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Abstract In Zhang and Shu (J. Comput. Phys. 229:3091–3120, 2010), two of the authors
constructed uniformly high order accurate finite volume and discontinuous Galerkin (DG)
schemes satisfying a strict maximum principle for scalar conservation laws on rectangu-
lar meshes. The technique is generalized to positivity preserving (of density and pressure)
high order DG or finite volume schemes for compressible Euler equations in Zhang and
Shu (J. Comput. Phys. 229:8918–8934, 2010). The extension of these schemes to triangu-
lar meshes is conceptually plausible but highly nontrivial. In this paper, we first introduce
a special quadrature rule which is exact for two-variable polynomials over a triangle of a
given degree and satisfy a few other conditions, by which we can construct high order max-
imum principle satisfying finite volume schemes (e.g. essentially non-oscillatory (ENO) or
weighted ENO (WENO) schemes) or DG method solving two dimensional scalar conser-
vation laws on triangular meshes. The same method can preserve the maximum principle
for DG or finite volume schemes solving two-dimensional incompressible Euler equations
in the vorticity stream-function formulation, or any passive convection equation with an in-
compressible velocity field. We also obtain positivity preserving (for density and pressure)
high order DG or finite volume schemes solving compressible Euler equations on triangular
meshes. Numerical tests for the third order Runge-Kutta DG (RKDG) method on unstruc-
tured meshes are reported.
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1 Introduction

We first consider numerical solutions of the scalar conservation law

ut + � · F(u) = 0, u(x,0) = u0(x), (1.1)

where u0(x) is assumed to be a bounded variation function. The main difficulty in solving
(1.1) is that the solution may contain discontinuities even if the initial condition is smooth,
hence we must consider the physically relevant unique weak solution which is called the
entropy solution. An important property of the entropy solution is that it satisfies a strict
maximum principle (e.g. [4]), i.e., if

M = max
x

u0(x), m = min
x

u0(x), (1.2)

then u(x, t) ∈ [m,M] for any x and t .
Successful high order numerical schemes for solving (1.1) includes, among others, the

Runge-Kutta discontinuous Galerkin (RKDG) method with a total variation bounded (TVB)
limiter [2], the essentially non-oscillatory (ENO) finite volume and finite difference schemes
[7, 19], and the weighted ENO (WENO) finite volume and finite difference schemes [8, 11].
Although these schemes are nonlinearly stable in numerical experiments and some of them
can be proved to be total variation stable, they do not in general satisfy a strict maximum
principle. It is very difficult to obtain a uniformly high order accurate scheme satisfying a
strict maximum principle in the sense that the numerical solution never goes out of the range
[m,M], which is a desired property in some applications, for example, when u is a volume
ratio which should not go outside the range of [0,1].

For hyperbolic conservation law systems, the entropy solution in general does not satisfy
any maximum principle. In this paper we are mainly interested in the Euler equations for
compressible flows. Physically, the density ρ and the pressure p should both be positive.
We are interested in positivity-preserving high order schemes, which maintain the positivity
of density and pressure at time level n + 1, provided that they are positive at time level n.
We remark that failure of preserving positivity of density or pressure may cause blow-ups of
the numerical algorithm, for example, for low density problems in computing blast waves,
and low pressure problems in computing high Mach number astrophysical jets [6]. We also
remark that most commonly used high order numerical schemes for solving Euler equations,
for instance, the RKDG method with TVB limiter, ENO and WENO schemes do not in
general satisfy the positivity property for Euler equations automatically.

Our objective is to design genuinely high order schemes (the order of accuracy of
the scheme is uniformly high for all smooth solutions including at all kinds of extrema)
which satisfy strict maximum principles for scalar conservation laws and positivity pre-
serving property for compressible Euler systems in multispace dimensions. In [22], two
of the authors established a general framework to construct a genuinely high order accu-
rate maximum-principle-satisfying scheme for one dimensional and multidimensional scalar
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conservation laws on rectangular meshes, in the sense that the numerical solution never goes
out of the range [m,M] of the initial condition. In [23], the same authors constructed a gen-
uinely high order accurate positivity preserving scheme for Euler systems by generalizing
the techniques of limiters in [22] and the positivity-preserving schemes in [14]. As far as
we know, this is the first time such objective is achieved, with a simple recipe which does
not require the costly and unrealistic (in multidimension) “following the characteristics”
procedure or exact time evolution.

In this paper, we first introduce an interesting quadrature rule for two variable polynomi-
als on a triangle, by which we can obtain a sufficient condition for a finite volume or a DG
method with Euler forward time discretization solving two dimensional scalar conservation
laws on triangular meshes to satisfy a strict maximum principle. The same type of the linear
scaling limiter as in [22] can enforce this condition without destroying accuracy and con-
servativity under suitable CFL condition. Strong stability preserving (SSP) high order time
discretizations will keep the maximum principle. Then we show that the algorithm and con-
clusion are also valid for two dimensional incompressible Euler equations in the vorticity
stream-function formulation, or for any passive convection equation with an incompressible
velocity field. This framework is then used to extend the positivity preserving finite vol-
ume or DG schemes in [23] for compressible Euler equations from rectangular meshes to
triangular meshes.

This paper is organized as follows: First we illustrate the ideas in [22, 23] by reviewing
the one-dimensional schemes briefly in Sect. 2. Then we describe and prove the maximum
principle for an arbitrarily high order scheme for scalar conservation laws on triangular
meshes in two-dimensional space in Sect. 3. Section 4 is the application of the scheme to two
dimensional incompressible Euler equations in the vorticity stream-function formulation,
and to any passive convection equation with an incompressible velocity field. In Sect. 5,
we generalize the idea in Sect. 3 to design positivity-preserving schemes for Euler systems.
Numerical tests for the DG method will be shown in Sect. 6. Concluding remarks are given
in Sect. 7.

2 Maximum-Principle-Satisfying and Positivity-Preserving High Order Schemes in
One Dimension

In this section we briefly review the techniques introduced in [22, 23] for constructing
maximum-principle-satisfying or positivity-preserving schemes in one space dimension.

2.1 Maximum-Principle-Satisfying High Order Schemes for Scalar Conservation Laws

We consider only the first order Euler forward time discretization in this subsection; higher
order time discretization will be discussed later.

A finite volume scheme or a scheme satisfied by the cell averages of a DG method solving

ut + f (u)x = 0, u(x,0) = u0(x),

can be written as

un+1
j = un

j − λ[h(u−
j+ 1

2
, u+

j+ 1
2
) − h(u−

j− 1
2
, u+

j− 1
2
)], (2.1)

where n refers to the time step and j to the spatial cell (we assume uniform mesh size only
for simplicity), and λ = �t

�x
is the ratio of time and space mesh size. un

j is the approximation
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to the cell averages of u(x, t) in the cell Ij = [xj− 1
2
, xj+ 1

2
] at time level n, and u−

j+ 1
2
, u+

j+ 1
2

are the high order approximations of the nodal values u(xj+ 1
2
, tn) within the cells Ij and

Ij+1 respectively. These values are either reconstructed from the cell averages un
j in a finite

volume method or read directly from the evolved polynomials in a DG method. We assume
that there is a polynomial pj (x) (either reconstructed in a finite volume method or evolved
in a DG method) with degree k, defined on Ij such that un

j is the cell average of pj (x) on Ij ,
u+

j− 1
2

= pj (xj− 1
2
) and u−

j+ 1
2

= pj (xj+ 1
2
). The numerical flux function h(·, ·) is chosen to be

a Lipschitz continuous monotone flux, i.e., h(·, ·) is nondecreasing in its first argument and
nonincreasing in its second argument. For instance, the global Lax-Friedrichs flux defined
by

h(u, v) = 1

2
[f (u) + f (v) − a(v − u)], a = max |f ′(u)|, (2.2)

where the maximum is taken over the whole region where u and v vary, is a monotone flux.
In the rest of the paper, we will mainly use the global Lax-Friedrichs flux as an example to
illustrate the idea, although any other monotone flux will also work.

