
Local discontinuous Galerkin method for the Keller-Segel chemotaxis model

Xingjie Helen Li1, Chi-Wang Shu2 and Yang Yang3

Abstract

In this paper, we apply the local discontinuous Galerkin (LDG) method to 2D Keller–

Segel (KS) chemotaxis model. We improve the results upon (Y. Epshteyn and A. Kurganov,

SIAM Journal on Numerical Analysis, 47 (2008), 368-408) and give optimal rate of con-

vergence under special finite element spaces. Moreover, to construct physically relevant

numerical approximations, we develop a positivity-preserving limiter to the scheme, extend-

ing the idea in (Y. Zhang, X. Zhang and C.-W. Shu, Journal of Computational Physics,

229 (2010), 8918-8934). With this limiter, we can prove the L1-stability of the numerical

scheme. Numerical experiments are performed to demonstrate the good performance of

the positivity-preserving LDG scheme. Moreover, it is known that the chemotaxis model

will yield blow-up solutions under certain initial conditions. We numerically demonstrate

how to find the numerical blow-up time by using the L2-norm of the L1-stable numerical

approximations.
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1 Introduction

In this paper, we study the Keller-Segel (KS) chemotaxis model in two space dimensions

[33, 28] and focus on the following common formulation [3],

ut − div(∇u− χu∇v) = 0, x ∈ Ω, t > 0,
vt −△v = u− v, x ∈ Ω, t > 0,

(1.1)

where Ω is assumed to be a convex, bounded and open set in R2. Chemotaxis is the highly

nonlinear terminology which indicates movements by cells in reaction to a chemical sub-

stance, where cells approach chemically favorable environments and avoid unpleasant ones.

In (1.1), u and v denote the densities of cells and the chemical concentration, respectively.

The chemotactic sensitivity function χ is assumed to be a positive constant. For simplicity,

we take χ ≡ 1. In addition, the initial conditions associated with (1.1) are given as

u(x, t = 0) = u0(x), v(x, t = 0) = v0(x), for x ∈ Ω. (1.2)

The boundary conditions are set to be homogeneous Neumann boundary condition

∇u · n = ∇v · n = 0, (1.3)

where n is the outer normal of the boundary ∂Ω. With this boundary condition,
∫
Ω
u ≡

∫
Ω
u0

is a constant during the time evolution and the system is thus isolated.

The existence and uniqueness of the weak solutions to (1.1) are not straightforward. In

[16, 17], the initial densities u0 and v0 are assumed to be strictly positive and satisfy

u0(x, y) ∈ L2(Ω), u0 ≥ a0 > 0 and v0(x, y) ∈ H1
p (Ω), p > 2, ∀ (x, y) ∈ Ω. (1.4)

Furthermore, u0 is assumed to hold a smallness condition [16], that is, there exists a constant

CGNS
Ω > 0, such that

CGNS
Ω χ∥u0∥L1(Ω) < 1,

where CGNS
Ω denotes the best constant in the Gagliardo-Nirenberg-Sobolev inequality. Then

for appropriate T > 0, there exists a couple of unique weak solution [17]

u ∈ C
(
[0, T ];L2(Ω) ∩ L2(0, T ;H1(Ω))

)
, v ∈ L2(0, T ;H1(Ω)). (1.5)
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The exact solutions of the KS chemotaxis model are always positive. Moreover, the model

exhibits blow-up patterns with certain initial conditions [31, 24, 23, 17, 16]. Biologically,

finite-time blow up for solutions is expected to describe chemotactic collapse, that is the

tendency of cells to concentrate to form spora, which can be explained mathematically as

concentration of u(x, t) towards a Dirac mass in finite time [24, 31] in the sense of distribution.

When the blow-up patterns occur, the density u of cells will strengthen in the neighborhood

of isolated points, and these regions become sharper and eventually result in finite time

point-wise blow-up. It was proved in [31] that blow-up never occurs in 1D space, whereas

blow-up occurs within finite time in 2D and 3D cases. In 2D space, mathematical proofs

for spherically symmetric solutions in a ball have been investigated in [23, 31]. When the

initial mass is greater than certain threshold χ∥u0∥L1(Ω) > 8π, then the exact solution will

blow up at the center of the ball, and it is proved to be the only possible singularity. For

nonsymmetric cases, if 4π < χ∥u0∥L1(Ω) < 8π and the corresponding solution of (1.1) blows

up at finite time, then the blow-up happens at the boundary of Ω [25, 26]. However, no

such restriction in mass appears for the 3D case [23]. More theoretical works can be found

in [17, 24, 23, 25].

It is difficult to construct numerical schemes for (1.1), and most of the previous works

are for the following simplified system

ut − div(∇u− χu∇v) = 0, x ∈ Ω, t > 0,
−△v = u− v, x ∈ Ω, t > 0,

(See, for example, [41, 29, 16, 22] and the references therein). Recently, there are some

significant works designed to solve (1.1) directly [32, 15, 37, 40]. In [32], the authors used the

semigroup methods to obtain the stability and error estimates of the finite element methods.

Later, In [37], the author constructed conservative upwind finite-element method to yield

positive numerical approximations under some assumptions of the meshes. Subsequently,

in [40], the authors constructed implicit second-order positivity preserving finite-volume

schemes in three-dimensional space, and their technique requires solving a large linear system

of equations coupling together all grid points at each stage of the two stage TR-BDF2
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method when updating the diffusion terms at each time step. In [15], the authors applied

the interior penalty discontinuous Galerkin (IPDG) method on rectangular meshes to obtain

suboptimal rate of convergence, and the finite element space is assumed to be piecewise

polynomials of degree k ≥ 2. Other related works in this direction include [14, 12, 13]

and the positivity-preserving property was demonstrated by numerical experiments only.

Besides the above, in [36] the authors constructed positive numerical approximations by

using the conservative upwind finite element method for the simplified system. Later in

[2], the authors constructed a second order positivity-preserving scheme to a revised system

by differentiating (1.1) with respect to x and y, hence the schemes were not designed to

solve (1.1) directly. Subsequently, in [21], the author developed a composite particle-grid

numerical method with adaptive time stepping to resolve and propagate singular solutions

of (1.1). Recently, Zhang and Shu introduced positivity-preserving limiter to hyperbolic

equations in [48, 49, 50]. Subsequently, the idea was extended to parabolic problems in [51].

In this paper, we will apply the positivity-preserving limiter introduced in [51] to construct

second-order positivity-preserving local discontinuous Galerkin (LDG) schemes to obtain

physically relevant numerical approximations. The method we plan to use preserves the

positivity of the numerical solutions, and can be applied to unstructured meshes.

The DG method was first introduced in 1973 by Reed and Hill [35] in the framework

of neutron linear transport. Subsequently, Cockburn et al. developed Runge-Kutta discon-

tinuous Galerkin (RKDG) methods for hyperbolic conservation laws in a series of papers

[9, 6, 8, 10]. In [11], Cockburn and Shu introduced the LDG method to solve the convection-

diffusion equations. Their idea was motivated by Bassi and Rebay [1], where the compressible

Navier-Stokes equations were successfully solved. Recently, the DG methods were applied

to linear hyperbolic equations with δ-singularities [44] to obtain high-order approximations

under suitable negative-order norms. Subsequently, the methods have also been applied to

nonlinear hyperbolic equations with δ-singularities [45, 52]. Combined with special limiters,

the schemes were proved to be L1 stable [45, 34]. Recently, the idea has been extended to
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parabolic equations with blow-up solutions by using the LDG method [20]. In this paper, we

follow the same direction and employ the LDG method to capture the blow-up phenomenon.

