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Stability of the fourth order Runge-Kutta method
for time-dependent partial differential equations∗

Zheng Sun and Chi-Wang Shu

In this paper, we analyze the stability of the fourth order Runge-
Kutta method for integrating semi-discrete approximations of time-
dependent partial differential equations. Our study focuses on lin-
ear problems and covers general semi-bounded spatial discretiza-
tions. A counter example is given to show that the classical four-
stage fourth order Runge-Kutta method can not preserve the one-
step strong stability, even though the ordinary differential equation
system is energy-decaying. But with an energy argument, we show
that the strong stability property holds in two steps under an ap-
propriate time step constraint. Based on this fact, the stability
extends to general well-posed linear systems. As an application,
we utilize the results to examine the stability of the fourth order
Runge-Kutta approximations of several specific method of lines
schemes for hyperbolic problems, including the spectral Galerkin
method and the discontinuous Galerkin method.
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1. Introduction

In common practice, the method of lines for solving time-dependent partial
differential equations (PDEs) starts with a spatial discretization to reduce
the problem to an ordinary differential equation (ODE) system solely de-
pendent on time, then a suitable ODE solver is used for the time integration.
The issue of stability arises from such a procedure, whether a stable semi-
discrete scheme will still be stable after coupling with the time discretization.
In this paper, we focus on the stability of the fourth order Runge-Kutta (RK)
method in this context.

The model problem for stability analysis is usually chosen as a well-
posed linear system ∂tu = L(x, t, ∂x)u. But firstly, let us consider a simpler
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problem ∂tu = L(x, ∂x)u with L + L� ≤ 0. (Here the superscript � stands
for the adjoint, to be distinguished from T , which stands for the transpose.
But for matrices, they are the same under the usual dot product in Rm.) Its
semi-discrete scheme corresponds to an autonomous ODE system

d

dt
uN (t) = LNuN (t).

Here LN is a constant matrix and the parameter N relates with the de-
gree of freedom in the spatial discretization. Suppose LN inherits the semi-
negativity LN+L�

N ≤ 0. Then d
dt‖uN (t)‖2 = (LNuN , uN )+(uN , LNuN ) ≤ 0,

where we temporarily assume (·, ·) to be the usual dot product and ‖ · ‖ to
be the induced norm. Therefore the solution to the semi-discrete scheme is
strongly stable. We are interested in whether this strong stability will be
preserved after the four-stage fourth order RK time discretization. In other
words, with τ being the time step and

un+1
N = P4(τLN )unN =

(
I + τLN +

1

2
(τLN )2 +

1

6
(τLN )3 +

1

24
(τLN )4

)
unN ,

we wonder whether ‖un+1
N ‖ ≤ ‖unN‖, or equivalently, whether the operator

norm of P4(τLN ) is bounded by 1. If this is true, the stability extends
to general semi-bounded systems ∂tu = L(x, t, ∂x)u by using a standard
argument.

For LN being a scalar and τ being sufficiently small, the proposition
above can be justified by analyzing the region of absolute stability, see Chap-
ter IV.2 in [15], for example. A natural attempt is to apply the eigenvalue
analysis to extend the result to systems. However, this technique can only
be used for normal matrices LN , namely LNL�

N = L�
NLN . If re-norming is

allowed, the method also covers diagonalizable LN . (But it would still be
useless if the diagonalizing matrix is ill-conditioned, see [10].) While for gen-
eral systems, the naive eigenvalue analysis may not be sufficient. We refer
to Chapter 17.1 in [8] for a specific example.

The analysis for the general systems initiates from the coercive problems,
namely LN +L�

N ≤ −ηL�
NLN for some positive constant η. In [10], Levy and

Tadmor used the energy method to prove the strong stability of the third
order and the fourth order RK schemes under the coercivity condition and
the time step constraint τ ≤ cη, where c = 3

50 for the third order scheme and
c = 1

62 for the fourth order scheme. Later in [6] and [14], a simpler proof was
provided, with the time step constraint being significantly relaxed to c = 1,
which extends to general s-stage s-th order linear Runge-Kutta schemes. The
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authors in [6] pointed out that the coercivity condition implies the strong
stability of the forward Euler scheme when τ ≤ η. The strong stability of
the high order RK schemes follows from the fact that they can be rewritten
as convex combinations of the forward Euler steps. These results coincides
with the earlier work on contractivity analysis of the numerical solutions to
ODE systems, see [12] and [9]. In their theory for contractivity, or strong
stability in our context, a circle condition is assumed, which is essentially
equivalent to the strong stability assumption for the forward Euler scheme
in [6].

In general, the coercivity condition may not hold for method of lines
schemes arising from purely hyperbolic problems. Hence it is still imperative
to analyze schemes which only satisfy a semi-negativity condition LN+L�

N ≤
0. In [14], for the third order RK scheme, Tadmor successfully removed the
coercivity assumption and proved that the third order RK scheme is strongly
stable if LN+L�

N ≤ 0 and τ‖LN‖ ≤ 1. But the strong stability for the fourth
order RK method remains open, which is the main issue we are concerned
with in this paper.

We find that, although the strong stability of the fourth order RK
method passes the examination of the scalar equation, and can be extended
to normal systems, it does NOT hold in general. More specifically, we have
the following counter example in Proposition 1.1, whose proof is given in
Appendix A.

Proposition 1.1. Let LN = −

⎛⎝1 2 2
0 1 2
0 0 1

⎞⎠. Then LN + LT
N ≤ 0 and

‖P4(τLN )‖ > 1 for τ sufficiently small.

Interestingly, despite the negative result on the one-step performance,
the strong stability property holds in two time steps. In other words, with
the constraint τ‖LN‖ ≤ c0 for some positive constant c0, ‖P4(τLN )2‖ ≤ 1
and hence ‖un+2

N ‖ ≤ ‖unN‖. This is still sufficient to justify the stability after
long time integration. It can also be used to obtain the stability ‖unN‖ ≤
K(tn)‖u0N‖ for semi-bounded and time-dependent LN . We will apply the
results to study the stability of different spatial discretizations coupled with
the fourth order RK approximation.

The paper is organized as follows. In Section 2 we exhibit our main
results, and prove the stability of the fourth order RK method with semi-
negative and semi-bounded LN . The case for LN dependent on time is also
discussed. In Section 3, we apply our results to several different spatial dis-
cretizations. We specifically focus on Galerkin methods as a complemen-
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tary of [14], including the spectral Galerkin method and the discontinuous
Galerkin method. Finally, we give our concluding remarks in Section 4.

2. Stability of the fourth order RK method

In this section, we analyze the stability of the fourth order RK schemes.
For simplicity, we assume everything to be real, but the approach extends
to the complex spaces. To facilitate our later discussion on applications to
spatial discretizations based on Galerkin methods, we discuss over a general
Hilbert space. We avoid clearly characterizing the method of lines scheme in
this general setting. But it will not lead to ambiguities, since it only serves
as a motivation to derive the fourth order RK iteration, and will not be used
in the stability analysis. To reduce to ODE systems, one simply sets V = Rm

and (·, ·) to be the usual dot product. We also remark that, by using the
inner product (u, v)H = uTHv with H being a symmetric positive definite
matrix, LN +L�

N ≤ 0 is equivalent to LT
NH +HLN ≤ 0, which is consistent

with the assumption in equation (6) of [14].

2.1. Notations and the main results

We denote by V a real Hilbert space equipped with the inner product (·, ·).
The induced norm is defined as ‖ · ‖ =

√
(·, ·). Consider a method of lines

scheme defined on V.

