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Abstract

A new high order finite-difference method utilizing the idea of Harten ENO

subcell resolution method is proposed for chemical reactive flows and combustion.

In reaction problems, when the reaction time scale is very small, e.g., orders of

magnitude smaller than the fluid dynamics time scales, the governing equations

will become very stiff. Wrong propagation speed of discontinuity may occur due

to the underresolved numerical solution in both space and time. The present

proposed method is a modified fractional step method which solves the convection

step and reaction step separately. In the convection step, any high order shock-

capturing method can be used. In the reaction step, an ODE solver is applied

but with the computed flow variables in the shock region modified by the Harten

subcell resolution idea. For numerical experiments, a fifth-order finite-difference

WENO scheme and its anti-diffusion WENO variant are considered. A wide range

of 1D and 2D scalar and Euler system test cases are investigated. Studies indicate

that for the considered test cases, the new method maintains high order accuracy

in space for smooth flows, and for stiff source terms with discontinuities, it can

capture the correct propagation speed of discontinuities in very coarse meshes with

reasonable CFL numbers.
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1 Introduction

In simulating hyperbolic conservation laws in conjunction with an inhomogeneous stiff
source term, if the solution is discontinuous, spurious numerical results may be produced
due to different time scales of the transport part and the source term. This numerical
issue often arises in combustion and high speed chemical reacting flows.

The reactive Euler equations in two dimensions have the form

Ut + F (U)x + G(U)y = S(U), (1)

where U , F (U), G(U) and S(U) are vectors. If the time scale of the ordinary differential
equation (ODE) Ut = S(U) for the source term is orders of magnitude smaller than
the time scale of the homogeneous conservation law Ut + F (U)x + G(U)y = 0 then
the problem is said to be stiff. In high speed chemical reacting flows, the source term
represents the chemical reactions which may be much faster than the gas flow. This leads
to problems of numerical stiffness. Insufficient spatial/temporal resolution may cause
an incorrect propagation speed of discontinuities and nonphysical states for standard
dissipative numerical methods.

This numerical phenomenon was first observed by Colella et al. [13] in 1986 who con-
sidered both the reactive Euler equations and a simplified system obtained by coupling
the inviscid Burgers equation with a single convection/reaction equation. LeVeque and
Yee [23] showed that a similar spurious propagation phenomenon can be observed even
with scalar equations, by properly defining a model problem with a stiff source term.
They introduced and studied the simple one-dimensional scalar conservation law with
an added nonhomogeneous parameter dependent source term

ut + ux = S(u), (2)

S(u) = −µu(u − 1

2
)(u − 1), (3)

where the parameter 1
µ

can be described as the reaction time. When µ is very large, a
wrong shock speed phenomenon will be observed in a coarse mesh. In order to isolate
the problem, LeVeque and Yee solve (2) and (3) by the fractional step method. For the
particular source term, the reaction (ODE) step of the fractional step method can be
solved exactly. They found that the propagation error is due to the numerical dissipation
contained in the scheme, which smears the discontinuity front and activates the source
term in a nonphysical manner. By increasing the spatial resolution by an order of
magnitude, they were able to improve towards the correct propagation speed.

It is noted that, in a general stiff source term problem, a sufficient spatial resolution
is as important as temporal resolution when the reaction step of the fractional step
method cannot be solved exactly. A study linking spurious numerical standing waves
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for (2) and (3) by first and second-order spatial and temporal discretizations can be
found in Lafon and Yee [22, 21] and Griffiths, Stuart and Yee [15].

For the last two decades, this spurious numerics phenomenon has attracted a large
volume of research work in the literature (see, e.g., [5, 28, 6, 32, 8, 15, 24, 1, 7, 27]).
Various strategies have been proposed to overcome this difficulty. Since numerical dissi-
pation that spreads the discontinuity front is the cause of the wrong propagation speed
of discontinuities, a natural strategy is to avoid any numerical dissipation in the scheme.
In combustion, level set and front tracking methods were used to track the wave front to
minimize this spurious behavior [24, 1, 7, 27]. In [11, 12], Chorin introduced the random
choice method which is based on the exact solution of Riemann problems at randomly
chosen locations within the computational cells and does not need to introduce any
viscosity. It has been successfully used in [13, 25] for the solution of underresolved
detonation waves. However, it is difficult to eliminate all numerical viscosity in a shock-
capturing scheme. There are also many works on modifying shock-capturing methods
for this problem in the literature. Fractional step methods are commonly used for allow-
ing an underresolved meshsize. Such methods solve the homogeneous conservation law
(i.e., the convection step) and the ODE system (i.e., the reaction step) separately. In
[9, 10], Chang applied Harten’s subcell resolution method [16] in a finite volume ENO
method in the convection step with exact time evolution, which is able to produce a zero
viscosity shock profile in the nonreacting flow. The time evolution is advanced along
the characteristic line. Correct results were shown in the one-dimensional scalar case.
However it seems difficult to extend this method to one-dimensional systems or multi-
dimensional scalar equations or systems, due to the requirement of exact time evolution.
In [14], Engquist and Sjögreen proposed a simple temperature extrapolation method
based on a finite difference ENO scheme with implicit Runge-Kutta time discretization,
which uses a first/second order extrapolation of the temperature value from outside the
shock profile. Their approach is easily extended to multi-dimensions. However, their
method is not a fractional step method, and it does not work well in the situation of
insufficient spatial resolution. Hezel et al. [17] presented a modified fractional step
method for detonation waves in which the exact Riemann solution is used to deter-
mine where burning should occur. Bao and Jin [2, 3, 4] proposed a random projection
method based on the fractional step method where in the convection step a standard
shock-capturing scheme is used, and in the reaction step a projection is performed to
make the ignition temperature random. They have successfully applied this method to
various problems in one- and two-dimensions. However they assume an a priori stiff
source. In [33], Tosatto and Vigevano proposed a MinMax scheme, which is based on
a two-value variable reconstruction within each cell, where the appropriate maximum
and minimum values of the unknown are considered. The scheme may be applied with
no difficulties to both stiff and nonstiff problems. Only one-dimensional problems were
tested. However, it seems difficult to generalize either the random projection method or
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the MinMax method to higher order accuracy. There are other works in the literature
for stiff source hydrodynamics, e.g. [26].

Our objective in this study is to develop a high order finite difference method which
can capture the correct detonation speed in an underresolved mesh and will maintain
high order accuracy in the smooth part of the flow. The first step of the proposed
fractional step method is the convection step which solves the homogeneous hyperbolic
conservation law in which any high-resolution shock-capturing method can be used.
The aim in this step is to produce a sharp wave front, but some numerical dissipation
is allowed. The second step is the reaction step where an ODE solver is applied with
modified transition points. Here, by transition points, we refer to the smeared numerical
solution in the shock region, which is due to the dissipativity of a shock-capturing
scheme. Because the transition points in the convection step will result in large erroneous
values of the source term if the source term is stiff, we first identify these points and
then extrapolate them by a reconstructed polynomial using the idea of Harten’s subcell
resolution method. Unlike Chang’s approach, we apply Harten’s subcell resolution in the
reaction step. Thus our approach is flexible in allowing any shock-capturing scheme as
the convection operator. In the reaction step, since the extrapolation is based on the high
order reconstruction, high order accuracy can be achieved in space. The only drawback
in our current approach is that the temporal accuracy will only be, at most, second-order
due to the time splitting, which is common for most of the previous methods for stiff
sources. We also remark that, in order to resolve the sharp reaction zone, sufficiently
many grid points in this zone are still needed. The proposed method can capture the
correct location and jump size of the reaction front, but it does not resolve the narrow
reaction zone as typically there is one or less point in that zone.