In the LDG method, we introduce auxiliary variables p = ∇u. Numerical experiments will

be given to demonstrate the optimal rate of convergence. However, in this problem the ap-

proximations of p is discontinuous across the cell interfaces and it is difficult to obtain error

estimates if we analyze the convection and diffusion terms separately. To explain this point,

let us consider the following hyperbolic equation

ut + (a(x)u)x = 0,

where a(x) is discontinuous at x = x0. In [18, 27], the authors studied such a problem and

defined

Q =
a(x0 + b)− a(x0)

b
.

If Q is bounded from below for all b, then the solution exists, but may not be unique. If

Q is bounded from above for all b, we can guarantee the uniqueness, but the solution may

not exist. To bridge this gap, most of the previous works for similar problems are based on

mixed finite element methods (see e.g. [29]). In this paper, we consider a new technique for

error analysis following the idea in [42, 43]. Moreover, we also apply the positivity-preserving

limiter to guarantee positivity of the numerical approximation. With this special technique,

the L1 norm of the numerical approximation is a constant during the time evolution due

to the mass conservation. However, the L2 norm might still be unbounded when blow-up

patterns occur. We thus introduce a new idea to capture the numerical blow-up time based

on the L2 norm of the numerical approximations. To our best knowledge, this is the first

paper studying the numerical blow-up time with a concrete theoretical background.

The organization of this paper is as follows. In Section 2, we construct the LDG scheme.

In Section 3, we give the error estimates based on two different finite element spaces. In

Section 4, we discuss the positivity-preserving technique, the foundation of limiters and high

order time discretizations. Numerical experiments are given in Section 5. Finally, we will

end in Section 6 with concluding remarks and remarks for future work.
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2 The LDG scheme

In this section, we define the finite element spaces and proceed to construct the LDG scheme.

Let Ωh = {K} be a quasi-uniform partition of the domain Ω with rectangular or triangular

element K. Denote hK be the diameter of element K, and h = maxK hK . We define the

finite element space V k
h as

V k
h =

{
z : z

∣∣
K
∈ P k(K), ∀K ∈ Ωh

}
,

where P k(K) denotes the set of polynomials of degree up to k in cell K.

We choose β to be a fixes vector that is not parallel to any normals of element interfaces.

Moreover, we denote Γh be the set of all element interfaces and Γ0 = Γh \ ∂Ω. Let e ∈ Γ0 be

an interior edge shared by elements Kℓ and Kr, where β ·nℓ > 0, and β ·nr < 0, respectively,

with nℓ and nr being the outward normals of Kℓ and Kr, respectively. For any z ∈ V k
h ,

we define z− = z|∂Kℓ
and z+ = z|∂Kr , respectively. The jump is given as [z] = z+ − z−.

Moreover, for s ∈ Vk
h = V k

h × V k
h , we define s+, s− and [s] analogously. Furthermore, we

also denote νe = nℓ to be the normal of e such that νe · β > 0. Similarly, we also define

∂Ω− = {e ∈ ∂Ω|β · n < 0,n is the outer normal of e}, and ∂Ω+ = ∂Ω \ ∂Ω−.

To construct the LDG scheme, we introduce the axillary variables p = ∇u and r = ∇v,

then (1.1) can be written as

ut = −∇ · (ru) +∇ · p,

p = ∇u,

vt = ∇ · r+ u− v,

r = ∇v.

The LDG scheme is to find uh ∈ V k1
h , ph ∈ Vk1

h , vh ∈ V k2
h and rh ∈ Vk2

h , such that for any

test functions wu ∈ V k1
h , wp ∈ Vk1

h , wv ∈ V k2
h and wr ∈ Vk2

h

(uht, w
u)K = (rhuh − ph,∇wu)K − ⟨(r̂huh − p̂h) · nK , w

u⟩∂K (2.1)
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(ph,w
p)K = −(uh,∇ ·wp)K + ⟨ûh,w

p · nK⟩∂K , (2.2)

(vht, w
v)K = −(rh,∇wv)K + ⟨r̂h · nK , w

v⟩∂K + (uh − vh, w
v)K , (2.3)

(rh,w
r)K = −(vh,∇ ·wr)K + ⟨v̂h,wr · nK⟩∂K , (2.4)

where (u, v)K =
∫
K
uvdxdy, (u,v)K =

∫
K
u·vdxdy and ⟨u, v⟩∂K =

∫
∂K

uvds. We also denote

ûh, v̂h, p̂h, r̂h and r̂huh to be the numerical fluxes defined on e ∈ Γh. In this paper, we use

the alternating fluxes for the diffusion terms. Due to the Neumann boundary condition (1.3),

we take

1. For e ∈ Γ0

(ûh, p̂h) =
(
u+
h ,p

−
h

)
, (v̂h, r̂h) =

(
v+h , r

−
h

)
, (2.5)

2. For e ∈ ∂Ω−

(ûh, p̂h · nK) =
(
u+
h , 0
)
, (v̂h, r̂h · nK) =

(
v+h , 0

)
, (2.6)

3. For e ∈ ∂Ω+

(ûh, p̂h · nK) =
(
u−
h , 0
)
, (v̂h, r̂h · nK) =

(
v−h , 0

)
, (2.7)

For the convection term, we consider the Lax-Friedrichs flux: for any e ∈ Γ0

r̂huh =
1

2

(
r+h u

+
h + r−h u

−
h − ανe(u

+
h − u−

h )
)
, (2.8)

where α > 0 is chosen by the positivity-preserving technique. Due to the mass conservation,

if e ∈ ∂Ω, we take

r̂huh · nK = 0. (2.9)

We also denote

(u, v) =
∑
K∈Ωh

(u, v)K , (p, r) =
∑
K∈Ωh

(p · r)K ,

then (2.1)-(2.4) can be written as

(uht, w
u) = Lc(rh, uh, w

u)− Ld(ph, w
u), (2.10)

(ph,w
p) = −Q(uh,w

p), (2.11)
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(vht, w
v) = −Ld(rh, w

v) + (uh − vh, w
v), (2.12)

(rh,w
r) = −Q(vh,w

r), (2.13)

where

Lc(r, u, w) = (ru,∇w)−
∑
K∈Ωh

⟨r̂huh · nK , w⟩∂K , (2.14)

Ld(p, w) = (p,∇w)−
∑
K∈Ωh

⟨p̂ · nK , w⟩∂K , (2.15)

Q(u,w) = (u,∇ ·w)−
∑
K∈Ωh

⟨u,w · nK⟩∂K (2.16)

It is easy to check the following identities by integration by parts on each cell: for any

functions u and w,

Ld(w, u) +Q(u,w) = 0. (2.17)

3 Error estimates

In this section, we analyze the error between the numerical and exact solutions. We first

introduce the norms, construct the error equations and state the main theorem. Then we

proceed to the proof. The whole procedure can be divided into several steps. We first

construct the special projections that will be used in this section. Then we give an a priori

error estimate and its verification. Finally, we will consider another finite element space and

the corresponding error estimate. Let us define the norms first.

3.1 Norms

In this subsection, we define several norms that will be used throughout the paper.

