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Abstract

This paper is concerned with an interior penalty discontinuous Galerkin
(IPDG) method based on a flexible type of non-polynomial local ap-
proximation space for the Helmholtz equation with varying wavenumber.
The local approximation space consists of multiple polynomial-modulated
phase functions which can be chosen according to the phase information
of the solution. We obtain some approximation properties for this space
and a prior L2 error estimates for the h-convergence of the IPDG method
using duality argument. We also provide ample numerical examples to
show that, building phase information into the local spaces often gives
more accurate results comparing to using the standard polynomial spaces.

1 Introduction

In this paper, we consider the following Helmholtz equation on a bounded convex
polygonal domain Ω ⊂ R2 with a Robin boundary condition:

−∆u− κ2u = f in Ω (1)
∇u · n+ iκu = g on ∂Ω, (2)

where κ is the wavenumber, which is a smooth real-valued function, f is the
source term in L2(Ω), g is the boundary data in L2(∂Ω) and n is the outward
normal on ∂Ω.

The Helmholtz equation with high and varying wavenumber arises from
many areas, including seismology, electromagnetics, underwater acoustics [4],
plasma physics [18] and medical imaging [28]. Standard finite element methods
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based on low-order polynomials do not perform well for the Helmholtz equa-
tion at high wavenumber. On the one hand, low-order polynomials do not well
resolve the solution unless several grid points per wavelength are used. On
the other hand, such methods suffer from the so-called pollution effect : for a
fixed number of grid points per wavelength, the numerical error grows with the
wavenumber [3,16]. Indeed, it was suggested in [21,24] that the pollution effect
can be suppressed by using higher order polynomials for problems with higher
wavenumber.

It is natural to consider oscillatory non-polynomial basis to overcome the
shortcomings of low-order polynomials, in the hope that such basis can resolve
the solution using significantly fewer degrees of freedom than polynomials. For
Helmholtz equation with homogeneous media, plane waves are extensively used
as the basis in the literature. Examples using such basis include the partition of
unity finite element method [2,23,27,31], the least-square methods [25,30] and
the discrete enrichment method [1,8,9]. A good survey of such methods can be
found in [13]. Besides, Cessenat and Després proposed the ultra-weak variational
formulation (UWVF) for the Helmholtz equation in [7]. The UWVF approxi-
mates the exact solution of the Helmholtz equation by a linear combination of
free space solutions of the homogeneous Helmholtz equations, including plane
waves. Later, the UWVF was recast as a discontinuous Galerkin method in [6]
and generalized into the plane wave discontinuous Galerkin (PWDG) method
in [12], where plane waves with uniformly-spaced directions are used as basis.
The convergence of the PWDG method regarding refining the mesh, namely
the h-version, is analyzed in [12] using the Schatz’ duality argument [29]. It
was shown that the h-version is still afflicted by the pollution effect. A detailed
quantitative study of such effect for this method can be found in [11]. Later,
it was suggested in [14] that the convergence of the PWDG method regarding
using more plane waves, namely the p-version, is immune to the pollution effect.
Recently, the exponential convergence of a strategy in choosing h and p locally,
namely the hp-version, has been established theoretically in [15].

For problems with heterogeneous media or nonzero source function f , plane
waves are no longer the free space solutions of the Helmholtz equation. In [12],
the PWDG method was shown to obtain only second order accuracy for a generic
source term. It was also shown numerically in [5] that using plane waves with
uniformly-spaced directions for varying wavenumber did not outperform poly-
nomials significantly in their experiments. Instead of using plane waves as basis,
Imbert-Gérard and Després [18] proposed an extension of the UWVF method
with high order accuracy for smooth varying wavenumber. Based on the idea of
generalized plane waves proposed by Melenk [20], they considered an adapted
basis of the form eP (x) where P is a polynomial with complex coefficients con-
structed locally according to an approximation to the wavenumber. Further
analysis of the adapted basis in two dimensions can be found in [17].

The above mentioned methods do not assume the knowledge of phase values
of the solution. However, it has been shown that taking advantage of the knowl-
edge of the phase values, the accuracy could be greatly enhanced with the same
mesh size. For example, Betcke and Philips [5] compared uniform plane wave
basis to low-order polynomial modulated plane waves with dominant directions
under a DG formulation similar to the original PWDG method, and showed
numerically the latter outperformed the former for a Helmholtz problem with
varying wavenumber. In [26], Nguyen et al. proposed a hybridizable discon-
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tinuous Galerkin (HDG) method using local approximation spaces consisting
of
∑
p`(x)eiψ`(x), where p`(x) are polynomials and ψ`(x) are solutions of the

eikonal equation. They showed that their phase-based HDG method can obtain
high-order accuracy with several orders of magnitude fewer degrees of freedom
comparing to the HDG method with standard polynomial basis. More examples
of using such polynomial-modulated basis can be found in [10,19].

In this paper, we will consider a general type of local space consisting of∑
p`(x)eiq`(x) where p`(x) are polynomials and q`(x) are real-valued functions.

We prove some approximation properties when q` are polynomials satisfying cer-
tain additional assumptions. We will use these local spaces in an interior penalty
discontinuous Galerkin (IPDG) framework to solve the Helmholtz equation with
varying wavenumber, and give error estimates in terms of the wavenumber κ(x)
using Schatz’s argument. We call our method a phase-based method follow-
ing [26], due to its flexibility in choosing the basis related to the phase of the
exact solution.