This paper is organized as follows. Section 2 introduces the proposed fractional step
method with subcell resolution for the one-dimensional scalar model problem in [23].
The high order accuracy of the method and its capability of capturing the correct speed
of propagation of discontinuity are illustrated with numerical examples. The proposed
method is extended to two-dimensional scalar problems with numerical examples in Sec-
tion 3. In Section 4 the method is extended to one-dimensional reactive Euler equations
with a one-step reaction. The numerical examples include the Chapman-Jouguet (C-J)
detonation waves. The method is extended to two-dimensional reactive Euler equa-
tions in Section 5 and demonstrated by one numerical example. Section 6 contains the
conclusion and remarks on future work.

2 Numerical method for 1D scalar problems

We first introduce the proposed method for the scalar model problem in [23], i.e.,

ut + f(u)x = S(u), (4)
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S(u) = −µu (u − α) (u − 1), (5)

with the initial condition

u(x, 0) =

{

1, x ≤ x0

0, x > x0
, (6)

where α is a parameter, 0 < α < 1, and x0 is the position of the initial discontinuity.
The general fractional step approach is as follows. The numerical solution at time

level tn+1 is approximated by

un+1 = R(∆t)A(∆t)un. (7)

The convection operator A is defined to approximate the solution of the homogeneous
part of the problem on the time interval, i.e.,

ut + f(u)x = 0, tn ≤ t ≤ tn+1. (8)

The reaction operator R is defined to approximate the solution on a time step of the
reaction problem:

du

dt
= S(u), tn ≤ t ≤ tn+1. (9)

In the Strang-splitting in [31], the numerical solution at time step tn+1 is computed by

un+1 = A

(

∆t

2

)

R(∆t)A

(

∆t

2

)

un, (10)

where the convection operator is over a time step ∆t and the reaction operator is over
∆t/2. The two half-step reaction operations over adjacent time steps can be combined
to save cost. The Strang-splitting (10) is used in this paper.

Next, we introduce the proposed fractional step methods for the convection step and
the reaction step separately.

2.1 Convection operator

Any high resolution shock capturing operator can be used in the convection step. The
purpose in this step is to minimize the transition points in the shock region. In this
paper, we use the framework of high order finite difference WENO schemes [19] with a
TVD Runge-Kutta time discretization to solve the one-dimensional scalar conservation
law

ut + f(u)x = 0. (11)

In particular, for the scalar case, we are interested in applying the anti-diffusive flux
corrections [34] for the WENO scheme to obtain sharp resolution for contact disconti-
nuities. In this section, we will briefly introduce this anti-diffusive WENO scheme for
Eq. (11).
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Let xi, i = 1, . . . , N be a uniform (for simplicity) mesh of the computational domain,
with mesh size ∆x = xi+1 − xi. An explicit conservative fully discrete finite difference
scheme has the form

un+1
i − un

i + λ(f̂n
i+1/2 − f̂n

i−1/2) = 0, (12)

where un
i is the approximation to the point value u(xi, tn), λ = ∆t/∆x, and f̂n

i+1/2 is the
numerical flux.

2.1.1 Modified TVD Runge-Kutta time discretization for anti-diffusive WENO
schemes

The third-order TVD Runge-Kutta (RK3) time discretization [29] can be written as

u(1) = un + ∆tL(un), (13)

u(2) = un +
1

4
∆tL(un) +

1

4
∆tL(u(1)), (14)

un+1 = un +
1

6
∆tL(un) +

1

6
∆tL(u(1)) +

2

3
∆tL(u(2)), (15)

where L is the spatial discretization of −f(u)x. The modified Runge-Kutta time dis-
cretization for anti-diffusive WENO schemes [34] is given by

u(1) = un + ∆tL(1)(un), (16)

u(2) = un +
1

4
∆tL(2)(un) +

1

4
∆tL(1)(u(1)), (17)

un+1 = un +
1

6
∆tL(3)(un) +

1

6
∆tL(1)(u(1)) +

2

3
∆tL(1)(u(2)), (18)

where the operators L(k) are defined as

L(k)(u)i = −(f̂
(k)
i+1/2 − f̂

(k)
i−1/2)/∆x, k = 1, 2, 3, (19)

with the anti-diffusive flux f̂
(1)
i+1/2 and the modified anti-diffusive fluxes f̂

(2)
i+1/2 and f̂

(3)
i+1/2

defined in the next subsection.

2.1.2 Anti-diffusive flux with high order WENO finite difference reconstruc-
tion

The anti-diffusive flux for WENO scheme with RK3 is defined by

f̂
(1)
i+1/2 = f̂−

i+1/2 + φiminmod

(

ui − ui−1

λ
+ f̂−

i−1/2 − f̂−

i+1/2, f̂
+
i+1/2 − f̂−

i+1/2

)

, (20)
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where
minmod(a, b) = sgn(a) · max{0, min[|a|, b sgn(a)]}, (21)

f̂−

i+1/2 and f̂+
i+1/2 are the two upwind biased fluxes based on WENO stencils with one

more point to the left and to the right, respectively. For WENO-Roe schemes, the
numerical flux is chosen as f̂−

i+1/2 for f ′(u) > 0 and f̂+
i+1/2 for f ′(u) < 0.

The function φ is a discontinuity indicator which is close to 0 in smooth regions and
close to 1 near a discontinuity. The indicator φ in [34] is

φi =
βi

βi + γi
, (22)

where

αi = |ui−1 − ui|2 + ε, βi =

(

αi

αi−1
+

αi+1

αi+2

)2

, γi =
|umax − umin|2

αi
, (23)

where ε is a small positive number (taken as 10−6 in the numerical experiments), and
umax and umin are the maximum and minimum values of uj over all grid points. We
can see 0 ≤ φ ≤ 1, and φi = O(∆x2) in smooth regions and φ is close to 1 near a
discontinuity.

f̂
(2)
i+1/2 and f̂

(3)
i+1/2 are modifications of fluxes to the anti-diffusive flux f̂

(1)
i+1/2.

f̂
(2)
i+1/2 =

{

f̂i+1/2 + minmod
(

4(ui−ui−1)

λ
+ f̂−

i−1/2 − f̂−

i+1/2, f̂
+
i+1/2 − f̂−

i+1/2

)

, bc > 0, |b| < |c|,
f̂

(1)
i+1/2, otherwise,

(24)
and

f̂
(3)

i+1/2 =

{

f̂i+1/2 + minmod
(

6(ui−ui−1)
λ

+ f̂−

i−1/2 − f̂−

i+1/2, f̂
+
i+1/2 − f̂−

i+1/2

)

, bc > 0, |b| < |c|,
f̂

(1)
i+1/2, otherwise,

(25)
where b = ui−ui−1

λ
+ f̂−

i−1/2 − f̂−

i+1/2, and c = f̂+
i+1/2 − f̂−

i+1/2.
The idea of constructing the anti-diffusive fluxes is to maintain a numerical traveling

wave solutions for a piecewise constant function in order to avoid progressively smeared
discontinuity front with time. The purpose of the extra factors 1, 4 and 6 in the first
argument of the minmod function in the definition of f̂

(k)

i+1/2 (k = 1, 2, 3) is to compensate

for the coefficients 1, 1
4

and 1
6

in front of L(k) (k = 1, 2, 3), respectively. It has been
numerically proved that, for a linear problem (i.e., ut + aux = 0) with a piecewise
constant initial condition with two values, the linear scheme (i.e., f̂i+1/2 = f(ui) for
a > 0) will not have more than two transition points between two constant pieces for
the CFL condition aλ = a∆t/∆x ≤ 1

2
regardless of how long one runs the simulation.

