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Abstract. In [14], Maire developed a class of cell-centered Lagrangian schemes for
solving Euler equations of compressible gas dynamics in cylindrical coordinates. These
schemes use a node-based discretization of the numerical fluxes. The control vol-
ume version has several distinguished properties, including the conservation of mass,
momentum and total energy and compatibility with the geometric conservation law
(GCL). However it also has a limitation in that it cannot preserve spherical symmetry
for one-dimensional spherical flow. An alternative is also given to use the first order
area-weighted approach which can ensure spherical symmetry, at the price of sacrific-
ing conservation of momentum. In this paper, we apply the methodology proposed in
our recent work [8] to the first order control volume scheme of Maire in [14] to obtain
the spherical symmetry property. The modified scheme can preserve one-dimensional
spherical symmetry in a two-dimensional cylindrical geometry when computed on an
equal-angle-zoned initial grid, and meanwhile it maintains its original good properties
such as conservation and GCL. Several two-dimensional numerical examples in cylin-
drical coordinates are presented to demonstrate the good performance of the scheme
in terms of symmetry, non-oscillation and robustness properties.

AMS subject classifications: 65M06, 76M20

Key words: Control volume Lagrangian scheme, spherical symmetry preservation, conservative,
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1 Introduction

The Lagrangian method is one of the main numerical methods for simulating multidi-
mensional fluid flow, in which the mesh moves with the local fluid velocity. It is widely
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used in many fields for multi-material flow simulations such as astrophysics, inertial con-
finement fusion (ICF) and computational fluid dynamics (CFD), due to its distinguished
advantage in capturing material interfaces automatically and sharply. There are two
kinds of Lagrangian methods. One is built on a staggered discretization in which ve-
locity (momentum) is stored at vertices, while density and internal energy are stored at
cell centers. The density/internal energy and velocity are solved on two different control
volumes, see, e.g., [1, 3, 18]. This kind of Lagrangian schemes usually uses an artificial
viscosity term, for example [4,5,18], to ensure the dissipation of kinetic energy into inter-
nal energy through shock waves. The other is based on the cell-centered discretization in
which density, momentum and total energy are all centered within cells and evolved on
the same control volume, e.g., [6, 7, 10, 13, 15, 17]. This kind of schemes does not require
the addition of an explicit artificial viscosity for shock capturing. Numerical diffusion is
implicitly contained in the Riemann solvers.

It is a critical issue for a Lagrangian scheme to keep certain symmetry in a coordinate
system different from that symmetry. For example, in the simulation of implosions, since
the small deviation from spherical symmetry due to numerical errors may be amplified
by Rayleigh-Taylor or other instabilities which may lead to unexpected large errors, it
is very important for the scheme to keep the spherical symmetry. In the past several
decades, many research works have been performed concerning the spherical symmetry
preservation in two-dimensional cylindrical coordinates. The most widely used method
that keeps spherical symmetry exactly on an equal-angle-zoned grid in cylindrical co-
ordinates is the area-weighted method [2, 3, 14, 20, 22, 23]. In this approach one uses a
Cartesian form of the momentum equation in the cylindrical coordinate system, hence in-
tegration is performed on area rather than on the true volume in cylindrical coordinates.
However, these area-weighted schemes have a flaw in that they may violate momentum
conservation. Margolin and Shashkov used a curvilinear grid to construct symmetry-
preserving discretizations for Lagrangian gas dynamics [16]. In our recent work [8], we
have developed a new cell-centered control volume Lagrangian scheme for solving Eu-
ler equations of compressible gas dynamics in two-dimensional cylindrical coordinates.
Based on the strategy of local coordinate transform and a careful treatment of the source
term in the momentum equation, the scheme is designed to be able to preserve one-
dimensional spherical symmetry in a two-dimensional cylindrical geometry when com-
puted on an equal-angle-zoned initial grid. A distinguished feature of our scheme is
that it can keep both the symmetry and conservation properties on the straight-line grid.
However, our scheme in [8] does not satisfy the geometric conservation law (GCL).

In [14], Maire developed a class of high order cell-centered Lagrangian schemes for
solving Euler equations of compressible gas dynamics in cylindrical coordinates. A node-
based discretization of the numerical fluxes is given which makes the finite volume
scheme compatible with the geometric conservation law. Both the control volume and
area-weighted discretizations of the momentum equations are presented in [14]. The
control volume scheme is conservative for mass, momentum and total energy, and satis-
fies a local entropy inequality in its first-order semi-discrete form. However, it does not
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preserve spherical symmetry. On the other hand, the first order area-weighted scheme
is conservative for mass and total energy and preserves spherical symmetry for one-
dimensional spherical flow on equal-angle polar grid, but it cannot preserve the mo-
mentum conservation and does not satisfy the entropy inequality. Numerical tests are
given in [14] which verify the robustness of the schemes.

In this paper, we attempt to apply the strategy proposed in [8] on Maire’s first or-
der control volume Lagrangian scheme [14] to improve its property in symmetry preser-
vation while keeping its main original good properties including GCL, conservation of
mass, momentum and total energy.

An outline of the rest of this paper is as follows. In Section 2, we describe the mod-
ified scheme and discuss some critical issues such as GCL, conservation and spherical
symmetry preservation about the scheme. In Section 3, numerical examples are given to
demonstrate the performance of the new modified cell-centered Lagrangian scheme. In
Section 4 we will give concluding remarks.

2 The improvement on the cell-centered control volume

Lagrangian scheme of Maire in cylindrical coordinates

2.1 The compressible Euler equations in a Lagrangian formulation in
cylindrical coordinates

The compressible inviscid flow is governed by the Euler equations which have the fol-
lowing integral form in the Lagrangian formulation



































d

dt

∫∫

Ω(t)
ρdV=0,

d

dt

∫∫

Ω(t)
ρudV=−

∫

Γ(t)
Pnds,

d

dt

∫∫

Ω(t)
ρEdV=−

∫

Γ(t)
Pu·nds,

(2.1)

where ρ is the density, P is the pressure, u is the vector of velocity, E is the specific total
energy, and n is the unit outward normal to the boundary Γ(t).

