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Abstract

In this paper, we develop a second-order asymptotic-preserving and positivity-preserving

discontinuous Galerkin (DG) scheme for the Kerr-Debye model. By using the energy estimate

and Taylor expansion first introduced by Zhang and Shu in [46], the asymptotic-preserving

property of the semi-discrete DG methods is proved rigorously. In addition, we propose a

class of unconditional positivity-preserving implicit-explicit (IMEX) Runge-Kutta methods

for the system of ordinary differential equations arising from the semi-discretization of the

Kerr-Debye model. The new IMEX Runge-Kutta methods are based on the modification of

the strong-stability-preserving (SSP) implicit Runge-Kutta method and have second-order

accuracy. The numerical results validate our analysis.
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1 Introduction

The propagation of electromagnetic waves in medium is described by the system of Maxwell

equations. The constitutive equations characterize different property of the medium. A

model for the nonlinear optical phenomena in isotropic crystal is the Kerr-Debye model. In

this paper, we focus on the non-dimensional Kerr-Debye model in 1D case:

∂tD + ∂xH = 0, (1.1a)

∂tH + ∂x(
D

1 + χ
) = 0, (1.1b)

∂tχ =
1

ε

(

D2

(1 + χ)2
− χ

)

. (1.1c)

Here D = D(x, t) is the electric displacement, H = H(x, t) is the magnetic field, χ = χ(x, t)

is the third-order nonlinear susceptibility of the medium, and the positive constant ε is the

non-dimensional relaxation time. For the physical background and the derivation of the

model, we refer the readers to [49] and [1].

Let p denote the reciprocal function of q(e) = e + e3. Formally when ε tends to 0,

D2

(1+χ)2
− χ converges to 0, which is equivalent to χ = (p(D))2. Thus the limiting equation of

(1.1) behaves as

∂tD + ∂xH = 0, (1.2a)

∂tH + ∂xp(D) = 0, (1.2b)

which is called the Kerr model.

First we make a brief review on the results of this model in the aspect of analysis. There

have been many works discussing the validity of the approximation for general hyperbolic

systems with stiff relaxation terms, see e.g. [35, 8, 45]. For this specific model, the conver-

gence of smooth solutions for (1.1) to those of (1.2) was proved in [23, 7]. The shocks for

which there exists a Kerr-Debye profile were characterized in [1].

The main difficulty in designing numerical schemes for (1.1) is the approximation of the

source term when ε is very small. Asymptotic-preserving (AP) methods are proposed for
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this kind of problems and have been intensively studied in different settings [31, 21, 19]. The

basic idea of the AP schemes is to develop numerical schemes that preserve the asymptotic

limits in the discrete setting. We refer the readers to [32] for a review of the subject. Below,

to the best of our knowledge, we briefly review some existing works on the AP schemes with

discontinuous Galerkin (DG) spatial discretization [13, 14]. With the technique of modified

equation and asymptotic analysis, Lowrie and Morel showed the AP property of a semi-

discrete DG method with piecewise-linear elements for solving linear hyperbolic systems with

linear relaxation in [37]. Recently, in [18], Dumsber et al. proposed a class of finite volume

schemes of arbitrary high order accuracy in time and space for hyperbolic systems of balance

laws with stiff source terms by combining a high order WENO reconstruction and a space-

time DG scheme, and obtained good numerical results for the stiff scalar model equation

in [34] and the relaxation system in [33]. There are also many works on applying the DG

methods with asymptotic property to various problems, including radiation hydrodynamics

[36] and extended hydrodynamics [26, 43, 44]. More recently, Jang et al. developed a family

of high order asymptotic preserving DG schemes for some discrete-velocity kinetic equations

under a diffusive scaling in [29], and obtained uniform stability as well as error estimates in

the linear case in [28]. We remark that rigorous proofs for the AP property are relatively

rare in spite of much computational effort and many applications.

Another issue is the time integration method. To allow the step size in time much larger

than ε, implicit time discretization techniques have to be used for the stiff source term. A

popular class of time discretization technique is the implicit-explicit (IMEX) Runge-Kutta

(RK) schemes [2, 39]. In [40], the IMEX RK method was applied to hyperbolic systems with

relaxation by treating convection terms explicitly and stiff source terms implicitly. Many

splitting Runge-Kutta methods could also be written as the form of IMEX RK schemes

[30, 6].

For the Kerr-Debye model (1.1), an important property is that if χ is initially positive,

then it remains positive for t > 0. The violation of this positivity-preserving property may
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result in unphysical numerical solutions. There are some works on positivity-preserving

property of time discretization methods but a restrictive time step of order ε is required

to maintain the desired property for most of them [25, 15]. Below we comment on several

works on the discretization of stiff ordinary differential equations (ODEs) which preserves

the positivity of solutions unconditionally. The well-known Patankar-trick was developed

to treat stiff source terms in geobiochemical models [41], and was further improved and

applied in different areas [4, 5, 16, 3]. Recently, Chertock et al. developed a class of second-

order semi-implicit time integration methods with steady state and sign preserving property

for systems of ODEs with stiff terms [9], and successfully applied it to the shallow water

equations with stiff friction term [10].

In this article, we aim to construct DG schemes with proper time discretization for the

Kerr-Debye system (1.1). The schemes have several properties: (i) it has a stability constraint

independent of the small parameter ε; (ii) When ε tends to 0, the scheme is consistent with

the Kerr model (1.2); (iii) The positivity of χ should be preserved unconditionally. To be

more precise, we rigorously prove the AP property of the semi-discrete DG scheme in the

limit of ε→ 0. Due to the nonlinearity of the relaxation term, the semi-discrete DG scheme

for (1.1) with ε → 0 does not solve the degenerate equations (1.2) exactly but could be

taken as a small “perturbation” of the semi-discrete DG scheme for (1.2). By using energy

estimate and Taylor expansion first introduced in [46, 47] and similar idea in [27], an a priori

error estimate is obtained and thus the consistency is proved. As to the time integration, it

is well-known that the Euler backward method enjoys a nice unconditional bound-preserving

property for a class of stiff ODEs with some requirements (see Proposition 4.1). However, due

to the nonexistence of higher order strong-stability-preserving (SSP) implicit Runge-Kutta

scheme [22], higher order schemes can not be constructed by a simple convex combination of

Euler backward methods. Therefore, inspired by [9], we introduce a correction step to the

Euler backward method, and develop a class of second-order modified IMEX RK methods

which can preserve the positivity of χ unconditionally.
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The paper is organized as follows. In section 2, we introduce some basic notations and

define the semi-discrete DG method. In section 3, we prove the asymptotic-preserving prop-

erty of semi-discrete DG schemes. In section 4, the new IMEX RK methods are presented.

Numerical results are reported in section 5. Some concluding remarks are given in section 6.

2 Semi-discrete DG method

We first discretize the Kerr-Debye model (1.1) in space following [12]. Denote the com-

putational domain by I ⊂ R. For each partition of the interval I, {xj+ 1

2

}N
j=0, we set

Ij = (xj− 1

2

, xj+ 1

2

) for j = 1, · · · , N . For simplicity, we assume the partition is uniform

with mesh size h. We define the finite element space:

V k
h = {v ∈ L1(I) : v|Ij

∈ Pk(Ij), j = 1, · · · , N}, (2.3)

where Pk(Ij) denotes the space of polynomials in Ij of degree at most k ≥ 0.

We are now ready to define the semi-discrete DG method for (1.1). Look for Dh(·, t),

Hh(·, t), χh(·, t) ∈ V k
h , such that ∀ φh, ψh, ϕh ∈ V k

h and ∀ j,

∫

Ij

∂tDhφh −

∫

Ij

Hh∂xφh + Ĥj+ 1

2

(Dh, Hh, χh)(φh)
−
j+ 1

2

− Ĥj− 1

2

(Dh, Hh, χh)(φh)
+
j− 1

2

= 0,

(2.4a)
∫

Ij

∂tHhψh −

∫

Ij

Dh

1 + χh
∂xψh +

̂
(
D

1 + χ
)
j+ 1

2

(Dh, Hh, χh)(ψh)
−
j+ 1

2

−
̂

(
D

1 + χ
)
j− 1

2

(Dh, Hh, χh)(ψh)
+
j− 1

2

= 0,

(2.4b)
∫

Ij

∂tχhϕh =
1

ε

∫

Ij

((
Dh

1 + χh
)2 − χh)ϕh. (2.4c)

Here Ĥj+ 1

2

and (̂ D
1+χ

)
j+ 1

2

are numerical fluxes. Throughout this paper, we will use the global

Lax-Friedrichs flux:

Ĥj+ 1

2

=
1

2

(

((Hh)
−
j+ 1

2

+ (Hh)
+
j+ 1

2

) − α((Dh)
+
j+ 1

2

− (Dh)
−
j+ 1

2

)
)

, (2.5a)

̂
(
D

1 + χ
)
j+ 1

2

=
1

2

(

((
Dh

1 + χh

)−
j+ 1

2

+ (
Dh

1 + χh

)+
j+ 1

2

) − α((Hh)
+
j+ 1

2

− (Hh)
−
j+ 1

2

)

)

, (2.5b)
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with α the maximum of the absolute value of all the eigenvalues of the Jacobian matrix for

(1.1), i.e., α = maxχ
1√
1+χ

.