We refer to [34] for more details about anti-diffusive WENO scheme in two dimensions
and will not repeat them here.
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2.2 Reaction operator

If there is no smearing of discontinuities in the convection step, any ODE solver can
be used as the reaction operator. However, all the standard shock-capturing schemes
will produce a few transition points in the shock when solving the convection equation.
These transition points are usually responsible for causing incorrect numerical results in
the stiff case. Thus we cannot directly apply a standard ODE solver at these transition
points.

Here we use Harten’s subcell resolution technique in the reaction step. The general
idea is as follows. If a point is considered a transition point of the shock, information
from its neighboring points which are deemed not transition points will be used instead.

The procedure can be summarized in the following steps:
(1) Use a “shock indicator” to identify cells in which discontinuities are believed to

be situated. We consider the following minmod-based shock indicator in [16, 30]. Let

si = minmod{ui+1 − ui, ui − ui−1}, (26)

define the cell Ii as troubled if |si| ≥ |si−1| and |si| ≥ |si+1|, with at least one being
a strict inequality. Notice that this troubled cell-identifying method will only find the
“worst” cell inside a shock transition. That is, if there are several consecutive transition
cells, only the worst one will be identified as a troubled cell.

(2) In a troubled cell identified above, we continue to identify its neighboring cells.
For example, we can define Ii+1 as troubled if |si+1| ≥ |si−1| and |si+1| ≥ |si+2| and
similarly define Ii−1 as troubled if |si−1| ≥ |si−2| and |si−1| ≥ |si+1|. If the cell Ii−s and
the cell Ii+r (s, r > 0) are the first good cells from the left and the right (i.e., Ii−s+1 and
Ii+r−1 are still troubled cells), we compute the fifth order ENO interpolation polynomial
pi−s(x) and pi+r(x) for the cells Ii−s and Ii+r, respectively. Because of the anti-diffusive
corrector in the convection step, r and s will not be larger than 2 in general. The
modified cell point value ui is computed by

ũi =

{

pi−s(xi), θ ≥ xi

pi+r(xi), θ < xi
, (27)

where the location θ is determined by conservation

∫ θ

xi−1/2

pi−s(x)dx +

∫ xi+1/2

θ

pi+r(x)dx = ui ∆x. (28)

Under certain conditions, it can be shown that there is a unique θ satisfying Eq.
(28), which can be solved using, for example, a Newton’s method. If there is no solution
for θ or there are more than one solution, we choose ũi = ui+r. Actually there is no
difference to take ũi from left or right for the scalar case because the source term will
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be zero when ui = 0 or 1. However, in the system case we would like to have the shock
travel ahead of the reaction zone, so we take the value of u ahead of the shock.

(3) Use ũi instead of ui in the ODE solver if the cell Ii is a troubled cell.
For simplicity, consider the Euler forward method

un+1
i = un

i + ∆tS(un
i ), (29)

Eq. (29) is modified to
un+1

i = un
i + ∆tS(ũi), (30)

if the cell Ii is a troubled cell.
Here we would like to remark that, implicit methods cannot be used in this step

because the troubled values un
i need to be modified explicitly. However, there is no small

time step restriction in the explicit method used here, because once the stiff points have
been modified, the modified source term S(ũj) is no longer stiff. Therefore, a regular
CFL number is allowed in the explicit method.

For the scalar case, the second-order linearized trapezoidal method is used in the
numerical examples

un+1
i = un

i +
∆tS(un

i )

1 − ∆t
2

S ′(un
i )

. (31)

Remark 2.1. In general, the anti-diffusive WENO scheme can capture the discontinuity
sharply with, at most, two transition points inside the discontinuity. Thus it does help
for the stiff source term problems. For example, in the numerical computation, we use
the two immediate neighboring cells (s = r = 1) for the subcell resolution procedure.
This works because the anti-diffusive WENO scheme provides a very sharp shock front
in the convection step. However, if the standard WENO scheme is used instead, more
neighboring cells need to be identified (s, r > 1) for the subcell resolution procedure.

Remark 2.2. If a multi-step ODE solver is applied in the reaction step, a modification
of the transition points in each step is required.

Remark 2.3. The proposed method is valid for a general f(u) and a general S(u).

2.3 Numerical examples of 1D scalar problems

In this section, we test the proposed method on three scalar problems. The proposed
method uses a fifth-order WENO-Roe scheme (WENO5) with the third-order TVD
Runge-Kutta method (RK3) as the convection operator, and a linearized trapezoidal
method (31) based on the subcell resolution (SR) as the reaction operator. From now
on, we use the notation WENO5/SR for the proposed WENO scheme. If the fifth-
order anti-diffusive WENO is used in the convection step, the notation anti-diffusive
WENO5/SR will be used.
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Table 1: L1 errors and orders of accuracy by the anti-diffusive WENO5/SR at t = 0.3
with CFL=0.6.

N error order

10 1.02E-02 –
20 4.06E-04 4.65
40 1.21E-05 5.07
80 3.71E-07 5.03
160 1.18E-08 4.98

Example 2.1. Accuracy test.
We first test the convergence order of the proposed anti-diffusive WENO5/SR scheme.

We consider Eq. (4) with f(u) = u and the source term

S(u) = −u + sin(2π(x − t)) (32)

and periodic boundary conditions on the computation domain x ∈ [0, 1]. The exact
solution is u(x, t) = sin(2π(x− t)). The errors and orders of accuracy are listed in Table
1. Since both the Strang splitting method and also the trapezoidal rule in the reaction
step are second-order in time, we set ∆t = CFL × (∆x)5/2 to achieve the fifth order in
space as shown in Table 1.

The next examples are to show the ability of the proposed schemes to deal with the
propagating shocks.

Example 2.2. 1D scalar test case of a linear f(u).
This example is the model problem of [23]. Consider Eq. (4) with f(u) = u, the

source term given by Eq. (5) with α = 0.5, and the initial condition:

u(x, 0) =

{

1, x ≤ 0.3
0, x > 0.3

. (33)

For this initial value problem, the exact solution is

u(x, t) =

{

1, x ≤ t + 0.3
0, x > t + 0.3

. (34)

Analytically, the source term should be always zero. However, if µ in the source term
Eq. (5) is very large, the numerical errors of u in the transition region can result in large
erroneous values of S(u), which must be corrected.

We compare the numerical results by the anti-diffusive WENO5/SR and the WENO5
with splitting (denoted by splitting WENO5) in Figs. 1 and 2, respectively. For each
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Figure 1: Results of Example 2.2 by the anti-diffusive WENO5/SR with N = 50 at
t = 0.3. Solid line: exact solution; dashed line with symbols: computed solution. Left:
µ = 10, CFL=0.5; middle: µ = 800, CFL=0.5; right: µ = 10000, CFL=0.2.

scheme, we test for the cases of µ = 10, µ = 800 and µ = 10000 with the same mesh
N = 50 at a final time t = 0.3. In the case of µ = 10, both schemes can capture
the discontinuity at the correct position (see the left subplots of Figs. 1 and 2). For
the stiffer case where µ = 800, the propagation speed of the discontinuity computed
by splitting WENO5 is qualitatively slower than the analytical value as shown by the
middle subplot of Fig. 2, whereas at µ = 10000, the discontinuity solved by splitting
WENO5 does not move at all. If the mesh is sufficiently refined, the splitting WENO5
can capture the correct solution. However, for this example in the case where µ = 10000,
at least N = 3000 points are needed.