(1) ∂tuN = LNuN ,

where uN (·, t) ∈ V and LN is a bounded linear operator on V. Suppose LN

is independent of t, then the four-stage fourth order RK approximation can
be written as
(2)

un+1
N =P4(τLN )unN , P4(τLN )= I+τLN+

1

2
(τLN )2+

1

6
(τLN )3+

1

24
(τLN )4.

When LN = LN (t) depends on time, we denote by

(3) un+1
N = Rτ (t)u

n
N

and the specific form of Rτ (t) will be introduced latter.

For simplicity, we drop all the subscripts N in the remaining parts of
the section.
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Given an operator L, the operator norm is defined as ‖L‖=sup‖v‖=1‖Lv‖.
We denote by B(V) = {L : ‖L‖ < +∞} the collection of bounded linear op-
erators on V. For any L ∈ B(V), there exists a unique L� ∈ B(V) such that

(Lw, v) = (w,L�v). L� is referred as the adjoint of L.

If (v, (L+ L�)v) ≤ 0, ∀v ∈ V, denoted by L+ L� ≤ 0, then we say L is
semi-negative. A special case is when L+ L� = 0, L is referred to be skew-
symmetric. If L+ L� ≤ 2μI for some positive number μ, namely L− μI is
semi-negative, then we say L is semi-bounded.

We denote by [w, v] = −(w, (L + L�)v) and �w� =
√

[w,w]. [w, v] is a

bilinear form on V. For L+ L� ≤ 0, [w, v] is a semi-inner-product, and one
has the Cauchy-Schwarz inequality, [w, v] ≤ �w��v�.

To simplify our notation, we define L = τL. This notation will be used
in the intermediate lemmas and the proofs. For clearness, we restore the
notation τL in our main results.

Here we list our stability results on the fourth order RK approxima-

tion. The details will be given in Theorem 2.1, Theorem 2.2, Theorem 2.3,
Corollary 2.1 and Corollary 2.2 respectively. In the following statements, c0
and K refer to some positive real numbers.

Our main theorem states that

(i) Suppose L + L� ≤ 0. (2) is strongly stable in two steps. ‖un+2‖ ≤
‖un‖, if τ‖L‖ ≤ c0.

As a corollary of (1), the stability for semi-bounded and time-dependent
operator L have also been proved by using a perturbation analysis and a
frozen-coefficient argument.

(ii) Suppose L + L� ≤ 2μI. (2) is stable, ‖un‖ ≤ K(tn)‖u0‖, if τ ≤
c0

‖L‖+μ .

(iii) Suppose L = L(t) satisfies certain regularity assumptions, and L+
L� ≤ 2μI. Then (3) is stable, ‖un‖ ≤ K(tn)‖u0‖, under an appropriate
time step constraint.

As we know, according to the eigenvalue analysis, for normal and semi-
negative L, the one-step strong stability will hold under a proper time-step
restriction. We also use the energy argument to prove the one-step results,
as corollaries of the two-step stability analysis.

(iv) Suppose L + L� = 0. (2) is strongly stable, ‖un+1‖ ≤ ‖un‖, if
τ‖L‖ ≤ 2

√
2.

(v) Suppose L + L� ≤ 0, LL� = L�L. (2) is strongly stable, ‖un+1‖ ≤
‖un‖, if τ‖L‖ ≤ c0.

For simplicity, we assume the time steps to be uniform in (i), (ii) and
(iii). However, these results are essentially built on the two-step performance



260 Zheng Sun and Chi-Wang Shu

of the RK time integrator. One only needs the time steps to be uniform for
every two steps, namely, τ2k+1 = τ2k+2. As for (iv) and (v), they fit for
general time step sizes.

2.2. An energy equality

The first thing we would do is to derive an energy equality, which would be
useful in understanding the subtle change of the norm of the solution after
one time step. To this end, we introduce several identities in Lemma 2.1,
and then use them to derive the equality in Lemma 2.2.

Lemma 2.1.

(Lv, v) = −τ

2
�v�2,(4)

(L2v, v) = −‖Lv‖2 − τ [Lv, v],(5)

(L3v, v) =
τ

2
�Lv�2 − τ [L2v, v],(6)

(L4v, v) = ‖L2v‖2 + τ [L2v,Lv]− τ [L3v, v].(7)

Proof. (i) (Lv, v) = 1
2(Lv, v) +

1
2(v,Lv) =

1
2(v, (L+ L�)v) = − τ

2 �v�2.
(ii) (L2v, v) = (Lv,L�v) = −(Lv,Lv)+(Lv, (L+L�)v) = −‖Lv‖2−τ [Lv, v].
(iii) (L3v, v) = (L2v,L�v) = −(L(Lv),Lv) + (L2v, (L+ L�)v) = τ

2 �Lv�2 −
τ [L2v, v], where we have used (4) in the last equality.
(iv) (L4v, v) = (L3v,L�v) = −(L2(Lv),Lv) + (L3v, (L+L�)v) = ‖L2v‖2 +
τ [L2v,Lv]− τ [L3v, v], where (5) is used in the last equality.

Lemma 2.2 (Energy equality).

‖un+1‖2 − ‖un‖2 = Q1(u
n),

where

(8) Q1(u
n) =

1

576
‖L4un‖2 − 1

72
‖L3un‖2 + τ

3∑
i,j=0

αij [Liun,Ljun],

and

A = (αij)4×4 = −

⎛⎜⎜⎝
1 1/2 1/6 1/24
1/2 1/3 1/8 1/24
1/6 1/8 1/24 1/48
1/24 1/24 1/48 1/144

⎞⎟⎟⎠ .
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Proof. Taking an inner product of (2) with un, one has

1

2
‖un+1‖2 − 1

2
‖un‖2 − 1

2
‖un+1 − un‖2 = ((L+

1

2
L2 +

1

6
L3 +

1

24
L4)un, un).

Applying (4)–(7) with v = un, we obtain

‖un+1‖2 − ‖un‖2(9)

= ‖un+1 − un‖2 − ‖Lun‖2 + 1

12
‖L2un‖2 − τ�un�2 − τ [Lun, un]

+
τ

6
�Lun�2 − τ

3
[L2un, un] +

τ

12
[L2un,Lun]− τ

12
[L3un, un].

Using (4)–(6) with v = Lun, the first two terms on the right can be ex-
panded.

‖un+1 − un‖2 − ‖Lun‖2(10)

= (un+1 − un − Lun, un+1 − un + Lun)

= ‖un+1 − un − Lun‖2 + ((
1

2
L2 +

1

6
L3 +

1

24
L4)un, 2Lun)

= ‖un+1 − un − Lun‖2 − 1

3
‖L2un‖2 − τ

2
�Lun�2

− τ

3
[L2un,Lun] + τ

24
�L2un�2 − τ

12
[L3un,Lun].

Substitute (10) into (9), one has

‖un+1‖2 − ‖un‖2 = ‖un+1 − un − Lun‖2 − 1

4
‖L2un‖2 − τ�un�2

− τ [Lun, un]− τ

3
�Lun�2 − τ

3
[L2un, un]− τ

4
[L2un,Lun]

− τ

12
[L3un, un] +

τ

24
�L2un�2 − τ

12
[L3un,Lun].

(11)

Similar as before, one can use (4) and (5) with v = L2un to calculate the
difference of square terms on the right.

