eq , ξ ; E+
q ) = −

∫
I j

εpξ dx, (A.7b)

∫
I j

Eqψ dx −DI j (Eq − Er , ψ ; (Eq − Er )
+) = −

∫
I j

εqψ dx, (A.7c)

for any ψ, ξ, η ∈ V k
h . Note that equation (A.7) is a linear system, hence the existence of (Eq , E p, Er )

follows by the uniqueness.
We claim that the solution (Eq , E p, Er ) to equation (A.7) is unique. Suppose both (E1

q , E1
p, E1

r ) and

(E2
q , E2

p, E2
r ) satisfy equation (A.7) and denote gq = E1

q − E2
q , gp = E1

p − E2
p, gr = E1

r − E2
r , then

equation (A.7) yields ∫
I j

grη dx −DI j (gp, η; g−
p ) = 0, (A.8a)

∫
I j

gpξ dx −DI j (gq , ξ ; g+
q ) = 0, (A.8b)

∫
I j

gqψ dx −DI j (gq − gr , ψ ; (gq − gr )
+) = 0, (A.8c)

for any ψ, ξ, η ∈ V k
h . Now taking (ψ, ξ, η) = (gq − gr , gp, gq) in equation (A.8), adding them up and

summing over all j , we get

‖gq‖2
L2 + ‖gp‖2

L2 −D(gp, gq ; g−
p ) −D(gq , gp; g+

q ) −D(gq − gr , gq − gr ; (gq − gr )
+) = 0.

By the property of the operator D in Lemma 2.1, we have

‖gq‖2
L2 + ‖gp‖2

L2 + 1

2

∑
j

[gq − gr ]2
j+ 1

2
= 0,

which implies gq = gp = 0 and further, gr = 0. We have thus proved the existence and uniqueness of
Eq and Er , then conditions (A.4) and (A.5) lead to the existence and uniqueness of Eu and thus P∗

h u.
We obtain the error estimate (2.17) in three steps.

Step 1. By Lemma 2.2 equation (A.6) can be rewritten as∫
I j

(εr + Er )η dx −
∫

I j

(E p)xη dx − [E p]η+| j− 1
2

= 0, (A.9a)

∫
I j

(εp + E p)ξ dx −
∫

I j

(Eq)xξ dx − [Eq ]ξ−| j+ 1
2

= 0, (A.9b)

∫
I j

(εq + Eq)ψ dx −
∫

I j

(Eq − Er )xψ dx − [Eq − Er ]ψ−| j+ 1
2

= 0. (A.9c)
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.

Define Eq = b j + s j (x)(x − x j )/h j , E p = v j + w j (x)(x − x j )/h j , Er = l j + g j (x)(x − x j )/h j

on I j , where b j , v j , l j are constants and s j (x), w j (x), g j (x) ∈ Pk−1. First, we let ψ = (s j (x) −
g j (x))(x − x j+ 1

2
)/h j in equation (A.9c) and get, by the definition of B+

j ,

∫
I j

(εq + Eq)(s j (x) − g j (x))(x − x j+ 1
2
)/h j dx − B+

j (s j − g j ) = 0.

Using the property of B+
j in Lemma 2.3, we have

∫
I j

(εq + Eq)(s j (x) − g j (x))(x − x j+ 1
2
)/h j dx + 1

4h j

∫
I j

(s j (x) − g j (x))2 dx

+ 1

4
(s j (x j− 1

2
) − g j (x j− 1

2
))2 = 0.

Thus, ∫
I j

(s j (x) − g j (x))2 dx � −4
∫

I j

(εq + Eq)(s j (x) − g j (x))(x − x j+ 1
2
) dx . (A.10)

Define piecewise polynomials s(x), g(x) and φ2(x), such that s(x) = s j (x), g(x) = g j (x), φ2(x) =
x − x j+ 1

2
on I j , then summing equation (A.10) over all j ,

‖s − g‖L2 � 4‖εq + Eq‖L2‖φ2‖L∞ .