We also note that the anti-diffusive WENO/SR is able to produce correct results
with a standard CFL number. Even in the very stiff case µ = 10000, CFL=0.2 can be
used. But the splitting WENO5 needs a very small CFL number (e.g., CFL=0.05) for
stability.

Remark 2.4. In this example, we also show the results by the standard WENO5 without
splitting in Fig. 3. It produces similar spurious waves as the splitting WENO5 with the
same mesh size, but it requires a smaller CFL number. From now on the numerical
results by the proposed scheme are only compared with the results by splitting WENO5.
The results by standard WENO5 without splitting will not be shown in the remaining
examples.

Example 2.3. 1D scalar test case of a nonlinear f(u).
Consider a nonlinear problem (4) with f(u) = u2

2
+ u, S(u) in (5) and α = 0.5. The

initial condition is (6). The discontinuity has a speed of 3
2
.
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Figure 2: Results of Example 2.2 by the splitting WENO5 scheme with N = 50 at
t = 0.3. Solid line: exact solution; dashed line with symbols: computed solution. Left:
µ = 10, CFL=0.5; middle: µ = 800, CFL=0.1; right: µ = 10000, CFL=0.05.
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Figure 3: Results of Example 2.2 by the standard WENO5 without splitting scheme
with N = 50 at t = 0.3. Solid line: exact solution; dashed line with symbols: computed
solution. Left: µ = 10, CFL=0.5; middle: µ = 800, CFL=0.1; right: µ = 10000,
CFL=0.02.
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Figure 4: Results of Example 2.3 by different WENO schemes for µ = 1000 with N = 50
at t = 0.2. Solid line: exact solution; dashed line with symbols: left: anti-diffusive
WENO5/SR with CFL=0.2; right: splitting WENO5 with CFL=0.2.

We run the numerical experiment to t = 0.2 so that the exact solution is the same
as in Example 1. The discontinuity moves to x = 0.6 at t = 0.2. We plot the results
obtained by the anti-diffusive WENO5/SR and splitting WENO5 schemes in the left
subplot and right subplot of Fig. 4. Again N = 50 and CFL=0.2 are used. Only the
anti-diffusive WENO5/SR gives the correct numerical result (see the left subplot of Fig.
4) whereas the splitting WENO5 scheme fails to produce the correct shock speed in the
underresolved mesh.

The result with the stiff cubic nonlinear source term (5) studied by LeVeque and Yee
can be found in [22, 21]. The cubic nonlinearity case is slightly more complicated as one
or more standing wave numerical solutions can be obtained, depending on the sign of µ
and the shock-capturing method [22, 21].

3 Extension to 2D scalar problems

It is straightforward to extend the proposed method to the two-dimensional scalar case.
Consider the two-dimensional scalar hyperbolic conservation law with stiff reaction term

ut + f(u)x + g(u)y = S(u), (35)

where S(u) is the same as (5), i.e., S(u) = −µu (u − α) (u − 1), (0 < α < 1), with
piecewise constant initial condition

u(x, y, 0) =

{

1, (x, y) ∈ Ω0 ⊂ R
2,

0, (x, y) ∈ R
2 \ Ω0,

(36)

where Ω0 is a given domain in R
2.
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We again use the splitting method

un+1 = A

(

∆t

2

)

R(∆t)A

(

∆t

2

)

un, (37)

with the anti-diffusive WENO5 as the convection operator and the linearized trapezoidal
method (31) as the ODE solver in the reaction step.

Let Iij = [xi− 1

2

, xi+ 1

2

] × [yj− 1

2

, yj+ 1

2

], i = 1, . . . , Nx, j = 1, . . . , Ny be a uniform
partition of the two-dimensional computational domain, with the grid points xi =
1
2
(xi− 1

2
+ xi+ 1

2
) and yj = 1

2
(yj− 1

2
+ yj+ 1

2
). Let un

ij be the approximated solution at

(xi, yj, tn), i = 1, . . . , Nx, j = 1, . . . , Ny. We apply the subcell resolution procedure in
the reaction step dimension by dimension in the two-dimensional case.

(1) Identify the transition points by the shock indicator in both x- and y-directions.
Define the cell Iij as troubled in the x-direction if |sx

ij| ≥ |sx
i−1,j| and |sx

ij| ≥ |sx
i+1,j|

with at least one strict inequality where

sx
ij = minmod{ui+1,j − uij, uij − ui−1,j}. (38)

Similarly we can define the cell Iij as troubled in the y-direction if |sy
ij| ≥ |sy

i,j−1| and
|sy

ij| ≥ |sy
i,j+1| with at least one strict inequality where

sy
ij = minmod{ui,j+1 − uij, uij − ui,j−1}. (39)

If Iij is only troubled in one direction, we apply the subcell resolution along this
direction. If Iij is troubled in both directions, we choose the direction which has a
larger jump. Namely, if |sx

ij| ≥ |sy
ij|, subcell resolution is applied along the x-direction,

otherwise it is done along the y-direction.
In the following steps (2)-(3), without loss of generality, we assume the subcell reso-

lution is applied in the x-direction.
(2) Modify the point value uij in the troubled cell Iij by

ũij =

{

pi−s,j(xi), θ ≥ xi

pi+r,j(xi), θ < xi
, (40)

where the location θ is determined by conservation
∫ θ

xi−1/2

pi−s,j(x)dx +

∫ xi+1/2

θ

pi+r,j(x)dx = uij ∆x. (41)

The treatment of the situation where θ satisfying (41) does not exist is the same as in
the 1D case.

(3) Use ũij instead of uij in the ODE solver if the cell Iij is a troubled cell, i.e.,

un+1
ij = un

ij +
∆tS(ũij)

1 − ∆t
2

S ′(ũij)
. (42)
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Figure 5: Results of Example 3.1 by the anti-diffusive WENO5/SR scheme: µ = 104,
t = 0.2, N = 50, CFL=0.1. Left: 2D contour; right: 1D cross section at y = 0.5.

3.1 Numerical examples of 2D scalar problems

Example 3.1. 2D scalar test case of linear fluxes.
Consider Eq. (35) with f(u) = g(u) = u on the domain [0, 1]2, the initial condition

is taken as

u(x, y, 0) =

{

1, x + y ≤ 1,
0, x + y > 1.

(43)

Initially the discontinuity is located on the diagonal of the square domain. It moves at
a speed

√
2 in the 45◦ direction. The segments x = 0 and y = 0 are subject to the

inflow boundary condition and the other two sides are subject to the outflow boundary
condition.

A stiff case µ = 104 at time t = 0.2 is considered. The left subplot of Fig. 5 shows
2D contour of the anti-diffusive WENO5/SR with a coarse 50× 50 mesh and CFL=0.1.
The right subplot shows a comparison between the anti-diffusive WENO5/SR with the
splitting WENO5 using the same mesh at y = 0.5. At t = 0.2, the discontinuity moves to
x = 0.9. The proposed method is able to capture the correct location of the discontinuity
with a very coarse mesh. However, the splitting WENO5 scheme fails to produce the
correct shock speed on this underresolved mesh.