‖un+1 − un − Lun‖2 − 1

4
‖L2un‖2(12)

= (un+1 − un − Lun − 1

2
L2un, un+1 − un − Lun +

1

2
L2un)

= ‖un+1 − un − Lun − 1

2
L2un‖2 + ((

1

6
L3 +

1

24
L4)un,L2un)



262 Zheng Sun and Chi-Wang Shu

= ‖un+1 − un − Lun − 1

2
L2un‖2 − 1

24
‖L3un‖2 − τ

12
�L2un�2

− τ

24
[L3un,L2un].

Once again, we plug (12) into (11) to get

‖un+1‖2 − ‖un‖2

= ‖un+1 − un − Lun − 1

2
L2un‖2 − 1

24
‖L3un‖2

− τ�un�2 − τ [Lun, un]− τ

3
�Lun�2 − τ

3
[L2un, un]− τ

4
[L2un,Lun]

− τ

12
[L3un, un]− τ

24
�L2un�2 − τ

12
[L3un,Lun]− τ

24
[L3un,L2un].

Finally, note that

‖un+1 − un − Lun − 1

2
L2un‖2 − 1

36
‖L3un‖2

= ‖un+1 − un − Lun − 1

2
L2un − 1

6
L3un‖2 + (

1

24
L4un,

1

3
L3un)

=
1

576
‖L4un‖2 − τ

144
�L3un�2.

Therefore

Q1(u
n) =

1

576
‖L4un‖2 − 1

72
‖L3un‖2 − τ�un�2 − τ [Lun, un]− τ

3
�Lun�2

− τ

3
[L2un, un]− τ

4
[L2un,Lun]− τ

12
[L3un, un]− τ

24
�L2un�2

− τ

12
[L3un,Lun]− τ

24
[L3un,L2un]− τ

144
�L3un�2,

which can be rewritten as (8).

According to Lemma 2.2, the energy change Q1(u
n) consists of two

parts, the numerical dissipation 1
576‖L4un‖2 − 1

72‖Lun‖2 and the general-

ized quadratic form τ
∑4

i,j=0 αij [Lui,Luj ]. When L is skew-symmetric, the
quadratic form is simply 0. Hence one can obtain the one-step strong sta-
bility.

Corollary 2.1. Suppose L+L� = 0, then the fourth order RK approxima-
tion (2) to the method of lines scheme (1) is strongly stable, ‖un+1‖ ≤ ‖un‖,
if τ‖L‖ ≤ 2

√
2.
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Proof. L+ L� = 0 implies [w, v] = 0, ∀v, w. Hence when τ‖L‖ ≤ 2
√
2,

‖un+1‖2 − ‖un‖2 = Q1(u
n) =

1

576
‖L4un‖2 − 1

72
‖L3un‖2

≤ (
1

576
‖L‖2 − 1

72
)‖L3un‖2 ≤ 0.

2.3. Stability for semi-negative L

According to Lemma 2.2, for non-skew-symmetric L, we would need to ab-
sorb the quadratic form with the help of the numerical dissipation. One can
see that the high order terms Liun with i ≥ 3 are easy to control. But
there are no other terms to bound un, Lun and L2un. Our only hope is that
τ
∑2

ij=0 αij [Lui,Luj ] itself is negative-definite. Lemma 2.3 indicates that,
to check the negativity of the generalized quadratic form, one only needs to
examine the coefficient matrix, as that for the polynomials. In Lemma 2.4,
we prove a sufficient condition for strong stability, once

∑2
ij=0 αij [Lui,Luj ]

is negative-definite, the energy change will be non-positive when ‖L‖ is suf-
ficiently small.

Lemma 2.3. Suppose L is semi-negative. Let M = (mij) be a real symmet-
ric semi-negative definite matrix, then

∑
i,j mij [ui, uj ] ≤ 0.

Proof. Suppose M = STΛS, where S = (sij) is an orthogonal matrix and
Λ is a diagonal matrix with the diagonal elements λi ≤ 0. Note that mij =∑

k λkskiskj . Therefore∑
i,j

mij [ui, uj ] =
∑
i,j

(
∑
k

λkskiskj)[ui, uj ] =
∑
k

λk(
∑
i,j

skiskj [ui, uj ])

=
∑
k

λk[
∑
i

skiui,
∑
j

skjuj ] =
∑
k

λk�
∑
i

skiui�2 ≤ 0.

Lemma 2.4. Suppose L is semi-negative. Let

Q(u) = α‖L3u‖2 + τ

a∑
i,j=0

αij [Liu,Lju],

where αij = αji and a ≥ 2. If α < 0 and A2 =

⎛⎝α00 α01 α02

α10 α11 α12

α20 α21 α22

⎞⎠ is

negative-definite, then there exists c0 > 0, such that Q(u) ≤ 0 as long as
‖L‖ ≤ c0.
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Proof. Let −ε be the largest eigenvalue of the matrix A2. Then A2 + εI is
semi-negative definite. According to Lemma 2.3,

2∑
i,j=0

αij [Liu,Lju] =

2∑
i,j=0

(αij + εδij)[Liu,Lju]− ε(�u�2 + �Lu�2 + �L2u�2)

≤ −ε(�u�2 + �Lu�2 + �L2u�2).

(13)

By Cauchy-Schwartz and the arithmetic-geometric mean inequality,

a∑
max(i,j)>2

αij [Liu,Lju] ≤ ε(�u�2 + �Lu�2 + �L2u�2) +
a∑

i=3

α̃i�Liu�2(14)

≤ ε(�u�2 + �Lu�2 + �L2u�2)

+

a∑
i=3

2α̃i‖L‖‖L‖2(i−3)‖L3u‖2,

where we have used the fact �v�2 ≤ 2‖L‖‖v‖2 in the last inequality, and α̃i

are some non-negative constants depending on ε and αij . Using (13) and
(14), if ‖L‖ = τ‖L‖ ≤ c0, one has

Q(u) ≤ (α+

a∑
i=3

2α̃ic
2(i−3)+1
0 )‖L3u‖2.

Since α is negative, Q(u) is non-positive as long as c0 is sufficiently small.

Unfortunately, Q1(u
n) does not satisfy the assumptions in Lemma 2.4.

Actually, the three eigenvalues of A2=−

⎛⎝ 1 1/2 1/6
1/2 1/3 1/8
1/6 1/8 1/24

⎞⎠ are 0.00560618,

−0.0793266 and −1.30128. This motivates us to disprove the strong stability
of the fourth order RK method and we end up with the counter example in

Proposition 1.1. So we turn to seek the power-boundedness of P4(L). Sur-
prisingly, though Q1(u

n) itself fails to pass Lemma 2.4, Q1(u
n+1) +Q1(u

n)
succeeds. Hence we obtain the two-step strong stability in Theorem 2.1.

Theorem 2.1 (Two-step strong stability for semi-negative L). Suppose L+
L� ≤ 0, then the fourth order RK approximation (2) to the method of lines

scheme (1) is strongly stable in two steps, ‖un+2‖ ≤ ‖un‖, if τ‖L‖ ≤ c0.



Stability of RK4 for time dependent PDEs 265

Proof. Let un+2 = P4(L)un+1. Then

‖un+2‖2 − ‖un+1‖2 = Q1(u
n+1).

Substitute (2) into Q1(u
n+1) and rewrite the quadratic form in terms of un.

By direct calculation, one can obtain

Q1(u
n+1) =

1

576
‖L4un+1‖2 − 1

72
‖L3un+1‖2 + τ

7∑
i,j=0

α̃ij [Liun,Ljun],

where

Ã2 = (α̃ij)3×3 = −

⎛⎝ 1 3/2 7/6
3/2 7/3 15/8
7/6 15/8 37/24

⎞⎠ .