The geometric conservation law refers to the fact that the rate of change of a La-
grangian volume should be computed consistently with the node motion, which can be
formulated as

d

dt

∫∫

Ω(t)
dV=

∫

Γ(t)
u·nds. (2.2)

In this paper, we seek to study the axisymmetric compressible Euler system. Its specific
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form in the cylindrical coordinates is as follows



































































d

dt

∫∫

Ω(t)
ρrdrdz=0,

d

dt

∫∫

Ω(t)
rdrdz=

∫

Γ(t)
u·nrdl,

d

dt

∫∫

Ω(t)
ρuzrdrdz=−

∫

Γ(t)
Pnzrdl,

d

dt

∫∫

Ω(t)
ρurrdrdz=−

∫

Γ(t)
Pnrrdl+

∫∫

Ω(t)
Pdrdz,

d

dt

∫∫

Ω(t)
ρErdrdz=−

∫

Γ(t)
Pu·nrdl,

(2.3)

where z and r are the axial and radial directions respectively. u=(uz,ur), where uz, ur are
the velocity components in the z and r directions respectively, and n=(nz,nr) is the unit
outward normal to the boundary Γ(t) in the z-r coordinates.

The set of equations is completed by the addition of an equation of state (EOS) with
the following general form

P=P(ρ,e), (2.4)

where e=E−|u|2/2 is the specific internal energy. Especially, if we consider the ideal gas,
then the equation of state has a simpler form

P=(γ−1)ρe,

where γ is a constant representing the ratio of specific heat capacities of the fluid.

In the next subsection, we will first summarize the control volume scheme of Maire
in [14].

2.2 The control volume scheme of Maire in cylindrical coordinates

2.2.1 Notations and assumptions

We will mostly use the notations in [14]. The 2D spatial domain Ω is discretized into
quadrangular computational cells. Each quadrangular cell is assigned a unique index c,
and is denoted by Ωc(t). The boundary of the cell Ωc is denoted as ∂Ωc. Each vertex of
the mesh is assigned a unique index p and we denote the counterclockwise ordered list
of the vertices of the cell Ωc by p(c). The cell Ωc is surrounded by four cells denoted as
Ωb, Ωr, Ωt, Ωl which correspond to the bottom, right, top and left positions respectively.
Ac denotes the area of the cell Ωc. Vc is the volume of the cell, that is, the volume of the
circular ring obtained by rotating this cell around the azimuthal z-axis (without the 2π
factor).
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Figure 1: Notations related to the cell Ωc.

Using these notations, the set of Eq. (2.3) can be rewritten in the following control
volume formulation

mc
d

dt

( 1

ρc

)

=
∫

∂Ωc

u·nrdl, mc
d

dt
uz

c =−
∫

∂Ωc

Pnzrdl, (2.5a)

mc
d

dt
ur

c=−
∫

∂Ωc

Pnrrdl+
∫∫

Ωc

Pdrdz, mc
d

dt
Ec=−

∫

∂Ωc

Pu·nrdl, (2.5b)

where mc=
∫∫

Ωc
ρrdrdz denotes the mass in the cell Ωc, which keeps constant during the

time marching according to the first equation in (2.3). ρc, uc = (uz
c,ur

c) and Ec represent
the density, velocity and total energy of the cell Ωc which are defined as follows

ρc =
1

Vc

∫∫

Ωc

ρrdrdz, uz
c =

1

mc

∫∫

Ωc

ρuzrdrdz,

ur
c=

1

mc

∫∫

Ωc

ρurrdrdz, Ec=
1

mc

∫∫

Ωc

ρErdrdz.

The coordinates and velocity of the point p are denoted as (zp,rp) and up = (uz
p,ur

p) re-

spectively. lpp− and lpp+ denote the lengths of the edges [p−,p] and [p,p+], and npp− and
npp+ are the corresponding unit outward normals, where p−,p+ are the two neighboring
points of the point p (see Fig. 1).

In the cell-centered control volume Lagrangian scheme presented in [14], the discrete
gradient operators over the cell Ωc are constructed by introducing two nodal pressures
at each node p of the cell Ωc. These pressures are denoted as πc

p and πc
p, see Fig. 1. They

are related to the two edges sharing the node p. The half lengths and the unit outward
normals of the edges connected to the point p are denoted as follows

lc
p=

1

2
lpp− , lc

p=
1

2
lpp+ , nc

p=npp− , nc
p=npp+ . (2.6)
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The pseudo radii rc
p and rc

p are defined as

rc
p=

1

3
(2rp+rp−), rc

p =
1

3
(2rp+rp+). (2.7)

2.2.2 Computation of nodal velocity and pressure

In the paper [14], the specific way in determining the nodal velocity and pressure guar-
antees that the scheme satisfies the following sufficient condition for total energy conser-
vation

∑
c∈c(p)

(rc
plc

pπc
pnc,r

p +rc
plc

pπc
pnc,r

p )=0, (2.8)

where c(p) is the set of the cells around the point p.

The specific formulas to calculate the nodal velocity up and nodal pressures πc
p and

πc
p are as follows

up=M−1
p ∑

c∈c(p)

(

rc
plc

pnc
p+rc

plc
pnc

p

)

Pc+uc, (2.9a)

Pc−πc
p= zc

p(up−uc)·n
c
p, Pc−πc

p= zc
p(up−uc)·n

c
p, (2.9b)

where Pc is the pressure of the cell Ωc determined by {ρc,uc,Ec}. The 2×2 matrices Mpc

and Mp are denoted as

Mpc= zc
prc

plc
p

(

nc
p⊗nc

p

)

+zc
prc

plc
p

(

nc
p⊗nc

p

)

, Mp= ∑
c∈c(p)

Mpc, (2.10)

where zc
p and zc

p are the mass fluxes swept by the waves which can be determined in

several ways, such as the Dukowicz approach or the acoustic approach. We refer the
reader to the paper [14] for more details. In this paper, we will only use the acoustic
approach, that is

zc
p = zc

p=ρcac, (2.11)

where ac is the local isentropic speed of sound.