This paper is organized as follows. In section 2, we give some preliminaries
and then state some notations we use in this paper. In section 3, we discuss
the properties of the local bases and the formulation of the IPDG method.
In section 4, we use Schatz’s argument to prove the convergence of the IPDG
method for the Helmholtz equation with varying wavenumber. In section 5,
we give numerical examples to show the h-convergence of this method, and
numerically verify a few properties of the local spaces. Finally, conclusions are
drawn in section 6.

2 Preliminaries

We assume Ω ⊂ R2 is a convex polygonal domain. Let Th be a conforming
triangulation of Ω, where the index h is a constant multiple of the maximum
diameter of the triangles. For any triangle K ∈ Th, we denote the the diameter
of K by hK . We also define the skeleton F to be the union of boundaries of
all triangles K in Th, the boundary skeleton FB := F ∩ ∂Ω, and the interior
skeleton FI := ∂Ω \ FB .

Assumption (M). We assume the triangulation Th satisfies the following prop-
erties:

1. Shape regularity. There is a positive constant α independent of h such
that for any K ∈ Th,

hK/ρK ≤ α,

where ρK is the radius of the inscribed circle of K.

2. Quasi-uniformity. There is a positive constant τ independent of h such
that for any K ∈ Th,

hK ≥ τh.

Let K± be two triangles sharing an edge e. Let n± be the outward normal
of K± on e and u± be two smooth scalar functions on K±, respectively. We
define the average operator { · } and jump operator J · K by

{u} :=
1
2
(u+ + u−) and JuK := u+n+ + u−n−.
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Similarly, for smooth vector field σ± defined on K±, respectively, we define the
average operator { · } and jump operator J · K by

{σ} :=
1
2
(σ+ + σ−) and JσK := σ+ · n+ + σ− · n−.

On the standard Sobolev spaceW s,p(S), we denote the Sobolev norm by ‖ · ‖s,p,S
and the semi-norm by | · |s,p,S . When p = 2, we denote the Sobolev norm by
‖ · ‖s,S and the semi-norm by | · |s,S . When S = Ω, we simplify the notation by
writing ‖ · ‖s and | · |s for the Sobolev norm and semi-norm respectively. We
also denote the L2(Ω) inner product by ( ·, · ).

3 The phase-based IPDG method

3.1 The local approximation spaces and their properties

On each K ∈ Th, we denote the local space of polynomials with degree r by
P r(K). We call a function of the form eiq(x) a phase function. For a real
vector-valued function q := (q1, . . . , qm) ∈ (Hr+1(K))m, we define the local
space of polynomial-modulated phase functions with degree r by

Qr(K,q) :=

{
m∑
`=1

p`(x)eiq`(x) : p` ∈ P r(K)

}
.

We define two L2 projection operators onto P r(K) and Qr(K,q), respectively,

Pr : Hr+1(K) → P r(K), (Pru, v) = (u, v) for any v ∈ P r(K),

Qr : Hr+1(K) → Qr(K,q), (Qru, v) = (u, v) for any v ∈ Qr(K,q).

In this section we will discuss certain special choices of q.

Assumption (Q). We assume q := (q1, . . . qm) satisfies:

1. There is an integer N independent of h such that for any K ∈ Th and
1 ≤ ` ≤ m,

q` ∈ PN (K);

2. There is a constant C > 0 independent of h such that for any K ∈ Th,
1 ≤ ` ≤ m+ 1, |α| ≤ N and x ∈ K,∣∣∣∣∂αq`∂xα

(x)
∣∣∣∣ ≤ C;

3. There is a constant C > 0 and integer k0 ≥ 0 both independent of h such
that for any K ∈ Th and 1 ≤ ` ≤ m and p` ∈ P r(K),

m∑
`=1

‖p`‖0,K ≤ Ch−k0

∥∥∥∥∥
m∑
`=1

p`e
iq`

∥∥∥∥∥
0,K

.
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Remark 3.1. When m = 1, the third assumption in (Q) holds with k0 = 0 since

‖p1‖0,K =
∥∥p1e

iq1
∥∥

0,K
.

For m > 1, we note that the spectral radius of the matrix P corresponding to∑m
`=1 ‖p`‖0,K is of order h. This assumption says that the smallest eigenvalue

of the mass matrix for Qr(K) is of order hk0+1. In section 5.5 of this paper, we
will show numerically that this assumption holds for some choices of bases.

We will repeatedly use the following lemma in this section, which is a direct
consequence of the second assumption in (Q):

Lemma 3.2. There is a constant C > 0 independent of h and K ∈ Th such
that for any 1 ≤ ` ≤ m and any positive integer j, there is a polynomial q̃`,j of
degree at most j such that for any x ∈ K,∣∣∣eiq`(x) − q̃`,j(x)

∣∣∣ ≤ Chj+1.

Proposition 3.3 (Trace inverse inequality). There is C > 0 independent of h
such that for any K ∈ Th and v ∈ Qr(K,q),

|v|1,∂K ≤ Ch−1/2 |v|1,K .