Denote ∥u∥0,K to be the standard L2 norm of u in cell K. For any natural number ℓ, we

consider the norm of the Sobolev space Hℓ(K), defined by

∥u∥ℓ,K =

{ ∑
0≤α+β≤ℓ

∥∥∥∥ ∂α+βu

∂xα∂yβ

∥∥∥∥2
0,K

} 1
2

.
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Moreover, we define the norms on the whole computational domain as

∥u∥ℓ =

(∑
K∈Ωh

∥u∥2ℓ,K

) 1
2

.

For convenience, if we consider the standard L2 norm, then the corresponding subscript will

be omitted.

Let ΓK be the edges of K, and we define

∥u∥2ΓK
=

∫
∂K

u2ds.

We also define

∥u∥2Γh
=
∑
K∈Ωh

∥u∥2ΓK
.

Moreover, we define the standard L∞ norm of u in K as ∥u∥∞,K , and define the L∞ norm

on the whole computational domain as

∥u∥∞ = max
K∈Ωh

∥u∥∞,K .

Finally, we define similar norms for vector u = (u1, u2)
T as

∥u∥2ℓ,K = ∥u1∥2ℓ,K+∥u2∥2ℓ,K , ∥u∥2ΓK
= ∥u1∥2ΓK

+∥u2∥2ΓK
, ∥u∥∞,K = max{∥u1∥∞,K , ∥u2∥∞,K}.

Similarly, the norms on the whole computational domain are given as

∥u∥2ℓ =
∑
K∈Ωh

∥u∥2ℓ , ∥u∥2Γh
=
∑
K∈Ω

∥u∥2ΓK
, ∥u∥∞ = max

K∈Ωh

∥u∥∞,K .

3.2 Error equations and the main theorem

In this subsection, we proceed to construct the error equations. Denote the error between

the exact and numerical solutions to be

eu = u− uh, ep = p− ph, ev = v − vh, er = r− rh,

then we have the equations satisfied by the errors as

(eut, w
u) =Lc(r, u, wu)− Lc(rh, uh, w

u)− Ld(ep, w
u), (3.1)
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(ep, w
p) =−Q(eu,w

p), (3.2)

(evt, w
v) =− Ld(er, w

v) + (eu − ev, w
v), (3.3)

(er,w
r) =−Q(ev,w

r), (3.4)

Now, we can state our main theorem.

Theorem 3.1. Suppose u, v ∈ Hmin{k1,k2}+1(Ω), r is uniformly bounded for t ≤ T . The

numerical approximations uh ∈ V k1
h , ph ∈ Vk1

h , vh ∈ V k2
h and rh ∈ Vk2

h . The initial

discretization is given as the standard L2-projection (3.14), and α is chosen to be a bounded

constant independent of h. If we take k1 ≥ 1 and k2 ≥ 2, then there exists an H, given

in Section 3.6, such that for any h < H, if the numerical approximations obtained from

(2.10)-(2.13) exist for all t ∈ [0, T ], where T is the time that the smooth solution u and v of

the KS system exist in [0, T ] then

∥(u− uh)(t)∥+ ∥(v − vh)(t)∥ ≤ Chmin{k1+1,k2}, ∀ t ∈ [0, T ], (3.5)

where the positive constant C does not depend on h.

3.3 Preliminaries and projections

In this subsection, we study the basic properties of the finite element space. Let us start

with the classical inverse properties [4].

Lemma 3.1. Assuming ν ∈ V k
h , there exists a positive constant C independent of h and ν

such that

h∥ν∥∞,K + h1/2∥ν∥ΓK
≤ C∥ν∥K .

In this paper, we consider several special projections. For any u and v, we define the

elliptic projections P from H1(Ω) × H1(Ω) into V k1
h × Vk1

h × V k2
h × Vk2

h by P(u, v) =

(Pu,Pp,Pv,Pr) such that for any wu ∈ V k1
h , wp ∈ Vk1

h , wv ∈ V k2
h and wr ∈ Vk2

h

Ld(p, wu) =Ld(Pp, wu), (3.6)
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(Pp,wp) =−Q(Pu,wp) (3.7)

Ld(r, wv) =Ld(Pr, wv), (3.8)

(Pr,wr) =−Q(Pv,wr). (3.9)

The existence of the elliptic projections will be given in the following lemma [5],

Lemma 3.2. Suppose
∫
Ω
Pudxdy =

∫
Ω
udxdy and

∫
Ω
Pvdxdy =

∫
Ω
vdxdy, then Pu, Pp, Pv

and Pr are uniquely determined by (3.6)-(3.9). Moreover, we have the following estimates

∥p− Pp∥ ≤Chk1 , (3.10)

∥u− Pu∥ ≤Chk1+1, (3.11)

∥r − Pr∥ ≤Chk2 , (3.12)

∥v −Pv∥ ≤Chk2+1, (3.13)

where C is independent of h.

In addition, we also define the standard L2 projection P by

(Pu, v)K = (u, v)K , ∀v ∈ P k(K). (3.14)

The L2 projection satisfies the following property [4].

Lemma 3.3. Suppose u ∈ Ck+1(Ω). Then there exists a positive constant C independent of

h and u such that

∥u− Pu∥+ h∥u− Pu∥∞ + h1/2∥u− Pu∥Γh
≤ Chk+1∥u∥k+1.

Let us finish this section by proving the following lemma.

Lemma 3.4. Let u ∈ Ck+1(Ω) and Πu ∈ V k
h . Suppose ∥u − Πu∥ ≤ Chκ for some positive

constant C and κ ≤ k + 1. Then

h∥u− Πu∥∞ + h1/2∥u− Πu∥Γh
≤ Chκ,

where the positive constant C does not depend on h.
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Proof. Actually,

h∥u− Πu∥∞ + h1/2∥u− Πu∥Γh

≤ h∥Pu− Πu∥∞ + h∥u− Pu∥∞ + h1/2∥Pu− Πu∥Γh
+ h1/2∥u− Pu∥Γh

≤ C∥Pu− Πu∥+ Chk+1 + C∥Pu− Πu∥+ Chk+1

≤ C∥u− Πu∥+ C∥u− Pu∥+ Chk+1

≤ Chκ,

where the first and third steps follow from triangle inequality, the second step requires

Lemma 3.1 and Lemma 3.3, and the last step we use Lemma 3.3.

3.4 A priori error estimate

In this subsection, we would like to make an a priori error estimate assumption that

∥u− uh∥ ≤ h, (3.15)

which further implies ∥u − uh∥∞ ≤ C by Lemma 3.4. Moreover, if u is bounded, then

∥uh∥∞ ≤ C. Actually this a priori estimate assumption (3.15) holds for small enough h and

this choice is heavily based on how large the constant C is in (3.5). Notice that the constant

C depends on the exact solutions (u, v) of (1.1) as well as total time T , but is independent

of h, as long as h is sufficiently small, say h < H. Then we can guarantee (3.15) holds for

∀0 ≤ t ≤ T . Moreover, we will show that, if h < H, then the equality of (3.15) can not

happen if t < T . However, we still need this estimate to obtain the boundedness of the

numerical approximations. This assumption, which will be verified in Section 3.6, is used

for the estimate of the convection terms. This idea has been used to obtain error estimates

for nonlinear hyperbolic equations [46, 47, 30]. With this assumption, we can proceed to the

main proof of the theorem.
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3.5 Proof of Theorem 3.1

In this subsection, we give the proof of Theorem 3.1. We first assume the numerical ap-

proximations exist for all 0 < t < T , and will verify this in Theorem 3.2. As the general

treatment of the finite element methods, we divide the error as

eu = ηu − ξu, ηu = u− Pu, ξu = uh − Pu,
ep = ηp − ξp, ηp = p− Pp, ξp = ph −Pp,
ev = ηv − ξv, ηv = v − Pv, ξv = vh − Pv,
er = ηr − ξr, ηr = r− Pr, ξr = rh − Pr.