By approximation results (2.9) and the fact that ‖φ2‖L∞ = h we get

‖s − g‖L2 � 4h‖εq + Eq‖L2 � Chk+2 + Ch‖Eq‖L2 , (A.11)

where C = C(‖u‖k+2). Similarly, letting ξ = s j (x)(x − x j+ 1
2
)/h j in equation (A.9b) and η =

w j (x)(x − x j− 1
2
)/h j in equation (A.9a), and using the definition of B−

j and B+
j , we get

∫
I j

(εr + Er )w j (x)(x − x j− 1
2
)/h j dx − B−

j (w j ) = 0,

∫
I j

(εp + E p)s j (x)(x − x j+ 1
2
)/h j dx − B+

j (s j ) = 0.

Using the properties of B−
j and B+

j in Lemma 2.3, we have

∫
I j

(εr + Er )w j (x)(x − x j− 1
2
)/h j dx − 1

4h j

∫
I j

w2
j (x) dx −

w2
j (x j+ 1

2
)

4
= 0,

∫
I j

(εp + E p)s j (x)(x − x j+ 1
2
)/h j dx + 1

4h j

∫
I j

s2
j (x) dx +

s2
j (x j− 1

2
)

4
= 0.
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Thus, ∫
I j

w2
j (x) dx � 4

∫
I j

(εr + Er )w j (x)(x − x j− 1
2
) dx,

∫
I j

s2
j (x) dx � −4

∫
I j

(εp + E p)s j (x)(x − x j+ 1
2
) dx .

Define piecewise polynomials w(x) and φ1(x), such that w(x) = w j (x), φ1(x) = x − x j− 1
2

on I j ; thus,

‖φ1‖L∞ = h, and finally, we get

‖w‖L2 � 4‖εr + Er‖L2‖φ1‖L∞ � 4h‖εr + Er‖L2 � Chk+2 + Ch‖Er‖L2 , (A.12)

‖s‖L2 � 4‖εp + E p‖L2‖φ2‖L∞ � 4h‖εp + E p‖L2 � Chk+2 + Ch‖E p‖L2 , (A.13)

where C = C(‖u‖k+4).
Step 2. On the one hand, taking (ψ, ξ, η) = (Eq − Er , E p, Eq) in equation (A.7), adding them up

and summing over all j , we obtain

‖Eq‖2
L2 + ‖E p‖2

L2 −D(E p, Eq ; E−
p ) −D(Eq , E p; E+

q ) −D(Eq − Er , Eq − Er ; (Eq − Er )
+)

= −
∫

I
εr Eq dx −

∫
I
εp E p dx −

∫
I
εq(Eq − Er ) dx .

By the property of the operator D in Lemma 2.1, we have

‖Eq‖2
L2 + ‖E p‖2

L2 + 1

2

∑
j

[Eq − Er ]2
j+ 1

2
= −

∫
I
εr Eq dx −

∫
I
εp E p dx −

∫
I
εq(Eq − Er ) dx,

and thus

‖Eq‖2
L2 + ‖E p‖2

L2 �
∣∣∣∣
∫

I
εr Eq dx

∣∣∣∣ +
∣∣∣∣
∫

I
εp E p dx

∣∣∣∣ +
∣∣∣∣
∫

I
εq(Eq − Er ) dx

∣∣∣∣ .
Note that εq , εp and εr are orthogonal to any piecewise constant functions, then

∣∣∣∣
∫

I
εr Eq dx

∣∣∣∣ =
∣∣∣∣∣∣
∑

j

∫
I j

εr s j (x)(x − x j )/h j dx

∣∣∣∣∣∣ � ‖εr‖L2‖s‖L2‖φ‖L∞ ,

∣∣∣∣
∫

I
εp E p dx

∣∣∣∣ =
∣∣∣∣∣∣
∑

j

∫
I j

εpw j (x)(x − x j )/h j dx

∣∣∣∣∣∣ � ‖εp‖L2‖w‖L2‖φ‖L∞ ,

∣∣∣∣
∫

I
εq(Eq − Er ) dx

∣∣∣∣ =
∣∣∣∣∣∣
∑

j

∫
I j

εq(s j (x) − g j (x))(x − x j )/h j dx

∣∣∣∣∣∣ � ‖εq‖L2‖s − g‖L2‖φ‖L∞ ,
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.

where φ = (x − x j )/h j . Therefore,

‖Eq‖2
L2 + ‖E p‖2

L2 � ‖φ‖L∞(‖εr‖L2‖s‖L2 + ‖εp‖L2‖w‖L2 + ‖εq‖L2‖s − g‖L2).