After we get the nodal velocity up at the point p, the point moves with the following
local kinematic equation

d

dt
xp=up, xp(0)=x0

p, (2.12)

where xp = (zp,rp) defines the position of the point p at t > 0 and x0
p denotes its initial

position.
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2.2.3 Spatial discretization

The semi-discrete finite volume scheme of the governing equations (2.5) is of the follow-
ing form

mc
d

dt

( 1

ρc

)

− ∑
p∈p(c)

(

rc
plc

pnc
p+rc

plc
pnc

p

)

·up=0, (2.13a)

mc
d

dt
uz

c+ ∑
p∈p(c)

(

rc
plc

pπc
pnc,z

p +rc
plc

pπc
pnc,z

p

)

=0, (2.13b)

mc
d

dt
ur

c+ ∑
p∈p(c)

(

rc
plc

pπc
pnc,r

p +rc
plc

pπc
pnc,r

p

)

−AcPc=0, (2.13c)

mc
d

dt
Ec+ ∑

p∈p(c)

(

rc
plc

pπc
pnc

p+rc
plc

pπc
pnc

p

)

·up=0, (2.13d)

where nc,z
p ,nc,z

p and nc,r
p ,nc,r

p are the components of nc
p and nc

p along the z and r directions

respectively.

2.2.4 Time discretization

The time discretization for the equation of nodal movement (2.12) is the Euler forward
method given as follows

zn+1
p = zn

p+∆tnuz,n
p , rn+1

p = rn
p+∆tnur,n

p , (2.14)

where uz,n
p ,ur,n

p are the z and r components of up at the nth time step.
As a first order scheme, the time marching for the semi-discrete scheme (2.5) can also

be accomplished by the Euler forward method. Thus the fully discretized scheme can be
written as follows

mc

















1

ρn+1
c

−
1

ρn
c

uz,n+1
c −uz,n

c
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c −En

c
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−∑p∈p(c)

(

rc,n
p lc,n

p nc,n
p +rc,n

p lc,n
p nc,n

p

)

·un
p

∑p∈p(c)

(

rc,n
p lc,n

p πc,n
p nc,z,n

p +rc,n
p lc,n

p πc,n
p nc,z,n

p

)

∑p∈p(c)

(

rc,n
p lc,n

p πc,n
p nc,r,n

p +rc,n
p lc,n

p πc,n
p nc,r,n

p

)

∑p∈p(c)

(

rc,n
p lc,n

p πc,n
p nc,n

p +rc,n
p lc,n

p πc,n
p nc,n

p

)

·un
p















+











0

0

An
c Pn

c

0





















. (2.15)

Here the variables with the superscripts n and n+1 represent the values of the corre-
sponding variables at the nth and (n+1)th time steps respectively. The scheme (2.15) is
consistent with the Euler equations (2.5) and has first order accuracy in space and time.
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In [14], the time step ∆tn is controlled by both the CFL condition and the criterion on
the variation of volume, that is, the CFL condition is satisfied as follows

∆te =Cemin
c

( ln
c

an
c

)

,

where ln
c is the shortest edge length of the cell Ωc, and an

c is the sound speed within
this cell. Ce is the Courant number which is set to be 0.5 unless otherwise stated in the
following tests.

The criterion on the variation of volume is accomplished as

∆tv =Cv

{

Vn
c

∣

∣

∣

d

dt
Vc(t

n)
∣

∣

∣

−1}

,

where
d

dt
Vc(t

n)=
Vn+1

c −Vn
c

∆tn
.

The parameter Cv=0.1 is used in the numerical simulations.
Finally, the next time step ∆tn+1 is given by

∆tn+1=min
(

∆te,∆tv,Cm∆tn
)

,

where Cm=1.01.

2.3 The improvement of the scheme on the symmetry property

The control volume scheme (2.15) is theoretically proven to have many good properties
such as the conservation, GCL and entropy inequality, and is also verified to have good
performance in practical simulations. However, it has a limitation in not being able to
preserve the spherical symmetry. In this paper, we attempt to improve the scheme in this
aspect using the strategy of our recent work [8]. Somewhat differently from the approach
of the explicit local coordinate transform in [8], here we perform the improvement on
the scheme (2.13) in z-r coordinates directly and use local coordinate transform only in
the symmetry-preserving proof but not in the actual implementation of the algorithm.
In fact, the key ingredient to make the scheme satisfy the spherical symmetry property
in a 2D cylindrical geometry is the treatment of the source term. To be more specific, we
replace Pc in the source term of the r-momentum equation in (2.13) by Pa which is defined
as follows

Pa=
1

4

(

πc
1
+πc

2+πc
3
+πc

4

)

, (2.16)

where πc
1
, πc

2, πc
3

and πc
4 are the values of pressure related to the two radial edges of the

cell Ωc (see Fig. 2). We can easily see that AcPa approximates
∫∫

Ωc
Pdrdz with the same

order as AcPc.
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Figure 2: Equi-angular polar grid for the cylindrical geometry.