Proof. For v ∈ Qr(K,q), we write v :=
∑m
`=1 p`e

iq` and g` := ip`∇q` + ∇p`,
where p` ∈ P r(K). We note that ∇v =

∑m
`=1 g`e

iq` . Let j be a positive integer.
Firstly, we consider the reference triangle K̂. By the equivalency of L1 and

L2 norms, triangle inequality and Hölder’s inequality,

|v̂|1,∂ bK ≤ C

 m∑
`=1

‖ĝ`‖0,∂ bK
∥∥∥eibq` − ̂̃q`,j∥∥∥

0,∂ bK +

∥∥∥∥∥
m∑
`=1d

ĝ`̂̃q`,j
∥∥∥∥∥

0,∂ bK

 , (3)

where the hat notation ( ·̂ ) denotes the pullback associated with the affine map
from K̂ to K. Applying trace inverse inequality for polynomials,

|v̂|1,∂ bK ≤ C

 m∑
`=1

‖ĝ`‖0, bK
∥∥∥eibq` − ̂̃q`,j∥∥∥

0,∂ bK +

∥∥∥∥∥
m∑
`=1

ĝ`̂̃q`,j
∥∥∥∥∥

0, bK

 . (4)

Also, using the equivalency of L1 and L2 norms on PN+r+j−1(K̂), triangle
inequality, and Hölder’s inequality,∥∥∥∥∥

m∑
`=1

ĝ`̂̃q`,j
∥∥∥∥∥

0, bK
≤ C

(
m∑
`=1

‖ĝ`‖0, bK
∥∥∥eibq` − ̂̃q`,j∥∥∥

0, bK + |v̂|1, bK
)
. (5)

Combining equations (4) and (5),

|v̂|1,∂ bK ≤ C

(
m∑
`=1

‖ĝ`‖0, bK
(∥∥∥eibq` − ̂̃q`,j∥∥∥

0, bK +
∥∥∥eibq` − ̂̃q`,j∥∥∥

0,∂ bK
)

+ |v̂|1, bK
)
. (6)

Secondly, we consider K ∈ Th. By the definition of q̃`,j in Lemma 3.2, we
have ∥∥eiq` − q̃`,j

∥∥
0,K

≤ Chj+2 and
∥∥eiq` − q̃`,j

∥∥
0,∂K

≤ Chj+
3
2 . (7)
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Applying the scaling argument, equation (6), and equation (7),

|v|1,∂K ≤ Ch−
1
2

((
hj+

1
2 + hj+1

) m∑
`=1

‖g`‖0,K + |v|1,K

)
. (8)

Applying the second assumption in (Q),

|v|1,∂K ≤ Ch−
1
2

(
1 + hj−k0+

1
2 + hj−k0+1

)
|v|1,K . (9)

The result follows from taking j = k0.

Proposition 3.4 (Inverse estimates). For any 1 ≤ k ≤ r there is Cinv,k > 0
independent of h such that for any K ∈ Th and v ∈ Qr(K,q),

|v|k,K ≤ Cinv,kh
−k ‖v‖0,K . (10)

Proof. For v ∈ Qr(K,q), we write v :=
∑m
`=1 p`e

iq` , where p` ∈ P r(K). Let j
be a positive integer.

Firstly, we consider the reference triangle K̂. Using Leibniz’s rule and
Hölder’s inequality, we have

m∑
`=1

∣∣∣p̂`(eibq` − ̂̃q`,j)∣∣∣
k,1, bK ≤ C

m∑
`=1

‖p̂`‖k, bK
∥∥∥eibq` − ̂̃q`,j∥∥∥

k, bK . (11)

By the equivalency of L1 and L2 norms, the triangle inequality, and equation
(11),

|v̂|k, bK ≤ C

 m∑
`=1

‖p̂`‖k, bK
∥∥∥eibq` − ̂̃q`,j∥∥∥

k, bK +

∣∣∣∣∣
m∑
`=1

p̂`̂̃q`,j
∣∣∣∣∣
k,1, bK

 . (12)

Using norm equivalence on P r+j(K̂),

|v̂|k, bK ≤ C

 m∑
`=1

‖p̂`‖0, bK
∥∥∥eibq` − ̂̃q`,j∥∥∥

k, bK +

∥∥∥∥∥
m∑
`=1

p̂`̂̃q`,j
∥∥∥∥∥

0,1, bK

 . (13)

Also, using the triangle inequality and Hölder’s inequality,∥∥∥∥∥
m∑
`=1

p̂`̂̃q`,j
∥∥∥∥∥

0,1, bK
≤

m∑
`=1

‖p̂`‖0, bK
∥∥∥eibq` − ̂̃q`,j∥∥∥

0, bK + ‖v̂‖0, bK . (14)

Combining equations (13) and (14),

|v̂|k, bK ≤ C

(
m∑
`=1

‖p̂`‖0, bK
∥∥∥eibq` − ̂̃q`,j∥∥∥

k, bK + ‖v̂‖0, bK
)
. (15)

Secondly, we consider K ∈ Th. By the definition of q̃`,j in Lemma 3.2, for
any 0 ≤ s ≤ k,∣∣∣eibq` − ̂̃q`,j∣∣∣

s, bK ≤ Chs−1
∣∣eiq` − q̃`,j

∣∣
s,K

≤ Chj+1. (16)
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Applying the scaling argument, equation (15), and equation (16),

|v|k,K ≤ Ch−k

(
hj+1

m∑
`=1

‖p`‖0,K + ‖v‖0,K

)
. (17)

The result follows from taking j = k0 − 1 and the third assumption in (Q).