Consider the N -point Legendre Gauss-Lobatto quadrature rule on the interval Ij =
[xj− 1

2
, xj+ 1

2
], which is exact for the integral of polynomials of degree up to 2N − 3. We

denote these quadrature points on Ij as

Sj = {xj− 1
2

= x̂1
j , x̂

2
j , . . . , x̂

N−1
j , x̂N

j = xj+ 1
2
}. (2.3)

Define v̂α = pj (̂x
α
j ) for α = 1, . . . ,N , and let ŵα be the quadrature weights for the interval

[− 1
2 , 1

2 ] such that
∑N

α=1 ŵα = 1. Choose N to be the smallest integer satisfying 2N − 3 ≥ k,
then

un
j = 1

�x

∫

Ij

pj (x)dx =
N
∑

α=1

ŵαv̂α =
N−1
∑

α=2

ŵαv̂α + ŵ1u
+
j− 1

2
+ ŵNu−

j+ 1
2
. (2.4)

By adding and subtracting h(u+
j− 1

2
, u−

j+ 1
2
), and plugging (2.4) into the scheme (2.1), we

obtain

un+1
j =

N−1
∑

α=2

ŵαv̂α + ŵ1u
+
j− 1

2
+ ŵNu−

j+ 1
2
− λ

[

h(u−
j+ 1

2
, u+

j+ 1
2
) − h(u+

j− 1
2
, u−

j+ 1
2
)

]

− λ

[

h(u+
j− 1

2
, u−

j+ 1
2
) − h(u−

j− 1
2
, u+

j− 1
2
)

]

=
N−1
∑

α=2

ŵαv̂α + ŵN

(

u−
j+ 1

2
− λ

ŵN

[h(u−
j+ 1

2
, u+

j+ 1
2
) − h(u+

j− 1
2
, u−

j+ 1
2
)]
)

+ ŵ1

(

u+
j− 1

2
− λ

ŵ1
[h(u+

j− 1
2
, u−

j+ 1
2
) − h(u−

j− 1
2
, u+

j− 1
2
)]
)

=
N−1
∑

α=2

ŵαv̂α + ŵ1H1 + ŵNHN
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where

H1 = u+
j− 1

2
− λ

ŵ1
[h(u+

j− 1
2
, u−

j+ 1
2
) − h(u−

j− 1
2
, u+

j− 1
2
)], (2.5)

HN = u−
j+ 1

2
− λ

ŵN

[h(u−
j+ 1

2
, u+

j+ 1
2
) − h(u+

j− 1
2
, u−

j+ 1
2
)]. (2.6)

Assume all point values u−
j+ 1

2
, u+

j+ 1
2
, u−

j− 1
2
, u+

j− 1
2
, v̂2, v̂3, . . . , v̂N−1 are in the range

[m,M]. Notice that (2.5) and (2.6) are two formal monotone schemes, and ŵ1 = ŵN , there-
fore H1,HN ∈ [m,M] under the CFL condition λa ≤ ŵ1 where a = max |f ′(u)|. Since
un+1

j is a convex combination of H1,HN and v̂α (α = 2, . . . ,N − 1), we get the maximum

principle un+1
j ∈ [m,M]. Thus a sufficient condition for (2.1) to satisfy un+1

j ∈ [m,M] is
pj (̂x

α
j ) ∈ [m,M] for all j and α, which could be enforced by a simple limiter without

destroying accuracy and conservativity [22].

2.2 Positivity-Preserving High Order Schemes for Euler Equations

We consider only the first order Euler forward time discretization in this subsection; higher
order time discretization will be discussed later.

The one dimensional Euler system for the perfect gas is given by

wt + f(w)x = 0, t ≥ 0, x ∈ R, (2.7)

w =
⎛

⎝

ρ

m

E

⎞

⎠ , f(w) =
⎛

⎝

m

ρu2 + p

(E + p)u

⎞

⎠ (2.8)

with

m = ρu, E = 1

2
ρu2 + ρe, p = (γ − 1)ρe,

where ρ is the density, u is the velocity, m is the momentum, E is the total energy, p is the
pressure, e is the internal energy, and γ > 1 is a constant (γ = 1.4 for the air). The speed of
sound is given by c = √

γp/ρ and the three eigenvalues of the Jacobian f′(w) are u − c, u

and u + c.
Let p(w) = (γ − 1)(E − 1

2
m2

ρ
) be the pressure function. It can be easily verified that p

is a concave function of w = (ρ,m,E)T if ρ ≥ 0. Define the set of admissible states by

G =
⎧

⎨

⎩

w =
⎛

⎝

ρ

m

E

⎞

⎠

∣

∣

∣

∣

∣

∣

ρ > 0 and p = (γ − 1)

(

E − 1

2

m2

ρ

)

> 0

⎫

⎬

⎭

,

then G is a convex set. If the density or pressure becomes negative, the system (2.7) will
be non-hyperbolic and thus the initial value problem will be ill-posed. Even though we
discuss only the prefect gas in this paper, the technique applies to general gases provided
the equation of state allows G to be a convex set.

We are interested in schemes for (2.7) producing the numerical solutions in the admissi-
ble set G. We start with a first order scheme

wn+1
j = wn

j − λ[h(wn
j ,wn

j+1) − h(wn
j−1,wn

j )], (2.9)
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where h(·, ·) is a numerical flux. The scheme (2.9) and its numerical flux h(·, ·) are called
positivity preserving, if the numerical solution wn

j being in the set G for all j implies the

solution wn+1
j being also in the set G. This is usually achieved under a standard CFL condi-

tion

λ‖(|u| + c)‖∞ ≤ α0 (2.10)

where α0 is a constant related to the specific scheme. Examples of positivity preserving
fluxes include the Godunov flux, the Lax-Friedrichs flux, the Boltzmann type flux, and the
Harten-Lax-van Leer flux, see [14].

We now consider a general high order finite volume scheme, or the scheme satisfied by
the cell averages of a DG method solving (2.7), which has the following form

wn+1
j = wn

j − λ

[

h
(

w−
j+ 1

2
,w+

j+ 1
2

)

− h
(

w−
j− 1

2
,w+

j− 1
2

)]

, (2.11)

where h is a positivity preserving flux under the CFL condition (2.10), wn
j is the approxi-

mation to the cell average of the exact solution v(x, t) in the cell Ij = [xj− 1
2
, xj+ 1

2
] at time

level n, and w−
j+ 1

2
, w+

j+ 1
2

are the high order approximations of the point values v(xj+ 1
2
, tn)

within the cells Ij and Ij+1 respectively. These values are either reconstructed from the cell
averages wn

j in a finite volume method or read directly from the evolved polynomials in a
DG method. We assume that there is a polynomial vector qj (x) = (ρj (x),mj (x),Ej (x))T

(either reconstructed in a finite volume method or evolved in a DG method) with degree k,
where k ≥ 1, defined on Ij such that wn

j is the cell average of qj (x) on Ij , w+
j− 1

2
= qj (xj− 1

2
)

and w−
j+ 1

2
= qj (xj+ 1

2
). Next, we show a similar result as in the previous subsection, i.e., the

sufficient condition for the scheme (2.11) to satisfy wn+1
j ∈ G, is that qj (̂x

α
j ) ∈ G for all j

and α.
The N -point Legendre Gauss-Lobatto implies

wn
j = 1

�x

∫

Ij

qj (x)dx =
N
∑

α=1

ŵαqj (̂x
α
j ) =

N−1
∑

α=2

ŵαqj (̂x
α
j ) + ŵ1w+

j− 1
2
+ ŵN w−

j+ 1
2
.

By adding and subtracting h(w+
j− 1

2
,w−

j+ 1
2
), the scheme (2.11) becomes

wn+1
j =

N
∑

α=1

ŵαqj (̂x
α
j ) − λ

[

h
(

w−
j+ 1

2
,w+

j+ 1
2

)

− h
(

w+
j− 1

2
,w−

j+ 1
2

)

+ h
(

w+
j− 1

2
,w−

j+ 1
2

)

− h
(

w−
j− 1

2
,w+

j− 1
2

)]

=
N−1
∑

α=2

ŵαqj (̂x
α
j ) + ŵN

(

w−
j+ 1

2
− λ

ŵN

[

h
(

w−
j+ 1

2
,w+

j+ 1
2

)

− h
(

w+
j− 1

2
,w−

j+ 1
2

)])

+ ŵ1

(

w+
j− 1

2
− λ

ŵ1

[

h
(

w+
j− 1

2
,w−

j+ 1
2

)

− h
(

w−
j− 1

2
,w+

j− 1
2

)])

=
N−1
∑

α=2

ŵαqj (̂x
α
j ) + ŵN HN + ŵ1H1,
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where

H1 = w+
j− 1

2
− λ

ŵ1

[

h
(

w+
j− 1

2
,w−

j+ 1
2

)

− h
(

w−
j− 1

2
,w+

j− 1
2

)]

, (2.12)

HN = w−
j+ 1

2
− λ

ŵN

[

h
(

w−
j+ 1

2
,w+

j+ 1
2

)

− h
(

w+
j− 1

2
,w−

j+ 1
2

)]

. (2.13)

Notice that (2.12) and (2.13) are both of the type (2.9), and ŵ1 = ŵN , therefore H1 and
HN are in the set G under the CFL condition

λ‖(|u| + c)‖∞ ≤ ŵ1α0.

Now, it is easy to conclude that wn+1
j is in G, since it is a convex combination of elements

in G. The sufficient condition can be enforced by the linear scaling limiter [23].

2.3 Higher Order Time Discretization

We will use total variation diminishing (TVD), also referred to as strong stability preserving
(SSP) high order time discretizations. For more details, see [5, 18, 19]. For example, the
third order TVD Runge-Kutta method [19] (with the CFL coefficient c = 1) is

u(1) = un + �tF(un),

u(2) = 3

4
un + 1

4
(u(1) + �tF(u(1))), (2.14)

un+1 = 1

3
un + 2

3
(u(2) + �tF(u(2)))

where F(u) is the spatial operator, and the third order TVD multi-step method [18] (with
the CFL coefficient c = 1

3 ) is

un+1 = 16

27
(un + 3�tF(un)) + 11

27

(

un−3 + 12

11
�tF(un−3)

)

. (2.15)

Here, the CFL coefficient c for a SSP time discretization refers to the fact that, if we as-
sume the Euler forward time discretization for solving the equation ut = F(u) is stable in a
norm or a semi-norm under a time step restriction �t ≤ �t0, then the high order SSP time
discretization is also stable in the same norm or semi-norm under the time step restriction
�t ≤ c�t0.

Since a SSP high order time discretization is a convex combinations of Euler forward,
the full scheme with a high order SSP time discretization will still satisfy the maximum
principle and the positivity preserving property.