Thus, the difference between the modified scheme and the original scheme lies only
in the expression of the r-momentum equation. In summary, the modified semi-discrete
scheme can be expressed as follows

mc
d

dt

( 1

ρc

)

− ∑
p∈p(c)

(

rc
plc

pnc
p+rc

plc
pnc

p

)

·up=0, (2.17a)

mc
d

dt
uz

c+ ∑
p∈p(c)

(

rc
plc

pπc
pnc,z

p +rc
plc

pπc
pnc,z

p

)

=0, (2.17b)

mc
d

dt
ur

c+ ∑
p∈p(c)

(

rc
plc

pπc
pnc,r

p +rc
plc

pπc
pnc,r

p

)

−AcPa=0, (2.17c)

mc
d

dt
Ec+ ∑

p∈p(c)

(

rc
plc

pπc
pnc

p+rc
plc

pπc
pnc

p

)

·up=0. (2.17d)

The fully discretized modified scheme is of the following expression
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. (2.18)
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2.3.1 The issue of conservation, GCL and entropy inequality

Compared with the scheme (2.15) of Maire [14], we only use an alternative approach
(2.16) to the pressure appearing in the source term of the r-momentum equation to guar-
antee the scheme’s spherical symmetry preservation property that will be shown in the
following section. Since we do not make any change on any other terms in the original
scheme (2.15), the modified scheme (2.18) can also satisfy the conservation for the mass,
z-momentum and total energy just as the original scheme. As to the conservation of the
r-momentum, summing the r-momentum equation in (2.17) over all the cells, we have

d

dt

(

∑
c

mcu
r
c

)

=−∑
c

[

∑
p∈p(c)

(

rc
plc

pπc
pnc,r

p +rc
plc

pπc
pnc,r

p

)

−AcPa

]

. (2.19)

Switching the summation over cells and the summation over nodes at the right-hand side
of Eq. (2.19), it can be rewritten as

d

dt

(

∑
c

mcur
c

)

=−∑
p

∑
c∈c(p)

(

rc
plc

pπc
pnc,r

p +rc
plc

pπc
pnc,r

p

)

+∑
c

AcPa. (2.20)

Using the sufficient condition for total energy conservation (2.8), we have

d

dt

(

∑
c

mcur
c

)

=∑
c

AcPa. (2.21)

Eq. (2.21) refers to the conservation of the r-momentum, which, together with the conser-
vation of the mass, z-momentum and total energy, guarantees the modified scheme (2.18)
satisfies the Lax-Wendroff theorem.

Since the scheme (2.18) employs the same compatible discretization of the geometry
conservation law (GCL) as that in the original scheme (2.15), it satisfies GCL naturally.

As to the entropy inequality, since we use the formulation of (2.16) to determine the
pressure in the source term rather than Pc, we can not write a similar entropy inequality
for the scheme (2.17) as that for the original scheme (2.13).

2.3.2 The issue of symmetry preservation

In this section, we will prove the modified scheme (2.18) can keep the spherical symmetry
property computed on an equal-angle-zoned initial grid.

Theorem 2.1. The modified scheme (2.18) can keep the one-dimensional spherical symmetry
property computed on an equal-angle zoned initial grid. That is, if the solution has one-dimensional
spherical symmetry at the initial time, then the computational solution will keep this symmetry
with the time marching.

Proof. Without loss of the generality, we only need to prove the solution of the modified
scheme (2.18) can keep the spherical symmetry at the (n+1)th time step, if the solution is
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known to be of spherical symmetry at the nth time step. Notice that, for the Lagrangian
solution, symmetry preserving refers to the evolution of both the conserved variables
and the grid.

1. Notations for the variables defined in the cell’s local ξ-θ coordinates.

To facilitate the proof, we first simplify the vertex indices of the cell Ω(c) as p=1,2,3,4
(shown in Fig. 2) and rewrite the momentum equations in (2.17) along the cell’s local ξ-θ
coordinates. The rewritten semi-discrete scheme is of the following

mc
d

dt

( 1

ρc

)

= ∑
p=1,4

(rc
plc

pnc
p+rc

plc
pnc

p)·up, (2.22a)

mc
d

dt
u

ξ
c =− ∑

p=1,4

(

rc
plc

pπc
pn

c,ξ
p +rc

plc
pπc

pn
c,ξ
p

)

+AcPasinθc, (2.22b)

mc
d

dt
uθ

c =− ∑
p=1,4

(

rc
plc

pπc
pnc,θ

p +rc
plc

pπc
pnc,θ

p

)

+AcPacosθc, (2.22c)

mc
d

dt
Ec=− ∑

p=1,4

(

rc
plc

pπc
pnc

p+rc
plc

pπc
pnc

p

)

·up, (2.22d)

where ξ is the radial direction passing through the cell center and the origin. For an
equal-angle-zoned grid, the cell shown in Fig. 2 is an equal-sided trapezoid, it has the
property that the angles between ξ and the two equal sides of the cell are the same. θ is

the angular direction which is orthogonal to ξ, see Fig. 2. u
ξ
c and uθ

c are the component

values of velocity in the local ξ and θ directions respectively, n
c,ξ
p ,n

c,ξ
p and nc,θ

p ,nc,θ
p are the

components of nc
p and nc

p along ξ and θ directions respectively. θc is set to be the angle

between the local ξ direction and the z coordinate.
For the convenience of notation, we adopt the convention that variables without the

superscript n+1 are those at the nth time step. Assume that at the nth time step the
grid is a polar grid with equal angles (see Fig. 2) and the cell averages of the conserved
variables including density, momentum and total energy are symmetrical on this grid,
namely these variables in the cells with the same radial position are identical. Consider
the cell Ωc and its neighboring cells, in the local ξ-θ coordinates of the cell Ωc, we have



















ρc =ρt=ρb =ρ1, ρl =ρ0, ρr =ρ2,

Pc=Pt=Pb=P1, Pl =P0, Pr =P2,

ξ1= ξ4= ξl , ξ2= ξ3= ξr ,

uc=(u1,0), ul =(u0,0), ur =(u2,0),

(2.23)

where {ξk,k = 1,4} are the distance of the four vertices of the cell Ωc from the origin
respectively, and {uk,k=0,2} are the magnitude of the cell velocity in the relevant cells.