In the computation, we use the (k + 1)-points Gauss-Legendre quadrature rules to ap-

proximate the integral in the source term of (2.4c), and (2.4c) is replaced by:

∫

Ij

∂tχhϕh =
1

ε
h

k
∑

β=0

ω̂β((
Dh(x̂j,β)

1 + χh(x̂j,β)
)2 − χh(x̂j,β))ϕh(x̂j,β), (2.6)

where ω̂β and x̂j,β denote the quadrature weights and quadrature points in the cell Ij .

3 Asymptotic-preserving property of semi-discrete DG

schemes

In this section, we will rigorously prove the asymptotic-preserving property of semi-discrete

DG schemes. To be more specific, we would like to prove that, as ε tends to 0, the semi-

discrete methods (2.4a)-(2.4b)-(2.6) become a consistent discretization of the limiting equa-

tion (1.2). Throughout this section, we do not pay attention to boundary conditions: thus

the solution is considered either periodic or compactly supported.

To explicitly indicate how the solutions depend on the small parameter ε, we denote

the exact solutions to the Kerr-Debye model (1.1) by Dε = Dε(x, t), Hε = Hε(x, t) and

χε = χε(x, t). We denote the solutions to the semi-discrete DG method with source term

approximated by quadrature rules (2.4a)-(2.4b)-(2.6) by Dε
h, H

ε
h and χε

h. As usual, we take

the initial value of Dε
h, H

ε
h and χε

h to be the L2-projection of Dε(·, t = 0), Hε(·, t = 0) and

χε(·, t = 0), see e.g. [46].

By letting ε formally tend to 0 in (2.6), one can obtain the equilibrium set for the semi-

discrete DG schemes:

k
∑

β=0

ω̂β((
D0

h(x̂j,β)

1 + χ0
h(x̂j,β)

)2 − χ0
h(x̂j,β))ϕh(x̂j,β) = 0, (3.7)

which is equivalent to

χ0
h − p2(D0

h) = 0, (3.8)
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at all (k + 1) Gauss-Legendre quadrature points in all cells. For notational convenience, we

define an interpolation operator πh: for any piecewise continuous function u, πhu is defined

as the unique function in V k
h which satisfies πhu = u at all (k+1) Gauss-Legendre quadrature

points in all cells. Then (3.8) could be written compactly as

χ0
h(·, t) = πh(p

2(D0
h(·, t))). (3.9)

Now as ε→ 0, the semi-discrete DG method (2.4a)-(2.4b)-(2.6) formally becomes

∫

Ij

∂tD
0
hφh −

∫

Ij

H0
h∂xφh + Ĥj+ 1

2

(D0
h, H

0
h, πh(p

2(D0
h)))(φh)

−
j+ 1

2

− Ĥj− 1

2

(D0
h, H

0
h, πh(p

2(D0
h)))(φh)

+
j− 1

2

= 0, (3.10a)

∫

Ij

∂tH
0
hψh −

∫

Ij

D0
h

1 + πh(p2(D0
h))

∂xψh +
̂

(
D

1 + χ
)
j+ 1

2

(D0
h, H

0
h, πh(p

2(D0
h)))(ψh)

−
j+ 1

2

−
̂

(
D

1 + χ
)
j− 1

2

(D0
h, H

0
h, πh(p

2(D0
h)))(ψh)

+
j− 1

2

= 0. (3.10b)

for all φh, ψh ∈ V k
h and j.

We remark that if the relaxation source term is linear, i.e., p2 is a linear function, then

πh(p
2(D0

h)) ≡ p2(D0
h) and thus (3.10) is exactly the semi-discrete DG scheme for (1.2). Due

to the nonlinearity of p2, (3.10) does not solve (1.2) exactly. However, it could be taken as

a small “perturbation” of the semi-discrete DG methods for (1.2) because the interpolation

operator πh preserves piecewise polynomials of degree ≤ k. Therefore, this problem is much

similar to the error estimate of semi-discrete DG methods with quadrature rules in [27]. Our

main idea also originates from [27].

In the following part, we will estimate the error between (D0
h, H

0
h) (the solutions to the

degenerate semi-discrete method (3.10)) and (D0, H0) (the exact solutions to the degenerate

equations (1.2)). We present the main theorem and lemmas here. Some technical details

will be left in the appendix.

Theorem 3.1 (Asymptotic-preserving property of semi-discrete DG schemes). Let (D0, H0)

be the exact solutions to the degenerate equations (1.2) which are both bounded and sufficiently
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smooth. Let (D0
h, H

0
h) be the solutions to the degenerate semi-discrete DG scheme (3.10)

with piecewise polynomials of degree k ≥ 3, and denote the corresponding numerical error by

e = (D0−D0
h, H

0−H0
h). Then for small enough h, there holds the following error estimates:

max
0≤t≤T

‖e(t, ·)‖L2(I) ≤ Chk. (3.11)

Here the positive constant C is independent of h and the approximation solution (D0
h, H

0
h).

Remark 3.1. We point out that the error estimate of O(hk) is not optimal. Moreover,

we would like to mention that our proof does not work for k = 1, 2. Such assumptions are

purely needed for the a priori assumption. In practice, it does not seem necessary. We will

report convergence of order two with piecewise linear finite element space in the numerical

experiments.

Remark 3.2. Our proof does not rely on the specific form of the equation. It could be ex-

tended to general systems of hyperbolic conservation laws with relaxation in multi-dimensional

cases.

Remark 3.3. The above process of deducing the limiting scheme (3.10) is only formal and

not rigorous. The rigorous proof for the reasonability of the limit is highly nontrivial and

beyond the scope of this work.

Before starting to prove the main results for error estimates, we present some interpolation

inequalities for the projections. The usual notation of norms and seminorms in Sobolev

spaces will be used, see e.g. [46]. For vectors and matrices, we use the 2-norm. For the

L2 projection Ph and the interpolation operator πh mentioned above, it is easy to show the

following lemma (cf. [11]):

Lemma 3.1 (Interpolation inequalities). There exists a constant C, which does not depend

on h, such that, for any piecewise smooth function u, we have

‖u− πhu‖ + h
1

2 ‖u− πhu‖Γ ≤ C
∥

∥∂k+1
x u

∥

∥hk+1, (3.12)
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‖u− πhu‖∞ ≤ C
∥

∥∂k+1
x u

∥

∥

∞ hk+1. (3.13)

The same inequalities hold for πh replaced by Ph.

We also present some inverse properties of the finite element space V k
h that will be used

in our analysis. For more details, we refer the reader to [11].