Theorem 3.5 (Projection error estimates). For any 0 ≤ k ≤ r, there is a
constant C > 0 independent of h such that for any K ∈ Th, and v ∈ Hr+1(K),

|v − Qrv|k,K ≤ Chr+1−k ‖v‖r+1,K . (18)

Proof. It suffices to show for any v ∈ Hr+1(K) and q to be one of the q`,

|v − Qrv|k,K ≤ Chr+1−k ∣∣e−iqv∣∣
r+1,K

. (19)

The results will follows from Leibniz’s rule and the second assumption in (Q).
First of all we consider k = 0. We observe that eiqPr(e−iqv) ∈ Qr(K,q),

‖v − Qrv‖0,K ≤
∥∥v − eiqPr(e−iqv)

∥∥
0,K

=
∥∥e−iqv − Pr(e−iqv)

∥∥
0,K

. (20)

Applying the projection error estimates for P r(K),

‖v − Qrv‖0,K ≤ Chr+1
∣∣e−iqv∣∣

r+1,K
. (21)

For k > 0, using the triangle inequality,

|v − Qrv|k,K ≤
∣∣v − eiqPr(e−iqv)

∣∣
k,K

+
∣∣eiqPr(e−iqv)− Qrv

∣∣
k,K

. (22)

Applying Leibniz’s rule and the third assumption in (Q) to the first term,∣∣v − eiqPr(e−iqv)
∣∣
k,K

≤ C
∣∣e−iqv − Pr(e−iqv)

∣∣
k,K

≤ Chr+1−k ∣∣e−iqv∣∣
r+1,K

. (23)

For the second term in (22), applying the inverse estimates of Qr(K) in Propo-
sition 3.4, and the projection error estimates for P r(K),∣∣eiqPr(e−iqv)− Qrv

∣∣
k,K

≤ Ch−k
(∥∥v − eiqPr(e−iqv)

∥∥
0,K

+ ‖v − Qrv‖0,K
)

≤ Ch−k
∥∥v − eiqPr(e−iqv)

∥∥
0,K

≤ Chr+1−k ∣∣e−iqv∣∣
r+1,K

. (24)

The result follows from equations (22), (23) and (24).

3.2 Derivation of the discrete scheme

Multiplying equation (1) by the complex conjugate of a smooth test function v
on each K and applying integration by parts twice on the first term, we get

−
∫
K

u∆v dx+
∫
∂K

u∇v · nds−
∫
∂K

∇u · nv ds−
∫
K

κ2uv dx =
∫
K

fv dx, (25)
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where n is the outward normal on K. We approximate u, v in (25) by discrete
functions uh, vh, and the boundary values of u and ∇u by numerical fluxes ûh
and σ̂h,

−
∫
K

uh∆vh dx+
∫
∂K

ûh∇vh · nds−
∫
∂K

σ̂h · nvh ds

−
∫
K

κ2uhvh dx =
∫
K

fvh dx, (26)

Then we reverse the second integration by parts and get∫
K

∇uh · ∇vh dx−
∫
∂K

(uh − ûh)∇vh · nds−
∫
∂K

σ̂h · nvh ds

−
∫
K

κ2uhvh dx =
∫
K

fvh dx. (27)

Next, we choose the numerical fluxes. On interior edges, we take

σ̂h = {∇huh} − i
a
h

JuhK and ûh = {uh}.

On boundary edges, we take

σ̂h = (g − iκuh)n and ûh = uh.

Here ∇h is the piecewise gradient and a is the penalty parameter to be chosen.
Now, we define the finite element space

Vh := {v|K ∈ Qr(K,q) : K ∈ Th} ,

where q can be depending onK. Substituting the numerical fluxes into equation
(27), summing over K ∈ Th and applying the “magic formula”:∑

K∈Th

∫
∂K

vσ · nds =
∫
FI

JvK · {σ} ds+
∫
FI

{v} · JσK ds+
∫
∂Ω

vσ · nds, (28)

we obtain the following discrete scheme: Find uh ∈ Vh such that for any vh ∈ Vh,

ah(uh, vh)− (κ2uh, vh) = (f, vh) +
∫
FB

h

gvh ds, (29)

ah(u, v) :=
∫
∇hu · ∇hv dx−

∫
FI

h

JuK · {∇hv} ds−
∫
FI

h

{∇hu} · JvK ds

+i
∫
FI

h

a
h

JuK · JvK ds+ i

∫
FB

h

κuv ds.

Remark 3.6. The plane wave discontinuous Galerkin method of Gittelson and
Hiptmair [12] for constant wavenumber κ(x) = ω is obtained by choosing the
interior fluxes as

σh = {∇huh} − i
a
h

JuhK and ûh = {uh}+ ibhJuhK, (30)
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and the boundary fluxes as

σ̂h = ∇uh − (1− dωh)(∇uh + iωuhn− gn) and
ûh = uh + idh(∇uh · n+ iωuh − g), (31)

in equation (27), with a ≥ amin > 0, b ≥ 0 and d > 0. Our choice of fluxes is
equivalent to taking b = d = 0. This choice of fluxes is valid as we will see in
Proposition 4.2.