The complete coefficient matrix Ã is given in Appendix B. While according

to Lemma 2.2,

Q1(u
n) =

1

576
‖L4un‖2 − 1

72
‖L3un‖2 + τ

3∑
i,j=0

α̂ij [Liun,Ljun],

where

Â2 = (α̂ij)3×3 = −

⎛⎝ 1 1/2 1/6
1/2 1/3 1/8
1/6 1/8 1/24

⎞⎠ .

When ‖L‖ ≤ 2,

1

576
‖L4un+1‖2 − 1

72
‖L3un+1‖2 ≤ 0,

1

576
‖L4un‖2 − 1

72
‖L3un‖2 ≤ − 1

144
‖L3un‖2.

Hence

‖un+2‖2 − ‖un‖2 = Q1(u
n+1) +Q1(u

n)

≤ − 1

144
‖L3un‖2 + τ

7∑
i,j=0

αij [Liun,Ljun],

where

A2 = (αij)3×3 = Ã2 + Â2 = −

⎛⎝ 2 2 4/3
2 8/3 2
4/3 2 19/12

⎞⎠ .
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The three eigenvalues of A2 are−5.73797,−0.499093 and−0.0129329. Hence
A2 is negative definite, and one could complete the proof by applying
Lemma 2.4.

Remark 2.1. There is another interpretation of the two-step strong stabil-
ity. We treat un+1 as a intermediate stage and consider un+2 as the solution
of an eight-stage fourth order RK scheme composed by two four-stage fourth
order RK time stepping. Then Theorem 2.1 states this new RK scheme is
strongly stable. This coincides with Remark 3 of Section 4 in [14], where
the author conjectured the fourth order RK scheme can preserve the strong
stability if allowing additional stages.

Remark 2.2. Here we only focus on the existence of the constant c0 instead
of giving a specific estimate. The argument above is far from sharp. To obtain
a reasonable bound for c0, one should expand 1

576‖L4un+1‖2 − 1
72‖L3un+1‖2

to separate the quadratic form involving [·, ·], and carefully go through all the
constants. To this end, a generalized version of Lemma 2.1 is also needed.
We leave these to interested readers.

Realizing the fact that, for a normal operator G, ‖G2‖ ≤ 1 implies ‖G‖ ≤
1, we prove the one-step strong stability for normal and semi-negative L.

Corollary 2.2 (Strong stability for normal and semi-negative L). Suppose
LL� = L�L and L + L� ≤ 0, then the fourth order RK approximation
(2) to the method of lines scheme (1) is strongly stable, ‖un+1‖ ≤ ‖un‖, if
τ‖L‖ ≤ c0 for some constant c0.

Proof. According to Theorem 2.1, we have ‖P4(L)2‖ ≤ 1 if ‖L‖ ≤ c0. When
L is normal, P4(L) is also normal, P4(L)P4(L)� = P4(L)�P4(L). Hence for
any u ∈ V,

‖P4(L)u‖2 = (P4(L)u, P4(L)u) = (u, P4(L)�P4(L)u)
= (u, P4(L)P4(L)�u) = ‖P4(L)�u‖2.

Therefore, under the same constraints, ‖L‖ ≤ c0, one has

‖P4(L)‖2 = sup
‖u‖=1

‖P4(L)u‖2 = sup
‖u‖=1

(u, P4(L)�P4(L)u)

≤ sup
‖u‖=1

‖P4(L)�P4(L)u‖ = sup
‖u‖=1

‖P4(L)2u‖ = ‖P4(L)2‖ ≤ 1.

In other words, ‖un+1‖ ≤ ‖un‖ if ‖L‖ ≤ c0.

Remark 2.3. By using scalar eigenvalue analysis, the sharp bound of c0 in
Corollary 2.2 is 2

√
2, as that in Corollary 2.1.
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2.4. Stability for semi-bounded L

We then apply the perturbation analysis to obtain the stability for semi-
bounded L. In the following proof, one actually needs to assume the time
steps satisfy τ2k+1 = τ2k+2 in order to apply Theorem 2.1. For simplicity,
we use a uniform time stepping, namely τk = τ . The same assumption will
be used in Section 2.5.

Theorem 2.2. Suppose L + L� ≤ 2μI, then the fourth order RK approxi-
mation (2) to the method of lines scheme (1) is stable, ‖un‖ ≤ K(tn)‖u0‖,
if τ ≤ c0

‖L‖+μ for some constant c0. Here K(tn) is a constant depending on

μ and tn.

Proof. Note that

P4(τL)
2 = P4(τ(L− μI) + τμI)2 = P4(τ(L− μI))2 + τμP (τμ, τ(L− μI)),

where P (s,G) is of the form P (s,G) =
∑

i,j≥0, i+j≤7 αijs
iGj . Since L+L� ≤

2μI, (L−μI)+(L−μI)� ≤ 0. According to Theorem 2.1, ‖P4(τ(L−μI))2‖ ≤
1 if τ‖L− μI‖ ≤ c0. Under a stricter restriction τ ≤ c0

‖L‖+μ , one also has

‖P (τμ, τ(L−μI))‖ ≤
∑

i,j≥0, i+j≤7

|αij ||τμ|i‖τ(L−μI)‖j ≤
∑

i,j≥0, i+j≤7

|αij |ci+j
0 .

Therefore for τ ≤ c0
‖L‖+μ , ‖P4(τL)

2‖ ≤ 1+cμτ , where c =
∑

i,j≥0, i+j≤7 |αij |×
ci+j
0 . With this one-step estimate, one has

‖u2k‖ ≤ ‖P4(τL)
2‖k‖u0‖ ≤ (1 + cμτ)

t2k

2τ ‖u0‖ ≤ K(t2k)‖u0‖,

and

‖u2k+1‖ ≤ ‖P4(τL)‖‖u2k‖ ≤ P4(c0)K(t2k)‖u0‖,
which prove the stability.

2.5. Stability for semi-bounded and time-dependent L

We conclude this section by extending the results to L dependent on time.
One should note in this case, the fourth order RK scheme can no longer
be written as the truncated exponential in (2). Also different fourth order
RK time integrators are no longer equivalent. One can use the classical
four-stage fourth order RK scheme in (15) as an example for our stability
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analysis. However, our proof does not rely on this specific form and can be

used for general cases. The classical four-stage fourth order RK scheme is

k1 = L(tn)un,

k2 = L(tn+
1

2 )(un +
τ

2
k1),

k3 = L(tn+
1

2 )(un +
τ

2
k2),

k4 = L(tn+1)(un + τk3),

un+1 = un +
τ

6
(k1 + 2k2 + 2k3 + k4),

(15)

where tn+
1

2 = tn + τ
2 . As a short hand notation, let us denote by

un+1 = Rτ (t
n)un,

where

Rτ (t
n) = I +

τ

6

(
L(tn) + 4L(tn+

1

2 ) + L(tn+1)
)

+
τ2

6

(
L(tn)L(tn+

1

2 ) + L(tn+
1

2 )2 + L(tn+
1

2 )L(tn+1)
)

+
τ3

12

(
L(tn)L(tn+

1

2 )2 + L(tn+
1

2 )2L(tn+1)
)

+
τ4

24
L(tn)L(tn+

1

2 )2L(tn+1).

(16)

The two-step approximation can be written as un+2 = Rτ (t
n+1)Rτ (t

n)un.

We also assume that L satisfies the Lipschitz continuity condition

(17) ‖L(t2)− L(t1)‖ ≤ η|t2 − t1|,

with supt ‖L(t)‖ ≤ η < +∞ for some constant η.