Example 3.2. 2D scalar test case of nonlinear fluxes.
In the second example, we consider a nonlinear problem Eq. (35) with f(u) = g(u) =

u2

2
on the domain [0, 1]2 with the same initial condition (43). The boundary conditions

are the same as in Example 3.1. In this example, the discontinuity moves at a speed
1/
√

2. A more stiff case µ = 105 is tested. The left subplot of Fig. 6 shows the 2D
contour results by the anti-diffusive WENO5/SR scheme with a coarse 50×50 mesh and
CFL=0.1. The right subplot shows the 1D cross section at y = 0.5 by the anti-diffusive
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Figure 6: Results of Example 2.3 by the anti-diffusive WENO5/SR scheme: µ = 105,
t = 0.2, N = 50, CFL=0.1. Left: 2D contour; right: 1D cross section at y = 0.5.

WENO5/SR and the splitting WENO5 with the exact solution at t = 0.2 where the
discontinuity moves to x = 0.7. The numerical solution by the proposed scheme has
very good agreement with the exact solution, but the discontinuity solved with the
splitting WENO5 does not move.

4 Extension to 1D reactive Euler equations

In this section, we extend our approach to the reactive Euler equations. Consider the
simplest one-dimensional reactive Euler equation with only two chemical states: burnt
gas and unburnt gas. The unburnt gas is converted to burnt gas via a single irreversible
reaction. Without heat conduction and viscosity, the system can be written as

ρt + (ρu)x = 0, (44)

(ρu)t + (ρu2 + p)x = 0, (45)

Et + (u(E + p))x = 0, (46)

(ρz)t + (ρuz)x = −K(T )ρz, (47)

where ρ is the mixture density, u is the mixture velocity, E is the mixture total energy
per unit volume, p is the pressure, z is the mass fraction of the unburnt gas, K is the
chemical reaction rate and T is the temperature. The pressure is given by

p = (γ − 1)(E − 1

2
ρu2 − q0ρz), (48)

where q0 is the chemical heat released in the reaction. The temperature is defined as

T =
p

ρ
. (49)
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The reaction rate K(T ) is modeled by an Arrhenius law

K(T ) = K0 exp

(−Tign

T

)

, (50)

where K0 is the reaction rate constant and Tign is the ignition temperature. The reaction
rate may be also modeled in the Heaviside form

K(T ) =

{

1/ε T ≥ Tign

0 T < Tign
, (51)

where ε is the reaction time and 1/ε is roughly equal to K0.
We treat (44)-(47) similarly as the scalar case.

4.1 Convection operator

In the scalar problem Eq. (4), we have applied the anti-diffusive WENO5 scheme as the
convection operator because the discontinuous wave is a contact discontinuity. However,
the Chapman-Jouguet (C-J) detonation wave is a shock followed by a reaction. In gen-
eral, it is not safe to apply the anti-diffusive technique to a shock, since it may generate
an entropy-violating solution. Therefore, we do not apply the anti-diffusive sharpening
procedure here. This is not a problem because the standard WENO5 scheme is already
able to capture the shock very sharply (better than its capability to capture contact
discontinuities). In the system case, we use WENO5 with Lax-Friedrichs flux splitting
(WENO-LF) and the local characteristic decomposition with RK3 in time discretization
as the convection operator in the reactive Euler problems. We refer to [19] for more
details of this algorithm.

4.2 Reaction operator

The reaction step for the system case is slightly different from the scalar case because
there are more component variables (ρz and T ) involved in the source term. The key
point here is to identify transition points correctly and to extrapolate the variables ρz
and T .

(1) To apply step (1) in Section 2.2, we need to choose one variable to examine. Note
that in a detonation wave, the pressure, temperature, and density all have a reaction
zone (like an “overshoot”) and a shock zone. Only the mass fraction z has a clean single
shock wave. This can be seen from the mass fraction equation. Eliminating the density
from Eq. (47) by using Eq. (44), we obtain

zt + uzx = −K(T )z, (52)
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which is of the scalar type Eq. (4). This helps us identify transition points by the
variable z. Define the cell Ii as troubled if |si| ≥ |si−1| and |si| ≥ |si+1| (with at least
one strict inequality) where

si = minmod{zi+1 − zi, zi − zi−1}. (53)

(2) After a troubled cell Ii is identified, first find the shock location θ by solving the
conservation Eq. (28) with the variable u taken as the total energy E

∫ θ

xi−1/2

pi−s(x; E)dx +

∫ xi+1/2

θ

pi+r(x; E)dx = Ei ∆x, (54)

where the ENO interpolation polynomials pi(x; E) are computed based on values of E.
The energy E is chosen because it is a conserved variable. We assume the shock locations
are the same for all variables. Then we extrapolate the variables ρ, z and T separately.
The new mass fraction z̃, temperature T̃ and density ρ̃ are obtained from the ENO
interpolation polynomials

{

z̃i = pi−s(xi; z), T̃i = pi−s(xi; T ), ρ̃i = pi−s(xi; ρ), if θ ≥ xi

z̃i = pi+r(xi; z), T̃i = pi+r(xi; T ), ρ̃i = pi+r(xi; ρ), if θ < xi
. (55)

Remark 4.1. s = r = 1 works well in all the numerical examples for the system case.

Remark 4.2. Observe that the mass fraction z has values 0 or 1 for the burnt gas and
unburnt gas, respectively. Values between 0 and 1 denote the gas changing from unburnt
to burnt. However, in stiff reaction problems, the reaction is very fast and the reaction
zone is much smaller than the grid size for an underresolved mesh. Thus in stiff reaction
problems, the grid values of z can be simplified to have only two values 0 and 1, but no
middle values, i.e.,

z̃i =

{

0, θ ≥ xi

1, θ < xi
(56)

instead of the values obtained from the ENO polynomial extrapolation.

(3) For simplicity, we use the explicit Euler method as the ODE solver in the reaction
step

(ρz)n+1
i = (ρz)n

i + ∆tS(T̃i, ρ̃i, z̃i). (57)

In general, a regular CFL=0.1 can be used in the proposed scheme to produce a
stable solution. But the solution is very coarse in the reaction zone because of the
underresolved mesh in time. In order to obtain more accurate results in the reaction
zone, we evolve one reaction step via Nr sub steps, i.e.,

un+1 = A

(

∆t

2

)

R

(

∆t

Nr

)

· · ·R
(

∆t

Nr

)

A

(

∆t

2

)

un (58)

in some numerical examples.
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4.3 Numerical examples of one-dimensional detonation waves

In this section, we test the proposed method on five examples of one-dimensional detona-
tion waves. The first example uses the Arrhenius law (50). The next four examples are
based on the Heaviside model. The proposed method uses a fifth-order WENO-LF with
RK3 as the convection operator, and an explicit Euler based on the subcell resolution
as the reaction operator.

Example 4.1. C-J detonation wave (Arrhenius case).
The first example uses the Arrhenius source term (50) and has been studied in

[17, 33]. The initial values consist of totally burnt gas on the left-hand side and totally
unburnt gas on the right-hand side. The density, velocity, and pressure of the unburnt
gas are given by ρu = 1, uu = 0 and pu = 1. The heat release q0 = 25 and the ratio
of specific heats is set to γ = 1.4. We consider the ignition temperature Tign = 25 and
K0 = 164180. We can obtain the C-J initial state for the unburnt gas by, for example,
[12]

pb = −b + (b2 − c)1/2, (59)

ρb =
ρu[pb(γ + 1) − pu]

γpb

, (60)

sCJ = [ρuuu + (γpbρb)
1/2]/ρu, (61)

ub = sCJ − (γpb/ρb)
1/2, (62)

where
b = −pu − ρuq0(γ − 1),

c = p2
u + 2(γ − 1)puρuq0/(γ + 1),

and sCJ is the speed of the C-J detonation wave. In this example, SCJ = 7.1247.
The computational domain is [0, 30]. Initially, the discontinuity is located at x = 10.