4 Convergence analysis

In this section, we replace the assumption (Q) in the previous section by a
weaker one:

Assumption (Q*). We assume the space Qr(K,q) satisfies:

1. Trace inverse inequality. There is Ctinv > 0 independent of h such
that for any K ∈ Th, v ∈ Qr(K,q),

|v|1,∂K ≤ Ctinvh
−1/2 |v|1,K ; (32)

2. Projection error estimates. For 1 ≤ k ≤ r, there is a constant
Cproj,k > 0 independent of h such that for any K ∈ Th, v ∈ Hr+1(K),

|v − Qrv|k,K ≤ Cproj,kh
r+1−k ‖v‖r+1 . (33)

Let V ⊆ H2(Ω) to be the space of all possible solution of the model problem
(1) and (2). We extend the definition of ah to the space (V + Vh) × (V + Vh).
Note that by the definition our discrete scheme (29) is consistent, meaning that
for any vh ∈ Vh,

ah(u− uh, vh)− (κ2(u− uh), vh) = 0, (34)

where u is the analytic solution of the model problem and uh is the discrete
solution of (1) and (2).

Assumption (P). We assume there is a constant amin > C2
tinv such that the

penalty parameter a satisfies

a ≥ amin on FIh .

Proposition 4.1. The discrete problem (29) has a unique solution.

Proof. Suppose ah(uh, uh) = 0. The imaginary part of the equation gives uh =
0 on FBh and JuhK = 0 on FIh while the real part gives ∇uh = 0 on every
K ∈ Th.

Next, we define an auxiliary bilinear form bh and a mesh-dependent norm
‖ · ‖DG on V + Vh:

bh(u, v) := ah(u, v) + (κ2u, v),

9



‖v‖2DG := ‖∇hv‖20,Ω +
∥∥∥a1/2h−1/2JvK

∥∥∥2

0,FI
h

+
∥∥∥a−1/2h1/2{∇v}

∥∥∥2

FI
h

+∥∥∥κ1/2v
∥∥∥2

0,FB
h

+ ‖κv‖20,Ω .

Note that by applying Cauchy’s inequality, we have∣∣ah(u, v)± (κ2u, v)
∣∣ ≤ 2 ‖u‖DG ‖v‖DG . (35)

for any u, v ∈ V + Vh.

Proposition 4.2 (Coercivity of bh). There is a constant Ccoer > 0 independent
of h such that for any v ∈ Vh,

bh(v, v) ≥ Ccoer ‖v‖2DG .

Proof. Let v ∈ Vh. By definition we have

bh(v, v) = ‖∇v‖20 − 2Re
∫
FI

h

JvK · {∇hv} dS + i
∥∥∥a1/2h−1/2JvK

∥∥∥2

0,FI
h

+i
∥∥∥κ1/2v

∥∥∥2

0,FB
h

+ ‖κv‖20 . (36)

Using the Cauchy’s inequality and Young’s inequality, for any s > 0,∣∣∣∣∣2Re
∫
FI

h

JvK · {∇hv} dS

∣∣∣∣∣ ≤ s

amin

∥∥∥a1/2h−1/2JvK
∥∥∥2

0,FI
h

+
1
s

∥∥∥h1/2{∇hv}
∥∥∥2

0,FI
h

.

Inserting this into equation (36),
√

2 |bh(v, v)| ≥ Re bh(v, v) + Im bh(v, v)

≥ ‖∇v‖20 −
s

amin

∥∥∥a1/2h−1/2JvK
∥∥∥2

0,FI
h

− 1
s

∥∥∥h1/2{∇v}
∥∥∥2

0,FI
h

+
∥∥∥a1/2h−1/2JvK

∥∥∥2

0,FI
h

+
∥∥∥κ1/2v

∥∥∥2

0,FB
h

+ ‖κv‖20

≥ (1− t) ‖∇v‖20 +
(

t

C2
tinv

− 1
s

)
amin

∥∥∥a−1/2h1/2{∇v}
∥∥∥2

0,FI
h

+
(

1− s

amin

)∥∥∥a1/2h−1/2JvK
∥∥∥2

0,FI
h

+
∥∥∥κ1/2v

∥∥∥2

0,FB
h

+ ‖κv‖20 (37)

Pick s, t and amin such that amin > s > C2
tinv and 1 > t > C2

tinv/s, the result
follows.

We will use Schatz’s duality argument to show the convergence of our method.

Assumption (K). We assume the wavenumber κ(x) satisfies:

1. There are constants κ∗ and κ∗ such that for any x ∈ Ω,

0 < κ∗ ≤ κ(x) ≤ κ∗ <∞;
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2. ηκ,Ω := 1−minx0∈Ω maxx∈Ω κ
−1
∣∣∇κ · (x− x0)T

∣∣ > 0;

3. κ∗ is bounded away from zero.

Proposition 4.3. Let u ∈ H2(Ω) be the analytic solution to the model problem
(1),(2), and uh ∈ Vh be the discrete solution of (29), then there is Cabs > 0
independent of h such that

‖u− uh‖DG ≤ Cabs

(
inf

vh∈Vh

‖u− vh‖DG + κ∗(κ∗κ−1
∗ ) ‖u− uh‖0

)
.