Lemma 2.5. Suppose L satisfies (17). Then

‖
m∏
i=1

L(t+ αiτ)− (L(t))m‖ ≤
m∑
i=1

|αi|ηmτ.

Proof. We prove by induction. According to assumption (17), the lemma

holds for m = 1. Suppose it holds for m, then
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‖
m+1∏
i=1

L(t+ αiτ)− (L(t))m+1‖

≤ ‖
m+1∏
i=1

L(t+ αiτ)− L(t)

m∏
i=1

L(t+ αiτ)‖

+ ‖L(t)
m∏
i=1

L(t+ αiτ)− (L(t))m+1‖

≤ ‖L(t+ αm+1τ)− L(t)‖
m∏
i=1

‖L(t+ αiτ)‖

+ ‖L(t)‖‖
m∏
i=1

L(t+ αiτ)− (L(t))m‖

≤ |αm+1|ητ · ηm + η · (
m∑
i=1

|αi|)ηmτ

=

m+1∑
i=1

|αi|ηm+1τ,

where we have used the inductive assumption and η > supt ‖L(t)‖ in the
second last line. Hence the lemma holds for any positive integer m.

Theorem 2.3. Suppose L = L(t) and L + L� ≤ 2μI for some positive
number μ. L satisfies the Lipschitz continuity condition (17). Then the four-
stage fourth order RK approximation (15) to the method of lines scheme (1)
is stable, ‖un‖ ≤ K(tn)‖u0‖, if τ ≤ c0

η+μ . Here K(tn) is some constant
depending on μ and tn.

Proof.

P4(τL)
2 = I + 2τL+ 2(τL)2 +

4

3
(τL)3 +

2

3
(τL)4

+
1

4
(τL)5 +

5

72
(τL)6 +

1

72
(τL)7 +

1

576
(τL)8.

(18)

And

(19) Rτ (t
n+1)Rτ (t

n) =

8∑
i=0

∑
j

αij

i∏
k=1

(τL(tn + α̃ijkτ)),

with {
∑

j αij}8i=0 take values of 1, 2, 2, 4
3 ,

2
3 ,

1
4 ,

5
72 ,

1
72 and 1

576 as those
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in P4(τL)
2. (This must be true since when L is independent of time, (19)

reduces to (18).) Applying Lemma 2.5, one has

‖Rτ (t
n+1)Rτ (t

n)− P4(τL)
2‖ = ‖

8∑
i=0

∑
j

αijτ
i(

i∏
k=1

L(t+ α̃ijkτ)− (L(t))i)‖

≤
8∑

i=0

∑
j

|αij |τ i‖
i∏

k=1

L(t+ α̃ijkτ)− (L(t))i‖

≤ τ

8∑
i=0

∑
j

|αij |(
i∑
k

|α̃ijk|)(τη)i = c̃τ.

On the other hand, ‖P4(τL)
2‖ ≤ 1 + cμτ if τ(η + μ) ≤ c0, hence

‖Rτ (t
n+1)Rτ (t

n)‖ ≤ ‖P4(τL)
2‖+‖Rτ (t

n+1)Rτ (t
n)−P4(τL)

2‖ ≤ 1+(cμ+c̃)τ.

As we have done in Theorem 2.2, one can prove ‖un‖ ≤ K(tn)‖u0‖, if

τ ≤ c0
η+μ .

Remark 2.4. For different four-stage fourth order RK schemes, the values

of αij and α̃ijk are different. But
∑

j αij are always the same. Hence the

proof above would still work.

3. Applications to hyperbolic problems

In this section, we apply the previous results to several semi-discrete ap-

proximations of hyperbolic problems, and justify their stability after cou-

pling with the fourth order RK time integrator. The time step restriction is

also referred as the CFL condition in this context. In [14], Tadmor has pro-

vided detailed examples for spatial discretization based on the nodal-value

formulation, including the finite difference method and spectral collocation

method. Complementary to [14], we will mainly focus on Galerkin methods,

including the global approach, the spectral Galerkin method, and the local

approach, the finite element discontinuous Galerkin method.

The Galerkin methods are spatial discretization techniques based on the

weak formulation. Consider the initial value problem,{
∂tu(x, t) = L(x, t, ∂x)u(x, t), (x, t) ∈ Ω× (0, T ),

u(x, 0) = u0(x), x ∈ Ω.
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The Galerkin methods seeks a solution of the form uN (x, t) =
∑N

k=0 ck(t)×
φk(x). Here {φk(x)}Nk=0 forms the basis of a finite dimensional space V on
Ω, equipped with the inner product (·, ·). In addition, one requires that{

(∂tuN , vN ) = B(uN , vN ), ∀vN ∈ V,
uN (x, 0) = Pu0.

Here B is a bilinear form on V with B(uN , vN ) approximating (LuN , vN ),
and P is the projection to V.

For spectral Galerkin method, V is chosen as the span of the trigono-
metric functions or polynomials over the whole domain. Since the functions
in V are sufficiently smooth, one can directly set B(uN , vN ) = (LuN , vN ).
Hence the method can be written as

∂tuN = LNuN = PLuN = PLPuN .

It suffices to check whether LN = PLP satisfies the conditions in Section 2
and examine ‖LN‖ to obtain the time step constraint.

For discontinuous Galerkin method, V is a piecewise polynomial space
based on an appropriate partition of the domain Ω. The associated bilinear
form is involved with the so-called numerical flux. We will explain it in the
latter part of this section.

3.1. Spectral Galerkin method

The following examples are based on Example 3.8 and Example 8.3, 8.4
in [7]. The estimate of ‖LN‖ relies on the inverse inequalities on the finite
dimensional trigonometric or polynomial spaces, which we refer to [11] for
details. For interested readers, we also refer to the same books [7] and [11]
for a systematic setup of the spectral methods.

3.1.1. Fourier method. Consider the linear problem

(20) ∂tu = a(x, t)∂xu+ b(x, t)u, t ∈ (0, T ), x ∈ (0, 2π),

with periodic boundary conditions. We assume that the coefficients a(x, t)
and b(x, t) are smooth in both x and t, and are periodic with respect to x.

Under these circumstances, L = a(x, t)∂x+b(x, t)I. Then for any smooth
and periodic functions v(x) and w(x),

(L�v, w) = (v, Lw) = (v, (a∂x + b)w) = (−∂x(av) + bv, w)

= ((−∂xa+ 2b) v, w)− (Lv,w).
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Hence L� = (−∂xa+2b)I−L. Here (·, ·) is specified as the L2 inner product
on [0, 2π].

In the Fourier Galerkin method, we set V = span{sin(kx), cos(kx)}Nk=0,
and choose (·, ·) to be the same L2 inner product. Noting that P is self-
adjoint, one has

L�
N = PL�P = P ((−(∂xa) + 2b)I − L)P = P (−(∂xa) + 2b)P − LN .

Hence

LN + L�
N = P (−(∂xa) + 2b)P ≤ (−(∂xa) + 2b)I ≤ (sup

x,t
|∂xa|+ 2 sup

x,t
|b|)I,

and LN is semi-bounded.
On the other hand, by using the inverse inequality for trigonometric

functions ‖φ′‖ ≤ N‖φ‖, ∀φ ∈ V and the fact ‖P‖ ≤ 1, one has

‖LN‖ ≤ ‖a(·, t)∂x + b(·, t)I‖ ≤ sup
x,t

|a|N + sup
x,t

|b|,

and

‖LN (t2)− LN (t1)‖ ≤ ‖(a(·, t2)− a(·, t1))∂x + (b(·, t2)− b(·, t1))I‖
≤ (sup

x,t
|∂ta|N + sup

x,t
|∂tb|)|t2 − t1|.