Clearly, ξu, ξp, ξv, ξr are chosen from the desired finite element spaces, and following [42, 43],

we have

Lemma 3.5.

∥∇ξu∥2 + h−1∥[ξu]∥2Γh
≤ C∥ξp∥2.

With the above lemma, we can proceed to the proof of Theorem 3.1.

Proof of Theorem 3.1. We take wu = ξu, wp = ξp, w
v = ξv and wr = ξr in (3.1)-(3.4) to

obtain

1

2

d∥ξu∥2

dt
+ ∥ξp∥2 = T1 − T2, (3.16)

1

2

d∥ξv∥2

dt
+ ∥ξr∥2 = T3, (3.17)

where

T1 = ((ηu)t, ξu),

T2 = (ru− rhuh,∇ξu) +
∑
e∈Γ0

⟨(ru− r̂huh) · νe, [ξu]⟩e,

T3 = ((ηv)t, ξv)− (ηu − ξu − ηv + ξv, ξv),

with

⟨u, v⟩e =
∫
e

uvds

Now we give the estimates of T ′
is. By Cauchy-Schwarz inequality and Lemma 3.2

T1 ≤ ∥(ηu)t∥∥ξu∥ ≤ Chk1+1∥ξu∥. (3.18)
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We rewrite T2 into three terms.

T2 = (r(u− uh) + (r− rh)uh,∇ξu) +
∑
e∈Γ0

⟨(ru− r̂huh) · νe, [ξu]⟩e,

= T21 + T22 + T23, (3.19)

where

T21 = (r(u− uh) + (r− rh)uh,∇ξu)

T22 =
1

2

∑
e∈Γ0

⟨(2ru− r+h u
+
h − r−h u

−
h ) · νe, [ξu]⟩e

T23 =
1

2

∑
e∈Γ0

⟨α[ηu − ξu], [ξu]⟩e,

Using the fact that ∥r∥∞ ≤ C and the a priori error estimate ∥uh∥∞ ≤ C, we have

T21 ≤ C (∥u− uh∥+ ∥r− rh∥) ∥∇ξu∥

≤ C(∥ηu∥+ ∥ξu∥+ ∥ηr∥+ ∥ξr∥) ∥ξp∥

≤ C(hk1+1 + ∥ξu∥+ hk2 + ∥ξr∥) ∥ξp∥, (3.20)

where the first step is based on Cauchy-Schwarz inequality, the second step follows from

Lemma 3.5 and triangle inequality, and in the last one we use Lemma 3.2. The estimate of

T22 also requires the boundedness of r and uh,

T22 =
1

2

∑
e∈Γ0

⟨(r(u− u+
h ) + (r− r+h )u

+
h + r(u− u−

h ) + (r− r−h )u
−
h ) · νe, [ξu]⟩e

≤ C (∥u− uh∥Γh
+ ∥r− rh∥Γh

) ∥[ξu]∥Γh

≤ Ch1/2 (∥ηu∥Γh
+ ∥ξu∥Γh

+ ∥ηr∥Γh
+ ∥ξr∥Γh

) ∥ξp∥

≤ C(hk1+1 + ∥ξu∥+ hk2 + ∥ξr∥) ∥ξp∥. (3.21)

Here in the second step we use Cauchy-Schwarz inequality, the third step follows from

triangle inequality and Lemma 3.5, the last one requires Lemma 3.4 and Lemma 3.2. Now

we proceed to the estimate of T23,

T23 ≤ C(∥[ηu]∥Γh
+ ∥[ξu]∥Γh

) ∥[ξu]∥Γh
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≤ Ch1/2(∥[ηu]∥Γh
+ ∥[ξu]∥Γh

) ∥ξp∥

≤ C(hk1+1 + ∥ξu∥) ∥ξp∥, (3.22)

where the first step follows from Cauchy-Schwarz inequality, the second step is based on

Lemma 3.5, the third one requires Lemma 3.4 and Lemma 3.2. Plug (3.20), (3.21) and (3.22)

into (3.19) to obtain

T2 ≤ (Chk1+1 + Chk2 + C∥ξu∥+ C∥ξr∥) ∥ξp∥. (3.23)

The estimate of T3 is simple, we only use Cauchy-Schwartz inequality and Lemma 3.2,

T3 ≤ (∥(ηv)t∥+ ∥ηu∥+ ∥ξu∥+ ∥ηv∥+ ∥ξv∥) ∥ξv∥

≤ C
(
hmin(k1,k2)+1 + ∥ξu∥+ ∥ξv∥

)
∥ξv∥ (3.24)

Plug (3.18) and (3.23) into (3.16) to obtain

1

2

d∥ξu∥2

dt
+ ∥ξp∥2 ≤ Chk1+1∥ξu∥+ C(hmin(k1+1,k2) + ∥ξu∥)∥ξp∥+ C∥ξr∥∥ξp∥

≤ C
(
h2min(k1+1,k2) + ∥ξu∥2 + ∥ξr∥2

)
+ ∥ξp∥2,

which further implies

1

2

d∥ξu∥2

dt
≤ C

(
h2min(k1+1,k2) + ∥ξu∥2 + ∥ξr∥2

)
. (3.25)

Moreover, plug (3.24) into (3.17) to yield

1

2

d∥ξv∥2

dt
+ ∥ξr∥2 ≤ C

(
hmin(k1,k2)+1 + ∥ξu∥+ ∥ξv∥

)
∥ξv∥. (3.26)

Combining (3.25) and (3.26), we can find a constant γ such that

1

2

d∥ξu∥2

dt
+ γ

(
1

2

d∥ξv∥2

dt
+ ∥ξr∥2

)
≤ C

(
h2min(k1+1,k2) + ∥ξu∥2 + ∥ξr∥2

)
+ γC

(
hmin(k1,k2)+1 + ∥ξu∥+ ∥ξv∥

)
∥ξv∥

Take γ to be sufficiently large, we have

d∥ξu∥2

dt
+ γ

d∥ξv∥2

dt
≤ Ch2min(k1+1,k2) + C∥ξu∥2 + C∥ξv∥2.
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Therefore, by the Gronwall’s inequality and use L2-projection as the initial discretization,

∥ξu∥2 + ∥ξv∥2 ≤ Ch2min(k1+1,k2),

which further yield

∥u− uh∥+ ∥v − vh∥ ≤ Chmin(k1+1,k2)

by Lemma 3.2.

3.6 Verification of the a priori error estimate

In this section, we proceed to verify the a priori error estimate assumption (3.15). Notice

that, (3.15) is true at t = 0. Suppose (3.15) fails before T , then let us denote t⋆ = inf{t
∣∣∥(u−

uh)(t)∥ > h} and we have 0 < t⋆ < T . Since (u− uh)(t) is a continuous function of the time

variable t, at t⋆ we have h = ∥(u− uh)(t
⋆)∥. On the other hand, (3.15) holds for 0 ≤ t ≤ t⋆,

thus from Theorem 3.1, we have ∥(u− uh)(t
⋆)∥ ≤ Chmin(k1+1,k2), which is a contradiction if

k1 ≥ 1, k2 ≥ 2 and h is smaller than H = 1
2C

. Therefore, we have ∥(u − uh)(t)∥ ≤ h for

∀ 0 ≤ t ≤ T . Now we have completed the verification of (3.15) and hence have finished the

whole proof.