3 High Order Schemes Satisfying the Maximum Principle on Triangular Meshes

3.1 Preliminaries and the First Order Monotone Scheme

Consider two-dimensional scalar conservation laws (1.1) with F(u) = 〈f (u), g(u)〉 and the
first order monotone schemes on a triangulation. We only discuss the global Lax-Friedrichs
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scheme here, but similar results hold for other monotone schemes (e.g. local Lax-Friedrichs
scheme). For each triangle K we denote by liK (i = 1,2,3) the length of its three edges ei

K

(i = 1,2,3), with outward unit normal vector νi (i = 1,2,3). K(i) denotes the neighboring
triangle along ei

K and |K| is the area of the triangle K . The global Lax-Friedrichs flux is
defined by

h(u, v, ν) = 1

2
(F(u) · ν + F(v) · ν − a(v − u))

where

a = max
u,ν

|F′(u) · ν|.
It satisfies the conservativity and consistency

h(u, v, ν) = −h(v,u,−ν), h(u,u, ν) = F(u) · ν. (3.1)

The first order Lax-Friedrichs scheme can be written as

un+1
K = un

K − �t

|K|
3

∑

i=1

h(un
K,un

K(i), ν
i)liK = H(un

K,un
K(1), u

n
K(2), u

n
K(3)).

Then H(·, ·, ·, ·) is a monotone increasing function with respect to each argument under the
CFL condition

a
�t

|K|
3

∑

i=1

liK ≤ 1.

Now let us consider high order schemes. We only discuss Euler forward time discretiza-
tion, see Sect. 2.3 for higher order time discretization. A finite volume scheme or a scheme
satisfied by the cell averages of a DG method, with first order Euler forward time discretiza-
tion, can be written as

un+1
K = un

K − �t

|K|
3

∑

i=1

∫

ei
K

h(u
int (K)
i , u

ext (K)
i , νi)ds,

where un
K is the cell average over K of the numerical solution, and u

int(K)
i , u

ext (K)
i are the

approximations to the values on the edge ei
K obtained from the interior and the exterior

of K . For simplicity, we only discuss the DG method from now on, but all the results also
hold for the finite volume scheme (e.g. ENO and WENO). Assume the DG polynomial on
the triangle K is pK(x, y) of degree k, then in the DG method, the edge integral should be
approximated by the (k + 1)-point Gauss quadrature. The scheme becomes

un+1
K = un

K − �t

|K|
3

∑

i=1

k+1
∑

β=1

h(u
int(K)
i,β , u

ext (K)
i,β , νi)wβliK, (3.2)

where wβ denote the (k + 1)-point Gauss quadrature weights on the interval [− 1
2 , 1

2 ], so

that
∑k+1

β=1 wβ = 1, and u
int(K)
i,β and u

ext(K)
i,β denote the values of u evaluated at the β-th Gauss

quadrature point on the i-th edge from the interior and exterior of the element K respectively.
In the next subsections, we will rewrite the right hand side of (3.2) as a monotone in-

creasing function of some point values of pK(x, y) under a certain CFL condition.
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3.2 Decomposition of the Cell Average

Motivated by the ideas in Sect. 2, the first step is to decompose the cell average un
K as a con-

vex combination of point values of the DG polynomial pK(x, y), which could be achieved
by a quadrature. Therefore, we are interested in a quadrature rule satisfying:

• The quadrature rule is exact for integration of pK(x, y) on K .
• All the quadrature weights should be positive.
• The quadrature points include all the Gauss quadrature points for each edge ei

K . We would
also need to find the quadrature weights for these points, since the CFL condition of our
method will depend on them.

For convenience, we use the position vectors to denote the three vertices of K : V1, V2 and
V3. The position vector P of an arbitrary point P in K can be specified by the barycentric
coordinates (ξ1, ξ2, ξ3), where P = ξ1V1 + ξ2V2 + ξ3V3.

First, consider the quadrature rule on the unit square R with vertices (− 1
2 ,− 1

2 ), ( 1
2 ,− 1

2 ),
( 1

2 , 1
2 ), and (− 1

2 , 1
2 ) in the u-v plane. Let N be the smallest integer such that 2N − 3 ≥ k,

then the N -point Gauss-Lobatto quadrature rule is exact for a single variable polynomial of
degree k. Let {vβ : β = 1, . . . , k + 1} denote the Gauss quadrature points on [− 1

2 , 1
2 ] with

weights wβ , and {̂uα : α = 1, . . . ,N} denote the Gauss-Lobatto quadrature points on [− 1
2 , 1

2 ]
with weights ŵα . For a two-variable polynomial p(u, v), we can use the tensor product of
N -point Gauss-Lobatto for u and (k + 1)-point Gauss for v as the quadrature rule on the
square, then the quadrature points can be written as Sk = {(̂uα, vβ) : α = 1, . . . ,N;β =
1, . . . , k + 1}, see Fig. 1(a) for S2. This quadrature is exact for a polynomial p(u, v) if the
degree of p(u, v) with respect to u is not larger than k and the degree with respect to v is
not larger than 2k + 1.

Without loss of the generality, we assume the orientation of the three vertices V1,V2 and
V3 is clockwise in this subsection, then we define the following three functions:

g1(u, v) =
(

1

2
+ v

)

V1 +
(

1

2
+ u

)(

1

2
− v

)

V2 +
(

1

2
− u

)(

1

2
− v

)

V3,

g2(u, v) =
(

1

2
+ v

)

V2 +
(

1

2
+ u

)(

1

2
− v

)

V3 +
(

1

2
− u

)(

1

2
− v

)

V1,

g3(u, v) =
(

1

2
+ v

)

V3 +
(

1

2
+ u

)(

1

2
− v

)

V1 +
(

1

2
− u

)(

1

2
− v

)

V2.

Each of them is a projection from the square to K , mapping the top edge of the rectangle
into one vertex and the other three edges to the edges of K . We will use gi (i = 1,2,3) and
Sk to construct our triangle quadrature. Let pK(x, y) be the two-variable DG polynomial of
degree k with cell average un

K defined on the triangle K , then

un
K = 1

|K|
∫ ∫

K

pK(x, y)dA(x, y) = 1

|K|
∫ 1

2

− 1
2

∫ 1
2

− 1
2

pK(gi (u, v))

∣

∣

∣

∣

∂gi (u, v)

∂(u, v)

∣

∣

∣

∣

dudv,

i = 1,2,3.

Lemma 3.1 If the orientation of the three vertices V1,V2 and V3 is clockwise, then the
Jacobian | ∂gi (u,v)

∂(u,v)
| = 2|K|( 1

2 − v).
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Fig. 1 Illustration of the three projections for k = 2

Proof We only calculate the Jacobian of g1 here. Notice that we have

∂g1

∂u
=

(

1

2
− v

)

(V2 − V3),

∂g1

∂v
= V1 −

(

1

2
+ u

)

V2 −
(

1

2
− u

)

V3 = (V1 − V3) −
(

1

2
+ u

)

(V2 − V3).

So | ∂g1(u,v)

∂(u,v)
| = ∂g1

∂u
× ∂g1

∂v
= ( 1

2 − v)(V2 − V3) × (V1 − V3) = 2|K|( 1
2 − v). �

Define p̂i
K(u, v) = pK(gi (u, v))| ∂gi (u,v)

∂(u,v)
|, then it is still a polynomial of u and v. More-

over, the degree of this polynomial with respect to u and v is k and k + 2, therefore the
double integral in u and v is equal to the quadrature of Sk . Thus,

un
K = 1

|K|
N
∑

α=1

k+1
∑

β=1

p̂i
K (̂uα, vβ)wαŵβ =

N
∑

α=1

k+1
∑

β=1

pK(gi (̂u
α, vβ))2

(

1

2
− vβ

)

wαŵβ.

So we have three different quadrature rules for pi
K(x, y) over K , and the quadrature points

are gi (Sk) (i = 1,2,3) with positive quadrature weights, see Fig. 1(b), (c), (d) for k = 2.
By combining the points of the three quadrature rules, we obtain a 3(N − 1)(k + 1)-point
quadrature rule which includes all the Gauss quadrature points for three edges, see Fig. 2
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Fig. 2 The quadrature points on
a triangle for k = 2

for the quadrature points SK
k = g1(Sk)∪ g2(Sk)∪ g3(Sk) with k = 2. In the barycentric coor-

dinates, the set SK
k can be written as

SK
k =

{(

1

2
+ vβ,

(

1

2
+ ûα

)(

1

2
− vβ

)

,

(

1

2
− ûα

)(

1

2
− vβ

))

,

((

1

2
− ûα

)(

1

2
− vβ

)

,
1

2
+ vβ,

(

1

2
+ ûα

)(

1

2
− vβ

))

,

((

1

2
+ ûα

)(

1

2
− vβ

)

,

(

1

2
− ûα

)(

1

2
− vβ

)

,
1

2
+ vβ

)

:

α = 1, . . . ,N;β = 1, . . . , k + 1

}

. (3.3)

The cell average can now be decomposed as:

un
K = 1

3

3
∑

i=1

un
K =

3
∑

i=1

N
∑

α=1

k+1
∑

β=1

pK(gi (̂u
α, vβ))

2

3

(

1

2
− vβ

)

wαŵβ =
∑

x∈SK
k

pK(x)wx. (3.4)

Next, we would like to find the quadrature weights wx in (3.4) for the quadrature
points lying on the edge e1

K which are (0, 1
2 + vβ, 1

2 − vβ), the points on e2
K which are

( 1
2 −vβ,0, 1

2 +vβ), and the points on e3
K which are ( 1

2 +vβ, 1
2 −vβ,0). Notice that g2(

1
2 , vβ)

and g3(− 1
2 ,−vβ) are the same point (0, 1

2 + vβ, 1
2 − vβ). Since ŵ1 = ŵN , the weight of

(0, 1
2 + vβ, 1

2 − vβ) is

2

3

(

1

2
+ vβ

)

wβŵ1 + 2

3

(

1

2
− vβ

)

wβŵN = 2

3
wβŵ1.