At time t = 1.8, the detonation wave has moved to x = 22.8. The reference solution is
computed by the standard WENO5 scheme with N = 10000 (∆x = 0.003), CFL=0.05.

Figures 7-10 show the pressure, temperature, density and mass fraction comparison
results between WENO5/SR method with the splitting WENO5 method. Only N = 50
(∆x = 0.6) and CFL=0.1 are used in WENO5/SR. Clearly, our WENO5/SR method is
able to capture the correct propagation speed of the detonation wave with this coarse
mesh, while the splitting WENO5 with a much finer mesh N = 300 produces spurious
numerical results. There are small downstream dents located around x = 8 and x = 16
in Figs. 7-9 which are standard numerical artifacts resulting from a start-up error when
a sharp shock, which is not a traveling wave solution of the scheme, is used as an initial
condition. These dents become smaller as the mesh refines and will move out of the
computational domain after a period of time.
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Figure 7: Computed pressure for the Arrhenius Example 4.1 at t = 1.8. Solid line:
reference solution. Dashed line with symbols: numerical solution. Left: WENO5/SR
with N = 50, CFL=0.1; right: splitting WENO5 with N = 300, CFL=0.1.

We remark that our method can use fewer points than the previous methods in [17]
and [33] to obtain similar results. The reason may be due to the high order accuracy of
the spatial scheme in the convection step.

Example 4.2. C-J detonation wave (Heaviside case).
In this example the chemical reaction is modeled by the Heaviside form. This example

is taken from [13, 5, 2].
Consider the following parameter values in CGS units:

γ = 1.4, q0 = 0.5196 × 1010,
1

ε
= 0.5825 × 1010, Tign = 0.1155 × 1010.

The computational domain is [0, 0.05]. The initial conditions are given by

(ρ, u, p, z) =

{

(ρb, ub, pb, 0) x ≤ 0.005
(1.201 × 10−3, 0, 8.321 × 105, 1) x > 0.005

, (63)

where ρb, ub and pb are computed by Eqs. (59)-(62). From Eq. (61), the speed of the
detonation wave in this example is DCJ = 1.088 × 105. In this example, the width of
the reaction zone is approximately 5 × 10−5 (see [5] and [13]).

The reference solution is computed by the standard WENO5 scheme with N = 5000
points (∆x = 10−5) and CFL=0.05. The solutions are run to time t = 3 × 10−7. The
wave moves to x = 0.03764. The pressure, temperature, density and mass fraction
results are plotted in Figs. 11-14. N = 50 and CFL=0.1 are used in WENO/SR. In
this example, 10 sub reaction steps are involved in each time step evolution in order to
produce more accurate results in the reaction zone.
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Figure 8: Computed temperature for the Arrhenius Example 4.1 at t = 1.8. Solid line:
reference solution. Dashed line with symbols: numerical solution. Left: WENO5/SR
with N = 50, CFL=0.1; right: splitting WENO5 with N = 300, CFL=0.1.
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Figure 9: Computed density for the Arrhenius Example 4.1 at t = 1.8. Solid line:
reference solution. Dashed line with symbols: numerical solution. Left: WENO5/SR
with N = 50, CFL=0.1; right: splitting WENO5 with N = 300, CFL=0.1.
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Figure 10: Computed mass fraction for the Arrhenius Example 4.1 at t = 1.8. Solid line:
reference solution. Dashed line with symbols: numerical solution. Left: WENO5/SR
with N = 50, CFL=0.1; right: splitting WENO5 with N = 300, CFL=0.1.

Again we compare the results by WENO5/SR (left subplots) with splitting WENO5
(right subplots). We can see WENO5/SR with N = 50 is able to capture the correct
detonation speed. However, splitting WENO5 with N = 300 still produces wrong nu-
merical results no matter how small the time step is (the results with smaller time steps
are not shown here to save space).

Example 4.3. A strong detonation (Heaviside case).
Here is another detonation problem which is also from [2]. The computational domain

is [0,0.05]. The initial data are

(ρ, u, p, z) =

{

(ρl, ul, pl, 0) x ≤ 0.005
(ρr , ur, pr, 1) x > 0.005

(64)

where ul = 9.162 × 104 > ub, ρ1 = ρb, p1 = pb, and the right state is the same as in
Example 4.2. The exact solution contains a right-moving strong detonation, a right-
moving contact discontinuity and a stationary shock.

The reference solutions are computed by standard WENO5 with N = 5000 (∆x =
1×10−5) and CFL=0.05. We display the numerical results by WENO5/SR with N = 50,
CFL=0.1 and Nr = 10 at t = 2 × 10−7. The pressure, temperature, density and mass
fraction results are plotted in the left subplots of Figs. 15-18. We also compute the
results by the splitting WENO5 with N = 50 and CFL=0.01 in the right subplots of
Figs. 15-18. We can see WENO5/SR is able to capture the correct shock speed and
other waves in a very coarse mesh. But the splitting WENO5 with the same mesh
produce spurious waves.
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Figure 11: Computed pressure for the Heaviside Example 4.2 at t = 3×10−7 . Solid line:
reference solution. Dashed line with symbols: numerical solution. Left: WENO5/SR
with N = 50, CFL=0.1, Nr = 10; right: splitting WENO5 with N = 300, CFL=0.01.
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Figure 12: Computed temperature for the Heaviside Example 4.2 at t = 3 × 10−7.
Solid line: reference solution. Dashed line with symbols: numerical solution. Left:
WENO5/SR with N = 50, CFL=0.1, Nr = 10; right: splitting WENO5 with N = 300,
CFL=0.01.
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Figure 13: Computed density for the Heaviside Example 4.2 at t = 3× 10−7. Solid line:
reference solution. Dashed line with symbols: numerical solution. Left: WENO5/SR
with N = 50, CFL=0.1, Nr = 10; right: splitting WENO5 with N = 300, CFL=0.01.
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Figure 14: Computed mass fraction for the Heaviside Example 4.2 at t = 3 × 10−7.
Solid line: reference solution. Dashed line with symbols: numerical solution. Left:
WENO5/SR with N = 50, CFL=0.1, Nr = 10; right: splitting WENO5 with N = 300,
CFL=0.01.
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Figure 15: Computed pressure for the Heaviside Example 4.3 at t = 2×10−7 . Solid line:
reference solution. Dashed line with symbols: numerical solution. Left: WENO5/SR
with N = 50, CFL=0.1, Nr = 10; right: splitting WENO5 with N = 50, CFL=0.01.
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Figure 16: Computed temperature for the Heaviside Example 4.3 at t = 2 × 10−7.
Solid line: reference solution. Dashed line with symbols: numerical solution. Left:
WENO5/SR with N = 50, CFL=0.1, Nr = 10; right: splitting WENO5 with N = 50,
CFL=0.01.
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Figure 17: Computed density for the Heaviside Example 4.3 at t = 2× 10−7. Solid line:
reference solution. Dashed line with symbols: numerical solution. Left: WENO5/SR
with N = 50, CFL=0.1, Nr = 10; right: splitting WENO5 WENO5 with N = 50,
CFL=0.01.
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Figure 18: Computed mass fraction for the Heaviside Example 4.3 at t = 2 × 10−7.
Solid line: reference solution. Dashed line with symbols: numerical solution. Left:
WENO5/SR with N = 50, CFL=0.1, Nr = 10; right: splitting WENO5 WENO5 with
N = 50, CFL=0.01.
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Example 4.4. Collision of a detonation with a rarefaction wave (Heaviside
case).