Hence, the Lipschitz condition holds for η = max{supx,t |a|N + supx,t |b|,
supx,t |∂ta|N+supx,t |∂tb|}. We obtain the following corollary of Theorem 2.3.

Corollary 3.1. Consider the Fourier Galerkin approximation of the linear
problem (20) with the fourth-order RK time discretization,

un+1
N =Rτ (t

n)unN .

Here Rτ (t
n) is defined in (16), and LN = P (a(x, t)∂x + b(x, t)I)P . This

fully-discrete scheme is stable,

‖unN‖ ≤ K(tn)‖u0N‖,

under the CFL condition τ(max{supx,t |a|N + supx,t |b|, supx,t |∂ta|N +

supx,t |∂tb|}+ 1
2 supx,t |∂xa|+ supx,t |b|) ≤ c0, for some constant c0.

Remark 3.1. When a and b are constant, L�
N = 2bI − LN . Then L�

N

commutes with LN and LN is normal. Furthermore, if b ≤ 0, L�
N + LN =

2bI ≤ 0, LN is also semi-negative. One can use Corollary 2.2 to prove the
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one-step strong stability under a sufficiently small time step. In particular,
when a is a constant and b = 0, LN is skew-symmetric, we can get a specific
estimate of the time step size from Corollary 2.1.

3.1.2. Polynomial method. Consider the linear advection equation

(21) ∂tu = ∂xu, t ∈ (0, T ), x ∈ (−1, 1),

with the inflow boundary condition u(1, t) = 0.

In the polynomial Galerkin method, we set V = {φ(x) ∈ span{xk}Nk=0|
φ(1) = 0} and (·, ·)w is the weighted L2 inner product, namely (f, g)w =∫ 1
−1w(x)f(x)g(x)dx. The corresponding norm is denoted as ‖·‖w. We denote
by Pw the projection to V under (·, ·)w.

Different weight functions w(x) correspond to different polynomial meth-
ods in the literature. Let us consider the Jacobi method as an example. Here
w(x) = (1 + x)α(1 − x)β with α ≥ 0 and −1 < β ≤ 0. When α = β = 0,
w(x) = 1, and the method is also referred as the Legendre method.

It can be shown that LN is semi-negative in this setting. For any uN ∈ V,
one has

(uN , (LN + L�
N )uN )w = (PwuN , LPwuN )w + (LPwuN , PwuN )w

= 2(uN , LuN )w = 2

∫ 1

−1
wuN∂xuNdx =

∫ 1

−1
w∂xu

2
Ndx

= −
∫ 1

−1
w′u2Ndx− w(−1)uN (−1, t)2≤−

∫ 1

−1
w′u2Ndx.

For α > 0 and β < 0,

w′(x) = α(1 + x)α−1(1− x)β − β(1 + x)α(1− x)β−1

= (1 + x)α−1(1− x)β−1(α(1− x)− β(1 + x)) ≥ 0.

Similarly, one can prove w′(x) ≥ 0 for other cases. Hence LN + L�
N ≤ 0.

Furthermore, we apply the inverse inequality for Jacobi polynomials to
obtain ‖LN‖w ≤ CN2 for some constant C. (Refer to Theorem 3.34 in [11].)
Therefore, by applying Theorem 2.1, one has the following corollary.

Corollary 3.2. Consider the Jacobi Galerkin approximation of the advec-
tion equation (21) with the fourth-order RK time discretization,

un+1
N = P4(τLN )unN , LN = Pw(∂x)Pw.
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This fully-discrete scheme is strongly stable in two steps,

‖un+2
N ‖w ≤ ‖unN‖w,

under the CFL condition τ ≤ CN−2, where C depends on the constant in

the inverse inequality.

3.2. Discontinuous Galerkin method

A detailed discussion of the example in Section 3.2.1 can be found in [13].

For a systematic setup of the discontinuous Galerkin method for solving

conservation laws, one can refer to a series of paper [4], [3], [2], [1] and [5]

by Cockburn et al. To be consistent with the past literatures, we switch the

subscript N to h in this section, where h corresponds to the mesh size. Also,

we will use the bold fonts for vectors and matrices in this section.

3.2.1. Multi-dimensional scalar equation. Consider the linear scalar

conservation law

(22) ∂tu(x, t) = ∇ · (β(x)u(x, t)), x ∈ Ω ⊂ Rd, t ∈ (0, T ),

with the periodic boundary conditions. Here β is a smooth function satisfy-

ing the divergence-free condition, ∇ · β(x) = 0.

Suppose K = {K} is a quasi-uniform partition of the domain Ω. We

denote by h the largest diameter of the elements. The collection of cell in-

terfaces is denoted by E . Let us define V = {v ∈ L2(Ω) : v|K ∈ Pp(K), ∀K ∈
K}, where Pp(K) is the space of polynomials of degree no more than p on K.

As for (·, ·), we use the L2 inner product on Ω.

In discontinuous Galerkin method, one seeks a solution satisfying∫
Ω
∂tuhvhdx =

∑
K

(−
∫
K
uh∇ · (βvh)dx+

∫
∂K

ûhvhβ · ndl), ∀vh ∈ V,

where ûh is the numerical flux, approximating the trace of u along the edges.

A popular choice is to obey the unwinding principle. In our case, that is

ûh = u+h , where u+h = lim
ε→0+ uh(x+ εβ). We also use u−h = lim

ε→0+ uh(x− εβ) to

represent the trace of uh from the downwind side. When β(x) is parallel to

the cell interfaces, u±h are not well-defined. But in this case, β(x) · n = 0,

hence the value of u±h will not make any difference.
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Let us introduce the short hand notation,

(23) H+
β (w, v) =

∑
K∈K

( ∫
K
w∇ · (βv)dx−

∫
∂K

w+vβ · ndl
)
.

Then the scheme becomes, find uh ∈ V, such that

(∂tuh, vh) = −H+
β (uh, vh), ∀vh ∈ V.

H+
β has the following properties. We refer to [13] for details.

Lemma 3.1. For any wh, vh ∈ V, we have

(1) H+
β (vh, vh) =

1
2 �vh�2β, where �vh�β =

√∑
e∈E

∫
e(v

+
h − v−h )

2|β · n|dl.
(2) |H+

β (wh, vh)| ≤ Ch−1‖wh‖‖vh‖, for some constant C depending on β
and the constant in the inverse estimate.

By defining

(24) (Lhuh, vh) = −H+
β (uh, vh),

we can also rewrite the scheme as

∂tuh = Lhuh.

Using Lemma 3.1, one has

(vh, (Lh + L�
h )vh) = 2(Lhvh, vh) = −2H+

β (vh, vh) = −�vh�2β ≤ 0,(25)

‖Lhvh‖2 = −H+
β (vh, Lhvh) ≤ Ch−1‖vh‖‖Lhvh‖.(26)

Hence Lh is semi-negative and ‖Lh‖ ≤ Ch−1. The stability of the fully
discretized scheme now follows as a corollary of Theorem 2.1.

Corollary 3.3. Consider the discontinuous Galerkin approximation of (22)
with the fourth-order RK time discretization,

un+1
h = P4(τLh)u

n
h, Lh defined in (23) and (24).