3.7 Existence of the numerical solutions

In this subsection, we proceed to prove the existence of the numerical approximations ob-

tained from (2.10)-(2.13).

For a fixed mesh with h < H, we denote the ODE system (2.10)-(2.13) as d
dt
uh =

Lu(uh, vh) and
d
dt
vh = Lv(uh, vh), where uh and vh are the numerical approximations. Let T

be the largest time such that u, v are smooth and p, r are bounded for any t ∈ [0, T ]. Denote

Th = sup{th : 0 < th ≤ T,C1 solution (uh(t), vh(t)) exists in 0 ≤ t ≤ th}.

Then based on Theorem 3.1,

∥(u− uh)(t)∥+ ∥(v − vh)(t)∥ ≤ Chmin{k1+1,k2} ≤ Ch2, ∀ t ∈ [0, Th), (3.27)
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with C independent of Th and h. Take wp = ξp and wr = ξr in (3.2) and (3.4), respectively,

we can easily obtain

∥(p− ph)(t)∥+ ∥(r− rh)(t)∥ ≤ Ch, ∀ t ∈ [0, Th), (3.28)

by Lemma 3.1. We will prove by contradiction and assume Th < T , then there are two

possibilities.

(1) The numerical solutions uh and vh exist at t = Th. Then by the local existence of the

ODE system, we can find some th such that uh and vh exist for 0 ≤ t ≤ Th + th, which is a

contradiction.

(2) The numerical solution uh does not exist at t = Th (The case for vh should be exactly

the same). Denote the local orthonormal polynomial basis in K to be L1, L2, · · · , Lℓ with

ℓ = k(k+1)
2

, then uh can be written as uh(x, y, t) =
∑ℓ

i=1 ai(t)Li(x, y). Therefore, we only

need to show ai(t) exists at t = Th for any i = 1, · · · , ℓ. Take wu = Li in (2.10), we have

∀ t < Th,

d

dt
ai(t) = Lc(rh, uh, Li)− Ld(ph, Li)

≤ Ch−1∥rh∥∥uh∥∞ + Ch−1∥ph∥

≤ Ch−1(∥uh − u∥∞ + ∥u∥∞)

≤ Ch−1,

where the second step follows from the inverse inequality (3.1), the third one is based (3.28)

and the boundedness of p and r, in the last step we use (3.27) and Lemma 3.4. Choose

τ < Th, since

ai(t) = ai(τ) +

∫ t

τ

a′idt, ∀ t ∈ [τ, Th),

{ai(tn)} is Cauchy for any sequence tn → Th. This implies limt→Th
ai(t) exists, defined as

ai(Th). So ai(t) has a continuous extension to [0, Th] such that

ai(t) = ai(τ) +

∫ t

τ

a′idt, ∀t ∈ [τ, Th],
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This is another contradiction since we have assumed the numerical solution uh does not exist

at t = Th.

Finally, we have the following existence result

Theorem 3.2. Suppose the assumptions in Theorem 3.1 hold true, then the numerical ap-

proximations exist in the interval [0, T ], where T is the time such that the exact solutions

are bounded and smooth.

3.8 Qk polynomials

In this section, we consider rectangular meshes and give the error estimates under another

finite element space. If not otherwise stated, we follow the same notations used before. We

consider the computational domain to be Ω = [0, 1] × [0, 1] and the fixed vector β is taken

as (1, 1). Let 0 = x 1
2
< · · · < xNx+

1
2
= 1 and 0 = y 1

2
< · · · < yNy+

1
2
= 1 be the grid points in

the x and y directions. Let Kij = (xi− 1
2
, xi+ 1

2
)× (yj− 1

2
, yj+ 1

2
), i = 1, . . . , Nx, j = 1, . . . , Ny, be

a partition of Ω, and the mesh sizes in the x and y directions are given as ∆xi = xi+ 1
2
−xi− 1

2

and ∆yj = yj+ 1
2
− yj− 1

2
, respectively. For simplicity, we assume uniform meshes and denote

h = ∆xi = ∆yj. However, this assumption is not essential in the proof. Moreover, we also

denote Ii = [xi− 1
2
, xi+ 1

2
] and Jj = [yj− 1

2
, yj+ 1

2
] to be the cells in x and y directions. The finite

element space W k
h is defined as

W k
h =

{
z : z

∣∣
Kij

∈ Qk(Kij)
}
,

where Qk(Kij) denotes the set of tensor product polynomials of degree up to k in cell Kij.

In this section, we will take vh ∈ W k
h , rh ∈ Wk

h = W k
h ×W k

h and uh ∈ V k
h , ph ∈ Vk

h to obtain

optimal error estimate. We first define several special projections. We define P+ into W k
h

which is, for each cell Kij,

(P+u− u, v)Kij
= 0, ∀v ∈ Qk−1(Kij),

∫
Jj

(P+u− u)(xi− 1
2
, y)v(y)dy = 0, ∀v ∈ P k−1(Jj),

(P+u− u)(xi− 1
2
, yj− 1

2
) = 0,

∫
Ii

(P+u− u)(x, yj− 1
2
)v(x)dx = 0, ∀v ∈ P k−1(Ii). (3.29)
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Moreover, we also define Πx
k and Πy

k into W k
h which are, for each cell Kij,

(Πx
ku− u, vx)Kij

= 0, ∀v ∈ Qk(Kij),

∫
Jj

(Πx
ku− u)(xi+ 1

2
, y)v(y)dy = 0, ∀v ∈ P k(Jj),

(Πy
ku− u, vy)Kij

= 0, ∀v ∈ Qk(Kij),

∫
Ii

(Πy
ku− u)(x, yj+ 1

2
)v(x)dx = 0, ∀v ∈ P k(Ii).

(3.30)

Further more, we define a two-dimensional projection Πk = Πx
k ⊗ Πy

k. Following the same

analysis before, we define

ηv = v − P+v, ηr = r−Πkr,

and

ξv = vh − P+v, ξr = rh −Πkr.

Similar to Lemma 3.5, we would like to introduce the following one without proof.

Lemma 3.6. Suppose ξv and ξr are defined above, we have

∥∇ξv∥ ≤ C∥ξr∥, h−1∥[ξv]∥2Γh
≤ C∥ξr∥2.

Moreover, we will use the following lemma [4]

Lemma 3.7. Suppose v is sufficiently smooth, then we have

∥ηv∥+ h1/2∥ηv∥Γh
≤Chk+1, (3.31)

∥ηr∥+ h1/2∥ηr∥Γh
≤Chk+1, (3.32)

Finally, we also need the superconvergence property of the bilinear form Q given in (2.16)

[7].

Lemma 3.8. For any w ∈ Wk
h, we have

|Q(ηu,w)| ≤ Chk+1∥u∥k+2∥w∥.

Now we can state the main theorem.
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Theorem 3.3. Suppose the exact solutions u, v are smooth and the derivatives r, s are uni-

formly bounded. The LDG scheme is defined as (2.1)-(2.4) with uh ∈ V k
h , ph ∈ Vk

h, vh ∈ W k
h

and rh ∈ Wk
h for k ≥ 1. Moreover, the initial discretization is also given as the L2-projection.

Then we have

∥u− uh∥+ ∥v − vh∥ ≤ Chk+1.