Lemma 3.2 (Inverse inequalities). There exists a constant C > 0, independent of h, such

that for any vh ∈ V k
h ,

‖∂xvh‖ ≤Ch−1 ‖vh‖ , (3.14a)

‖vh‖Γ ≤Ch−1/2 ‖vh‖ , (3.14b)

‖vh‖∞ ≤Ch−1/2 ‖vh‖ . (3.14c)

First, we introduce some notations and put the problem in a general form. We use

the notation u = (D,H)⊺ and v = χ. Now the Kerr model (1.2) is a system for the

unknown function u. The physical flux of the first two equations of (1.1) is f(u, v) =

(f1(u, v), f2(u, v))
⊺ = (H, D

1+χ
)⊺. Denote

H(p, q, r) =
∑

j

∫

Ij

∂xr
⊺f(p, q) +

∑

j

[r]⊺
j+ 1

2

f̂j+ 1

2

(p, q) (3.15)

Here p and r a vector-valued function with two components, q is a scalar-valued function

and f̂j+ 1

2

= (f̂j+ 1

2
,1, f̂j+ 1

2
,2)

⊺ is the Lax-Friedrichs flux (2.5):

f̂j+ 1

2
,1 =

1

2

(

(f1(u, v)
−
j+ 1

2

+ f1(u, v)
+
j+ 1

2

) − α((u1)
+
j+ 1

2

− (u1)
−
j+ 1

2

)
)

, (3.16a)

f̂j+ 1

2
,2 =

1

2

(

(f2(u, v)
−
j+ 1

2

+ f2(u, v)
+
j+ 1

2

) − α((u2)
+
j+ 1

2

− (u2)
−
j+ 1

2

)
)

, (3.16b)

with α the maximum of the absolute value of eigenvalue of the Jacobian matrix of (1.1). We

denote the equilibrium set χ − (p(D))2 = 0 by v = g(u). With periodic or zero boundary

conditions, making a summation of (3.10) over j obtains

∑

j

∫

Ij

φ⊺

h∂tuh = H(uh, πh(g(uh)), φh). (3.17)
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The exact smooth solution to the degenerate PDE (1.2) satisfies

∑

j

∫

Ij

φ⊺

h∂tu = H(u, g(u), φh). (3.18)

Here and in what follows, we omit the superscript 0 in (3.10) for notational convenience.

We would like to estimate the error e = u−uh. As is customary in error analysis of finite

element methods, we denote ξ = Phu− uh and η = Phu− u with Ph the usual L2-projection

[46]. Subtracting (3.18) from (3.17), we obtain the energy equality:

∑

j

∫

Ij

φ⊺

h∂tξ = H(u, g(u), φh) −H(uh, πh(g(uh)), φh). (3.19)

Due to the symmetrization theory [24], one can seek a symmetric positive definite matrix

Q = Q(u) such that H = H(u) := Q(u)f ′
u is symmetric where f ′

u ≡ ∂f(u,g(u))
∂u

denote the

Jacobian matrix for (1.2). Following [38], we further define a piecewise constant matrix

Qc = Q(uc) with uc denoting the evaluation of the exact solution at the element central

points. We take φh = Qcξ in (3.19) and split the RHS as follows:

∑

j

∫

Ij

(Qcξ)
⊺∂tξ =H(u, g(u), Qcξ) −H(uh, πh(g(uh)), Qcξ),

=(H(u, g(u), Qcξ) −H(uh, g(uh), Qcξ))

+ (H(uh, g(uh), Qcξ) −H(uh, πh(g(uh)), Qcξ)) ,

=(H(u, g(u), Qcξ) −H(uh, g(uh), Qcξ))

+ E(uh, g(uh), Qcξ),

=(H(u, g(u), Qcξ) −H(uh, g(uh), Qcξ))

+ E(u, g(u), Qcξ) + (E(uh, g(uh), Qcξ) − E(u, g(u), Qcξ)) ,

≡T1 + T2 + T3.

Here E(p, q, r) := H(p, q, r) −H(p, πhq, r).

Before going to the details of the estimate of each part, we would like to make some further

assumptions on the physical flux f and the matrix Q following [38]. Each component of f(p)

and f ′
u(p) is bounded for all p. The matrix Q(p) is symmetric positive definite uniformly in
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the sense that there exist two constants C1 and C2 such that 0 < C1 ≤ ‖Q(p)‖ ≤ C2 for all

p. Furthermore, we assume that f ′
u(p) and Q(p) are globally Lipschitz continuous. These

assumptions are reasonable with a cut-off modification of f and Q, due to the boundedness

of the exact solutions. We refer the readers to [46] and [38] for more details.

The first term T1 only involves the error of the semi-discrete DG method for (1.2) and

has been estimated in [38]. The authors introduced a definition called “the generalized-E

flux” for systems [38]. We remark that if the Lax-Friedrichs flux (3.16) is used, then the

reduced flux is

f̂j+ 1

2
,1 =

1

2

(

(f1(u, g(u))
−
j+ 1

2

+ f1(u, g(u))
+
j+ 1

2

) − α((u1)
+
j+ 1

2

− (u1)
−
j+ 1

2

)
)

, (3.20a)

f̂j+ 1

2
,2 =

1

2

(

(f2(u, g(u))
−
j+ 1

2

+ f2(u, g(u))
+
j+ 1

2

) − α((u2)
+
j+ 1

2

− (u2)
−
j+ 1

2

)
)

, (3.20b)

It is also a Lax-Friedrichs flux for the degenerate systems (1.2), due to the fact that the

maximum of the absolute value of eigenvalue of (1.1) is 1√
1+χ

, which is greater than 1√
1+3χ

,

the maximum of (1.2). Hence, it satisfies the definition of the generalized-E flux in [38]. We

list the results in the following lemma and refer the readers to section 5.3 in [38]:

Lemma 3.3 (Estimate of T1). There exist a constant C > 0, independent of h, such that

T1 = H(u, g(u), Qcξ) −H(uh, g(uh), Qcξ) ≤ C(1 + h−1 ‖e‖∞)(‖ξ‖2 + h2k+1). (3.21)

Lemma 3.4 (Estimate of T2). There exist a constant C > 0, independent of h, such that

|T2| ≤ C(h2k + ‖ξ‖2). (3.22)

Proof. We expand the second term

T2 =E(u, g(u), Qcξ),

=H(u, g(u), Qcξ) −H(u, πh(g(u)), Qcξ),

=
∑

j

∫

Ij

(Qcξ)
⊺

x(f(u, g(u))− f(u, πh(g(u))))

+
∑

j

(Qcξ)
⊺

j+ 1

2

(f̂j+ 1

2

(u, g(u))− f̂j+ 1

2

(u, πh(g(u))))

11



to have the following estimate

|T2| ≤C ‖∂xξ‖ ‖g(u)− πh(g(u))‖ + C ‖ξ‖Γ ‖g(u) − πh(g(u))‖Γ ,

≤Chk ‖ξ‖ ≤ C(h2k + ‖ξ‖2).

Here we have used Cauchy’s inequality, the interpolation inequality (3.12) and the inverse

inequality (3.14a)-(3.14b).

For the estimate of the third term T3, we present the results below and leave the technical

proof in the appendix.

Lemma 3.5 (Estimate of T3). There exist a constant C > 0, independent of h, such that

|T3| ≤ C(1 + h−2 ‖e‖∞)(h2k + ‖ξ‖2). (3.23)

We are now ready to prove our main theorem 3.1. Following [46], we first make an a

priori assumption that, for small enough h, there holds the inequality

‖e(·, t)‖ ≤ h5/2, (3.24)

for 0 ≤ t ≤ T . From Lemma 3.3, Lemma 3.4 and Lemma 3.5, an estimate is obtained based

on (3.19):

d

dt

∥

∥

∥
Q

1

2

c ξ
∥

∥

∥

2

=
d

dt

∑

j

∫

Ij

ξ⊺Qcξ,

=2
∑

j

∫

Ij

(Qcξ)
⊺∂tξ +

∑

j

∫

Ij

ξ⊺∂tQcξ,

≤C(1 + h−1 ‖e‖∞)(‖ξ‖2 + h2k+1) + C(‖ξ‖2 + h2k)

+ C(1 + h−2 ‖e‖∞)(‖ξ‖2 + h2k) + C ‖ξ‖2 ,

≤C(1 + h−2 ‖e‖∞)(
∥

∥

∥
Q

1

2

c ξ
∥

∥

∥

2

+ h2k) ≤ C(
∥

∥

∥
Q

1

2

c ξ
∥

∥

∥

2

+ h2k).

Here we have used the uniform equivalence among the norms ‖·‖ and
∥

∥

∥
Q

1

2

c ·
∥

∥

∥
, due to the

uniform boundedness of Qc. Thus again by the uniform equivalence of the two norms, we

finally reach the conclusion of the theorem:

max
0≤t≤T

‖e(t, ·)‖L2(I) ≤ Chk, (3.25)
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To complete proof of this theorem, the a priori assumption (3.24) needs to be justified. The

details are omitted here and we refer the readers to [46] and [27].