Similarly, we get that the weights for ( 1
2 −vβ,0, 1

2 +vβ) and ( 1
2 +vβ, 1

2 −vβ,0) are 2
3wβŵ1.

The values of pK(x, y) at the quadrature points on the edge ei
K can be denoted as u

int(K)
i,β .

There are L = 3(N − 2)(k + 1) quadrature points lying in the interior of K . We denote the
values of pK(x, y) at these points as uint

γ (γ = 1, . . . ,L) with the coefficients w̃γ in the

decomposition. Then we can rewrite (3.4) as a convex combination of u
int(K)
i,β and uint

γ :

un
K =

3
∑

i=1

k+1
∑

β=1

2

3
wβŵ1u

int(K)
i,β +

L
∑

γ=1

w̃γ uint
γ . (3.5)



40 J Sci Comput (2012) 50:29–62

3.3 Decomposition of High Order Schemes

Theorem 3.2 For the scheme (3.2) with the polynomial pK(x, y) (either reconstruction or
DG polynomial) of degree k to satisfy the maximum principle

m ≤ un+1
K ≤ M,

a sufficient condition is that each pK(x, y) satisfies pK(x, y) ∈ [m,M],∀(x, y) ∈ SK
k where

SK
k is defined in (3.3), under the CFL condition

a
�t

|K|
3

∑

i=1

liK ≤ 2

3
ŵ1. (3.6)

Here ŵ1 is the quadrature weight of the N -point Gauss-Lobatto rule on [− 1
2 , 1

2 ] for the first
quadrature point. For k = 2,3, ŵ1 = 1

6 and for k = 4,5, ŵ1 = 1
12 .

Proof Rewrite the scheme (3.2) as

un+1
K = un

K − �t

|K|
3

∑

i=1

k+1
∑

β=1

h(u
int(K)
i,β , u

ext (K)
i,β , νi)wβliK

= un
K − �t

|K|
k+1
∑

β=1

wβ

(

3
∑

i=1

h(u
int(K)
i,β , u

ext (K)
i,β , νi)liK

)

. (3.7)

Then decompose the flux term inside the bracket. Let

3
∑

i=1

h(u
int(K)
i,β , u

ext (K)
i,β , νi)liK

= h(u
int(K)

1,β , u
ext (K)

1,β , ν1)l1
K + h(u

int(K)

2,β , u
ext (K)

2,β , ν2)l2
K + h(u

int(K)

3,β , u
ext (K)

3,β , ν3)l3
K

= h(u
int(K)

1,β , u
ext (K)

1,β , ν1)l1
K + h(u

int(K)

1,β , u
int (K)

2,β ,−ν1)l1
K

+ h(u
int(K)

2,β , u
int (K)

1,β , ν1)l1
K + h(u

int(K)

2,β , u
ext (K)

2,β , ν2)l2
K + h(u

int(K)

2,β , u
int (K)

3,β , ν3)l3
K

+ h(u
int(K)

3,β , u
int (K)

2,β ,−ν3)l3
K + h(u

int(K)

3,β , u
ext (K)

3,β , ν3)l3
K, (3.8)

where we have used the conservativity of the flux (3.1).
Plugging (3.5) and (3.8) into (3.7), we get the monotone form

un+1
K =

3
∑

i=1

k+1
∑

β=1

2

3
wβŵ1u

int(K)
i,β +

L
∑

γ=1

w̃γ uint
γ − �t

|K|
k+1
∑

β=1

wβ

(

3
∑

i=1

h(u
int(K)
i,β , u

ext (K)
i,β , νi)liK

)

=
L

∑

γ=1

w̃γ uint
γ +

k+1
∑

β=1

2

3
wβŵ1[H1,β + H2,β + H3,β]

where H1,β ,H2,β , and H3,β are

H1,β = u
int(K)

1,β − 3�t

2ŵ1|K|
[

h(u
int(K)

1,β , u
ext (K)

1,β , ν1)l1
K + h(u

int(K)

1,β , u
int (K)

2,β ,−ν1)l1
K

]

,
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H2,β = u
int(K)

2,β − 3�t

2ŵ1|K|
[

h(u
int(K)

2,β , u
int (K)

1,β , ν1)l1
K + h(u

int(K)

2,β , u
ext (K)

2,β , ν2)l2
K

+ h(u
int(K)

2,β , u
int (K)

3,β , ν3)l3
K

]

,

H3,β = u
int(K)

3,β − 3�t

2ŵ1|K|
[

h(u
int(K)

3,β , u
int (K)

2,β ,−ν3)l3
K + h(u

int(K)

3,β , u
ext (K)

3,β , ν3)l3
K

]

.

Under the CFL condition (3.6), H1,β is a monotone increasing function of u
int(K)

1,β , u
ext(K)

1,β

and u
int(K)

2,β . H2,β is a monotone increasing function of u
int(K)

2,β , u
int(K)

1,β , u
ext(K)

2,β and u
int(K)

3,β .

H3,β is a monotone increasing function of u
int(K)

3,β , u
int(K)

2,β and u
ext(K)

3,β . In other words, Hi,β

(i = 1,2,3) are three formal monotone schemes.
Writing the right-hand side of the scheme (3.2) as a function H of u

int(K)
i,β , u

ext (K)
i,β and

uint
γ , then

un+1
K = H

(

u
int(K)

1,1 , u
int (K)

1,2 , . . . , u
int (K)

3,k+1 , u
ext (K)

1,1 , . . . , u
ext (K)

3,k+1 , uint
1 , . . . , uint

L

)

,

and this function H is monotone increasing with respect to each argument.
Therefore, if all the point values involved here, u

int(K)
i,β , u

ext (K)
i,β and uint

γ are in the range
[m,M], which is equivalent to say that each pK(x, y) satisfies pK(x, y) ∈ [m,M],∀(x, y) ∈
SK

k , then we have the maximum principle:

m = H(m,m, . . . ,m) ≤ un+1
K ≤ H(M,M, . . . ,M) = M. �

Remark 1 Similar result holds for other monotone fluxes.

3.4 Limiter and Its Implementation for the DG Method

To enforce the sufficient condition in the previous theorem, we need to modify pK(x, y)

such that pK(x, y) ∈ [m,M] for all (x, y) ∈ SK
k . For all K , assume un

K ∈ [m,M], we use the
following modified polynomial p̃K(x, y) instead of pK(x, y) by a linear scaling limiter:

p̃K(x, y) = θ(pK(x, y) − un
K) + un

K, θ = min

{∣

∣

∣

∣

M − un
K

MK − un
K

∣

∣

∣

∣

,

∣

∣

∣

∣

m − un
K

mK − un
K

∣

∣

∣

∣

,1

}

, (3.9)

with

MK = max
(x,y)∈SK

k

pK(x, y), mK = min
(x,y)∈SK

k

pK(x, y). (3.10)

Let �x denote the mesh size, then p̃K(x, y) defined in (3.9) satisfies the following prop-
erties:

• Accuracy: for smooth solutions, p̃K(x, y) − pK(x, y) = O(�xk+1), ∀(x, y) ∈ K.

• Boundedness: p̃K(x, y) ∈ [m,M], ∀(x, y) ∈ SK
k .

• Conservativity: 1
|K|

∫

K
p̃K(x, y)dxdy = un

K .

The boundedness and conservativity are straightforward. The accuracy can be proven by
following the same line as in [22].

At time level n, assuming the DG polynomial on the triangle K is pK(x, y) and the cell
average of pK(x, y) is un

K ∈ [m,M], the algorithm flowchart of our method for the Euler
forward time discretization is
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• Evaluate the point values of pK(x, y) in (3.3) to get mK and MK in (3.10).
• Compute p̃K(x, y) in (3.9).
• Replace pK(x, y) by p̃K(x, y) in the DG scheme with Euler forward in time under the

CFL condition (3.6).

For SSP high order time discretizations, we need to use the limiter (3.9) and (3.10) in each
stage for a Runge-Kutta method or in each step for a multistep method.