Next we explain some notations concerning the grid geometry. For the cell Ωc, the
lengths of the cell edges are denoted as {l12,l23,l34,l41}. Since the grid is symmetrical, we
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can define them as

l12= l34= lm, l14= ll , l23= lr. (2.24)

For the convenience of proof, in the following, we will project all the variables relative
to the determination of the cell’s and nodal velocity to the cell’s local ξ-θ coordinates. For
example, the outward normal direction of the cell’s four edges in the local ξ-θ coordinates
are as follows

n12=(nξ
12,nθ

12)=
(

−sin
∆θ

2
,−cos

∆θ

2

)

, n23=(nξ
23,nθ

23)=(1,0),

n34=(nξ
34,nθ

34)=
(

−sin
∆θ

2
,cos

∆θ

2

)

, n41=(nξ
41,nθ

41)=(−1,0).

2. The proof of grid symmetry preservation.

In the case of a one-dimensional spherical flow computed on an equal angle polar
grid, Maire in the paper [14] has already given the proof that the nodal velocity given
by (2.9)-(2.11) is radial and independent of the angular cell position which means the
symmetry preservation of the grid. From the results of the vertex velocity shown in [14],
we can deduce that the velocities at each vertex for the cell Ωc in its local ξ-θ coordinates
are of the following form

u
ξ
1 =u

ξ
4 =

z0u0+z1u1−(P1−P0)

z0+z1
, uθ

1=−uθ
4 =−

z0u0+z1u1−(P1−P0)

z0+z1
tan

∆θ

2
, (2.25a)

u
ξ
2 =u

ξ
3 =

z1u1+z2u2−(P2−P1)

z1+z2
, uθ

2=−uθ
3 =−

z1u1+z2u2−(P2−P1)

z1+z2
tan

∆θ

2
, (2.25b)

where z0 = ρ0a0, z1 = ρ1a1 and z2 = ρ2a2. {a0,a1,a2} are the speeds of sound in the cells
{Ωl ,Ωc,Ωr} respectively.

3. The proof of symmetry preservation for the conserved variables.

To specific, we need to prove the symmetry preservation of the evolved variables such
as density, cell velocity and total energy.

We will first write each variable appearing at the right-hand side of (2.22) in details.
By the following simple manipulation, the nodal pressures can be obtained

πc
1=P1−z1(u1−uc)·n41=

z1P0+z0P1−z0z1(u1−u0)

z0+z1
, (2.26a)

πc
1
=P1−z1(u1−uc)·n12=P1−z1u1sin

∆θ

2
, (2.26b)

where uc=(u1,0) and u1=(uξ
1,uθ

1).
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Similarly

πc
2=πc

3
=πc

4=πc
1
=P1−z1u1sin

∆θ

2
, (2.27a)

πc
4
=πc

1=
z1P0+z0P1−z0z1(u1−u0)

z0+z1
, (2.27b)

πc
2
=πc

3=
z2P1+z1P2−z1z2(u2−u1)

z1+z2
. (2.27c)

For the simplicity of description, we denote

Pm=P1−z1u1sin
∆θ

2
, Pl =

z1P0+z0P1−z0z1(u1−u0)

z0+z1
,

Pr =
z2P1+z1P2−z1z2(u2−u1)

z1+z2
, ul =

z0u0+z1u1−(P1−P0)

z0+z1
,

ur =
z1u1+z2u2−(P2−P1)

z1+z2
.

By the formula (2.16), we have

Pa=Pm=P1−z1u1sin
∆θ

2
. (2.28)

The other corresponding variables appearing at the right hand side of (2.22) can be de-
scribed in the following details

lc
1= lc

4
=

1

2
ll , lc

1
= lc

2= lc
3
= lc

4=
1

2
lm, lc

2
= lc

3=
1

2
lr, (2.29a)

(

n
c,ξ
1 ,nc,θ

1

)

=
(

n
c,ξ

4
,nc,θ

4

)

=n41=(−1,0), (2.29b)

(

n
c,ξ
2 ,nc,θ

2

)

=
(

n
c,ξ

1
,nc,θ

1

)

=n12=
(

−sin
∆θ

2
,−cos

∆θ

2

)

, (2.29c)

(

n
c,ξ
3 ,nc,θ

3

)

=
(

n
c,ξ

2
,nc,θ

2

)

=n23=(1,0), (2.29d)

(

n
c,ξ
4 ,nc,θ

4

)

=
(

n
c,ξ

3
,nc,θ

3

)

=n34=
(

−sin
∆θ

2
,cos

∆θ

2

)

, (2.29e)

rc
1
+rc

2 =(ξl+ξr)sin
(

θc−
∆θ

2

)

, rc
3
+rc

4 =(ξl+ξr)sin
(

θc+
∆θ

2

)

, (2.29f)

rc
2
+rc

3 =2sinθc cos
∆θ

2
ξr, rc

1+rc
4
=2sinθccos

∆θ

2
ξl . (2.29g)

Substituting (2.26)-(2.29) into (2.22), we get

mc
d

dt













ρ−1
c

u
ξ
c

uθ
c

Ec













=























sinθc cos
∆θ

2
(ξrlrur−ξl llul)

sinθc

[1

2
(ξl+ξr)lmPmsin∆θ+ξl ll Pl−ξrlrPr

]

+AcPmsinθc

−
1

2
(ξl+ξr)lmPmsin∆θcosθc+AcPmcosθc

−sinθc cos
∆θ

2
(ξrlrur Pr−ξl llul Pl)
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=

















sinθc cos
∆θ

2
(ξr lrur−ξl llul)

sinθc(−ξr lrPr+ξl llPl+2AcPm)

−AcPm cosθc+AcPm cosθc

−sinθc cos
∆θ

2
(ξr lrurPr−ξl llulPl)

















=sinθc

















cos
∆θ

2
(ξr lrur−ξlllul)

−(ξrlrPr−ξl llPl)+2AcPm

0

−cos
∆θ

2
(ξr lrurPr−ξl llulPl)

