From the approximation results (2.9) and employing ‖φ‖L∞ = 1
2 , we conclude that

‖Eq‖2
L2 + ‖E p‖2

L2 � Chk+1(‖s‖L2 + ‖w‖L2 + ‖s − g‖L2). (A.14)

Collecting (A.11)–(A.13) into (A.14) we arrive at

‖Eq‖2
L2 + ‖E p‖2

L2 � Ch2k+3 + Chk+2(‖Eq‖L2 + ‖E p‖L2 + ‖Er‖L2), (A.15)

where C = C(‖u‖k+4).
On the other hand, taking (ψ, ξ, η) = (−E p, Eq , Er − Eq) in equation (A.7), adding them up and

summing over all j , we obtain

‖Er‖2
L2 +D(E p, Eq − Er ; E−

p ) +D(Eq − Er , E p; (Eq − Er )
+) −D(Eq , Eq ; E+

q )

= −
∫

I
εr (Er − Eq) dx −

∫
I
εp Eq dx +

∫
I
εq E p dx +

∫
I

Eq Er dx .

By the property of the operator D in Lemma 2.1, we have

‖Er‖2
L2 + 1

2

∑
j

[Eq ]2
j+ 1

2
= −

∫
I
εr (Er − Eq) dx −

∫
I
εp Eq dx +

∫
I
εq E p dx +

∫
I

Eq Er dx,

and thus

1

2
‖Er‖2

L2 �
∣∣∣∣
∫

I
εr (Er − Eq) dx

∣∣∣∣ +
∣∣∣∣
∫

I
εp Eq dx

∣∣∣∣ +
∣∣∣∣
∫

I
εq E p dx

∣∣∣∣ + 1

2
‖Eq‖2

L2 .

Note that εq , εp and εr are orthogonal to any piecewise constant functions, then

∣∣∣∣
∫

I
εr (Er − Eq) dx

∣∣∣∣ =
∣∣∣∣∣∣
∑

j

∫
I j

εr (g j (x) − s j (x))(x − x j )/h j dx

∣∣∣∣∣∣ � ‖εr‖L2‖g − s‖L2‖φ‖L∞ ,

∣∣∣∣
∫

I
εp Eq dx

∣∣∣∣ =
∣∣∣∣∣∣
∑

j

∫
I j

εps j (x)(x − x j )/h j dx

∣∣∣∣∣∣ � ‖εp‖L2‖s‖L2‖φ‖L∞ ,

∣∣∣∣
∫

I
εq E p dx

∣∣∣∣ =
∣∣∣∣∣∣
∑

j

∫
I j

εqw j (x)(x − x j )/h j dx

∣∣∣∣∣∣ � ‖εq‖L2‖w‖L2‖φ‖L∞ ,

we recall that φ = (x − x j )/h j . Therefore,

1

2
‖Er‖2

L2 � ‖φ‖L∞(‖εr‖L2‖g − s‖L2 + ‖εp‖L2‖s‖L2 + ‖εq‖L2‖w‖L2) + 1

2
‖Eq‖2

L2 .

From the approximation results (2.9) and employing ‖φ‖L∞ = 1
2 , we conclude that

1

2
‖Er‖2

L2 � Chk+1(‖g − s‖L2 + ‖s‖L2 + ‖w‖L2) + 1

2
‖Eq‖2

L2 . (A.16)
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Collecting (A.11)–(A.13) into (A.16), we arrive at

1

2
‖Er‖2

L2 � Ch2k+3 + Chk+2(‖Eq‖L2 + ‖E p‖L2 + ‖Er‖L2) + 1

2
‖Eq‖2

L2 , (A.17)

where C = C(‖u‖k+4). Then, equations (A.15) and (A.17) produce

1

2
‖Eq‖2

L2 + ‖E p‖2
L2 + 1

2
‖Er‖2

L2 � Ch2k+3 + Chk+2(‖Eq‖L2 + ‖E p‖L2 + ‖Er‖L2),

which implies

‖Eq‖L2 + ‖E p‖L2 + ‖Er‖L2 � C(‖u‖k+4)h
k+3/2. (A.18)

Step 3. Suppose that

Eu =
k∑

n=0

a j
n Pn

(
2(x − x j )

h j

)
, Eq − Er =

k∑
n=0

b j
n Pn

(
2(x − x j )

h j

)

on I j , where Pn(·) denotes the nth-order Legendre polynomial. By using the technique in Cheng & Shu
(2010), conditions (A.4) and (A.5) yield the relationship

‖Eu‖L2 � C(λ)‖Eq − Er‖L2 . (A.19)

We recall that λ is the maximum of two different two different arbitrary mesh sizes. A combination of
equations (A.18) and (A.19) gives us a bound for Eu,

‖Eu‖L2 � C(λ)(‖Eq‖L2 + ‖Er‖L2) � C(λ, ‖u‖k+4)h
k+3/2.