4 Application to Two Dimensional Incompressible Flows

4.1 Preliminaries

We are interested in solving the two dimensional incompressible Euler equations in the
vorticity stream-function formulation:

ωt + (uω)x + (vω)y = 0, (4.1)

�ψ = ω, 〈u,v〉 = 〈−ψy,ψx〉, (4.2)

ω(x, y,0) = ω0(x, y), 〈u,v〉 · ν = given on ∂�,

where ν denotes the unit outward normal vector. The definition of 〈u,v〉 in (4.2) gives us
the divergence-free condition ux + vy = 0, which implies (4.1) is equivalent to the non-
conservative form

ωt + uωx + vωy = 0. (4.3)

The exact solution of (4.3) satisfies the maximum principle ω(x, y, t) ∈ [m,M], for all
(x, y, t), where m = minx,y ω0(x, y) and M = maxx,y ω0(x, y). For discontinuous solutions
or solutions containing sharp gradient regions, it is preferable to solve the conservative form
(4.1) rather than the nonconservative form (4.3). However, without the incompressibility
condition ux + vy = 0, the conservative form (4.1) itself does not imply the maximum prin-
ciple ω(x, y, t) ∈ [m,M] for all (x, y, t). This is the main difficulty to get a maximum-
principle-satisfying scheme solving the conservative form (4.1) directly. In [22], we proved
that the (k + 1)-th order accurate (for any k) DG scheme in [10] on a rectangular mesh with
the linear scaling limiter under suitable CFL condition satisfied a global maximum principle.
Here, we extend this result to schemes on a triangular mesh.

In [10], Liu and Shu introduced a high order discontinuous Galerkin method solving
(4.1). We will first recall the method in [10] briefly. First, solve (4.2) by a standard Poisson
solver for the stream-function ψ using continuous finite elements, then take u = −ψy, v =
ψx. Notice that on the boundary of each cell, 〈u,v〉 · ν = 〈−ψy,ψx〉 · ν = ∂ψ

∂τ
, which is

the tangential derivative. Thus 〈u,v〉 · ν is continuous across the cell boundary since the
tangential derivative of ψ along each edge is continuous. Therefore, the DG scheme for
(4.1) can be defined as follows: start with a triangulation Th of the domain �, consisting of
polygons of maximum size h, and the two approximation spaces

V k
h = {v : v|K ∈ P k(K),∀K ∈ Th}, Wk

0,h = V k
h ∩ C0(�),

where P k(k) is the set of all polynomials of degree at most k on the cell K . For given
ψh ∈ Wk

0,h, find the ωh ∈ V k
h such that

∫

K

∂tωhvdxdy −
∫

K

ωhuh · ∇vdxdy +
∑

e∈∂K

∫

e

uh · νω̂hv
−ds = 0, ∀v ∈ V k

h ,
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where

uh = 〈uh, vh〉 =
〈

−∂ψh

∂y
,
∂ψh

∂x

〉

.

Since the normal velocity uh · ν is continuous across any element boundary e, we can define
the Lax-Friedrichs flux:

uh · νω̂h = h(ω−
h ,ω+

h ,uh · ν) = 1

2
[uh · ν(ω+

h + ω−
h ) − a(ω+

h − ω−
h )], (4.4)

where a is the maximum of |uh · ν| either locally or globally and h(·, ·, ·) denotes the nu-
merical flux. Upwind flux can also be used here.

4.2 The Main Result

Consider a triangle K with the same notations as in the previous section. Assume the stream-
function ψ is obtained with P k elements, where P k refers to the space of two-variable
polynomials of degree k, and the DG method uses P k elements. At time level n, in the
triangle K , let ω

int(K)
i (x, y) denote the traces of the DG polynomial ωK(x, y) on the edge ei

K .
νi denotes the unit outer normal vector of the edge ei

K and u = 〈u,v〉 denotes the velocity.
The cell average scheme with Euler forward in time of the DG method in [10] is

ωn+1
K (x, y) = ωn

K(x, y) − �t

|K|
3

∑

i=1

∫

ei
K

h
(

ω
int(K)
i (x, y),ω

ext(K)
i (x, y),u · νi

)

ds, (4.5)

where h(·, ·, ·) is defined in (4.4). The integrals in (4.5) are assumed to be computed exactly.
Notice that the integrands are equivalent to single variable polynomials of degree 2k − 1,
therefore the integral is equal to the (k + 1)-point Gauss quadrature. Substituting the inte-
grals by the (k+1)-point Gauss quadrature in (4.5), we obtain the mathematically equivalent
expression

ωn+1
K (x, y) = ωn

K(x, y) − �t

|K|
3

∑

i=1

k+1
∑

β=1

h
(

ω
int(K)
i,β ,ω

ext(K)
i,β ,uβ · νi

)

wβliK . (4.6)

Now let us assume ωn
K ∈ [m,M] and the DG polynomial ωK(x, y) is already processed

by the limiter (3.9) and (3.10). In particular, ωK(x, y) ∈ [m,M],∀(x, y) ∈ SK
k with SK

k

defined in (3.3). Then we will show the scheme (4.6) satisfies the maximum principle
ωn+1

K ∈ [m,M].
Plugging the decomposition of the cell average (3.5) into (4.6), we get the monotone

form

ωn+1
K =

3
∑

i=1

k+1
∑

β=1

2

3
wβŵ1ω

int(K)
i,β +

L
∑

γ=1

w̃γ ωint
γ − �t

|K|
k+1
∑

β=1

wβ

×
(

3
∑

i=1

h(ω
int(K)
i,β ,ω

ext(K)
i,β ,uβ · νi)liK

)

=
L

∑

γ=1

w̃γ ωint
γ +

k+1
∑

β=1

2

3
wβŵ1[H1,β + H2,β + H3,β] (4.7)
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where H1,β ,H2,β , and H3,β are

H1,β = ω
int(K)

1,β − 3�t

2ŵ1|K|
[

h(ω
int(K)

1,β ,ω
ext(K)

1,β ,uβ · ν1)l1
K + h(ω

int(K)

1,β ,ω
int (K)

2,β ,−uβ · ν1)l1
K

]

,

H2,β = ω
int(K)

2,β − 3�t

2ŵ1|K|
[

h(ω
int(K)

2,β ,ω
int (K)

1,β ,uβ · ν1)l1
K + h(ω

int(K)

2,β ,ω
ext(K)

2,β ,uβ · ν2)l2
K

+ h(ω
int(K)

2,β ,ω
int (K)

3,β ,uβ · ν3)l3
K

]

,

H3,β = ω
int(K)

3,β − 3�t

2ŵ1|K|
[

h(ω
int(K)

3,β ,ω
int (K)

2,β ,−uβ · ν3)l3
K + h(ω

int(K)

3,β ,ω
ext(K)

3,β ,uβ · ν3)l3
K

]

.

Under the CFL condition

a
�t

|K|
3

∑

i=1

liK ≤ 2

3
ŵ1, (4.8)

H1,β is a monotone increasing function of ω
int(K)

1,β , ω
ext(K)

1,β and ω
int(K)

2,β . H2,β is a monotone

increasing function of ω
int(K)

2,β , ω
int(K)

1,β , ω
ext(K)

2,β and ω
int(K)

3,β . H3,β is a monotone increasing

function of ω
int(K)

3,β , ω
int(K)

2,β and u
ext(K)

3,β . We write the right-hand side of the scheme (4.7) as

a function H of ω
int(K)
i,β ,ω

ext(K)
i,β and ωint

γ to obtain

ωn+1
K = H

(

ω
int(K)

1,1 ,ω
int (K)

1,2 , . . . ,ω
int (K)

3,k+1 ,ω
ext(K)

1,1 , . . . ,ω
ext(K)

3,k+1 ,ωint
1 , . . . ,ωint

L

)

,

and this function H is monotone increasing with respect to each argument.
To prove the maximum principle, it suffices to show the consistency of H .

Lemma 4.1 The function H defined above is consistent: H(M,M, . . . ,M) = M .

Proof Let ω
int(K)
i,β ,ω

ext(K)
i,β and ωint

γ be equal to a constant M , then

H1,β = M − 3�t

2ŵ1|K|
[

h(M,M,uβ · ν1)l1
K + h(M,M,−uβ · ν1)l1

K

]

= M − 3�t

2ŵ1|K|
[

Muβ · ν1l1
K − Muβ · ν1l1

K

]

= M,

H2,β = M − 3�t

2ŵ1|K|
[

h(M,M,uβ · ν1)l1
K + h(M,M,uβ · ν2)l2

K + h(M,M,uβ · ν3)l3
K

]

= M − 3�t

2ŵ1|K|
[

Muβ · ν1l1
K + Muβ · ν2l2

K + Muβ · ν3l3
K

]

= M − 3�t

2ŵ1|K|M
[

uβ · ν1l1
K + uβ · ν2l2

K + uβ · ν3l3
K

]

,

H3,β = M − 3�t

2ŵ1|K|
[

h(M,M,−uβ · ν3)l3
K + h(M,M,uβ · ν3)l3

K

]

= M − 3�t

2ŵ1|K|
[−Muβ · ν3l3

K + Muβ · ν3l3
K

] = M.
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Thus, by (4.7), we get

H(M,M, . . . ,M)

=
L

∑

γ=1

w̃γ ωint
γ +

k+1
∑

β=1

2

3
wβŵ1[H1,β + H2,β + H3,β]

=
L

∑

γ=1

w̃γ M +
k+1
∑

β=1

2

3
wβŵ1

[

3M − 3�t

2ŵ1|K|M
(

uβ · ν1l1
K + uβ · ν2l2

K + uβ · ν3l3
K

)

]

=
⎛

⎝

L
∑

γ=1

w̃γ M +
k+1
∑

β=1

2wβŵ1M

⎞

⎠ − M
�t

|K|
k+1
∑

β=1

(uβ · ν1l1
K + uβ · ν2l2

K + uβ · ν3l3
K)wβ.