Proof. In the proof, we skip the a priori error estimate (3.15), its verification in Section 3.6

as well as most of the derivation steps, since they can be obtained from Section 3.5 with

some minor changes. We take wu = ξu, w
p = ξp, w

v = ξv and wr = ξr in (3.1)-(3.4) to

obtain

1

2

d∥ξu∥2

dt
+ ∥ξp∥2 = T1 − T2, (3.33)

1

2

d∥ξv∥2

dt
+ ∥ξr∥2 = T3 + T4, (3.34)

where

T1 = ((ηu)t, ξu),

T2 = (ru− rhuh, (ξu)x) +
∑
e∈Γ0

⟨(ru− r̂huh) · νe, [ξu]⟩e,

T3 = ((ηv)t, ξv)− (ηu − ξu − ηv + ξv, ξv),

T4 = Q(ηv, ξr)

Following the analyses in Section 3.5, we obtain the estimates of T ′
is.

T1 ≤ Chk+1∥ξu∥. (3.35)

T2 ≤ C(hk+1 + ∥ξu∥+ ∥ξr∥) ∥ξp∥ (3.36)

T3 ≤ C
(
hk+1 + ∥ξu∥+ ∥ξv∥

)
∥ξv∥ (3.37)

Finally, the estimate of T4 follows from Lemma 3.8 directly,

T4 ≤ Chk+1∥ξr∥. (3.38)
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Plug (3.35) and (3.36) into (3.33) to obtain

1

2

d∥ξu∥2

dt
+ ∥ξp∥2 ≤ Chk+1∥ξu∥+ C(hk+1 + ∥ξu∥)∥ξp∥+ C∥ξr∥∥ξp∥

≤ C
(
h2k+2 + ∥ξu∥2 + ∥ξr∥2

)
+ ∥ξp∥2,

which further implies

1

2

d∥ξu∥2

dt
≤ C

(
h2k+2 + ∥ξu∥2 + ∥ξr∥2

)
. (3.39)

Moreover, plug (3.37) and (3.38) into (3.34) to yield

1

2

d∥ξv∥2

dt
+ ∥ξr∥2 ≤ C

(
hk+1 + ∥ξu∥+ ∥ξv∥

)
∥ξv∥+ Chk+1∥ξr∥

≤ C
(
hk+1 + ∥ξu∥+ ∥ξv∥

)
∥ξv∥+ Ch2k+2 +

1

2
∥ξr∥2,

which further implies

d∥ξv∥2

dt
+ ∥ξr∥2 ≤ C

(
h2k+2 + ∥ξu∥2 + ∥ξv∥2

)
(3.40)

Combining (3.39) and (3.40), we can find a constant γ such that

d∥ξu∥2

dt
+ γ

(
d∥ξv∥2

dt
+ ∥ξr∥2

)
≤ C

(
h2k+2 + ∥ξu∥2 + ∥ξr∥2

)
+ γC

(
h2k+2 + ∥ξu∥2 + ∥ξv∥2

)
Take γ to be sufficiently large, then

d∥ξu∥2

dt
+ γ

d∥ξv∥2

dt
≤ Ch2k+2 + C∥ξu∥2 + C∥ξv∥2.

Therefore, by the Gronwall’s inequality and L2 initial discretization

∥ξu∥2 + ∥ξv∥2 ≤ Ch2k+2,

which further yield

∥u− uh∥+ ∥v − vh∥ ≤ Chk+1

by Lemma 3.2 and Lemma 3.7.
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4 Positivity preserving property

In this subsection, we apply the positivity-preserving technique to construct positive numer-

ical approximations. In [51], the authors have studied the positivity-preserving technique for

convection-diffusion equations on triangular meshes. Therefore, in this paper, we consider

rectangular meshes only. If not otherwise stated, we follow the same notations defined in

Section 3.8. Following the idea in [51], we restrict ourselves to the P 1-LDG formulation. For

simplicity, we consider Euler forward time discretization and the time step is ∆t. Moreover,

in this section, we also consider uniform meshes only, and denote the mesh sizes in the x and

y directions as ∆x and ∆y, respectively. However, this assumption is not essential. Assume

the numerical solutions at time level n are positive: un
h > 0, vnh > 0. Then we will construct

positive numerical approximations at time level n+1. To do so, we will firstly prove that the

cell average at time level n+ 1 is positive. Next, we can use a simple limiter to modify the

DG polynomial and make it to be positive without changing its cell average. In this section,

we denote p = (p, q) and r = (r, s). For simplicity, we use o to represent the exact solutions

of the six variables u, p, q, v, r, s and oh for the corresponding numerical approximations.

Moreover, we use oij for the numerical approximation oh in Kij, and the cell average is ōij.

Let us consider how to construct positive uh first, and the equation satisfied by the cell

averages is

ūn+1
ij = Hc

ij(u, r, s) +Hd
ij(u, p, q),

where

Hc
ij(u, r, s) =

1

2
ūn
ij −

∆t

∆x∆y

(∫
Jj

(
ûri+ 1

2
,j − ûri− 1

2
,j

)
dy +

∫
Ii

(
ûsi,j+ 1

2
− ûsi,j− 1

2

)
dx

)
,

Hd
ij(u, p, q) =

1

2
ūn
ij +

∆t

∆x∆y

(∫
Jj

(
p̂i+ 1

2
,j − p̂i− 1

2
,j

)
dy +

∫
Ii

(
q̂i,j+ 1

2
− q̂i,j− 1

2

)
dx

)
.

For simplicity, if not otherwise stated, we will omit the subscript ij in Hc
ij and Hd

ij.

To analyze Hc, we approximate the integral by a 2-point Gauss quadrature. The Gauss

22



quadrature points on Ii and Jj are denoted by

pxi =
{
xβ
i : β = 1, 2

}
and pyj =

{
yβj : β = 1, 2

}
,

respectively. Also, we denote wβ as the corresponding weights on the interval
[
−1

2
, 1
2

]
.

Let λ1 =
∆t
∆x

and λ2 =
∆t
∆y

, then Hc becomes

Hc(u, r, s) =
1

2
un
ij + λ1

2∑
β=1

wβ

(
ûri− 1

2
,β − ûri+ 1

2
,β

)
+ λ2

2∑
β=1

wβ

(
ûsβ,j− 1

2
− ûsβ,j+ 1

2

)
,

where ûri− 1
2
,β is the numerical flux at (xi− 1

2
, yβj ). Likewise for the other fluxes. As the general

treatment, we rewrite the cell average on the right hand side as

un
ij =

1

2

2∑
β=1

wβ

(
u+
i− 1

2
,β
+ u−

i+ 1
2
,β

)
=

1

2

2∑
β=1

wβ

(
u+
β,j− 1

2

+ u−
β,j+ 1

2

)
,

where u−
i− 1

2
,β

= u−
i− 1

2
,j
(yβj ) is a point value of the numerical approximation in the Gauss

quadrature. Likewise for the other point values. Define µ = λ1 + λ2, then

Hc(u, r, s) = λ1

2∑
β=1

wβ

[
1

4µ

(
u+
i− 1

2
,β
+ u−

i+ 1
2
,β

)
+
(
ûri− 1

2
,β − ûri+ 1

2
,β

)]

+ λ2

2∑
β=1

wβ

[
1

4µ

(
u+
β,j− 1

2

+ u−
β,j+ 1

2

)
+
(
ûsβ,j− 1

2
− ûsβ,j+ 1

2

)]
.

We need to suitably choose the parameter α in the Lax-Friedrichs flux, and the result is

given below.