A.2 The proof of Lemma 2.8

If we can prove

‖ēu(t)‖L2 + ‖ēq(t)‖L2 +
∫ t

0
(‖ēp‖L2 + ‖ēr‖L2) dt � CeC1t hk+1, (A.20)

with C = C(α, β, ‖u‖k+4, ‖ut‖k+3), then the estimates (2.37) and (2.38) in Lemma 2.8 will follow by
the approximation error estimates (2.9) and the triangle inequality. To this end, on the one hand, we
rewrite equation (2.24) as

1

2

d

dt
‖ēu‖2

L2 + ‖ēp‖2
L2 �−

∫
I
(εu)t ēu dx −

∫
I
εpēp dx −

∫
I
εr ēq dx +

∫
I
εq ēr dx

− β

∫
I
εpēu dx + β2‖ēu‖2

L2 + 1

4
‖ēp‖2

L2 . (A.21)
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On the other hand, taking the time derivative in equation (2.21d), letting (ρ, ψ, ξ, η) = (−ēp, ēq , (ēu)t ,
ēr ) in equation (2.21), adding them up and summing over all j , we obtain

1

2

d

dt
‖ēq‖2

L2 + ‖ēr‖2
L2 +

∫
I
(εq)t ēq dx +

∫
I
εr ēr dx −

∫
I
(εu)t ēp dx +

∫
I
εp(ēu)t dx − αD(ēu, ēp; ē−

u )

− βD(ēq , ēp; ē+
q ) −D(ēr , ēp; ē+

r ) −D(ēp, ēr ; ē−
p ) −D(ēq , (ēu)t ; ē+

q ) −D((ēu)t , ēq ; (ēu)−t ) = 0.

Using the property of the operator D in Lemma 2.1, we have

1

2

d

dt
‖ēq‖2

L2 + ‖ēr‖2
L2 +

∫
I
(εq)t ēq dx +

∫
I
εr ēr dx −

∫
I
(εu)t ēp dx

+
∫

I
εp(ēu)t dx − αD(ēu, ēp; ē−

u ) − βD(ēq , ēp; ē+
q ) = 0. (A.22)

By taking ψ = ēp in equation (2.21d) and summing over all j we get

D(ēu, ēp; ē−
u ) =

∫
I

eq ēp dx . (A.23)

Using the property of the operator D in Lemma 2.1, and then taking η = ēq in equation (2.21b) and
summing over all j , we obtain

D(ēq , ēp; ē+
q ) = −D(ēp, ēq ; ē−

p ) = −
∫

I
er ēq dx . (A.24)

Plugging equations (A.23) and (A.24) into (A.22), then

1

2

d

dt
‖ēq‖2

L2 + 1

2
‖ēr‖2

L2 �−
∫

I
(εq)t ēq dx −

∫
I
εr ēr dx +

∫
I
(εu)t ēp dx −

∫
I
εp(ēu)t dx

+ α

∫
I
εq ēp dx − β

∫
I
εr ēq dx + 1

4
‖ēp‖2

L2 +
(

α2 + β2

2

)
‖ēq‖2

L2 . (A.25)

Combining equations (A.21) and (A.25) we arrive at

1

2

d

dt
‖ēu‖2

L2+1

2

d

dt
‖ēq‖2

L2+1

2
‖ēp‖2

L2+1

2
‖ēr‖2

L2 � Λ+Θ+β2‖ēu‖2
L2+

(
α2 + β2

2

)
‖ēq‖2

L2 , (A.26)

where

Λ = −
∫

I
εp(ēu)t dx
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and

Θ = −
∫

I
(εu)t ēu dx −

∫
I
εpēp dx −

∫
I
εr ēq dx +

∫
I
εq ēr dx − β

∫
I
εpēu dx

−
∫

I
(εq)t ēq dx −

∫
I
εr ēr dx +

∫
I
(εu)t ēp dx + α

∫
I
εq ēp dx − β

∫
I
εr ēq dx .