4 Positivity-preserving IMEX RK methods

First, we choose an appropriate set of basis functions for the finite element space V k
h and

write down the ODEs for the coefficients of the basis. If we use the Lagrange polynomials

at Gauss-Legendre points as basis of V k
h , i.e., for x ∈ Ij,

Dh(x, t) =

k
∑

β=0

D
(β)
j (t)l

(β)
j (x),

Hh(x, t) =

k
∑

β=0

H
(β)
j (t)l

(β)
j (x),

χh(x, t) =
k
∑

β=0

χ
(β)
j (t)l

(β)
j (x),

where the Lagrange polynomials satisfy l
(α)
j (x̂j,β) = δαβ for α, β = 0, · · · , k and x̂j,β denotes

the quadrature points in Ij , then (2.6) could be rewritten as

∂tχ
(β)
j (t) =

1

ε

(

(
D

(β)
j (t)

1 + χ
(β)
j (t)

)2 − χ
(β)
j (t)

)

, (4.26)

for β = 0, · · · , k and any j. Choosing this set of basis preserves the original structure of

the PDE and thus all the coefficients χ
(β)
j (t) will stay positive as long as the initial value

is positive. In the following part, we focus on developing a class of positivity-preserving

implicit-explicit (IMEX) Runge-Kutta (RK) methods for the ODEs of the form (4.26).

4.1 Scalar ODE

To start with the simple case, we first discuss the initial value problem for scalar ODE of

the form:

du

dt
= L(u), t > 0 (4.27)

Here L is a stiff term which satisfies:

13



(A1) L = L(u) is decreasing w.r.t. u;

(A2) There exists one and only one real number u∗ satisfying L(u∗) = 0.

Under these assumptions, the exact solution of (4.27) enjoys the following property:

(i) if u(0) < u∗, then u(t) < u∗ for t > 0 and u is increasing w.r.t t > 0;

(ii) if u(0) = u∗, then u(t) ≡ u∗;

(iii) if u(0) > u∗, then u(t) > u∗ for t > 0 and u is decreasing w.r.t t > 0.

In the special case of u∗ ≥ 0, the solution u(t) stays positive as long as the initial value is

positive.

Thanks to the decreasing property of L, one can easily show that the numerical solution

of (4.27) with the Euler backward method shares the same property:

Proposition 4.1. Suppose that L satisfies the assumptions (A1) and (A2). Then the nu-

merical solution of (4.27) with the Euler backward method

un+1 = un + kL(un+1) (4.28)

has the property: for any step size k > 0,

(i) if un < u∗, then un < un+1 < u∗;

(ii) if un = u∗, then un+1 = u∗;

(iii) if un > u∗, then u∗ < un+1 < un.

A natural way of generalizing this property to higher order methods is to write the

diagonally implicit Runge-Kutta method into a convex combination of the Euler backward

method [22]:

u(0) = un,

14



u(i) =

i−1
∑

j=0

αi,ju
(j) + kβiL(u(i)), αi,j ≥ 0,

i−1
∑

j=0

αi,j = 1, βi ≥ 0, i = 1, · · · , m, (4.29)

un+1 = u(m),

with k > 0 the step size. With non-negativity of the coefficients αi,k and βi, the implicit

Runge-Kutta schemes (4.29) shares the same bound-preserving property in Proposition 4.1.

We remark that here the restrictions on the coefficients are stronger than those for the

strong-stability-preserving (SSP) implicit Runge-Kutta methods discussed in [22]. The SSP

RK method does not require βi ≥ 0 by using a trick of solving the negative-in-time version

of the conservation law. Unfortunately, the existence of (4.29) of order higher than 1 is

completely ruled out even if the non-negativity of βi is not required (cf. Proposition 6.2 in

[22]).

We have to try another approach to construct high order bound-preserving implicit

Runge-Kutta methods. To begin with, we analyze the Euler backward method (4.28) by

using Taylor expansion:

un+1 = un + kL(un) + k2L(un)L′(un) +O(k3). (4.30)

Clearly, it is only first-order accurate. Inspired by [9], we add one stage and compensate

some second-order term after the Euler backward to enforce it to be second-order:

u(1) = un + kL(u(1)), (4.31a)

un+1 = u(1) −
1

2
k2L(un+1)L

′(u(1)). (4.31b)

With the aid of decreasing property of L, it is easy to show that the second stage also enjoys

the bound-preserving property in Proposition 4.1. The result is summarized in the following:

Proposition 4.2. Suppose that L satisfies the assumptions (A1) and (A2). Then the nu-

merical solution of (4.27) with modified implicit Runge-Kutta method (4.31) has the property:

(1) It is second-order accurate;
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(2) It is bound-preserving: for any step size k > 0,

(i) if un < u∗, then un < u(1) < un+1 < u∗;

(ii) if un = u∗, then u(1) = un+1 = u∗;

(iii) if un > u∗, then u∗ < un+1 < u(1) < un.

Remark 4.1. We can also do the modification based on the implicit Runge-Kutta method

with more stages. Here the modified two stage implicit RK method is presented:

u(1) = un + ka11L(u(1)), (4.32a)

u(2) = un + k(a21L(u(1)) + a22L(u(2))), (4.32b)

un+1 = u(2) − ck2L(un+1)L
′(u(2)), (4.32c)

with the parameters satisfying

a21 + a22 = 1, a11 ≥ a21 ≥ 0, a22 ≥ 0, c = (a21a11 + a22(a21 + a22)) −
1

2
> 0. (4.33)

It is also second-order accurate and has the bound-preserving property as in Proposition 4.2.

However, it seems difficult to extend this idea to bound-preserving methods of higher order.

4.2 Coupling with non-stiff parts

In our semi-discrete scheme (2.4a)-(2.4b)-(2.6), there are also the non-stiff ODEs for Dh and

Hh. Therefore, we need to generalize the modified implicit RK solver (4.31) or (4.32) to

solve the systems of ODEs of the form:

du

dt
= f(u, v), (4.34a)

dv

dt
= g(u, v) =

1

ε
(N(u, v) − v), (4.34b)

where f is a non-stiff term and g is a stiff term. For the simplicity of presentation, we start

from the simple case in which u and v are both scalar-valued functions and will make a

comment on the vector-valued case later. We make some assumptions on N = N(u, v):
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(B1) N(u, v) ≥ 0 for any u and v;

(B2) N = N(u, v) is decreasing w.r.t. v.

Under these assumptions, the exact solution of (4.34) has the property: v(t) remains positive

for t > 0 if v(0) is positive.

Now we use the IMEX RK method [39] to solve (4.34), and try to keep the positivity-

preserving property:

u(1) = un,

v(1) = vn + kã11g(u
(1), v(1)),

u(2) = un + ka21f(u(1), v(1)),

v(2) = vn + kã21g(u
(1), v(1)) + kã22g(u

(2), v(2)),

un+1 = un + kb1f(u(1), v(1)) + kb2f(u(2), v(2)),

vn+1 = vn + kb̃1g(u
(1), v(1)) + kb̃2g(u

(2), v(2)).

By using Taylor expansion, it is easy to obtain

un+1 = un + k(b1 + b2)f + k2(b2a21ff
′
u + (b1ã11 + b2(ã21 + ã22))gf

′
v) +O(k3),

and

vn+1 = vn + k(b̃1 + b̃2)g + k2(b̃2a21fg
′
u + (b̃1ã11 + b̃2(ã21 + ã22))gg

′
v) +O(k3)

where the arguments in f , g and their derivatives are all (un, vn) and omitted.

Also, by using Taylor expansion on the exact solutions, we have

u(t+ k) = u+ ku′ +
1

2
k2u′′ +O(k3)

= u+ kf +
1

2
k2(ff ′

u + gf ′
v) +O(k3)

and

v(t+ k) = v + kv′ +
1

2
k2v′′ +O(k3)
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= v + kg +
1

2
k2(fg′u + gg′v) +O(k3).

Now we make a summary on the restrictions on the coefficients a21, ã11, ã21, ã22, b1, b2,

b̃1, b̃2:

• (first-order accuracy for u)

b1 + b2 = 1. (4.35)

• (first-order accuracy for v)

b̃1 + b̃2 = 1. (4.36)

• (second-order accuracy for u)

b2a21 =
1

2
, (4.37a)

b1ã11 + b2(ã21 + ã22) =
1

2
. (4.37b)

• (second-order accuracy for v)

b̃2a21 =
1

2
, (4.38a)

b̃1ã11 + b̃2(ã21 + ã22) =
1

2
. (4.38b)

• (positivity-preserving property for v)

ã11 ≥ ã21 ≥ 0, ã22 ≥ 0, ã21 = b̃1 ã22 = b̃2. (4.39)

However, from the last section, we know that these restrictions (4.35)-(4.39) could not be

satisfied simultaneously even if we are only limited to the stiff parts.