Proof. Let vh ∈ Vh. By triangle inequality,

‖u− uh‖DG ≤ ‖u− vh‖DG + ‖vh − uh‖DG (38)

For the second term, from the coercivity of bh (Proposition 4.2), scheme consis-
tency (34) and equation (35),

‖vh − uh‖2DG ≤
1

Ccoer
bh(vh − uh, vh − uh)

=
1

Ccoer
bh(vh − u, vh − uh) +

2
Ccoer

∣∣(κ2(u− uh), vh − uh)
∣∣

≤ 2
Ccoer

(
‖u− vh‖DG ‖vh − uh‖DG +

∣∣(κ2(u− uh), vh − uh)
∣∣ ). (39)

Using Cauchy’s inequality and comparing the L2 norm to the DG norm,∣∣(κ2(u− uh), vh − uh)
∣∣ ≤ κ∗(κ∗κ−1

∗ ) ‖u− uh‖0 ‖vh − uh‖DG (40)

Since vh is arbitrary, the result follows by combining (38), (39) and (40).

Next we modify the proof of the regularity theorem given by Melenk [22] in
order to provide regularity for the adjoint problem with variable wavenumber.
We define the following weighted norm on H1(Ω) :

‖v‖21,κ = |v|21,Ω + ‖κv‖20 .

Theorem 4.4. Let Ω be a bounded convex domain. Consider the following
adjoint problem of (1) and (2):

−∆ϕ− κ2ϕ = w in Ω, (41)
−∇ϕ · n+ iκϕ = 0 on ∂Ω, (42)

where w ∈ L2(Ω). Let λκ :=
∥∥κ−1∇κ

∥∥
0
. Then the solution ϕ ∈ H2(Ω) and

there is a constant C1, C2 > 0 only depending on Ω such that

‖ϕ‖1,κ ≤ C1 η
−1
κ,Ω(κ∗κ−1

∗ ) ‖w‖0 .

|ϕ|2 ≤ C2η
−1
κ,Ω(κ∗κ−1

∗ )(1 + κ∗ + λκ) ‖w‖0 .

Proof. Without loss of generality, assume the domain Ω contains the origin and
the origin is the maximizer of x0 in the definition of ηk,Ω. Consider the weak
form of the problem:

Bh(ϕ,ψ) :=
∫

Ω

∇ϕ · ∇ψ dx−
∫

Ω

κ2ϕψ dx+ i

∫
∂Ω

κϕψ ds =
∫

Ω

wψ dx. (43)
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Letting ψ = ϕ in (43) and consider the real part and imaginary part separately,∫
Ω

∇ϕ · ∇ϕ dx−
∫

Ω

κ2ϕϕ dx+ i

∫
∂Ω

κϕϕ ds =
∫

Ω

wϕ dx. (44)

The real part of (44) gives∥∥∥κ1/2ϕ
∥∥∥2

0,∂Ω
≤

∣∣∣∣∫
Ω

wϕdx

∣∣∣∣ ≤ ε

2

∥∥∥κ1/2ϕ
∥∥∥2

0
+

1
2εκ∗

‖w‖20 (45)

and hence

‖κϕ‖20,∂Ω ≤ κ∗κ−1
∗

(
ε

2
‖κϕ‖20 +

1
2ε
‖w‖20

)
. (46)

The imaginary part of (44) gives

|ϕ|21 ≤ ‖κϕ‖20 +
∫

Ω

wϕdx ≤ 2 ‖κϕ‖20 +
1

4κ2
∗
‖w‖20 . (47)

By the regularity theory, ϕ ∈ H2(Ω). Therefore it is valid to substitute ψ =
∇ϕ · xT in (43). We apply integration by parts and the following identities for
smooth function v to the imaginary part of equation (47):

Re (v∇v) =
1
2
∇|v|2, (48)

∇v · ∇(xT · ∇v) =
1
2
∇ · (|∇v|2 xT ), (49)

we obtain the following identity:∫
Ω

(κ2 + κ∇κ · xT ) |ϕ|2 dx+
1
2

∫
∂Ω

|∇ϕ|2 xT · ndx− 1
2

∫
∂Ω

|κϕ|2 xT · ndx

+Re i
∫
∂Ω

κϕxT · ∇ϕds = Re
∫

Ω

wxT · ∇ϕdx. (50)

For the first term in (50), we have∫
Ω

(κ2 + κ∇κ · xT ) |ϕ|2 dx =
∫

Ω

(
1 + κ−1∇κ · xT

)
|κϕ|2 dx

≥ ηκ,Ω ‖κϕ‖20 . (51)

We also note that since Ω is a bounded convex domain, there is γ > 0 such that
on ∂Ω, xT · n ≥ γ By combining (47), (50) and using xT · n ≥ γ, there is a
constant C > 0 such that

ηκ,Ω ‖κϕ‖20 +
γ

2
|ϕ|21,∂Ω ≤ C

(
‖κϕ‖20 + ‖κϕ‖0,∂Ω |ϕ|1,∂Ω + ‖w‖0 |ϕ|1

)
, (52)

where the constant C here and hereafter only depends on Ω. Applying Cauchy’s
inequality to (52),