. (2.30)

Since the cell is an equal-sided trapezoid, we have

mc=ρ1Vc=ρ1rc Ac=ρ1ξc Acsinθc, (2.31)

where rc and ξc are the values of r and ξ at the cell center respectively.
Thus from (2.30) and (2.31), we have

d

dt













ρ−1
c

u
ξ
c

uθ
c

Ec













=
1

ρ1ξc Ac

















cos
∆θ

2
(ξrlrur−ξl llul)

−(ξrlrPr−ξl ll Pl)+2AcPm

0

−cos
∆θ

2
(ξrlrurPr−ξl llul Pl)

















. (2.32)

Finally we obtain the modified scheme (2.18) in the following detailed expression













(

ρn+1
c

)−1

u
ξ,n+1
c

uθ,n+1
c

En+1
c













=













ρ−1
c

u
ξ
c

uθ
c

Ec













+
∆t

ρ1ξc Ac

















cos
∆θ

2
(ξrlrur−ξl llul)

−(ξrlrPr−ξl ll Pl)+2AcPm

0

−cos
∆θ

2
(ξrlrur Pr−ξl llul Pl)

















. (2.33)

From the formula (2.33), we can see the cell velocity is radial and the magnitude of all
the conserved variables is independent of the angular position of the cell at the (n+1)th
time step. The proof of the symmetry preservation property is thus completed.

So, the theorem is proved.

3 Numerical results in the two-dimensional cylindrical

coordinates

In this section, we perform numerical experiments in two-dimensional cylindrical coor-
dinates. Purely Lagrangian computation, the ideal gas with γ= 5/3, the initially equal-
angle polar grid and the modified scheme (2.18) are used in the following tests unless
otherwise stated. Reflective boundary conditions are applied to the z and r axes in all the
tests. For the velocity of vertices located at the z coordinate, we obtain it by imposing the
boundary condition of zero normal velocity into the solver (2.9).
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3.1 Accuracy test

We test the accuracy of the modified scheme (2.18) on a free expansion problem given
in [21]. The initial computational domain is [0,1]×[0,π/2] defined in the polar coordi-
nates. The gas is initially at rest with uniform density ρ=1 and pressure has the following
distribution,

p=1−(z2+r2).

The analytical solution of the problem is as follows,

R(t)=
√

1+2t2, uξ(z,r,t)=
2t

1+2t2

√

z2+r2,

ρ(z,r,t)=
1

R3
, p(z,r,t)=

1

R5

(

1−
z2+r2

R2

)

,

where R is the radius of the free outer boundary and uξ represents the value of velocity
in the radial direction.

We perform the test both on an initially equal-angle polar grid and a random polar
grid, see Fig. 3. For the random polar grid, each internal grid point is obtained by an
independent random perturbation on the angular direction from a equal-angle polar grid
which can be expressed as follows

θk,l =

{

(l−1)∆θ, k=1,K or l=1,L,

(l−1)∆θ+c1ck,l∆θ, else,

zk,l =
k−1

K−1
cosθk,l , rk,l =

k−1

K−1
sinθk,l , 1≤ k≤K, 1≤ l≤ L,

where (zk,l ,rk,l) is the z-r coordinate of the grid points with the sequential indices (k,l),
k=1,··· ,K, l=1,··· ,L in the radial and angular directions respectively. K,L represent the
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Figure 3: The initial grid of the free expansion problem with 20×20 cells. Left: equal-angle polar grid; Right:
random polar grid.
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Figure 4: The grid of the free expansion problem with 20×20 cells at t=1. Left: equal-angle polar grid; Right:
random polar grid.

number of grid points in the above mentioned two directions. ∆θ =π/2(L−1). −0.5≤
ck,l ≤0.5 is the random number, c1 is a parameter which is chosen as 0.5 in this test.

Free boundary condition is applied on the outer boundary. Fig. 4 shows the final
grid. We can clearly observe symmetry in the left figure. The errors of the scheme on

Table 1: Errors of the scheme in 2D cylindrical coordinates for the free expansion problem using K×L initially
equal-angle polar grid cells.

K=L Norm Density order Momentum order Energy order
20 L1 0.97E-2 0.13E-1 0.64E-2

L∞ 0.16E-1 0.19E-1 0.11E-1
40 L1 0.53E-2 0.88 0.67E-2 0.91 0.34E-2 0.90

L∞ 0.77E-2 1.03 0.11E-1 0.83 0.52E-2 1.03
80 L1 0.28E-2 0.91 0.35E-2 0.95 0.18E-2 0.94

L∞ 0.36E-2 1.07 0.58E-2 0.90 0.28E-2 0.89
160 L1 0.15E-2 0.93 0.18E-2 0.97 0.92E-3 0.96

L∞ 0.19E-2 0.93 0.30E-2 0.94 0.15E-2 0.93

Table 2: Errors of the scheme in 2D cylindrical coordinates for the free expansion problem using K×L initially
random polar grid cells.

K=L Norm Density order Momentum order Energy order
20 L1 0.94E-2 0.12E-1 0.62E-2

L∞ 0.16E-1 0.19E-1 0.11E-1
40 L1 0.50E-2 0.91 0.65E-2 0.93 0.33E-2 0.92

L∞ 0.84E-2 0.89 0.12E-1 0.75 0.67E-2 0.69
80 L1 0.27E-2 0.89 0.34E-2 0.95 0.17E-2 0.93

L∞ 0.47E-2 0.86 0.62E-2 0.89 0.35E-2 0.91
160 L1 0.14E-2 0.92 0.17E-2 0.97 0.88E-3 0.95

L∞ 0.25E-2 0.89 0.35E-2 0.84 0.19E-2 0.92
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these two kinds of grid at t=1 are listed in Tables 1-2 which are measured on the interval
[K/5,4K/5]×[1,L] to remove the influence from the boundary. From both of the tables,
we can see the expected first order accuracy for all the evolved conserved variables.