Now we try to drop some restrictions and make up some additional terms in the final

stage to meet these abandoned conditions as we have done in the last section. The second-

order condition (4.37) for u must be satisfied because compensating the derivatives terms on

f will make variables in all cells couple with each other and it would cost too much to solve

a large algebraic system. The restriction (4.38a) must be satisfied because we do not impose
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any conditions on the sign of the non-stiff part f and thus compensating the term involving

fgu of undetermined sign will lose the positivity-preserving property. Based on the above

analysis, we try to relax the restrictions (4.35) and (4.38b). In the spirit of the last section,

we modify the final stage to

ũn+1 = un+1 + k(1 − b1 − b2)f(un, vn), (4.40)

ṽn+1 = vn+1 − ck2g(ũn+1, ṽn+1)g
′
v(u

(2), v(2)), (4.41)

with c = b̃1ã11 + b̃2(ã21 + ã22) −
1
2
> 0. With the aid of the assumptions (B1) and (B2),

it is easy to show the positivity of ṽn+1 in (4.41). Under these restrictions, the parameters

are not unique and here we take one set of parameters: a21 = 2, ã11 = 3
4
, ã21 = 3

4
, ã22 = 1

4
,

b1 = 1
3
, b2 = 1

4
, b̃1 = 3

4
, b̃2 = 1

4
, c = 5

16
.

Now we make a summary of our modified IMEX RK method for (4.34):

u(1) = un, (4.42a)

v(1) = vn + kã11g(u
(1), v(1)), (4.42b)

u(2) = un + ka21f(u(1), v(1)), (4.42c)

v(2) = vn + kã21g(u
(1), v(1)) + kã22g(u

(2), v(2)), (4.42d)

ûn = un + kb1f(u(1), v(1)) + kb2f(u(2), v(2)), (4.42e)

v̂n = v(2), (4.42f)

un+1 = ûn + k(1 − b1 − b2)f(un, vn), (4.42g)

vn+1 = v̂n − ck2g(un+1, vn+1)g
′
v(ûn, v̂n) (4.42h)

with a21 = 2, ã11 = 3
4
, ã21 = 3

4
, ã22 = 1

4
, b1 = 1

3
, b2 = 1

4
, c = 5

16
.

Proposition 4.3. Suppose that (4.34) satisfies the assumptions (B1) and (B2). Then the

numerical solutions of (4.34) with the modified IMEX RK method (4.42) have the following

properties:

(1) It is second-order accurate;

19



(2) It is positivity-preserving: for any k > 0, if vn > 0, then v(1), v(2), v̂n and vn+1 > 0.

Remark 4.2. Although we have only discussed the case in which u and v are scalar-valued

functions, the scheme (4.42) could be also applied to systems as long as the equations for v

are not coupled with each other. To be more specific, we assume that the system of ODEs is

in the form:

du

dt
= f(u, v),

dv

dt
= g(u, v) =

1

ε
(N(u, v) − v),

with u = (u1, u2, · · · , um)⊺ and v = (v1, v2, · · · , vn)
⊺. The function N = (N1, N2, · · · , Nn)⊺

should satisfy the property that Nj only depends on u and vj for 1 ≤ j ≤ n, and

(i) Nj ≥ 0;

(ii) Nj is decreasing w.r.t. vj.

Remark 4.3. In [9], the authors developed a class of second-order semi-implicit RK methods

for the systems of ODEs of the form:

u′ = f(u, t) +G(u, t)u, (4.43)

where u is an unknown vector function, f is a non-stiff term and G(u, t)u is a stiff term

with G a diagonal nonpositive definite matrix. The main idea is to do Taylor expansion and

modify the final stage of the classical semi-implicit RK method which is at most first-order

accurate and thus obtain a second-order scheme. Our idea in constructing the IMEX RK

scheme is similar to theirs. Our building block is the Euler backward method while their

building block is the semi-implicit RK method.

At last, we discuss the asymptotic preserving property of our modified IMEX RK solver

(4.42). Under the assumptions (B1) and (B2), it is easy to show that, for any u, there exists

a unique v such that N(u, v) − v = 0. We denote this equilibrium point by v = e(u). Then

20



as ε→ 0, (4.34) formally degenerates to

du

dt
= f(u, e(u)). (4.44a)

Following [20], we show the consistency as ε tends to 0 under some stability assumptions on

the numerical solutions to (4.42). To explicitly indicate how the numerical solutions depend

on ε, we add ε in the superscript. The results are listed in the following and the proof is left

in the appendix.

Proposition 4.4 (consistency in the limit of ε → 0 for a fixed k). Suppose that f and g

in (4.34) are sufficiently smooth. Fix the time step k > 0, a final time T > 0, and set

NT = [T/k]. Assume that the numerical solutions (uε
n, v

ε
n)0≤n≤NT

given by (4.42) is such

that for all 0 ≤ n ≤ NT , (uε
n, εv

ε
n)ε>0 is bounded with respect to ε > 0. The initial data

(uε
0, v

ε
0) → (w0, v0) as ε → 0 and vε

0 ≥ 0 for ε > 0. Then there exist sequences wn, w
(1)
n ,

w
(2)
n and ŵn, such that for 0 ≤ n ≤ NT , uε

n → wn, and for 0 ≤ n ≤ NT − 1, u
(1),ε
n → w

(1)
n ,

u
(2),ε
n → w

(2)
n and ûε

n → ŵn as ε → 0, and they satisfy the following scheme which is a

consistent and first-order approximation of (4.44):

w(1)
n = wn,

w(2)
n = wn + ka21f(w(1)

n , e(w(1)
n )),

ŵn = wn + kb1f(w(1)
n , e(w(1)

n )) + kb2f(w(2)
n , e(w(2)

n )),

wn+1 = wn + k(1 − b1 − b2)f(wn, e(wn))

for 1 ≤ n ≤ NT − 1. And for n = 0,

w
(1)
0 = w0,

w
(2)
0 = w0 + ka21f(w

(1)
0 , e(w

(1)
0 )),

ŵ0 = w0 + kb1f(w
(1)
0 , e(w

(1)
0 )) + kb2f(w

(2)
0 , e(w

(2)
0 )),

w1 = w0 + k(1 − b1 − b2)f(w0, v0).

If we further assume that the initial value is consistent, i.e., v0 = e(w0), then the limiting

scheme is a second-order approximation of (4.44).
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To conclude this section, we would like to mention that using this modified IMEX RK

solver to solve the semi-discrete DG schemes for (1.1), it can be guaranteed that the values

of the numerical solutions χh at all Gauss-Legendre quadrature points are positive. There is

no need to use the limiter introduced by Zhang and Shu in [48].

5 Numerical examples

In this section, we perform several numerical examples to validate the accuracy of our schemes

in different cases.

5.1 IMEX RK methods

We first test the accuracy of our modified IMEX RK ODE solver (4.42).

Example 5.1.1 (Accuracy test for the ODE solver). Consider the following system of ODEs

which satisfy the assumption (B1) and (B2):

du

dt
= −u2 − v, (5.45a)

dv

dt
=

1

ε
(
u2

v2
− v), (5.45b)

with two sets of initial values:

(i) (without initial layer)

u(0) = 1, v(0) = 1; (5.46)

(ii) (with initial layer)

u(0) = 2, v(0) = 1. (5.47)

We compute the numerical solutions of (5.45) with our solver (4.42) up to time T = 1

with ε = 1 × 102, 1 × 10−2, 1 × 10−6. Denote the numerical solutions by unum and vnum, and

the reference solutions by uref and vref. Here the “reference solutions” to (5.45) are computed

by the classical fourth-order Runge-Kutta method with small enough step size k.
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Presented in Table 1 and Table 2 are the errors between numerical solutions and reference

solutions with initial values (5.46) and (5.47). We observe that in both cases the convergence

orders are two when k ≪ ε. When ε ≪ k, the convergence orders for u and v are both two

if there is no initial layer. If there exists an initial layer, then the convergence orders for u

and v both degenerate to one. These numerical results validate our analysis in Proposition

4.4. Moreover, in Table 1, we can see the deterioration of the accuracy in the intermediate

region where k = O(ε), as is already observed for many IMEX RK solvers (see e.g. [39]).