ηκ,Ω ‖κϕ‖20 ≤ C
(
‖κϕ‖20,∂Ω + ‖w‖0 |ϕ|1

)
. (53)
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Applying (46) and (47) and Cauchy’s inequality with suitable weight to this
equation,

‖κϕ‖20 ≤ Cη−2
κ,Ω(κ∗κ−1

∗ )2
(
1 + κ−2

∗
)
‖w‖20 . (54)

The first estimate follows from (47) and the assumption that κ∗ is bounded
away from zero. For the second estimate, using the regularity theory for −∆,

|ϕ|H2(Ω) ≤ C
(
‖∆ϕ‖0 + |∂nϕ|1/2,∂Ω

)
≤ C

(∥∥w + κ2ϕ
∥∥

0
+ |κϕ|1/2,∂Ω

)
(55)

Also, using the trace theorem for Sobolev space,

|κϕ|1/2,∂Ω ≤ C ‖κϕ‖1
≤ C (‖κϕ‖0 + λκ ‖κϕ‖0 + κ∗ |ϕ|1) (56)

Combining (55) and (56),

|ϕ|H2(Ω) ≤ C(‖w‖0 + κ∗ ‖κϕ‖0 +
(
1 +

∥∥κ−1∇κ
∥∥

0

)
‖κϕ‖0 + κ∗ |ϕ|1)

≤ C
(
‖w‖0 + (1 + κ∗ + λκ) ‖ϕ‖1,κ

)
,

and the result following from the first estimate.

Lemma 4.5. There is C > 0 depending only on the parameter a and Ω such
that for any u ∈ Hr+1(Ω),

‖u− Qru‖DG ≤ C hr(1 + κ∗h) ‖u‖r+1 .

Proof. Here we use the multiplicative trace inequality : there is C > 0 indepen-
dent of h such that for any K ∈ Th, v ∈ H1(K),

‖v‖20,∂K ≤ C ‖v‖0,K (h−1 ‖v‖0,K + |v|1,K), (57)

which implies,

h |u− Qru|21,∂K ≤ C
(
|u− Qru|21,K + h |u− Qru|1,K |u− Qru|2,K

)
, (58)

h−1 ‖u− Qru‖20,∂K ≤ C
(
h−2 ‖u− Qru‖20,K +

h−1 |u− Qru|1,K ‖u− Qru‖0,K
)
. (59)

Also for a boundary edge e,∥∥∥κ1/2(u− Qru)
∥∥∥2

0,e
≤ (κ∗h)

(
h−1 ‖u− Qru‖20,e

)
. (60)

Applying equation (59), (60) and the projection error estimate in Assumption
(Q*) to the definition of ‖ · ‖DG,

‖u− Qru‖2DG ≤ Ch2r(1 + κ∗h+ (κ∗h)2) ‖u‖2r+1 , (61)

and the result follows.
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Lemma 4.6. Let ϕ be the solution to the adjoint problem (41), (42) with right
hand side w ∈ L2(Ω). Then there is a constant Cdual > 0 depending only on the
parameter a, q and Ω such that

‖ϕ− Q1ϕ‖DG ≤ Cdual η
−1
κ,Ω(1 + κ∗h)(1 + κ∗ + κ∗ + λκ)h ‖w‖0 .

Proof. By Lemma 4.5 and definition of ‖ · ‖1,κ,

‖ϕ− Q1ϕ‖DG ≤ Ch(1 + κ∗h) ‖ϕ‖2
≤ Ch(1 + κ∗h)

(
(1 + κ∗) ‖ϕ‖1,κ + |ϕ|2

)
. (62)

The result follows from Theorem 4.4.

Theorem 4.7. Let u ∈ Hr+1(Ω) be the analytic solution of (1), (2). Let
uh ∈ Vh be the the discrete solution of the DG method (29). Let

θκ := η−1
κ,Ωκ

∗(κ∗κ−1
∗ )(1 + κ∗ + κ∗ + λκ).

Provided that the following threshold condition holds:

2Cabs Cdual θκ(1 + κ∗h)h < 1,

then there is a constant C only depends on Ω, α, τ,a, and q such that

‖u− uh‖DG ≤ Chr ‖u‖r+1 ,

‖u− uh‖0 ≤ Cθκ(1 + κ∗h)hr+1 ‖u‖r+1 .

Proof. Let ϕ be the solution to the adjoint problem (41) and (42) with right
hand side w ∈ L2(Ω). By consistency of the adjoint problem,

(u− uh, wh) = ah(u− uh, ϕ− Q1ϕ)− (κ2(u− uh), ϕ− Q1ϕ). (63)

Hence by equation (35),

|(u− uh, wh)| ≤ 2 ‖u− uh‖DG ‖ϕ− Q1ϕ‖DG . (64)

Applying Lemma 4.6,

‖u− uh‖0 ≤ 2Cdual η
−1
κ,Ω(1 + κ∗h)(1 + κ∗ + κ∗ + λκ)h ‖u− uh‖DG . (65)

Applying Proposition 4.3,

‖u− uh‖DG ≤ Cabs

(
inf

vh∈Vh

‖u− vh‖DG +

2Cdual θκ(1 + κ∗h)h ‖u− uh‖DG
)
, (66)

The threshold condition implies

‖u− uh‖DG ≤ C inf
vh∈Vh

‖u− vh‖DG . (67)