Lemma 4.1. We can choose

α > max
1 ≤ i ≤ Nx − 1
1 ≤ j ≤ Ny − 1

β = 1, 2

{
r+
i+ 1

2
,β
, −r−

i+ 1
2
,β
, s+

β,j+ 1
2

, −s−
β,j+ 1

2

}
,

then un+1
j > 0 under a CFL condition

A

(
∆t

∆x
+

∆t

∆y

)
≤ 1

2
, (4.1)
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where

A = α− min
1 ≤ i ≤ Nx − 1
1 ≤ j ≤ Ny − 1

β = 1, 2

{
r+
i+ 1

2
,β
, −r−

i+ 1
2
,β
, s+

β,j+ 1
2

, −s−
β,j+ 1

2

}
≥ 0,

Proof. It is easy to check, for i = 2, 3, · · · , Nx,

1

4µ
u+
i− 1

2
,β
+ ûri− 1

2
,β

=
1

4µ
u+
i− 1

2
,β
+

1

2

(
u−
i− 1

2
,β
r−
i− 1

2
,β
+ u+

i− 1
2
,β
r+
i− 1

2
,β
− α(u+

i− 1
2
,β
− u−

i− 1
2
,β
)
)

=
1

2

(
α + r−

i− 1
2
,β

)
u−
i− 1

2
,β
+

1

2

(
1

2µ
+ r+

i− 1
2
,β
− α

)
u+
i− 1

2
,β
.

Therefore, we can choose α+r−
i− 1

2
,β
> 0 and 1

2µ
+r+

i− 1
2
,β
−α > 0 to obtain 1

4µ
u+
i− 1

2
,β
+ûri− 1

2
,β >

0. If i = 1, by (2.9),

1

4µ
u+
i− 1

2
,β
+ ûri− 1

2
,β =

1

4µ
u+
i− 1

2
,β
> 0.

Also, for i = 1, 2, · · · , Ny − 1,

1

4µ
u−
i+ 1

2
,β
− ûri+ 1

2
,β

=
1

4µ
u−
i+ 1

2
,β
− 1

2

(
u−
i+ 1

2
,β
r−
i+ 1

2
,β
+ u+

i+ 1
2
,β
r+
i+ 1

2
,β
− α(u+

i+ 1
2
,β
− u−

i+ 1
2
,β
)
)

=
1

2

(
α− r+

i+ 1
2
,β

)
u+
i+ 1

2
,β
+

1

2

(
1

2µ
− r−

i+ 1
2
,β
− α

)
u−
i+ 1

2
,β
.

We can choose α− r+
i+ 1

2
,β
> 0 and 1

2µ
− r−

i+ 1
2
,β
− α > 0 such that 1

4µ
u−
i+ 1

2
,β
− ûri+ 1

2
,β > 0. If

i = Ny, then by (2.9),

1

4µ
u−
i+ 1

2
,β
− ûri+ 1

2
,β =

1

4µ
u−
i+ 1

2
,β
> 0.

Similarly, for j = 2, 3, · · · , Ny we require α + s−
β,j− 1

2

> 0 and 1
2µ

+ s+
β,j− 1

2

− α > 0 to obtain

1
4µ
u+
β,j− 1

2

+ûsβ,j− 1
2
> 0. For j = 1, 2, · · · , Ny−1, we need α−s+

β,j+ 1
2

> 0 and 1
2µ
−s−

β,j+ 1
2

−α > 0

such that 1
4µ
u−
β,j+ 1

2

− ûsβ,j+ 1
2
> 0.

Now, we proceed to analyze Hd(p, q). Following the same analysis in [51] with some

minor changes, we can show the following lemma.
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Lemma 4.2. Suppose un
ij > 0 for all i and j, then

Hd(u, p, q) > 0

under a CFL condition

∆t

∆x2
+

∆t

∆y2
≤ 1

20
. (4.2)

Proof. Define Hd(u, p, q) = 1
∆y

H1(u, p) + 1
∆x

H2(u, q), where

Hd
1 (u, p) =

∫
Jj

[
Λ1

4Λ

(
u+
i− 1

2
,j
+ u−

i+ 1
2
,j

)
− λ1

(
p̂i− 1

2
,j − p̂i+ 1

2
,j

)]
dy (4.3)

Hd
2 (u, q) =

∫
Ii

[
Λ2

4Λ

(
u+
i,j− 1

2

+ u−
i,j+ 1

2

)
− λ2

(
q̂i,j− 1

2
− q̂i,j+ 1

2

)]
dx, (4.4)

with Λ1 =
∆t
∆x2 , Λ2 =

∆t
∆y2

and Λ = Λ1 + Λ2. It is easy to check that∫
Jj

p−
i+ 1

2
,j
dy =

∫
Jj

1

∆x

(
4u+

i+ 1
2
,j
− 3u−

i+ 1
2
,j
− u+

i− 1
2
,j

)
dy, i = 1, · · · , Nx − 1,∫

Ii

q−
i,j+ 1

2

dy =

∫
Ii

1

∆y

(
4u+

i,j+ 1
2

− 3u−
i,j+ 1

2

− u+
i,j− 1

2

)
dx, j = 1, · · · , Ny − 1.

Plug the flux (2.5) into (4.3) to obtain

1. i = 1

Hd
1 (u, p)

=

∫
Jj

[
Λ1

4Λ
u−
i+ 1

2
,j
+

Λ1

4Λ
u+
i− 1

2
,j
+ λ1p

−
i+ 1

2
,j

]
dy

=

∫
Jj

[(
Λ1

4Λ
− Λ1

)
u+
i− 1

2
,j
+

(
Λ1

4Λ
− 3Λ1

)
u−
i+ 1

2
,j
+ 4Λ1u

+
i+ 1

2
,j

]
dy

> 0.

2. 2 ≤ i ≤ Nx − 1

Hd
1 (u, p)

=

∫
Jj

[
Λ1

4Λ
u−
i+ 1

2
,j
+

Λ1

4Λ
u+
i− 1

2
,j
+ λ1

(
p−
i+ 1

2
,j
− p−

i− 1
2
,j

)]
dy

=

∫
Jj

[
Λ1u

+
i− 3

2
,j
+ 3Λ1u

−
i− 1

2
,j
+

(
Λ1

4Λ
− 5Λ1

)
u+
i− 1

2
,j
+

(
Λ1

4Λ
− 3Λ1

)
u−
i+ 1

2
,j
+ 4Λ1u

+
i+ 1

2
,j

]
dy

> 0.
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3. i = Nx

Hd
1 (u, p)

=

∫
Jj

[
Λ1

4Λ
u−
i+ 1

2
,j
+

Λ1

4Λ
u+
i− 1

2
,j
− λ1p

−
i− 1

2
,j

]
dy

=

∫
Jj

[
Λ1u

+
i− 3

2
,j
+ 3Λ1u

−
i− 1

2
,j
+

(
Λ1

4Λ
− 4Λ1

)
u+
i− 1

2
,j
+

Λ1

4Λ
u−
i+ 1

2
,j

]
dy

> 0.

We can analyze Hd
2 in a similar way, so we skip the proof.

Based on the above two lemmas, we have the following theorem.

Theorem 4.1. Suppose un
ij > 0 for all i and j, then

un+1
ij > 0

under the CFL conditions (4.1) and (4.2).