Step size k

∣

∣uexa(T ) − uref(T )
∣

∣

ε = 1 × 102 order ε = 1 × 10−2 order ε = 1 × 10−6 order
1/20 1.86e-03 - 5.46e-04 - 1.56e-04 -
1/40 4.49e-04 2.05 2.70e-04 1.01 3.98e-05 1.97
1/80 1.11e-04 2.02 6.08e-06 5.48 9.97e-06 2.00
1/160 2.74e-05 2.01 1.19e-04 -4.29 2.43e-06 2.04
1/320 6.84e-06 2.01 8.32e-05 0.52 5.36e-07 2.18
1/640 1.71e-06 2.00 3.29e-05 1.34 6.05e-08 3.15
1/1280 4.26e-07 2.00 1.01e-05 1.70 5.81e-08 0.06
1/2560 1.06e-07 2.00 2.79e-06 1.86 8.73e-08 -0.59

Step size k

∣

∣vexa(T ) − vref(T )
∣

∣

ε = 1 × 102 order ε = 1 × 10−2 order ε = 1 × 10−6 order
1/20 1.84e-05 - 2.19e-03 - 1.91e-04 -
1/40 4.45e-06 2.05 1.84e-03 0.25 4.87e-05 1.97
1/80 1.10e-06 2.02 1.28e-03 0.52 1.21e-05 2.01
1/160 2.72e-07 2.01 6.72e-04 0.93 2.86e-06 2.09
1/320 6.77e-08 2.01 2.51e-04 1.42 5.27e-07 2.44
1/640 1.69e-08 2.00 7.40e-05 1.76 5.67e-08 3.22
1/1280 4.22e-09 2.00 1.97e-05 1.91 2.03e-07 -1.84
1/2560 1.05e-09 2.00 5.03e-06 1.97 2.39e-07 -0.24

Table 1: Example 5.1.1: Errors between numerical solutions and reference solutions of u and
v at time T = 1 for (5.45) with the initial value (5.46) (without the initial layer).

5.2 The Kerr-Debye model

In this part, we will demonstrate the performance of the proposed schemes by applying

them to several numerical examples for the Kerr-Debye model. Since our ODE solver (4.42)

is second-order accurate, the finite element space of piecewise linear polynomials is used here.

The CFL number is taken to be 0.1, unless otherwise stated.
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Step size k

∣

∣uexa(T ) − uref(T )
∣

∣

ε = 1 × 102 order ε = 1 × 10−2 order ε = 1 × 10−6 order
1/20 2.11e-03 - 2.58e-04 - 1.31e-03 -
1/40 4.73e-04 2.16 1.33e-04 0.95 6.27e-04 1.07
1/80 1.12e-04 2.08 2.26e-04 -0.76 2.98e-04 1.07
1/160 2.73e-05 2.04 2.42e-04 -0.10 1.44e-04 1.05
1/320 6.73e-06 2.02 1.38e-04 0.81 7.09e-05 1.03
1/640 1.67e-06 2.01 5.15e-05 1.42 3.50e-05 1.02
1/1280 4.16e-07 2.00 1.55e-05 1.73 1.74e-05 1.01
1/2560 1.04e-07 2.00 4.24e-06 1.87 8.60e-06 1.01

Step size k

∣

∣vexa(T ) − vref(T )
∣

∣

ε = 1 × 102 order ε = 1 × 10−2 order ε = 1 × 10−6 order
1/20 1.79e-05 - 1.74e-03 - 1.33e-03 -
1/40 3.95e-06 2.18 1.84e-03 -0.09 6.37e-04 1.07
1/80 9.29e-07 2.09 1.47e-03 0.33 3.03e-04 1.07
1/160 2.25e-07 2.04 8.33e-04 0.82 1.47e-04 1.05
1/320 5.54e-08 2.02 3.26e-04 1.36 7.19e-05 1.03
1/640 1.37e-08 2.01 9.86e-05 1.72 3.55e-05 1.02
1/1280 3.42e-09 2.01 2.66e-05 1.89 1.75e-05 1.02
1/2560 8.54e-10 2.00 6.84e-06 1.96 8.57e-06 1.03

Table 2: Example 5.1.1: Errors between numerical solutions and reference solutions of u and
v at time T = 1 for (5.45) with the initial value (5.47) (with the initial layer).
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We first test the accuracy of our schemes for smooth solutions in the case of h ≪ ε and

ε≪ h.

Example 5.2.1 (Smooth solutions, h ≪ ε). We choose the relaxation shock profiles of the

form [1]:

D(x, t) = d(
x− σt

ε
), (5.48a)

H(x, t) = h(
x− σt

ε
), (5.48b)

χ(x, t) = Υ(
x− σt

ε
), (5.48c)

and

D± = d(±∞),

H± = h(±∞),

χ± = Υ(±∞),

with σ a constant. The profile is determined by the solution of an ODE [1] for d, h and Υ

which we solve by the classical fourth-order Runge-Kutta method with small enough time

step.

In this numerical test, we set D− = 2.4, D+ = 1.5, H− = 1 and ε = 1. The four

parameters D−, D+, H− and ε can uniquely determine the other parameters H−, χ±, σ

as well as the solutions d, h and Υ (cf. [1]). The computational domain is taken to be

the interval [−10, 10]. We denote the cell number by N and the mesh size in space by h.

We compute the solutions up to T = 1. The profiles of numerical solutions and reference

solutions are presented in Figure 1, which stay very smooth. The errors are listed in Table

3. Here we take the maximum value of three L1-errors and L∞-errors of D, H and χ. It is

clearly observed that the designed second-order accuracy is achieved.

Example 5.2.2 (Smooth solutions without initial layer, ε≪ h). We take a consistent initial

value for (1.1):

D(x, 0) = (sin4(πx)(1 + sin4(πx))2 + ε)1/2, (5.49a)
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Figure 1: Example 5.2.1: Profile of solutions for the Kerr-Debye model at T = 1 with DG
method and IMEX RK method. ε = 1 and N = 20. Solid: exact solutions; symbols:
numerical solutions (cell averages).

N L1-error order L∞-error order
20 1.05e-02 - 1.74e-03 -
40 2.62e-03 2.01 4.17e-04 2.06
80 6.51e-04 2.01 1.01e-04 2.05
160 1.62e-04 2.00 2.50e-05 2.02
320 4.05e-05 2.00 6.19e-06 2.01

Table 3: Example 5.2.1: Error table for the Kerr-Debye model at T = 1 with DG method
and IMEX RK method. ε = 1.
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H(x, 0) = sin(πx), (5.49b)

χ(x, 0) = sin4(πx). (5.49c)

The computational domain is [−1, 1] with periodic boundary conditions. We compute the

solutions up to T = 0.3 at which the solutions remain smooth. The reference solutions are

computed by the spectral method with a fine enough mesh. In Table 4, we show the errors

and orders of accuracy with ε = 1 × 10−6. A uniform second-order accuracy is observed.

N L1-error order L∞-error order
20 2.00e-02 - 6.24e-02 -
40 4.78e-03 2.06 2.12e-02 1.56
80 1.19e-03 2.01 6.17e-03 1.78
160 2.94e-04 2.01 1.67e-03 1.89
320 7.67e-05 1.94 4.50e-04 1.89
640 1.97e-05 1.96 1.15e-04 1.97

Table 4: Example 5.2.2: Error table for the Kerr-Debye model at T = 0.3 with consistent
initial value (5.49). ε = 1 × 10−6.

Example 5.2.3 (Smooth solutions with initial layer, ε ≪ h). In this example, we take a

non-consistent initial value:

D(x, 0) = sin(πx),

H(x, 0) = sin(πx),

χ(x, 0) = sin4(πx),

As before, the reference solutions are also computed by the spectral method. The errors

and orders of accuracy are reported in Table 5 with ε = 1 × 10−6. Similar to the numerical

example for the ODE with initial layer, only first-order accuracy is observed.

Next, a numerical example with discontinuous solutions is chosen to validate the perfor-

mance of our scheme in capturing shocks.

Example 5.2.4 (Discontinuous solutions). We take the discontinuous solutions of the form

[1]:

D(x, t) = D− if ξ < 0, 0 otherwise, (5.51a)
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H(x, t) = H− if ξ < 0, H+ otherwise, (5.51b)

χ(x, t) = χ− if ξ < 0, χ−e
ξ/σ otherwise, (5.51c)

with ξ ≡ (x− σt)/ε and σ a constant. In the computation, we take D− = 2.4, H− = 1, ε = 1.