By the quadrature rule (3.5), we get (
∑L

γ=1 w̃γ M + ∑k+1
β=1 2wβŵ1M) = M , therefore

H(M,M, . . . ,M) = M − M
�t

|K|
k+1
∑

β=1

(uβ · ν1l1
K + uβ · ν2l2

K + uβ · ν3l3
K)wβ

= M − M
�t

|K|
3

∑

i=1

k+1
∑

β=1

uβ · νi liKwβ,

(Gauss quadrature) = M − M
�t

|K|
3

∑

i=1

∫

ei
K

u · νi ds,

(Divergence Theorem) = M − M
�t

|K|
∫∫

K

(ux + vy) dA,

(ux + vy = 0) = M.

�

Therefore, we have the maximum principle

m = H(m,m, . . . ,m) ≤ ωn+1
K ≤ H(M,M, . . . ,M) = M.

Remark 1 We can prove the same results for the upwind flux defined in [10] following the
same lines.

Remark 2 The result holds also for any passive convection linear equations with divergence-
free velocity coefficients, namely (4.1) in which u and v are given functions satisfying ux +
vy = 0, as long as the quadratures are exact for the integrands in the scheme. This can be
easily achieved if we pre-process the divergence-free velocity field so that it is piecewise
polynomial of the right degree for accuracy, continuous in the normal component across cell
boundaries, and divergence-free.
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5 High Order Schemes Preserving Positivity for Compressible Euler Equations on
Triangular Meshes

5.1 Preliminaries and First Order Schemes

Consider two dimensional Euler equations

wt + f(w)x + g(w)y = 0, t ≥ 0, (x, y) ∈ R
2, (5.1)

w =

⎛

⎜

⎜

⎝

ρ

m

n

E

⎞

⎟

⎟

⎠

, f(w) =

⎛

⎜

⎜

⎝

m

ρu2 + p

ρuv

(E + p)u

⎞

⎟

⎟

⎠

, g(w) =

⎛

⎜

⎜

⎝

n

ρuv

ρv2 + p

(E + p)v

⎞

⎟

⎟

⎠

(5.2)

with

m = ρu, n = ρv, E = 1

2
ρu2 + 1

2
ρv2 + ρe, p = (γ − 1)ρe,

where ρ is the density, u is the velocity in x direction, v is the velocity in y direction, m

and n are the momenta, E is the total energy, p is the pressure, e is the internal energy. The
speed of sound is given by c = √

γp/ρ. The eigenvalues of the Jacobian f′(w) are u − c, u,
u and u+ c and the eigenvalues of the Jacobian g′(w) are v − c, v, v and v + c. The pressure
function p is concave with respect to w if ρ ≥ 0, thus the set of admissible states

G =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

w =

⎛

⎜

⎜

⎝

ρ

m

n

E

⎞

⎟

⎟

⎠

∣

∣

∣

∣

∣

∣

∣

∣

ρ > 0 and p = (γ − 1)

(

E − 1

2

m2

ρ
− 1

2

n2

ρ

)

> 0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

is convex.
We are interested in high order schemes that can be proven to keep the numerical solu-

tions in the set G. First order positivity preserving schemes can be written as

wn+1
K = wn

K − �t

|K|
3

∑

i=1

h(wn
K,wn

K(i), ν
i)liK, (5.3)

where wn
K is the numerical approximation to the cell average in each element K , and

h(·, ·, ·) is taken as the positivity preserving flux. In the rest of this section, we will use
Lax-Friedrichs as an example:

h(u,v, ν) = 1

2
[F(u) · ν + F(v) · ν − a(v − u)], (5.4)

where F = 〈f,g〉, a = max{‖(|u| + c)‖∞,‖(|v| + c)‖∞}. If wn
K ∈ G for all K , then the

scheme (5.3) and (5.4) satisfies wn+1
K ∈ G under the CFL condition

a
�t

|K|
3

∑

i=1

liK ≤ 1. (5.5)

This fact was proved in [14] for the more restrictive CFL number 1
2 , however the more

relaxed CFL condition (5.5) can be proved along the same lines as in Remark 2.4 of [23].
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A second order extension for positivity preserving schemes on triangular meshes was
made in [14]. In the next subsection, we will use the techniques in Sect. 2 to construct
arbitrarily high order schemes preserving positivity on triangular meshes.

5.2 High Order Schemes

Consider the RKDG scheme [3] solving (5.1). The scheme satisfied by the cell averages in
the RKDG method with Euler forward time discretization is

wn+1
K = wn

K − �t

|K|
3

∑

i=1

∫

ei
K

h(wint (K)
i ,wext (K)

i , νi)ds,

(this is also the form of a finite volume scheme). Here wn
K is the cell average over

K of the numerical solutions, and wint (K)
i ,wext (K)

i are the approximations to the values
on the edge ei

K obtained from the interior and the exterior of K . The flux h is de-
fined in (5.4). Assume the DG polynomial of degree k on the triangle K is qK(x, y) =
(ρK(x, y),mK(x, y), nK(x, y),EK(x, y))T with the cell average wn

K = (ρn
K,mn

K,nn
K,E

n

K)T ,
then the edge integral should be approximated by the (k + 1)-point Gauss quadrature. The
scheme becomes

wn+1
K = wn

K − �t

|K|
3

∑

i=1

k+1
∑

β=1

h(wint (K)
i,β ,wext (K)

i,β , νi)wβliK . (5.6)

Theorem 5.1 For the scheme (5.6) with the polynomial qK(x, y) (either reconstruction or
DG polynomial) of degree k to satisfy the positivity property wn+1

K ∈ G, a sufficient condition
is that each qK(x, y) satisfies qK(x, y) ∈ G,∀(x, y) ∈ SK

k where SK
k is defined in (3.3),

under the CFL condition

a
�t

|K|
3

∑

i=1

liK ≤ 2

3
ŵ1. (5.7)

Here ŵ1 is the quadrature weight of the N -point Gauss-Lobatto rule on [− 1
2 , 1

2 ] for the first
quadrature point. For k = 2,3, ŵ1 = 1

6 and for k = 4,5, ŵ1 = 1
12 .

Proof Rewrite the scheme (5.6) as

wn+1
K = wn

K − �t

|K|
3

∑

i=1

k+1
∑

β=1

h(wint (K)
i,β ,wext (K)

i,β , νi)wβliK

= wn
K − �t

|K|
k+1
∑

β=1

wβ

(

3
∑

i=1

h(wint (K)
i,β ,wext (K)

i,β , νi)liK

)

. (5.8)

Then decompose the flux term inside the bracket. Let

3
∑

i=1

h(wint (K)
i,β ,wext (K)

i,β , νi)liK

= h(wint (K)

1,β ,wext (K)

1,β , ν1)l1
K + h(wint (K)

2,β ,wext (K)

2,β , ν2)l2
K + h(wint (K)

3,β ,wext (K)

3,β , ν3)l3
K
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= h(wint (K)

1,β ,wext (K)

1,β , ν1)l1
K + h(wint (K)

1,β ,wint (K)

2,β ,−ν1)l1
K

+ h(wint (K)

2,β ,wint (K)

1,β , ν1)l1
K + h(wint (K)

2,β ,wext (K)

2,β , ν2)l2
K + h(wint (K)

2,β ,wint (K)

3,β , ν3)l3
K

+ h(wint (K)

3,β ,wint (K)

2,β ,−ν3)l3
K + h(wint (K)

3,β ,wext (K)

3,β , ν3)l3
K. (5.9)

Plugging (3.5) and (5.9) into (5.8), we get

wn+1
K =

3
∑

i=1

k+1
∑

β=1

2

3
wβŵ1wint (K)

i,β +
L

∑

γ=1

w̃γ wint
γ − �t

|K|
k+1
∑

β=1

wβ

(

3
∑

i=1

h(wint (K)
i,β ,wext (K)

i,β , νi)liK

)

=
L

∑

γ=1

w̃γ wint
γ +

k+1
∑

β=1

2

3
wβŵ1[H1,β + H2,β + H3,β]

where H1,β ,H2,β , and H3,β are

H1,β = wint (K)

1,β − 3�t

2ŵ1|K|
[

h(wint (K)

1,β ,wext (K)

1,β , ν1)l1
K + h(wint (K)

1,β ,wint (K)

2,β ,−ν1)l1
K

]

,

H2,β = wint (K)

2,β − 3�t

2ŵ1|K|
[

h(wint (K)

2,β ,wint (K)

1,β , ν1)l1
K + h(wint (K)

2,β ,wext (K)

2,β , ν2)l2
K

+ h(wint (K)

2,β ,wint (K)

3,β , ν3)l3
K

]

,

H3,β = wint (K)

3,β − 3�t

2ŵ1|K|
[

h(wint (K)

3,β ,wint (K)

2,β ,−ν3)l3
K + h(wint (K)

3,β ,wext (K)

3,β , ν3)l3
K

]

.

Under the CFL condition (5.7), H2,β is a formal first order positivity preserving scheme,
namely, the same type as (5.3), therefore H2,β ∈ G. H1,β and H3,β are formal one-
dimensional first order positivity preserving schemes (see the appendix in [14] and Re-
mark 2.4 of [23]), thus H1,β ,H3,β ∈ G.

Notice that wn+1
K is a convex combination of wint

γ and Hi,β . Since G is a convex set, we

have wn+1
K ∈ G. �

We can use SSP high order time discretization and it will keep the positivity preserving
property because of the convexity.