Next, we consider a one-dimensional detonation problem involving a collision with a
rarefaction wave. This example is taken from [3] and [18]. The parameters are taken as
γ = 1.2, q0 = 50, 1

ε
= 230.75 and Tign = 3.

The computational domain is [0,100]. The initial data are

(ρ, u, p, z) =







(ρl, ul, pl, 0) x ≤ 10
(ρm, um, pm, 0) 10 < x ≤ 20
(ρr, ur, pr, 1) x > 20

(65)

where ρl = 2, ul = 4, pl = 40, ρm = 3.64282, pm = 54.8244, um = 6.2489, ρr = 1, ul = 0
and pl = 1.

The exact solution contains a right-moving strong detonation, a right moving rar-
efaction wave, a right moving contact discontinuity, and a left moving rarefaction wave.
After some time, the right moving rarefaction wave will catch up with the detonation
wave. We consider the solutions before the collision of the detonation with the rarefac-
tion at t = 2 and the solutions after the collision at t = 8. The reference solutions are
computed by standard WENO5 with N = 10, 000 (∆x = 0.01) and CFL=0.3.

Figure 19 shows pressure, temperature, density and mass fraction results by WENO5/SR
with N = 100 and CFL=0.1 at t = 2. Before the collision, both the WENO5/SR and
the splitting WENO5 method can capture the correct shock speed on the mesh with 100
points where the results by the splitting WENO5 are not shown here. However, after
the collision at t = 8 (see Figs. 20-23), the splitting WENO5 cannot capture the correct
shock location and produce spurious numerical waves around the detonation which can
be easily seen in pressure, temperature and mass fraction results (see the right subplots
of Figs. 20, 21, 23). The spurious waves in the density are smaller, appearing in the
bottom corner around the detonation (see the right subplots of Fig. 22). The proposed
WENO5/SR scheme is able to capture the correct shock speed and other waves in a
very coarse mesh.

Example 4.5. A detonation interacting with an oscillatory profile (Heaviside
case).

The last one-dimensional detonation problem involves a collision with an oscillatory
profile. This example is also taken from [3]. The parameters γ, q0 and Tign are the same
as Example 4.4 except 1

ε
= 1000.

The computational domain is [0, 2π]. The initial data are

(ρ, u, p, z) =

{

(ρl, ul, pl, 0) x ≤ π
2

(ρr, ur, pr, 1) x > π
2

, (66)

where ρl = 1.79463, ul = 3.0151, pl = 21.53134, ρr = 1.0 + 0.5 sin 2x, ul = 0 and pl = 1.
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Figure 19: Results for the Heaviside Example 4.4 at t = 2. Solid line: reference solution.
Dashed line with symbols: numerical solution of WENO5/SR with N = 100, CFL=0.1.
Top left: pressure; top right: temperature; bottom left: density; bottom right: mass
fraction.
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Figure 20: Computed pressure for the Heaviside Example 4.4 at t = 8. Solid line:
reference solution. Dashed line with symbols: numerical solution. Left: WENO5/SR
with N = 100, CFL=0.1; right: splitting WENO5 with N = 100, CFL=0.1.
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Figure 21: Computed temperature for the Heaviside Example 4.4 at t = 8. Solid line:
reference solution. Dashed line with symbols: numerical solution. Left: WENO5/SR
with N = 100, CFL=0.1; right: splitting WENO5 with N = 100, CFL=0.1.
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Figure 22: Computed density for the Heaviside Example 4.4 at t = 8. Solid line:
reference solution. Dashed line: numerical solution. Left: WENO5/SR with N = 100,
CFL=0.1; right: splitting WENO5 with N = 100, CFL=0.1.

29



0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

x

z

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

x

z

Figure 23: Computed mass fraction for the Heaviside Example 4.4 at t = 8. Solid line:
reference solution. Dashed line with symbols: numerical solution. Left: WENO5/SR
with N = 100, CFL=0.1; right: splitting WENO5 with N = 100, CFL=0.1.

The reference solutions are computed by splitting WENO5 with N = 10, 000 and
CFL=0.3. The numerically computed pressure, temperature, density and mass fraction
at t = π/5 are plotted in Figs. 24-27 separately, where the left subplots are computed
by WENO5/SR with N = 200 and CFL=0.1, and the right subplots are computed by
splitting WENO5 with N = 200 and CFL=0.1. We can see the proposed WENO5/SR
is able to handle the interactions between the detonation and the oscillatory wave in
a very coarse mesh, while the splitting WENO5 scheme produces unphysical solutions
around the detonation shock.

5 Extension to 2D reactive Euler equations

Next, we extend the proposed method to the two-dimensional reactive Euler equations.
The considered two-dimensional problem is the extension of the one-dimensional prob-
lem, again modeling the reaction with two chemical states and one reaction. The gov-
erning equations are

ρt + (ρu)x + (ρv)y = 0 (67)

(ρu)t + (ρu2 + p)x + (ρuv)y = 0 (68)

(ρv)t + (ρuv)x + (ρv2 + p)y = 0 (69)

Et + (u(E + p))x + (v(E + p))y = 0 (70)

(ρz)t + (ρuz)x + (ρvz)y = −K(T )ρz, (71)

where ρ(x, y, t) is the mixture density, u(x, y, t) and v(x, y, t) are the mixture x- and y-
velocities, E(x, y, t) is the mixture total energy per unit volume, p(x, y, t) is the pressure,
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Figure 24: Computed pressure results for the Heaviside Example 4.5 at t = π/5.
Solid line: reference solution. Dashed line with symbols: numerical solution. Left:
WENO5/SR with N = 200, CFL=0.1; right: splitting WENO5 with N = 200, CFL=0.1.
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Figure 25: Computed temperature results for the Heaviside Example 4.5 at t = π/5.
Solid line: reference solution. Dashed line with symbols: numerical solution. Left:
WENO5/SR with N = 200, CFL=0.1; right: splitting WENO5 with N = 200, CFL=0.1.
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Figure 26: Computed density results for the Heaviside Example 4.5 at t = π/5.
Solid line: reference solution. Dashed line with symbols: numerical solution. Left:
WENO5/SR with N = 200, CFL=0.1; right: splitting WENO5 with N = 200, CFL=0.1.
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Figure 27: Computed mass fraction results for the Heaviside Example 4.5 at t = π/5.
Solid line: reference solution. Dashed line with symbols: numerical solution. Left:
WENO5/SR with N = 200, CFL=0.1; right: splitting WENO5 with N = 200, CFL=0.1.
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z(x, y, t) is the mass fraction of the unburnt gas, K(T ) is the chemical reaction rate and
T (x, y, t) is the temperature. The pressure is given by

p = (γ − 1)(E − 1

2
ρ(u2 + v2) − q0ρz), (72)

where the temperature T = p
ρ

and q0 is the chemical heat released in the reaction. The
source term is modeled as in the one-dimensional case. For simplicity, we only consider
the Heaviside source term (51).