These three parameters could uniquely determine H+, χ− and σ (cf. [1]). We compare the

numerical behaviors without and with the TVB limiter [42] in Figure 2(a) and Figure 2(b),

respectively. In both cases, the shock is captured well. However, there exists slight oscillation

near the shock without the TVB limiter. We remark that our scheme is designed only to

preserve the positivity of the solution, not to enforce non-oscillatory performance, similar to

the philosophy of the maximum-principle-satisfying schemes for scalar conservation laws in

[48].

6 Concluding remarks

In this paper, we develop a second-order asymptotic-preserving and positivity-preserving

discontinuous Galerkin (DG) scheme for the Kerr-Debye model. We prove the asymptotic-

preserving property of the semi-discrete DG methods rigorously. The main techniques are

the energy estimate and Taylor expansion first introduced by Zhang and Shu in [46] and

the idea is similar to that in the error estimate for DG methods with quadrature rules in

[27]. For the time discretization, we propose a class of unconditional positivity-preserving

implicit-explicit (IMEX) Runge-Kutta (RK) methods for a system of ODEs arising from the

semi-discretization of the model. Inspired by [9], the new IMEX RK methods are based

N L1-error order L∞-error order
20 1.16e-02 - 3.75e-02 -
40 3.74e-03 1.64 1.15e-02 1.71
80 1.37e-03 1.45 3.56e-03 1.69
160 5.76e-04 1.25 1.36e-03 1.39
320 2.68e-04 1.10 5.79e-04 1.24
640 1.31e-04 1.04 2.63e-04 1.14

Table 5: Example 5.2.3: Error table for the Kerr-Debye model at T = 0.3 with a non-
consistent initial value (5.50). ε = 1 × 10−6.
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Figure 2: Example 5.2.4: Profile of solutions for Kerr-Debye model at T = 1 with DG
method and IMEX RK method. ε = 1 and N = 160. Solid: exact solutions; symbols:
numerical solutions (cell averages). Left: no TVB limiter; Right: TVB limiter with TVB
constant 0.1.

on the modification of the strong-stability-preserving (SSP) implicit RK method and have

second-order accuracy. When ε tends to 0, the ODE solver is consistent with the degenerate

ODE. Numerical experiments validate our analysis.

We also mention several drawbacks of this work. The AP property of the semi-discrete

DG scheme is proved rigorously but the limit of ε → 0 is only formal. The validity of

this limit needs to be verified. Moreover, we do not analyze the AP property of the full

discretization scheme but only use an AP semi-discrete scheme coupled with an AP ODE

solver and numerically obtain good results. This issue need to be investigated in details. For

the time discretization, the modified positivity-preserving IMEX RK solver is only second-

order accurate. It seems difficult to extend this methodology to higher order. Moreover, the

solver degenerates to first-order when ε ≪ k, which is similar to Strang’s splitting method

[30]. New and powerful ideas need to be introduced to construct higher order and uniformly

accurate ODE solver with positivity-preserving property. These issues constitute our ongoing

work.
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A The proof of Lemma 3.5

We expand the third term as follows:

T3 =E(uh, g(uh), Qcξ) − E(u, g(u), Qcξ),

=
∑

j

∫

Ij

(Qcξ)
⊺

x(f(uh, g(uh)) − f(uh, πh(g(uh))) − f(u, g(u)) + f(u, πh(g(u))))

+
∑

j

[Qcξ]
⊺

j+ 1

2

(f̂j+ 1

2

(uh, g(uh)) − f̂j+ 1

2

(uh, πh(g(uh))) − f̂j+ 1

2

(u, g(u)) + f̂j+ 1

2

(u, πh(g(u)))),

≡W1 +W2,

where W1 denotes the integral term and W2 denotes the interface term.

A.1 Estimate of W1

By doing the Taylor expansion at (u, g(u)) for the function f(p, q)

f(p, q) =f + f ′
u(p− u) + f ′

v(q − g(u)) +O((p− u)2 + (q − g(u))2),

we have

f(uh, g(uh)) − f(uh, πh(g(uh))) − f(u, g(u)) + f(u, πh(g(u)))

=f ′
u(uh − u) + f ′

v(g(uh) − g(u)) − f ′
u(uh − u) − f ′

v(πh(g(uh)) − g(u)) + f ′
v(πh(g(u))− g(u)) + H.O.T.

=f ′
v(g(uh) − g(u) − πh(g(uh) − g(u))) + H.O.T.

with the second order term

H.O.T. = O((uh − u)2 + (g(uh) − g(u))2 + (πh(g(uh)) − g(u))2 + (πh(g(u)) − g(u))2).

Note that here u is a vector and u2 ≡ u⊺u for notation convenience.

We further perform a Taylor expansion at u for the function g:

g(uh) − g(u) = g′uη − g′uξ +O(e2), (A.52)

and thus obtain

f(uh, g(uh)) − f(uh, πh(g(uh))) − f(u, g(u)) + f(u, πh(g(u)))
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=f ′
v(g

′
uη − πh(g

′
uη)) − f ′

v(g
′
uξ − πh(g

′
uξ)) + f ′

v(O(e2) − πh(O(e2))) + H.O.T.

Now we have

W1 =
∑

j

∫

Ij

(Qcξ)
⊺

xf
′
v(g

′
uη − πh(g

′
uη)) −

∑

j

∫

Ij

(Qcξ)
⊺

xf
′
v(g

′
uξ − πh(g

′
uξ))

+
∑

j

∫

Ij

(Qcξ)
⊺

xf
′
v(O(e2) − πh(O(e2))) +

∑

j

∫

Ij

(Qcξ)
⊺

xH.O.T.,

≡S1 + S2 + S3 + S4.

In the next, by using Lemma 3.1 and Lemma 3.2, we estimate S1, S2, S3 and S4 one by one:

|S1| ≤C ‖ξx‖ ‖g
′
uη − πh(g

′
uη)‖ ,

≤Ch−1 ‖ξ‖hk+1
∥

∥∂k+1
x (g′uη)

∥

∥ ,

=Chk ‖ξ‖ (‖η‖ + ‖∂xη‖ + · · · +
∥

∥∂k+1
x η

∥

∥),

≤C(h2k + ‖ξ‖2).

|S2| ≤C ‖ξx‖ ‖g
′
uξ − πh(g

′
uξ)‖ ,

≤Ch−1 ‖ξ‖hk+1
∥

∥∂k+1
x (g′uξ)

∥

∥ ,

=Chk ‖ξ‖ (‖ξ‖ + ‖∂xξ‖ + · · · +
∥

∥∂k+1
x ξ

∥

∥),

≤C ‖ξ‖2 .

|S3| ≤C ‖ξx‖ ‖e‖
2
∞ ≤ Ch−3/2 ‖e‖∞ (‖ξ‖2 + h2k+2).

|S4| ≤C ‖ξx‖ (
∥

∥e2
∥

∥+
∥

∥(πh(g(uh)) − g(u))2
∥

∥+
∥

∥(πh(g(u)) − g(u))2
∥

∥),

≤Ch−1 ‖ξ‖ (‖e‖∞ ‖e‖ + ‖πh(g(uh)) − g(u)‖2
∞ + h2k+2),

≤Ch−1 ‖ξ‖ (‖e‖∞ ‖e‖ + ‖πh(g(uh) − g(u))‖2
∞ + h2k+2),

≤Ch−1 ‖ξ‖ (‖e‖∞ ‖e‖ + ‖g(uh) − g(u)‖2
∞ + h2k+2),

≤Ch−1 ‖ξ‖ (‖e‖∞ ‖e‖ + ‖e‖2
∞ + h2k+2),

≤Ch−3/2 ‖e‖∞ (‖ξ‖2 + h2k+2).
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In the estimate of S3 and S4, we have used the inequality:

‖πhu‖∞ ≤ C ‖u‖∞ . (A.53)

A.2 Estimate of W2

Similar to the estimate of W1, we perform a Taylor expansion at (u, u, g(u), g(u)) up to

second order for the numerical flux f̂j+ 1

2

(p−, p+, q−, q+). Note that we use the Lax-Friedrichs

flux and thus it is smooth enough for our Taylor expansion. Since the norm of v− or v+ on

the edge Γ will be controlled by ‖v‖Γ, for notational convenience, in the following estimate,

we will not distinguish v− or v+ and write it as v in a uniform way. We have the estimate

for W2:

|W2| ≤C
∑

j

|[Qcξ]|
⊺

j+ 1

2

|g′uη − πh(g
′
uη)|j+ 1

2

+ C
∑

j

|[Qcξ]|
⊺

j+ 1

2

|g′uξ − πh(g
′
uξ)|j+ 1

2

+
∑

j

|[Qcξ]|
⊺

j+ 1

2

∣

∣O(e2) − πh(O(e2))
∣

∣

j+ 1

2

+
∑

j

|[Qcξ]|
⊺

j+ 1

2

|H.O.T|j+ 1

2

,

≡S1 + S2 + S3 + S4.