5.3 Limiter and Its Implementation for the DG Method

Given the DG polynomials qK(x, y) = (ρK(x, y),mK(x, y), nK(x, y),EK(x, y))T with
its cell average wn

K = (ρn
K,mn

K,nn
K,E

n

K)T ∈ G, we would like to modify qK(x, y) into
q̃K(x, y) such that it satisfies:

• Accuracy: For smooth solutions, the limiter does not destroy accuracy

‖̃qK(x, y) − qK(x, y)‖ = O(�xk+1), ∀(x, y) ∈ K,

where ‖ · ‖ denotes the Euclidean norm.
• Positivity: q̃K(x, y) ∈ G for any (x, y) ∈ SK

k .
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• Conservativity:

1

�x�y

∫∫

K

q̃K(x, y)dxdy = wn
K.

Define pn
K = (γ − 1)(E

n

K − 1
2 (mn

K)2/ρn
K − 1

2 (nn
K)2/ρn

K). Then ρn
K > 0 and pn

K > 0 for
all K . Assume there exists a small number 0 < ε � 1 such that ρn

K ≥ ε and pn
K ≥ ε for

all K .
The first step is to limit the density. Replace ρK(x, y) by

ρ̂K(x, y) = θ1(ρK(x, y) − ρn
K) + ρn

K, (5.10)

θ1 = min

{

ρn
K − ε

ρn
K − ρmin

,1

}

, ρmin = min
(x,y)∈SK

k

ρK(x, y). (5.11)

The second step is to enforce the positivity of the pressure. Let

q̂K(x, y) = (ρ̂K(x, y),mK(x, y), nK(x, y),EK(x, y))T .

For any fixed x = (x, y) ∈ G, denote q̂x = q̂K(x, y). Define

sx(t) = (1 − t)wn
K + t q̂x.

Then calculate

tx =
{

1, if p (̂qx) ≥ ε,

the solution of p (sx(t)) = ε, if p (̂qx) < ε.
(5.12)

We have the following new vector of polynomials

q̃K(x, y) = θ2

(

q̂K(x, y) − wn
K

) + wn
K, (5.13)

θ2 = min
x∈SK

k

tx. (5.14)

Following the same lines as in [23], we can show the limiting process (5.10), (5.11),
(5.13) and (5.14) returns q̃K(x, y) satisfying the accuracy, positivity and conservativity.

Assume ρn
K > 0 and pn

K > 0 for all K . With a fixed small number, for example, set
ε = 10−13, the algorithm flowchart of our algorithm for the Euler forward is

• In each cell, modify the density first:
– If ρn

K ≥ ε, then evaluate min(x,y)∈SK
k

ρK(x, y) and get ρ̂K(x, y) by (5.10) and (5.11), set

q̂K(x, y) = (ρ̂K(x, y),mK(x, y), nK(x, y),EK(x, y))T .
– If ρn

K < ε, set q̂K(x, y) = (ρn
K,mK(x, y), nK(x, y),EK(x, y))T

• Then modify the pressure:
– If pn

K ≥ ε, then solve tx in (5.12) and get q̃K(x, y) by (5.13) and (5.14).
– If pn

K < ε, set q̃K(x, y) = wn
K .

• Replace qK(x, y) by q̃K(x, y) for each K in the DG scheme with Euler forward in time
under the CFL condition (5.7).

For SSP high order time discretizations, we need to use the limiter in each stage for a
Runge-Kutta method or in each step for a multistep method.
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Table 1 Accuracy test for the linear equation ut + ux + uy = 0 at time t = 2, using the P 2 polynomial DG
scheme and the third order SSP Runge-Kutta method

Mesh size Without limiter With limiter

L∞ error Order L2 error Order L∞ error Order L2 error Order

1/8 3.48E–02 – 3.39E–03 – 4.98E–02 – 8.07E–03 –

1/16 5.42E–03 2.68 4.14E–04 3.04 5.72E–03 3.12 5.84E–04 3.79

1/32 6.99E–04 2.95 5.17E–05 3.00 7.00E–04 3.03 5.57E–05 3.39

1/64 8.96E–05 2.96 6.47E–06 3.00 8.96E–05 2.96 6.56E–06 3.09

1/128 1.14E–05 2.97 8.08E–07 3.00 1.14E–05 2.97 8.12E-07 3.06

6 Numerical Tests

In this section, we implement the third order P 2 DG method on triangular meshes with the
limiter described in the previous sections. The numerical flux is global Lax-Friedrichs. The
time discretization is third order SSP Runge-Kutta (2.14). All the meshes are unstructured,
generated by EasyMesh [13].

6.1 Scalar Conservation Laws

We test the accuracy for the limiter on scalar conservation laws.

Example 6.1 Linear equation ut + ux + uy = 0 with periodic boundary conditions.

The initial condition is u0(x, y) = sin(2π(x + y)) in the domain [0,1] × [0,1]. The
analytic solution is u(x, y, t) = sin(2π(x + y − 2t)). The time step is taken as that indicated
by the CFL condition (3.6). The errors of the DG method with and without the limiter are
listed in Table 1. We observe the designed order of accuracy for our method, justifying that
the linear scaling limiter (3.9) and (3.10) does not destroy the accuracy for smooth solutions.

Example 6.2 Burgers’ equation ut + (u2)x + (u2)y = 0 with periodic boundary conditions.

The initial condition is u0(x, y) = 0.5 sin(2π(x + y)) in the domain [0,1] × [0,1]. The
time step is taken as that indicated by the CFL condition (3.6). The errors of the DG method
with and without the limiter are listed in Table 2, at time t = 0.2, when the solution is still
smooth. For this nonlinear problem we can also see close to third order of accuracy. In
particular, the errors with or without the limiter are comparable.

6.2 Two-Dimensional Incompressible Euler Equation

In this subsection, we test the scheme in Sect. 4 solving the two-dimensional incompressible
Euler equation in vorticity stream-function formulation (4.1) and (4.2).

We use P 2 polynomial continuous Galerkin finite element method to solve the Poisson’s
equation, coupled with the P 2 DG scheme and the third order SSP Runge-Kutta method
with the linear scaling limiter for the time-dependent equation.

Example 6.3 Accuracy test, initial data is ω0(x, y) = −2 sin(x) sin(y) in the domain
[0,2π] × [0,2π] with periodic boundary conditions.
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Table 2 Accuracy test for the Burgers’ equation ut + (u2)x + (u2)y = 0 at time t = 0.2, using the P 2

polynomial DG scheme and the third order TVD Runge-Kutta method

Mesh size Without limiter With limiter

L∞ error Order L2 error Order L∞error Order L2 error Order

1/8 1.19E–02 – 1.25E–03 – 1.19E–02 – 1.32E–03 –

1/16 1.37E–03 2.87 1.64E–04 2.93 1.37E–03 3.12 1.66E–04 2.99

1/32 1.89E–04 2.85 2.50E–05 2.71 1.89E–04 2.85 2.51E–05 2.73

1/64 3.76E–05 2.33 4.09E–06 2.61 3.76E–05 2.33 4.09E–06 2.62

1/128 6.65E–06 2.50 5.97E–07 2.78 6.65E–06 2.50 5.97E–07 2.78

1/256 1.06E–06 2.65 8.67E–08 2.78 1.06E–06 2.65 8.67E–08 2.78

Table 3 Accuracy test for the
two-dimensional incompressible
Euler equation, at time t = 2π ,
using the P 2 DG scheme and the
third order SSP Runge-Kutta
method, with the limiter

Mesh size L∞ error Order L2 error Order

π/4 3.11E–02 – 6.14E–03 –

π/8 4.07E–03 2.93 6.51E–04 3.24

π/16 6.36E–04 2.68 8.28E–05 2.98

π/32 7.23E–05 3.14 9.93E–06 3.06

π/64 8.96E–06 3.01 1.23E–06 3.01

The time step is taken as that indicated by the CFL condition (4.8). The exact solution is
ω(x, y, t) = −2 sin(x) sin(y). We can see the designed third order of the accuracy for this
problem at time t = 2π in Table 3.

Example 6.4 The double shear layer problem in the domain [0,2π] × [0,2π] with periodic
boundary condition.

The initial condition is

ω(x, y,0) =
⎧

⎨

⎩

δ cos(x) − 1
ρ

sech2((y − π
2 )/ρ), y ≤ π,

δ cos(x) − 1
ρ

sech2((y − π
2 )/ρ), y > π,

with δ = 0.05 and ρ = π/15. In Figs. 3 and 4, we plot the contours of the vorticity ω at time
t = 6 and t = 8, computed by the scheme with and without the limiter. Although one can
barely see any difference between the results with the limiter and without the limiter from
the contour, we point out that the numerical solutions of the scheme with the limiter are in
the range [−δ − 1

ρ
, δ + 1

ρ
].

Example 6.5 The vortex patch problem in the domain [0,2π]×[0,2π] with periodic bound-
ary condition.

The initial condition is

ω(x, y,0) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−1, π
2 ≤ x ≤ 3π

2 , π
4 ≤ y ≤ 3π

4 ;
1, π

2 ≤ x ≤ 3π
2 , 5π

4 ≤ y ≤ 7π
4 ;

0, otherwise.
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Fig. 3 Vorticity at time t = 6, P 2, 30 equally spaced contours from −4.9 to 4.9

The contour plots of the vorticity ω at time t = 5 and t = 10 are given in Figs. 5 and 6,
computed by the schemes with and without the limiter. We also plot the cuts of the numerical
results along the diagonal in these figures. We can not see any significant difference between
the two results in the contour plots. But the cut plots show the advantage of the limiter, that
the numerical results with the limiter is strictly in the range [−1,1].