3.2 Non-oscillatory tests

Example 3.1. (The Noh problem in a cylindrical coordinate system on the polar grid [19]).
We test the Noh problem which is a well known test problem widely used to validate

Lagrangian scheme in the regime of strong shock waves. In this test case, a cold gas
with unit density and zero internal energy is given with an initial inward radial velocity
of magnitude 1. The equal-angle polar grid is applied in the 1/4-circle computational
domain defined in the polar coordinates by [0,1]×[0,π/2]. The shock is generated in
a perfect gas by bringing the cold gas to rest at the origin. The analytical post shock
density is 64 and the shock speed is 1/3. The comparison of the final grid with 20×20 cells
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Figure 5: The results of the Noh problem with 20×20 cells at t=0.6. Left: the original scheme (2.15); Right:
the modified scheme (2.18).
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Figure 6: The results of the Noh problem at t= 0.6. Left: initial grid with 200×20 cells; Middle: final grid
with 200×20 cells; Right: density vs radial radius with 200×20 and 200×40 cells respectively. Solid line: exact
solution; dashed line: computational solution.
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between the original scheme (2.15) and the modified scheme (2.18) is given in Fig. 5 which
demonstrates the improvement of the symmetry property for the modified scheme. Fig. 6
shows the results of the modified scheme including the final grid with 200×20 cells and
density as a function of radial radius for two different angular zonings (200×20, 200×40)
at t= 0.6. From Fig. 6, we observe the results are symmetrical and non-oscillatory. The
shock location and the shock magnitude are closer to those of the analytical solution with
the grid refinement in the angular direction, which reflects the convergence trend of the
numerical solution toward the analytical solution.

Example 3.2. (The spherical Sedov problem in a cylindrical coordinate system on the
polar grid [21]).

We perform our test on the spherical Sedov blast wave problem in a cylindrical co-
ordinate system as an example of a diverging shock wave. The initial computational
domain is a 1/4-circle region defined in the polar coordinates by [0,1.125]×[0,π/2]. The
initial condition consists of unit density, zero velocity and zero specific internal energy
except in the cells connected to the origin where they share a total value of 0.2468. Re-
flective boundary condition is applied on the outer boundary. The analytical solution is a
shock at radius unity at time unity with a peak density of 4. Fig. 7 shows the comparison
of the final grid with 20×20 cells between the original scheme (2.15) and the modified
scheme (2.18). We can see that the latter has a perfect symmetry property. The final grid,
density as a function of the radial radius and surface of density with 100×30 cells ob-
tained by the modified scheme are displayed in Fig. 8. We also observe the expected
symmetry in the plot of grid. The shock position and peak density coincide with those of
the analytical solution very well and there is no spurious oscillation, demonstrating the
good performance of the scheme in symmetry preserving, non-oscillation and accuracy
properties.
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Figure 7: The results of the Sedov problem with 20×20 cells at t=1.0. Left: the original scheme (2.15); Right:
the modified scheme (2.18).
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Figure 8: The result of the Sedov problem with 100×30 cells at t= 1.0. Left: final grid; Middle: density vs
radial radius. Solid line: exact solution; dashed line: computational solution; Right: surface of density.

Example 3.3. (The one-dimensional spherical Sod Riemann problem).
The modified scheme (2.18) is tested on the Sod Riemann problem in the cylindrical

coordinates. The initial computational domain is a 1/4-circle region defined in the polar
coordinates by [0,20]×[0,π/2]. Its initial condition is as follows

(ρ,uξ ,p)=(1.0,0,1.0), 0≤ ξ≤10, (ρ,uξ ,p)=(0.125,0,0.1), 10< ξ≤20.

Reflective boundary condition is applied on the outer boundary. The reference solution is
the converged result obtained by using a one-dimensional second-order Eulerian code in
the spherical coordinate with 10000 grid points. Fig. 9 shows the numerical results of the
grid and density as a function of the radial radius and the surface of density performed by
the modified scheme with 400×10 equal-angle polar cells at t=1.4. We observe the good
behavior of the scheme in symmetry and the good agreement between the numerical
result and the reference solution.
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Figure 9: The results of the Sod problem at t=1.4. Left: final grid with 400×10 cells; Middle: density versus
radial radius. Solid line: exact solution; dashed line: computational solution; Right: surface of density in the
whole circle region obtained by a mirror image.

Example 3.4. (Kidder’s isentropic compression problem [11, 14]).
This problem is a self-similar isentropic problem which is usually used to validate the

capability of a Lagrangian scheme in simulating a spherical isentropic compression. At
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the initial time, the shell with a ring shape constitutes the computational region [ξ1,ξ2]×
[0,π/2] in the polar coordinates, where ξ1 = 0.9 is the internal radius and ξ2 = 1 is the
external radius. The initial density and pressure ρ0,P0 are expressed as follows

ρ0(ξ)=
( ξ2

2−ξ2

ξ2
2−ξ2

1

ρ
γ−1
1 +

ξ2−ξ2
1

ξ2
2−ξ2

1

ρ
γ−1
2

)
1

γ−1
, P0(ξ)= s(ρ0(ξ))

γ,

where ρ1 =6.31×10−4, ρ2 =10−2, s=2.15×104, γ=5/3. The pressure P1(t) and P2(t) are
imposed continuously at the internal and external boundary respectively which have the
following representation

P1(t)=P0
1 a(t)−

2γ
γ−1 , P2(t)=P0

2 a(t)−
2γ

γ−1 ,

where P0
1 =0.1, P0

2 =10 and a(t)=
√

1−(t/τ)2 in which τ=6.72×10−3 is the focusing time
of the shell and t∈ [0,τ) is the evolving time.