In the convection step, we use fifth-order WENO-LF with RK3 time discretization.
In the reaction step, we apply the subcell resolution procedure dimension by dimen-

sion.
(1) Identify troubled cell Iij in both x- and y-directions by applying the shock indi-

cator to z.
Assuming Iij is troubled in the x-direction, we apply subcell resolution along the

x-direction.
(2) Modify the point value zij Tij and ρij in the troubled cell Iij by the ENO inter-

polation polynomials
{

z̃ij = pi−s,j (xi; z), T̃ij = pi−s,j (xi; T ), ρ̃ij = pi−s,j (xi; ρ), if θ ≥ xi

z̃ij = pi+r,j(xi; z), T̃ij = pi+r,j(xi; T ), ρ̃ij = pi+r,j(xi; ρ), if θ < xi
, (73)

where the location θ is determined by the conservation of energy E
∫ θ

xi−1/2

pi−s,j(x; E)dx +

∫ xi+1/2

θ

pi+r,j(x; E)dx = Eij∆x. (74)

For simplicity, in the considered stiff problem, the value of zij can be taken as

z̃ij =

{

0, θ ≥ xi

1, θ < xi
. (75)

(3) For simplicity, explicit Euler is used as the ODE solver.

5.1 Numerical examples of 2D detonation waves

Example 5.1. A 2D detonation wave.
This example is taken from [2]. The chemical reaction is modeled by the Heaviside

form with the same parameters q0,
1
ε

and Tign as in Example 4.2. Consider a two-
dimensional channel of width 0.005, the upper and lower boundaries are solid walls.
The computational domain is [0, 0.025] × [0, 0.005]. The initial conditions are

(ρ, u, v, p, z) =

{

(ρl, ul, 0, pl, 0), if x ≤ ξ(y),
(ρr, ur, 0, pr, 1), if x > ξ(y),

(76)
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where

ξ(y) =

{

0.004 |y − 0.0025| ≤ 0.001,
0.005 − |y − 0.0025| |y − 0.0025| < 0.001,

(77)

and ul = 8.162 × 104 > ub, ρl = ρb and pl = pb. ub, ρb, pb and the right state are as in
Example 4.2.

Similar problems are also computed in [14]. One important feature of this solution
is the appearance of triple points, which travel in the transverse direction and reflect
from the upper and lower walls. A discussion of the mechanisms driving this solution is
given in [20].

Figures 28-29 show density contours computed by WENO5/SR with 500×100 (∆x =
∆y = 5 × 10−5), CFL=0.1 and Nr = 2 at eighteen evolutionary times from t = 0 to
t = 1.7 × 10−7. We can see the movement of the triple points. The same case by
WENO5/SR with a much coarser grid 200×40 (∆x = ∆y = 1.25×10−4) with CFL=0.1
and Nr = 2 at three evolutionary times are shown in Fig. 30. We can see WENO5/SR
with the very coarse 200×40 mesh can still capture the correct shock location, although
the shocks are smeared due to the lack of resolution. It is more apparent to compare
the computed results with the reference solution in a 1D cross section. The reference
solutions are computed by standard WENO5 with 2000×400 grid points and CFL=0.3.
The results by WENO5/SR and the splitting WENO5 are compared with the same
mesh 200 × 40 and CFL=0.005. Figures 31-34 show the 1D cross section at y = 0.0025
at evolutionary times t = 2 × 10−8, t = 6 × 10−8, t = 1.4 × 10−7 and t = 1.7 × 10−7

separately, where the left subplots are computed by WENO5/SR and the right subplots
are by splitting WENO5. We can see WENO5/SR has excellent agreement with the
reference solutions except it cannot capture the waves sharply due to the underresolved
mesh. However the splitting WENO5 method produces spurious waves in front of the
detonation shock starting at time t = 2 × 10−8 (right subplot of Fig. 31) and after that
the solutions move at a wrong speed (right subplots of Figs. 32-34).

6 Concluding remarks

A new high order finite difference scheme with subcell resolution for hyperbolic conser-
vation laws with stiff source terms has been developed. This method utilizes a fractional
step approach with the freedom in choosing any spatial high-resolution shock-capturing
schemes and temporal discretizations. In the convection step, any spatial high-resolution
scheme can be used. In the reaction step, any explicit ODE solver can be used with
the transition points reconstructed by Harten’s ENO subcell resolution. The proposed
method has high order accuracy in space for smooth flows. It is able to capture the
correct discontinuity speed on very coarse meshes and with a reasonable CFL number
(If one is interested in resolving the narrow reaction zone at the reaction front, then a
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Figure 28: Computed density for Example 5.1: WENO5/SR with 500 × 100, CFL=0.1
and Nr = 2 at nine different evolutionary times t = 0, t = 1 × 10−8, t = 2 × 10−8,
t = 3 × 10−8, t = 4 × 10−8, t = 5 × 10−8, t = 6 × 10−8, t = 7 × 10−8 and t = 8 × 10−8.
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Figure 29: Computed density for Example 5.1: WENO5/SR with 500 × 100, CFL=0.1
and Nr = 2 at nine different evolutionary times t = 9×10−8, t = 1×10−7, t = 1.1×10−7,
t = 1.2 × 10−7, t = 1.3 × 10−7, t = 1.4 × 10−7, t = 1.5 × 10−7, t = 1.6 × 10−7 and
t = 1.7 × 10−7.
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Figure 30: Density results of Example 5.1: WENO5/SR with 200 × 40, CFL=0.1 and
Nr = 2 at t = 1.5 × 10−7, t = 1.6 × 10−7 and t = 1.7 × 10−7.
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Figure 31: 1D cross-section of Example 5.1 at t = 2× 10−8 by different WENO schemes
with 200 × 40. Solid line: reference solution; dashed line: numerical solution. Left:
WENO5/SR with CFL=0.1, Nr = 2; right: splitting WENO5 with CFL=0.05.
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Figure 32: 1D cross-section of Example 5.1 at t = 6× 10−8 by different WENO schemes
with 200 × 40. Solid line: reference solution; dashed line: numerical solution. Left:
WENO5/SR with CFL=0.1, Nr = 2; right: splitting WENO5 with CFL=0.05.

0.01 0.02

0.0015

0.002

0.0025

x

ρ

0.01 0.02

0.0015

0.002

0.0025

x

ρ

Figure 33: 1D cross-section of Example 5.1 at t = 1.4 × 10−7 by different WENO
schemes with 200 × 40. Solid line: reference solution; dashed line: numerical solution.
Left: WENO5/SR with CFL=0.1, Nr = 2; right: splitting WENO5 with CFL=0.05.
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Figure 34: 1D cross-section of Example 5.1 at t = 1.7 × 10−7 by different WENO
schemes with 200 × 40. Solid line: reference solution; dashed line: numerical solution.
Left: WENO5/SR with CFL=0.1, Nr = 2; right: splitting WENO5 with CFL=0.05.

refined grid resolution is still necessary). It can be used for both stiff and non-stiff prob-
lems. Extensive numerical examples for one- and two-dimensional scalar problems and
one- and two-dimensional detonation waves demonstrate the robustness of the method.

From the numerical experiments, further containment of numerical dissipation in
existing high order shock-capturing schemes can defer the onset of wrong propagation
speeds of discontinuities to certain degree. However, the need to contain the spreading
of the discontinuity front is the key to overcoming the difficulty. In future work, we
will extend this approach to more general chemical reaction models including multiple
reaction models.

The current approach is only second order in time due to the splitting method. In
the future we will also consider developing a non-splitting method with an explicit RK
scheme with the subcell resolution applied to the source term. However this is not a
trivial task. Straightforward application of the subcell resolution to the source term in
each inner stages of RK scheme does not work. Because in the system case, the source
term should choose the correct value for each time step. If there are three inner stages in
RK scheme and each stage takes a different value for the source, the convex combination
of them may lead to wrong results. We will investigate this in more detail in the future.
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