Using the approximation property of the projections (2.9), we get

|Θ| � Chk+1(‖ēu‖L2 + ‖ēq‖L2 + ‖ēp‖L2 + ‖ēr‖L2).

Integrating Λ with respect to time, we get, after a simple integration by parts,∫ t

0
Λ dt =

∫ t

0

∫
I
(εp)t ēu dx dt −

∫
I
(ēu(t)εp(t) − ēu(0)εp(0)) dx .

Thus, by the approximation results (2.9) and the choice of initial condition in Lemma 2.4, we conclude
that ∣∣∣∣

∫ t

0
Λ dt

∣∣∣∣ � Chk+1
∫ t

0
‖ēu‖L2 dt + 1

4
‖ēu(t)‖2

L2 + Ch2k+2,

where C = C(‖u‖k+4, ‖ut‖k+3). Integrating equation (A.26) with respect to time, we obtain

1

4
‖ēu(t)‖2

L2 + 1

2
‖ēq(t)‖2

L2 + 1

2

∫ t

0
(‖ēp‖2

L2 + ‖ēr‖2
L2) dt

� 1

2
‖ēu(0)‖2

L2 + 1

2
‖ēq(0)‖2

L2 + Chk+1
∫ t

0
(‖ēu‖L2 + ‖ēq‖L2 + ‖ēp‖L2 + ‖ēr‖L2)dt

+ β2
∫ t

0
‖ēu‖2

L2 dt +
(

α2 + β2

2

) ∫ t

0
‖ēq‖2

L2 dt + Ch2k+2, (A.27)

where C = C(α, β, ‖u‖k+4, ‖ut‖k+3). Gronwall’s inequality and the estimates of the initial condition
(2.17) and (A.18) give us the error estimate (A.20).

To prove the estimate (2.39), we first need to get a bound for (ēu)t (·, 0). Using conditions (2.15) and
(2.16), we have, at t = 0,

DI j (ēr , ρ; ē+
r ) = DI j (ēq , ρ; ē+

q ) −DI j (ēu, ρ; ē−
u )

for any ρ ∈ V k
h . Then, equation (2.21a) becomes∫

I j

(eu)tρ dx + (α − 1)DI j (ēu, ρ; ē−
u ) + (β + 1)DI j (ēq , ρ; ē+

q ) = 0.

It follows from equations (2.21c) and (2.21d) that, at t = 0,∫
I j

(eu)tρ dx + (α − 1)

∫
I j

eqρ dx + (β + 1)

∫
I j

epρ dx = 0
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for any ρ ∈ V k
h . Taking ρ = (ēu)t (·, 0) and summing the above equality over all j , we get, at t = 0,

‖(ēu)t (·, 0)‖L2 � ‖(εu)t (·, 0)‖L2 + |α − 1|‖eq(·, 0)‖L2 + |β + 1|‖ep(·, 0)‖L2 .

Then, the approximation results (2.9) and estimates for the initial data in equation (A.18) give us

‖(ēu)t (·, 0)‖L2 � Chk+1, (A.28)

where C = C(α, β, ‖u‖k+4, ‖ut‖k+1). Then, taking the time derivative in equation (2.21), letting
(ρ, ψ, ξ, η) = ((ēu)t , −(ēr )t , (ēp)t , (ēq)t ), adding them up and summing over all j , we obtain∫

I
(ēu)t t (ēu)t dx +

∫
I
(ēp)

2
t dx +

∫
I
(εu)t t (ēu)t dx +

∫
I
(εp)t (ēp)t dx +

∫
I
(εr )t (ēq)t dx

−
∫

I
(εq)t (ēr )t dx + αD((ēu)t , (ēu)t ; (ēu)−t ) + βD((ēq)t , (ēu)t ; (ēq)+t ) +D((ēr )t , (ēu)t ; (ēr )

+
t )

+ D((ēu)t , (ēr )t ; (ēu)−t ) −D((ēq)t , (ēp)t ; (ēq)+t ) −D((ēp)t , (ēq)t ; (ēp)
−
t ) = 0.