This fully-discrete scheme is strongly stable in two steps,

‖un+2
h ‖ ≤ ‖unh‖,

under the CFL condition τ ≤ Ch, where C depends on β and the constant
in the inverse estimate.
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3.2.2. Multi-dimensional system. We now consider the symmetric hy-
perbolic system

∂tu(x, t) =

d∑
i=1

Ai∂xi
u(x, t),

x = (x1, ..., xd) ∈ Ω ⊂ Rd, u = (u1, ..., um)T ∈ Rm,

(27)

where Ai are m × m constant real symmetric matrices. For simplicity, we
assume Ω to be a hypercube in Rd and apply the periodic boundary condi-
tions.

Again, we denote by K = {K} a quasi-uniform partition of the domain
Ω with the mesh size h. And E is the collection of the cell interfaces. The
space V is chosen as

V = {v ∈ [L2(Ω)]m|v = (v1, ..., vm)T , vk|K ∈ Pp(K), ∀K ∈ K},

with the inner product (w,v) =
∑

K∈K(w,v)K =
∑

K∈K
∫
K w · vdx and

the induced norm ‖ · ‖ =
√

(·, ·). We also use 〈w,v〉e =
∫
ew · vdl for the

integration along the cell interfaces.

To set up the discontinuous Galerkin approximation, we firstly write
down the weak formulation of (27)

(28) (∂tu,v)K = −
d∑

i=1

(Aiu, ∂xi
v)K +

∑
e∈∂K

〈(
d∑

i=1

ni
e,KAi)u,v〉e,

where ne,K = (n1
e,K , ..., nd

e,K) is the outward unit normal vector to the edge e
in K. Since Ai are symmetric, for each e there is an orthogonal matrix Se

such that Λe = diag(λ1
e, ..., λ

m
e ) = Se(

∑d
i=1 n

i
e,KAi)S

T
e is diagonal. The

numerical scheme can be obtained by applying the upwind flux for each
eigen-component, namely

(29) (∂tuh,vh)K = −
d∑

i=1

(Aiuh, ∂xi
vh)K +

∑
e∈∂K

〈ΛeŜeuh,Sevh〉e,

where Ŝeuh = ((Ŝeuh)
1, ..., (Ŝeuh)

m)T and

(Ŝeuh)
k =

{
(Seu

int
h )k, λk

e < 0,

(Seu
ext
h )k, λk

e > 0.
(30)
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Here, uint
h (x, t) = lim

y→x,y∈K uh(x, t) and uext
h (x, t) = lim

y→x,y∈Kc uh(x, t). When

λk
e = 0, (Ŝeuh)

k will not contribute to the integration, hence one can avoid
defining it in this case. Also note that

∑d
i=1 n

i
e,KAi = −

∑d
i=1 n

i
e,K′Ai for

K ′ ∩ K = e, and the same Se should be used on both sides. Then Ŝeuh

defined in K and K ′ are the same, and the numerical flux is single-valued
on the cell interfaces. Furthermore, for the scalar case, (30) coincides with
the previous definition in Section 3.2.1.

As before, we define

H(wh,vh) =
∑
K∈K

HK(wh,vh)

=
∑
K∈K

(
d∑

i=1

(Aiwh, ∂xi
vh)K −

∑
e∈∂K

〈ΛeŜewh,Sevh〉e

)
.

(31)

H has the following properties, and its proof can be found in Appendix C.

Lemma 3.2. ∀vh,wh ∈V, H(vh,vh)≥ 0 and |H(wh,vh)| ≤Ch−1‖wh‖‖vh‖,
where C depends on Ai and the constant in the inverse estimate.

With the definition of H, the scheme (29) can be written as

(32) ∂tuh = Lhuh, (Lhuh,vh) = −H(uh,vh), ∀vh ∈ V.

Similar to those in (25) and (26), Lemma 3.2 implies that Lh is semi-negative
and ‖Lh‖ ≤ Ch−1. Hence, one can use Theorem 2.1 to obtain the following
corollary.

Corollary 3.4. Consider the discontinuous Galerkin approximation of (27)
with the fourth-order RK time discretization,

un+1
h = P4(τLh)u

n
h, Lh defined in (30), (31) and (32).

The fully-discrete scheme is strongly stable in two steps,

‖un+2
h ‖ ≤ ‖un

h‖,

under the CFL condition τ ≤ Ch. Here C depends on Ai and the constant
in the inverse estimate.

Remark 3.2. The stability extends to symmetrizable hyperbolic systems with
constants coefficients. More specifically, if there is a symmetric positive-
definite matrix H such that HAi are symmetric, then under an appropriate
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CFL condition τ ≤ Ch−1, one has ‖un+2
h ‖H ≤ ‖un

h‖H, where ‖v‖H =∑
K∈K

∫
K vTHvdx.

Remark 3.3. For symmetric hyperbolic systems with variable coefficients,
one can follow similar lines to show Lh is semi-bounded, and prove the sta-
bility of the fully discretized scheme. But the extension to symmetrizable
hyperbolic systems with variable coefficients is non-trivial.

4. Concluding remarks

We analyze the stability of the fourth order RK method for integrating
method of lines schemes solving the well-posed linear PDE system ∂tu =
L(x, t, ∂x)u. The issue of strong stability is of special interests. We consider
the ODE system d

dtuN = LNuN , with LN + L�
N ≤ 0 and LN independent

of time. When LN is normal, the strong stability of the fourth order RK
approximation has already been justified by the scalar eigenvalue analysis.
But for non-normal LN , we provide a counter example to show that the
strong stability can not be preserved whatever small time step we choose.
However, the strong stability can actually be obtained in two steps. We
prove ‖un+2

N ‖ ≤ ‖unN‖ under the time step constraint τ‖LN‖ ≤ c0 for some
constant c0. This can also be interpreted as the strong stability of the eight-
stage fourth order RK method composed by two steps of the four-stage
method. Then, based on this fact, we extend the stability results to gen-
eral semi-bounded linear systems after using a perturbation analysis and a
frozen-coefficient argument. Finally, we apply the results to justify the sta-
bility of the fully discretized schemes combining the fourth order RK method
and different spatial discretizations, including the spectral Galerkin method
and the discontinuous Galerkin method. The corresponding CFL time step
restrictions are obtained.

Appendix A. Proof of Proposition 1.1

Proof. (1) To prove LN + LT
N ≤ 0.

LN + LT
N = −

⎛⎝2 2 2
2 2 2
2 2 2

⎞⎠ = −2

⎛⎝1
1
1

⎞⎠(
1 1 1

)
.

Hence for any u = (u1, u2, u3)
T ∈ R3,

uT (LN + LT
N )u = −2(u1 + u2 + u3)

2 ≤ 0.

(2) To prove ‖P4(τLN )‖ > 1.



Stability of RK4 for time dependent PDEs 279

By definition,

P4(τLN )

=

⎛⎜⎝1− τ + τ2

2 − τ3

6 + τ4

24 −2τ + 2τ2 − τ3 + τ4

3 −2τ + 4τ2 − 3τ3 + 4τ4

3

0 1− τ + τ2

2 − τ3

6 + τ4

24 −2τ + 2τ2 − τ3 + τ4

3

0 0 1− τ + τ2

2 − τ3

6 + τ4

24

⎞⎟⎠ .

Since ‖P4(τLN )‖ =
√

λmax(P4(τLN )TP4(τLN )) is the square root of
the largest eigenvalue of P4(τLN )TP4(τLN ), we define f(λ, τ) =
det(λI − P4(τLN )TP4(τLN )). It suffices to show, for any sufficiently small
τ , f(·, τ) has a root larger than 1.