Denoting ζ(ξ,t) to be the radius at time t of a point initially located at radius ξ, its an-
alytical solution is ζ(ξ,t)= a(t)ξ. The analytical solutions of three fundamental variables
for this problem in spherical geometry are as follows

ρ(ζ(ξ,t),t)=ρ0(ξ)a(t)
− 2

γ−1 , u(ζ(ξ,t),t)= ξ
d

dt
a(t), p(ζ(ξ,t),t)=P0(ξ)a(t)

− 2γ
γ−1 .

We test the modified scheme (2.18) on the problem with 80×40, 160×80, 320×160 cells
respectively. The final time is set to be t=0.99τ. Fig. 10 shows the initial and final grids
and the time evolution of the position of the external boundary with 40×20 grids. Fig. 11
shows the results of density, velocity and pressure at the final time. From these figures,
we can see the perfect symmetry in the grid. The trajectory of the external boundary
coincides with the analytical solution quite well. The numerical solutions of density,
velocity and pressure converge to the analytical solutions asymptotically.
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Figure 10: The results of the Kidder problem with 40×20 grids. Left: initial grid; Middle: final grid at t=0.99τ;
Right: trajectory of external boundary compared with the exact solution. Solid line: exact solution; dashed line:
computational solution.
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Figure 11: The results of the Kidder problem at t= 0.99τ with three different zonings. Left: density vs radial
radius; Middle: velocity vs radial radius; Right: pressure vs radial radius. Solid line: exact solution; dashed line:
computational solution.

Example 3.5. (Implosion problem of Lazarus [12]).
The implosion problem of Lazarus is a self-similar problem. At the initial time, a

sphere of unit radius with unit density and zero specific internal energy is driven by the
following inward radial velocity

uξ(t)=
−α f

(1− f t)1−α
, (3.1)

where α=0.6883545, f =1−εt−δt3, ε=0.185, δ=0.28.
We test the problem on a grid of 200×30 cells in the initial computational domain

[0,1]×[0,π/2] defined in the polar coordinates. The numerically converged result com-
puted using a one-dimensional second-order Lagrangian code in the spherical coordinate
with 10000 cells is used as a reference solution. We display the results of the modified
scheme (2.18) using 200×30 and 200×60 cells in Fig. 12. In the plot of grid, we notice the
expected symmetry. In the plot of density, we observe the non-oscillatory and accurate
numerical solution and the convergence tendency of the numerical results toward the
reference solution.
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line: computational solution; Right: surface of density at t=0.8 with 200×30 cells.
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Figure 13: The results of the Coggeshall problem at t=0.8. Left: initial grid; Middle: final grid; Right: density
versus the radial radius.

Example 3.6. (Coggeshall expansion problem [9]).
This is a two-dimensional adiabatic compression problem proposed by Coggeshall.

We attempt to apply it to test the performance of the modified scheme (2.18) on a truly
two-dimensional problem. The computational domain consists of a quarter of a sphere
of unit radius zoned with 100×10 cells. The initial density is unity and the initial velocity
at the grid vertices is given as (uz,ur)=(−z/4,−r). The specific internal energy of a cell
is given as e=(3zc/8)2, where zc is the z coordinate of the cell center. Fig. 13 shows the
results of the grid and density plotted as a function of the radial radius along each radial
line at the time of 0.8 when the analytical density is expected to be flat with a value of
37.4. From the figures, we can observe the numerical result agrees with the analytical
solution except for the small region near the origin.

Example 3.7. (Spherical Sedov problem on the Cartesian grid).
We test the spherical Sedov blast wave in a cylindrical coordinate system on the ini-

tially rectangular grid. The initial computational domain is a 1.125×1.125 square con-
sisting of 30×30 uniform cells. The initial density is unity and the initial velocity is zero.
The specific internal energy is zero except in the cell connected to the origin where it has
a value of 0.2468. Fig. 14 shows the results of the original scheme (2.15) and the modified
scheme (2.18). From the figures, we can observe the results from the modified scheme are
more satisfactory and more symmetrical even on the non-polar grid.

Example 3.8. (Spherical Noh problem on the Cartesian grid [19]).
At last, we test the spherical Noh problem on a Cartesian grid to verify the robustness

of the scheme. This problem is a very severe test for a Lagrangian scheme computing on
a Cartesian grid, since in this case the grid near the axes is easy to be distorted which has
been addressed in [5]. The initial domain is [0,1]×[0,1]. The initial state of the fluid is
uniform with (ρ,uξ ,uθ,e)= (1,−1,0,10−5), where uξ ,uθ are the radial and angular veloc-
ities at the cell center. Reflective boundary conditions are applied on the left and lower
boundaries. Free boundary condition is used on the right and upper boundary. The ana-
lytical solution is the same as that in Example 3.1. Fig. 15 shows the results of the original
scheme (2.15) and the modified scheme (2.18) with 50×50 initially uniform rectangular
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Figure 14: The results of the Sedov problem with 30×30 grids at t= 1.0. Left: the original scheme (2.15);
Right: the modified scheme (2.18). Top: final grid. Bottom: density vs radial radius.Solid line: exact solution;
symbols: computational solution.
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cells at t= 0.6. From these figures, we can see that there is no grid distortion along the
axes, the spherical symmetry is preserved better and the shock position is correct for
the modified scheme, which demonstrate the robustness of the modified scheme in this
problem on the Cartesian grid.

4 Concluding remarks

In this paper we apply the methodology proposed in our previous work [8] on Maire’s
first order control volume Lagrangian scheme [14]. The purpose of this work is to im-
prove the scheme’s property in symmetry preservation while maintaining its original
good properties including geometric conservation law (GCL) and conservation of mass,
momentum and total energy. The modified scheme is proven to have one-dimensional
spherical symmetry in the two-dimensional cylindrical geometry for equal-angle-zoned
initial grids. Several two-dimensional examples in the cylindrical coordinates have been
presented which demonstrate the good performance of the modified scheme in symme-
try, non-oscillation and robustness. The improvement of the modified scheme in accuracy
constitutes our future work.
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