In the following, we estimate the four terms one by one:

|S1| ≤C ‖ξ‖Γ ‖g
′
uη − πh(g

′
uη)‖Γ ,

≤Ch−
1

2 ‖ξ‖hk+ 1

2 ,

≤C(‖ξ‖2 + h2k),

here we use the multiplicative trace inequality (cf. Lemma 3.1 in [17]):

‖v‖2
Γ ≤ C(‖v‖ ‖∂xv‖ + h−1 ‖v‖2) (A.54)

for v ∈ H1. By the same approach, we obtain the estimate for S2, S3 and S4:

|S2| ≤C ‖ξ‖Γ ‖g
′
uξ − πh(g

′
uξ)‖Γ ≤ C ‖ξ‖2 .

|S3| ≤C ‖ξ‖Γ h
−1 ‖e‖2

∞ ≤ Ch−2 ‖e‖∞ (‖ξ‖2 + h2k+2).

|S4| ≤Ch
−2 ‖e‖∞ (‖ξ‖2 + h2k+2).
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Finally, we collect the above estimate about W1 and W2 to complete the proof of Lemma

3.5.

B Proof of Proposition 4.4

The proof of Proposition 4.4 is similar to that of Proposition 4 in [20]. First, we present two

trivial lemmas and their proofs are omitted.

Lemma B.1. Suppose that the function N = N(u, v) satisfies assumptions (B1) and (B2).

Assume the two sequences (uε)ε>0 and (vε)ε>0 satisfy that (uε)ε>0 and (N(uε, vε)−vε)ε>0 are

both bounded. Then (vε)ε>0 is also bounded.

Lemma B.2. Suppose that the function N = N(u, v) satisfies assumptions (B1) and (B2).

Assume the two sequences (uε)ε>0 and (vε)ε>0 satisfy

N(uε, vε) − vε → 0, as ε → 0.

Then we have

vε − e(uε) → 0, as ε→ 0.

To explicitly indicate how the solutions depend on the small parameter ε, we rewrite the

method (4.42) in the following form with superscript ε:

u(1),ε
n = uε

n,

v(1),ε
n = vε

n + kã11g(u
(1),ε
n , v(1),ε

n ),

u(2),ε
n = uε

n + ka21f(u(1),ε
n , v(1),ε

n ),

v(2),ε
n = vε

n + kã21g(u
(1),ε
n , v(1),ε

n ) + kã22g(u
(2),ε
n , v(2),ε),

ûε
n = uε

n + kb1f(u(1),ε
n , v(1),ε

n ) + kb2f(u(2),ε
n , v(2),ε

n ),

v̂ε
n = v(2),ε

n ,

uε
n+1 = ûε

n + k(1 − b1 − b2)f(uε
n, v

ε
n),

vn+1 = v̂n − ck2g(uε
n+1, v

ε
n+1)g

′
v(û

ε
n, v̂

ε
n).
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Proof of Proposition 4.4. First, we remark that all the variables are well-defined, and v
(1),ε
n ,

v
(2),ε
n , v̂ε

n are all non-negative for any ε > 0 and n, provided that vε
0 ≥ 0 for any ε > 0.

Also, from the boundedness of (uε
n), one could choose a subsequence uε

n → wn as ε → 0 for

0 ≤ n ≤ NT . In the following the proof is divided into several parts for clean presentation:

1. First, it is trivial that (u
(1),ε
n )ε>0 is bounded for 0 ≤ n ≤ NT − 1 because of the first

stage u
(1),ε
n = uε

n.

2. Next, we prove that (εv
(1),ε
n )ε>0 is bounded for all n by contradiction. If this conclusion

does not hold, as εv
(1),ε
n ≥ 0 thus has lower bound, then ∀ M > 0, ∃ ε0 > 0 and n0 > 0

such that ε0v
(1),ε0

n0
> max(M, 1). Hence from the second stage, we have

ε0v
ε0

n0
= ε0v

(1),ε0

n0
− kã11(N(u(1),ε0

n0
, v(1),ε0

n0
) − v(1),ε0

n0
),

≥M − kã11(N(u(1),ε0

n0
, 1) −M),

which is in contradiction with the boundedness of (εvε
n) and (u

(1),ε
n ).

3. Also from the second stage

εv(1),ε
n = εvε

n + kã11(N(u(1),ε
n , v(1),ε

n ) − v(1),ε
n ),

we have (N(u
(1),ε
n , v

(1),ε
n )−v

(1),ε
n )ε>0 is bounded. By using Lemma B.1, we have (v

(1),ε
n )ε>0

is bounded, and thus εv
(1),ε
n → 0 as ε → 0. Then N(u

(1),ε
n , v

(1),ε
n ) − v

(1),ε
n → 0, and it

immediately follows that v
(1),ε
n − e(u

(1),ε
n ) → 0 by using Lemma B.2.

4. Thanks to the smoothness of f , we can deduce that (u
(2),ε
n ) is bounded from the third

stage.

5. With a similar approach, we could prove (εv
(2),ε
n )ε>0 is bounded. And it follows that

(N(u
(2),ε
n , v

(2),ε
n )−v

(2),ε
n ) is bounded, v

(2),ε
n is bounded, εv

(2),ε
n → 0. Then (N(u

(2),ε
n , v

(2),ε
n )−

v
(2),ε
n ) → 0, v

(2),ε
n − e(u

(2),ε
n ) → 0. Now one can show that (ûε

n) and (v̂ε
n) are bounded,

because of the smoothness of f .
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6. At last, let ε→ 0 in the final stage,

ε2vε
n+1 + c(N(uε

n+1, v
ε
n+1) − vε

n+1)(N
′
v(u

(2),ε
n , v(2),ε

n ) − 1)k2 = ε2v̂ε
n.

Noticing that N ′
v(u

(2),ε
n , v

(2),ε
n )−1 ≤ −1, we have (N(uε

n+1, v
ε
n+1)−v

ε
n+1) → 0. It follows

that vε
n − e(uε

n) → 0 for 1 ≤ n ≤ NT .

7. From the third stage, and v
(1),ε
n − e(u

(1),ε
n ) → 0, we know that as ε → 0, there exists a

limit of u
(2),ε
n denoted by w

(2)
n , which satisfies

w(2)
n = wn + ka21f(w(1)

n , e(w(1)
n )).

Also in the fifth stage, ŵn is the limit of ûε
n and satisfies

ŵn = wn + kb1f(w(1)
n , e(w(1)

n )) + kb2f(w(2)
n , e(w(2)

n )).

In the final stage, vε
n − e(uε

n) → 0 holds for 1 ≤ n ≤ NT . Hence, we get

wn+1 = wn + k(1 − b1 − b2)f(wn, e(wn)),

for 1 ≤ n ≤ NT − 1, and

w1 = w0 + k(1 − b1 − b2)f(w0, v0).

8. Collecting the above proof, we have, for 1 ≤ n ≤ NT − 1,

w(1)
n = wn,

w(2)
n = wn + ka21f(w(1)

n , e(w(1)
n )),

ŵn = wn + kb1f(w(1)
n , e(w(1)

n )) + kb2f(w(2)
n , e(w(2)

n )),

wn+1 = wn + k(1 − b1 − b2)f(wn, e(wn)),

and for n = 0,

w
(1)
0 = w0,
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w
(2)
0 = w0 + ka21f(w

(1)
0 , e(w

(1)
0 )),

ŵ0 = w0 + kb1f(w
(1)
0 , e(w

(1)
0 )) + kb2f(w

(2)
0 , e(w

(2)
0 )),

w1 = w0 + k(1 − b1 − b2)f(w0, v0).

Since wn, w
(1)
n , w

(2)
n are uniquely determined, all the sequences (uε

n), (u
(1),ε
n ) and (u

(2),ε
n )

converge.
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