After direct calculation, one can obtain

f(λ, τ) = λ3 + c2λ
2 + c1λ+ c0,

where

c0 = −
(
1− τ +

1

2
τ2 − 1

6
τ3 +

1

24
τ4
)6

,

c1 = 3− 12τ + 36τ2 − 72τ3 + 100τ4 − 211τ5

2
+

1069τ6

12

− 257τ7

4
+

4081τ8

96
− 3827τ9

144
+

2225τ10

144
− 1133τ11

144

+
1895τ12

576
− 3709τ13

3456
+

197τ14

768
− 851τ15

20736
+

385τ16

110592
,

c2 = −3 + 6τ − 18τ2 + 36τ3 − 46τ4 +
163τ5

4
− 589τ6

24
+

75τ7

8
− 385τ8

192
.

One can see

f(1, τ) = −8τ9

27
+

τ10

3
− τ11

9
− 59τ12

216
+

341τ13

864
− 247τ14

864
+

1435τ15

10368

− 19τ16

384
+

2299τ17

165888
− 4757τ18

1492992
+

79τ19

124416
− 107τ20

995328
+

179τ21

11943936

− 13τ22

7962624
+

τ23

7962624
− τ24

191102976
,

f(2, τ) = 1 + 6τ − 18τ2 + 36τ3 − 38τ4 +
67τ5

4
+

371τ6

24
− 289τ7

8

+
7007τ8

192
− 11609τ9

432
+

2273τ10

144
− 383τ11

48
+

5213τ12

1728
− 2345τ13

3456



280 Zheng Sun and Chi-Wang Shu

− 203τ14

6912
+

673τ15

6912
− 5087τ16

110592
+

2299τ17

165888
− 4757τ18

1492992
+

79τ19

124416

− 107τ20

995328
+

179τ21

11943936
− 13τ22

7962624
+

τ23

7962624
− τ24

191102976
.

Hence, for any sufficiently small τ ,

f(1, τ) = −8τ8

27
+O(τ9) < 0, f(2, τ) = 1 + 6τ +O(τ2) > 1.

Note f(λ, τ) is a polynomial with respect to λ and τ , hence it is continuous.
By the intermediate value theorem, there exists λ(τ) ∈ (1, 2) such that
f(λ(τ), τ) = 0. Therefore

‖P4(τLN )‖ ≥
√

λ(τ) > 1.

Remark A.1. We also provide the numerical examination of Proposit-
ion 1.1. The values of ‖P4(τLN )‖−1 and ‖P4(τLN )2‖−1 with a decreasing
sequence of τ are listed in Table 1. As we can see, for this specific case, the
one-step strong stability does fail, but the two-step strong stability holds.

Table 1: The numerical examination of Proposition 1.1 and Theorem 2.1

τ ‖P4(τLN )‖ − 1 ‖P4(τLN )2‖ − 1
0.5 1.2794e-3 -1.0428e-3
0.2 8.3857e-6 -1.8788e-5
0.1 2.2173e-7 -6.6719e-7
0.05 6.3437e-9 -2.2029e-8
0.02 6.1504e-11 -2.3254e-10
0.01 1.8868e-12 -7.3375e-12

Appendix B. Coefficient matrix Ã

Ã=−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3/2 7/6 5/8 1/4 5/72 1/72 1/576
3/2 7/3 15/8 25/24 31/72 1/8 5/192 1/288
7/6 15/8 37/24 127/144 3/8 65/576 7/288 1/288
5/8 25/24 127/144 25/48 131/576 61/864 1/64 1/432
1/4 31/72 3/8 131/576 175/1728 37/1152 25/3456 5/4608
5/72 1/8 65/576 61/864 37/1152 1/96 11/4608 5/13824
1/72 5/192 7/288 1/64 25/3456 11/4608 23/41472 7/82944
1/576 1/288 1/288 1/432 5/4608 5/13824 7/82944 1/82944

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Appendix C. Proof of Lemma 3.2

Proof. (1) To prove H(vh,vh) ≥ 0.

We denote by ve,h = Sevh and v̂e,h = Ŝevh. Since Ai are symmetric.
Integrating by parts, one has

d∑
i=1

(Aivh, ∂xi
vh)K =

∑
e∈∂K

〈1
2

d∑
i=1

ni
e,KAivh,vh〉e =

∑
e∈∂K

〈1
2
Λeve,h,ve,h〉e.

(33)

Substitute (33) into (31), then we obtain

H(vh,vh) =
∑
K∈K

∑
e∈∂K

〈Λe(
1

2
ve,h − v̂e,h),ve,h〉e.

Each cell interface e is shared by two elements. We sit in either side and call
ve,h defined in this element to be vint

e,h. ve,h defined from the other side is

referred as vext
e,h . Then the summation can be rewritten as

H(vh,vh)

=
∑
e∈E

(
〈Λe(

1

2
vint
e,h − v̂e,h),v

int
e,h〉e + 〈−Λe(

1

2
vext
e,h − v̂e,h),v

ext
e,h〉e

)
=

∑
e∈E

(
1

2
〈Λev

int
e,h,v

int
e,h〉e −

1

2
〈Λev

ext
e,h ,v

ext
e,h〉e + 〈Λev̂e,h,v

ext
e,h − vint

e,h〉e).

By checking the definition of v̂e,h, one can prove that

H(vh,vh) =
1

2

∑
e∈E

〈abs(Λe)(v
ext
e,h − vint

e,h), (v
ext
e,h − vint

e,h)〉e,

where abs(Λe) = diag(|λ1
e|, ..., |λm

e |). Hence H(vh,vh) is non-negative.
(2) To prove |H(wh,vh)| ≤ Ch−1‖wh‖‖vh‖.
We will use the notation | · | for different meanings. For scalars, |a| is

the absolute value of a; for vectors, |a| stands for the Euclidean norm of a;
and for matrices, |A| is the operator norm of A. We also use the notation
‖ · ‖K =

√
(·, ·)K .

By using the Cauchy-Schwarz inequality and the inverse estimate, one
has
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|
∑
K∈K

d∑
i=1

(Aiwh, ∂xi
vh)K | ≤

∑
K∈K

d∑
i=1

|Ai|‖wh‖K‖∂xi
vh‖K

≤
(
Ch−1

d∑
i=1

|Ai|
) ∑

K∈K
‖wh‖K‖vh‖K

≤
(
Ch−1

d∑
i=1

|Ai|
)
‖wh‖‖vh‖.

(34)

And

|
∑
K∈K

∑
e∈∂K

〈ΛeŜewh,Sevh〉e|

≤ sup
k,e

|λk
e |

∑
K∈K

∑
e∈∂K

√∫
e
|Ŝewh|2dl

√∫
e
|Sevh|2dl.

Note that Se are orthogonal, |Sevh| = |vh|. By using the inverse inequality,
we obtain √∫

e
|Sevh|2dl =

√∫
e
|vh|2dl ≤ Ch−

1

2 ‖vh‖K ,

and √∫
e
|Ŝewh|2dl ≤

√∫
e
|wint

h |2 + |wext
h |2dl ≤ Ch−

1

2 ‖wh‖N (K),

where N (K) is the union of K and its neighboring elements. Hence

|
∑
K∈K

∑
e∈∂K

〈ΛeŜewh,Sevh〉e| ≤Ch−1 sup
k,e

|λk
e |

∑
K∈K

‖wh‖N (K)‖vh‖K

≤Ch−1 sup
k,e

|λk
e |
√∑

K∈K
‖wh‖2N (K)

√∑
K∈K

‖vh‖2K

≤Ch−1 sup
k,e

|λk
e |‖wh‖‖vh‖.

(35)

Combining (34) and (35), we get

|H(wh,vh)| ≤ Ch−1‖wh‖‖vh‖.
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