Using the property of the operator D in Lemma 2.1, we have∫
I
(ēu)t t (ēu)t dx +

∫
I
(ēp)

2
t dx +

∫
I
(εu)t t (ēu)t dx +

∫
I
(εp)t (ēp)t dx +

∫
I
(εr )t (ēq)t dx

−
∫

I
(εq)t (ēr )t dx + α

2

∑
j

[(ēu)t ]
2
j+ 1

2
+ βD((ēq)t , (ēu)t ; (ēq)+t ) = 0. (A.29)

Note that

D((ēq)t , (ēu)t ; (ēq)+t ) =
∫

I
(ep)t (ēu)t dx . (A.30)

Combining equations (A.29) and (A.30) we arrive at

1

2

d

dt
‖(ēu)t‖2

L2 + ‖(ēp)t‖2
L2 �−

∫
I
(εu)t t (ēu)t dx −

∫
I
(εp)t (ēp)t dx −

∫
I
(εr )t (ēq)t dx

+
∫

I
(εq)t (ēr )t dx − β

∫
I
((εp)t + (ēp)t )(ēu)t dx . (A.31)

Integrating the above inequality with respect to time,

1

2
‖(ēu)t (t)‖2

L2 +
∫ t

0
‖(ēp)t (t)‖2

L2 dt �1

2
‖(ēu)t (0)‖2

L2 + Υ + Ξ, (A.32)

where

Υ = −
∫

I

∫ t

0
(εp)t (ēp)t dt dx − β

∫
I

∫ t

0
(ēp)t (ēu)t dt dx
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and

Ξ = −
∫

I

∫ t

0
(εu)t t (ēu)t dt dx −

∫
I

∫ t

0
(εr )t (ēq)t dt dx

+
∫

I

∫ t

0
(εq)t (ēr )t dt dx − β

∫
I

∫ t

0
(εp)t (ēu)t dt dx .

By the Cauchy–Schwarz inequality and approximation results (2.9) we obtain

|Υ | �
∫ t

0
‖(ēp)t (t)‖2

L2 dt + 1

2

∫ t

0
‖(εp)t‖2

L2 dt + β2

2

∫ t

0
‖(ēu)t (t)‖2

L2 dt

�
∫ t

0
‖(ēp)t (t)‖2

L2 dt + β2

2

∫ t

0
‖(ēu)t (t)‖2

L2 dt + Ch2k+2. (A.33)

Using integration by parts with respect to time, we get

|Ξ | �
∫ t

0
‖(εu)t t t‖L2‖ēu‖L2 dt + ‖(εu)t t (t)‖L2‖ēu(t)‖L2 + ‖(εu)t t (0)‖L2‖ēu(0)‖L2

+
∫ t

0
‖(εr )t t‖L2‖ēq‖L2 dt + ‖(εr )t (t)‖L2‖ēq(t)‖L2 + ‖(εr )t (0)‖L2‖ēq(0)‖L2

+
∫ t

0
‖(εq)t t‖L2‖ēr‖L2 dt + ‖(εq)t (t)‖L2‖ēr (t)‖L2 + ‖(εq)t (0)‖L2‖ēr (0)‖L2

+ |β|
[∫ t

0
‖(εp)t t‖L2‖ēu‖L2 dt + ‖(εp)t (t)‖L2‖ēu(t)‖L2 + ‖(εp)t (0)‖L2‖ēu(0)‖L2

]

� Chk+1
∫ t

0
(‖ēu‖L2 + ‖ēq‖L2 + ‖ēr‖L2) dt

+ Chk+1(‖ēu‖L2 + ‖ēq‖L2 + ‖ēr‖L2) + Ch2k+5/2 (A.34)

with C = C(β, ‖u‖k+4, ‖ut‖k+4, ‖utt‖k+4, ‖uttt‖k+1), where we have used the approximation results
(2.9) and estimates for the initial data (A.18) and (2.17) to obtain the last inequality. Plugging equations
(A.33) and (A.34) into (A.32) and using estimates (A.20), (A.28), we have

1

2
‖(ēu)t (t)‖2

L2 � CeC1t h2k+2 + Chk+1‖ēr (t)‖L2 + β2

2

∫ t

0
‖(ēu)t (t)‖2

L2 dt. (A.35)