Now, let us proceed to analyze v, and the equation satisfied by the numerical cell averages

is

vn+1
ij =

1

2
vnij +Hd(v, r, s) + ∆t

(
un
ij − vnij

)
= Hd(v, r, s) +

(
1

2
−∆t

)
vnij +∆tun

ij.

Applying Lemma 4.2, it is easy to prove the following theorem.

Theorem 4.2. Suppose vnij > 0 for all i and j, then

vn+1
ij > 0

provided

∆t

∆x2
+

∆t

∆y2
≤ 1

20
,

and

∆t ≤ 1

2
.
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Based on Theorems 4.1 and 4.2, the numerical cell averages we obtained are positive.

However, the numerical solutions un
ij and vnij might still be negative. Hence, we have to

modify the numerical solutions while keeping the cell averages untouched. For simplicity, we

discuss the modification of un
ij only and the procedure is given in the following steps.

• Set up a small number ε = 10−13.

• If un
ij > ε, then proceed to the following steps. Otherwise, un

ij is identified as the

approximation to vacuum, and we will take ũn
ij = un

ij as the numerical solution and

skip the following steps.

• Modify the density: Compute

bij = min
(x,y)∈Kij

un
ij(x, y).

If bij < ε, then take ũn
ij as

ũn
ij = un

ij + θij
(
un
ij − un

ij

)
,

with

θij =
un
ij − ε

un
ij − bij

,

and use ũn
ij as the new numerical density un

ij.

Remark 4.1. In the third step mentioned above, the limiter does not change the numerical

cell averages. Actually, since

1

∆x∆y

∫
Kij

un
ij = un

ij,

then we have

1

∆x∆y

∫
Kij

ũn
ij = un

ij + θij

(
1

∆x∆y

∫
Kij

un
ij − un

ij

)
= un

ij.

Following [34, 45], we can show the L1-stability of the numerical scheme with the positivity-

preserving limiter. Since un
h is positive, we have

∥un
h∥L1 =

∫
Ω

un
h(x)dx =

∫
Ω

u0
h(x)dx = ∥u0

h∥L1 ,

where ∥u∥L1 is the standard L1-norm of u on Ω. This implies the L1-stability of the scheme.
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Remark 4.2. The positivity preserving limiter mentioned above does not kill the accuracy

which was proved in [49, 50].

4.1 High order time discretizations

All the previous analyses are based on first-order Euler forward time discretization. We can

also use strong stability preserving (SSP) high-order time discretizations to solve the ODE

system wt = Lw. More details of these time discretizations can be found in [39, 38, 19]. In

this paper, we use the third order SSP Runge-Kutta method [39]

w(1) = wn + τL(wn),

w(2) =
3

4
wn +

1

4

(
w(1) + τL(w(1))

)
, (4.5)

wn+1 =
1

3
wn +

2

3

(
w(2) + τL(w(2))

)
,

with time step τ ≤ ∆t where ∆t was given in Theorem 4.2 and the third order SSP multi-

step method [38]

wn+1 =
16

27
(wn + 3τL(wn)) +

11

27

(
wn−3 +

12

11
τL(wn−3)

)
. (4.6)

with time step τ ≤ 1
3
∆t. Since an SSP time discretization is a convex combination of Euler

forward, by using the limiter mentioned in Section 4, the numerical solutions obtained from

the full scheme are also positive.

5 Numerical experiments

In this section, we present numerical examples in two space dimensions to verify the theoret-

ical analysis and the positivity-preserving property of the proposed method. If not otherwise

stated, we use P 1-LDG method with third-order Runge-Kutta time discretization.

Example 5.1. We solve the following problem on the domain Ω = [0, 2π]× [0, 2π]

ut − div(∇u− u∇v) = 0, x ∈ Ω, t > 0
vt −△v = u− v, x ∈ Ω, t > 0,

(5.1)
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We use spectral method with enough points to compute a reference solution at t = 0.2, which

can be considered as the exact solution. In Table 5.1, we present the numerical results for

the proposed method with and without the bound preserving limiters. From the table, we

can observe optimal rate of convergence with V 1
h finite element spaces.

no limiter with limiter
N L2 error order L2 error order
20 9.25e-3 – 1.16e-2 –
40 2.34e-3 1.98 2.40e-3 2.27
80 5.82e-4 2.01 5.84e-4 2.04
160 1.45e-4 2.00 1.45e-4 2.01

Table 5.1: Example 5.1: accuracy test at T = 0.2 for the second-order LDG methods with
and without the positivity-preserving limiter. Nx = Ny = N .

Example 5.2. In this example, we solve (1.1) with the following initial condition.

u0 = 840 exp(−84(x2 + y2)), v0 = 420 exp(−42(x2 + y2)).

We use second-order positivity-preserving LDG methods and the numerical approximations

at time t are given in Figure 5.1. In [15], the authors demonstrated that the blow-up time

Figure 5.1: Example 5.2: Numerical approximations of u at t = 6 × 10−5 (left) and t =
1.2× 10−4 with positivity-preserving limiter for P 1 polynomials and N = 160.

.

should be approximately t = 1.21×10−4. However, we can continue our numerical simulation

29



Figure 5.2: Example 5.2: Numerical approximations of u at t = 2.0× 10−4 with positivity-
preserving limiter for P 1 polynomials and N = 160.

.

to t = 2 × 10−4, and the numerical approximation is given in figure 5.2. We also solve the

problem without the positivity-preserving limiter. We find that at about t = 8 × 10−5 the

numerical scheme yields negative u.

Moreover, we also test the numerical blow-up time. For simplicity, we take Nx = Ny = N ,

and compute the L2-norm numerical approximations at time t with N ×N cells, defined as

S(N, t). Define

tb(N) = inf{t : S(2N, t) ∗ 1.05% ≥ S(N, t)} (5.2)

as the numerical blow-up time. We anticipate that as we refine the mesh, the numerical

blow-up time will converge to the exact value. However, due to the computational cost, we

have to apply adaptive methods and refine the mesh in the vicinity of the blow-up point,

and this work will be considered in the future. To verify our anticipation, we consider the

following function

f(x, t) =
1

1− t
exp

(
−x2

2(t− 1)2

)
. (5.3)
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Figure 5.3: L2-norm of the numerical approximation for Example 5.2 with different N’s.
.

It is easy to see that

lim
t→1−

f(x, t) → δ(x)

in the sense of distribution.

We consider the interval [-1,1] and divided in into N uniform cells. Denote uh, the

L2-projection of f(x, t), as the numerical approximation in each cell and S(N, t) to be the

L2-norm of uh over [-1,1] with different t′s. We also compute the numerical blow-up time

tb(N) by (5.2) and the results are given in Table 5.2. We can clearly see that as we refine

the meshes, tb(N) converges to 1, the exact blow-up time, in first order accuracy.

N 10 20 40 80 160 320
Blow-up time - 0.671 0.836 0.918 0.959 0.980

Error - 0.329 0.164 0.092 0.041 0.020

Table 5.2: Numerical blow-up time with different mesh sizes for (5.3).
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6 Conclusion

In this paper, we develop LDG methods to the KS chemotaxis model. We improve the result

given by [15], and give the optimal error estimate under special finite element spaces. A

special positivity-preserving limiter is constructed to obtain physically relevant numerical

approximations. Moreover, we also prove the L1-stability of the LDG scheme with the

limiter. Numerical experiments are given to demonstrate the good performance of the LDG

scheme and the estimate of the numerical blow-up time. In the future, we plan to apply

adaptive methods to calculate the blow-up time more accurately.
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