6.3 Compressible Euler Equations

In this section, the numerical scheme solving (5.1) is the third order DG method with TVB
limiter and the positivity preserving limiter. If discontinuities emerge in the solution, then
we should use the characteristic TVB limiter [3] in the DG scheme. Although the positivity
limiter can successfully preserve the positivity of density and pressure, the TVB limiter is
still necessary for shocks. The DG scheme without the TVB limiter will produce blow-ups
for the blast waves even if we use the positivity limiter.
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Fig. 4 Vorticity at time t = 8, P 2, 30 equally spaced contours from −4.9 to 4.9

In the TVB limiter, there is a TVB corrected minmod function defined by

m(a1, . . . , am) =
{

a1, if |a1| ≤ M�x2,

m(a1, . . . , am), otherwise,
(6.1)

with the minmod function m defined by

m(a1, . . . , am) =
{

s mini |ai |, if s = sign(a1) = · · · = sign(am),

0, otherwise.

M in (6.1) is a parameter. If M = 0, then the TVB limiter will reduce to the TVD limiter
which is only first order accurate at smooth extrema. The TVB limiter will not destroy
accuracy for large enough M , see [3] for more details of the TVB limiter. M will be taken
as 50 in the following examples, unless otherwise specified.

Example 6.6 Accuracy test, the domain is [0,1] × [0,1] and the boundary condition is pe-
riodic.
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Fig. 5 Vorticity of the vortex patch problem, at time t = 5. P 2. Top: 30 equally spaced contours from −1.1
to 1.1. Bottom: cut along the diagonal

The initial condition is

ρ0(x, y) = 1+0.99 sin(2π(x +y)), u0(x, y) = 1, v0(x, y) = 1, p0(x, y) = 1.

The exact solution is

ρ(x, y, t) = 1 + 0.99 sin(2π(x + y − 2t)), u(x, y, t) = 1, v(x, y, t) = 1,

p(x, y, t) = 1.

The minimum density of the exact solution is 0.01. We clearly observe the designed order
of accuracy for this low density problem in Table 4.

Example 6.7 The Sedov blast wave problem.
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Fig. 6 Vorticity of the vortex patch problem, at time t = 10. P 2. Top: 30 equally spaced contours from −1.1
to 1.1. Bottom: cut along the diagonal

Table 4 The third order DG
scheme for compressible Euler
equation with initial condition
1 + 0.99 sin(2π(x + y)) at
t = 0.1

Mesh size L1 error Order L∞ error Order

1/10 3.66E–3 – 2.60E–2 –

1/20 5.42E–4 2.75 5.28E–3 2.30

1/40 8.48E–5 2.68 6.45E–4 3.03

1/80 1.12E–5 2.91 1.01E–4 2.68

1/160 1.37E–6 3.03 1.36E–5 2.89

The Sedov point-blast wave is a typical low density problem involving shocks. The exact
solution formula can be found in [9, 17].

The computational domain is a square. For the initial condition, the density is 1, velocity
is zero, total energy is 10−12 everywhere except that the energy in the lower left corner cell
is the constant 0.244816

|K| , γ = 1.4. The numerical boundary treatment is, extending ρ, v,E
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Fig. 7 2D Sedov blast, plot of density. T = 1. P 2. Mesh size is 1/160. TVB limiter parameter M = 5000

of the DG solutions as even functions and u as an odd function with respect to the left
edge; extending ρ,u,E of the DG solutions as even functions and v as an odd function with
respect to the bottom edge (symmetry). See Fig. 7. The computational result is comparable to
those in the literature, e.g. [12] (which uses a Lagrangian method to compute this problem).

Example 6.8 An extreme Riemann problem with vacuum emerging.

Computational domain is a square. The initial condition is ρL = ρR = 7, uL = −1, uR =
1, vL = vR = 0, pL = pR = 0.2. The exact solution contains vacuum. Since there is no
shock, we do not need the TVB limiter for this problem. See Fig. 8 for the result of the DG
scheme with only the positivity limiter. We can see that the low pressure and the low density
are both captured very well. Without the positivity limiter, the DG scheme with the TVB
limiter will blow up for this example. Even though the TVD limiter can make it stable, the
result is more smeared when compared to the one with only the positivity limiter, see the
comparison in Fig. 8.

Example 6.9 A shock wave diffracts at a convex corner.
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Fig. 8 Double rarefaction problem. T = 0.6. Mesh size is 1/80. P 2. Cut at y = 0 for the 2D problem. The
solid line is the exact solution. Symbols are numerical solutions. The left figure is the comparison between the
result of the DG scheme with positivity limiter and the result of the DG scheme with TVD limiter. The right
figure is the magnified graph of the region in the square of the left figure

A shock wave diffracting at a sharp convex corner is a benchmark problem in compu-
tational fluid dynamics. Many experimental and numerical results have been published, for
example, [20, 21]. When the Mach number of the shock wave becomes larger, low density or
pressure may appear. A Mach 5 shock diffracting at a ninety-degree convex edge will cause
third order DG scheme blow up (see [3]). Our positivity preserving method on rectangular
meshes in [23] gives satisfying results for this problem.

Here we would like to study a Mach 10 shock diffracting at a 120◦ convex corner, whose
domain can not be discretized by a rectangular mesh any more. The contour plots of density
and pressure at T = 0.9 are given in Fig. 9, which look nice. See Fig. 10(a) for the illustration
of the computational domain. The initial condition is a pure right-moving shock of Mach =
10, initially located at x = 3.4 and 6 ≤ y ≤ 11, moving into undisturbed air ahead of the
shock with a density of 1.4 and pressure of 1. The high order DG method without the
positivity limiter may blow up since the lowest density is very close to zero.

Example 6.10 Schardin’s Problem: shock waves pass a finite wedge.

The problem is named after the famous experiment by Schardin in 1957 [16], a planar
shock passes a finite wedge and is reflected and diffracted. There are also many computa-
tional results, for instance, see [1, 15].

To validate our scheme, we first compute a Mach 1.34 shock passing an equilateral
triangle, for which the experimental and computational results are available in [1]. See
Fig. 10(b) for the computational domain. The initial condition is a pure right-moving shock
of Mach = 1.34, initially located at x = 1, moving into undisturbed air ahead of the shock
with a density of 1.4 and pressure of 1. The plot of density is shown in Fig. 11, which is
comparable to the results in the literature.

Next, we compute a Mach 10 shock passing the same triangle. See Fig. 10(c) for the
computational domain. The initial condition is a pure right-moving shock of Mach = 10,
initially located at x = 0.2, moving into undisturbed air ahead of the shock with a density
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Fig. 9 Mach 10 Shock diffracting at a 120◦ corner. T = 0.9. P 2. Mesh size is 1/20

of 1.4 and pressure of 1. For this problem, the density and pressure in the region behind the
triangle will drop close to zero after the diffracting of the shock, which will cause blow-ups
for many high order schemes. See Fig. 12 for our results, which look very good.

Remark All the examples in this subsection are computed in a parallel manner, implemented
by MPI. The original RKDG method with the TVB limiter is fully local thus high parallel
efficiency can be easily achieved. Our positivity limiter is also a purely local operation, so
we still have ideal parallel efficiency for the RKDG with TVB and positivity limiters.

7 Concluding Remarks

In [22], it is the first time that genuinely high order schemes on rectangular meshes are
obtained which satisfy strict maximum principle especially for multidimensional nonlinear
problems. In this paper, we have extended the results in [22] to a general framework of
constructing arbitrarily high order accurate maximum-principle-satisfying schemes for two-
dimensional scalar conservation laws on triangular meshes. The main difficulty is how to
decompose the cell average into a convex combination of the point values of the approxi-
mation polynomial, including all the Gauss quadrature points for each edge. We propose a
special quadrature which gives us a very natural extension of the method in [22] to triangu-
lar meshes. The implementation is quite easy. With the addition of the limiter in this paper,
which involves a small additional computational cost, to the DG scheme or the finite volume
scheme (e.g. ENO and WENO), the numerical solutions will satisfy the maximum principle
under suitable CFL condition.

In addition, we show that the same result holds for the DG or finite volume schemes solv-
ing the two dimensional incompressible Euler equations in the vorticity stream-function for-
mulation [10]. The result is also valid for any passive convection equation with divergence-
free velocity coefficients.

The same techniques also allow us to extend the positivity preserving method for com-
pressible Euler equation in [14, 23] to arbitrarily high order schemes on the triangular
meshes. The positivity preserving limiter is easy to implement and purely local. Follow-
ing the same idea on triangular meshes, it is also straightforward to extend all the results
to three-dimensional schemes on tetrahedral meshes without difficulty. The RKDG method
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Fig. 10 Illustration of the
computational domain and the
unstructured meshes

with TVB limiter and our positivity limiter is high order accurate, highly parallelizable and

very robust for compressible Euler equations.
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Fig. 11 Mach 1.34 shock passes an equilateral triangle. P 2. Mesh size is 1/160. Left: the contour plot of the
density. Right: the numerical Schlieren image of density
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Fig. 12 Mach 10 shock passes an equilateral triangle. P 2. Mesh size is 1/80. Left: the contour plot of the
density. Right: the numerical Schlieren image of density
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