Denote E(t) = ∫ t
0 ‖(ēu)t (t)‖2

L2 dt and integrate over equation (A.35) with respect to time,

1

2
E(t) � CeC1t h2k+2 + β2

2

∫ t

0
E(s) ds.

Gronwall’s inequality gives us

E(t) =
∫ t

0
‖(ēu)t (t)‖2

L2 dt � Ce2C1t h2k+2.
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Therefore, ∫ t

0
‖(ēu)t (t)‖L2 dt � CeC1t hk+1,

where C = C(α, β, ‖u‖k+4, ‖ut‖k+4, ‖utt‖k+4, ‖uttt‖k+1) and C1 = C1(α, β) > 0. Then, estimate
(2.39) follows by taking into account the approximation error estimates (2.9) and the triangle inequality.
This finishes the proof for Lemma 2.8.

A.3 The proof of Theorem 2.7

To get the linear growth result for the case α = β = 0, similarly to Lemma 2.8, we need to prove the
following error estimates:

‖ēu(t)‖L2 + ‖ēq(t)‖L2 � C(1 + t)hk+1, (A.36)∫ t

0
(‖ēp‖L2 + ‖ēr‖L2) dt � C(1 + t)3/2hk+1, (A.37)

where C = C(‖u‖k+4, ‖ut‖k+3). Note that, if equations (A.36) and (A.37) hold, we can easily get a
bound for (ēu)t (t), ∫ t

0
‖(ēu)t (t)‖L2 dt � C(1 + t)2hk+1, (A.38)

and thus equation (2.36) will give us the desired result in Theorem 2.7 by combining with the approxi-
mation error estimates (2.9). First, let us prove the error estimate (A.36).

If α = β = 0, then equation (A.27) reduces to

1

4
‖ēu(t)‖2

L2 + 1

2
‖ēq(t)‖2

L2 + 1

2

∫ t

0
(‖ēp‖2

L2 + ‖ēr‖2
L2) dt

� 1

2
‖ēu(0)‖2

L2 + 1

2
‖ēq(0)‖2

L2 + Chk+1
∫ t

0
(‖ēu‖L2 + ‖ēq‖L2 + ‖ēp‖L2 + ‖ēr‖L2) dt + Ch2k+2,

which, by using the bounds for the initial error (2.17) and (A.18), is

1

4
‖ēu(t)‖2

L2 + 1

2
‖ēq(t)‖2

L2 + 1

2

∫ t

0
(‖ēp‖2

L2 + ‖ēr‖2
L2) dt

� Chk+1
∫ t

0
(‖ēu‖L2 + ‖ēq‖L2) dt + Chk+1

∫ t

0
(‖ēp‖L2 + ‖ēr‖L2) dt + Ch2k+2. (A.39)

By using the Cauchy–Schwarz inequality we get

(‖ēu(t)‖L2 + ‖ēq(t)‖L2)2 � Chk+1
∫ t

0
(‖ēu‖L2 + ‖ēq‖L2) dt + Ch2k+2,

where C = C(‖u‖k+4, ‖ut‖k+3). Since ‖u‖k+4 and ‖ut‖k+3 are bounded uniformly for any time t ∈
[0, T ], thus we can assume that C = C(‖u‖k+4, ‖ut‖k+3) � C̃ with C̃ a positive constant independent
of time. Denote Ẽ(t) = ‖ēu(t)‖L2 + ‖ēq(t)‖L2 , then we have

Ẽ
2(t) � C̃hk+1

∫ t

0
Ẽ(s) ds + C̃h2k+2.
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Define z(t) = C̃hk+1
∫ t

0 Ẽ(s) ds + C̃h2k+2, thus
√

z(0) � C̃hk+1, and the above inequality gives us

Ẽ(t) �
√

z(t).

Therefore,

dz(t)

dt
= C̃hk+1

Ẽ(t) � C̃hk+1
√

z(t).

We integrate the above inequality with respect to time between 0 and t and use the estimate for
√

z(0)
to obtain a bound on Ẽ(t),

Ẽ(t) �
√

z(t) �
√

z(0) + C̃hk+1t � C̃hk+1(1 + t),

that is,

‖ēu(t)‖L2 + ‖ēq(t)‖L2 � C̃hk+1(1 + t).

Finally, the error estimate (A.37) follows by combining equations (A.36) and (A.39). This completes
the proof of Theorem 2.7.
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