The error estimate in DG norm follows from taking vh = Qru in equation (67)
and applying Lemma 4.5, Then the error estimate in L2 norm follows from
equation (65).
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5 Numerical experiments

5.1 A study of the convergence

In the following examples, we will only consider two square domains Ω1 = [0, 1]2

and Ω2 = [0.5, 1.5]2. To form the triangulation Th, we subdivide Ω into n × n
squares and further subdivide each square into two triangles by the diagonal.
The mesh size h is taken as 1/n. The penalty parameter is taken as a = 10
for all of our examples, which may not satisfy the assumption (P) but we have
observed the expected h-convergence with this choice of parameter in all of our
test cases. We will consider examples with settings shown in Table 1, where
the source terms f and g are taken accordingly. We show the real part of the
solutions in Figure 1. We will use the following local spaces:

Qr1,ω := Qr
(
K,ω

∣∣x− y1
∣∣) ,

Qr2,ω := Qr
(
K,
(
ω
∣∣x− y2

∣∣ , ω ∣∣x− y3
∣∣)) ,

Qr3,ω := Qr
(
K,
(
ω
∣∣x− y2

∣∣ , ω ∣∣x− y3
∣∣ , ω ∣∣x− y4

∣∣)) ,
Qr4,ω := Qr

(
K,ωx2

1

)
,

Qr5,ω := Qr
(
K, (ωx2

1, ωx2)
)
.

We will compare the numerical results using these spaces to those using poly-
nomials with closest number of basis. We also note that the phase functions
we use in the local spaces for the first three examples are not polynomials, but
numerical results in section 5.2 suggest that these spaces satisfy (Q*).

Firstly, we consider Example 1 with ω = 1, 10 and 100, respectively. In Table
2, we compare the relative L2-error (i.e. the L2-error divided by the L2 norm of
the solution) of using the local space Qr1,ω(K) with those of polynomial space
P r(K), for r = 1 and 2. The results suggest that, for r = 1, 2, the numerical
solutions are second and third order accurate in the L2-norm, respectively.

Secondly, we consider Example 2 and 3 with ω = 100. We solve these
problems using the local spaces Q1

2,100(K) and Q1
3,100(K), and compare the

relative L2-error to P 2(K) and P 3(K), respectively. The results suggest that,
the numerical solutions for using Q1

2,100(K) and Q1
3,100(K) are second and third

order accurate in the L2-norm, respectively.
Thirdly, we consider Example 4 with ω = 1, 10, and 100. Note that we have

max
x∈Ω

κ−1
∣∣∣∇κ · (x− (1/2, 1/2))T

∣∣∣ = 2/3,

which shows that the second assumption in (K) is satisfied. For r = 1, 2, we
solve the problem using the local space Qr4,100(K). In Table 5, we compare the
relative L2-error from using these local space to P 1(K) and P 2(K), respectively.
The results suggest that, for r = 1, 2, the numerical solutions are second order
and third order accurate in the L2-norm, respectively.

Finally, we consider Example 5 with ω = 100. We solve the problem using
the local space Q1

5,100(K) and compare the relative L2-error to those using
P 2(K) in Table 6. The results suggest that, the numerical solutions are second
order accurate in the L2-norm.

In all of the examples above, our choice of basis outperforms polynomials
with closest number of degrees of freedom.
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Remark 5.1. In our examples, we have used the exact phases in the solutions
to help us forming the basis. For an unknown solution, instead, one should
approximate the phases of the solution, for example, via geometric optics, to
form the local basis.

5.2 A study of some constants

In this section we compute the constants in the trace inverse inequality (32) and
the inverse estimates in Proposition 3.4. We will also compute the constant in
the third assumption of (Q) for a given k0 in order to justify that the spaces in
our examples satisfy the assumption.

For the trace inverse inequality, we consider the stiffness matrix S and the
matrix S∂ given by

(S∂)ij :=
∫
∂K

∇vi · ∇vj dx.

We solve the following generalized eigenvalue problem:

(hS∂)x = λ1Sx,

and take Ctinv,h as the maximum of
√
λ1. We note that the stiffness matrix S is

not necessarily invertible, e.g. the stiffness matrices for P r(K). For local spaces
with single phase, the stiffness matrix is singular only if e−iq1 is a polynomial,
which is not the case of our local spaces. For our choices of local space with
multiple phases, it can be checked that all the stiffness matrices are invertible.

Similarly, for the inverse estimates we consider the stiffness matrix S, the
matrix S2 corresponding to the | · |22, and the mass matrix M . We solve the
following generalized eigenvalue problems:

(h2S)x = λ2Mx,

(h4S2)x = λ3Mx,

and take Cinv,1,h and Cinv,2,h as the maximum of
√
λ2 and

√
λ3, respectively.

Also, in order to show the third assumption in (Q) is satisfied for the local
spaces with multiple phases, that is Q1

1,100, Q
1
2,100 and Q1

4,100, we consider

Px = λ4Mx,

and take CQ,h as the maximum of
√
λ4. Here P is the matrix associate with∑m

`=1 ‖p`‖
2
0,K , p` ∈ P 1(K). The results are shown in Tables 7.

6 Conclusion

In this paper, we prove some properties of a type of local approximation spaces
consisting of polynomial-modulated phase functions and derive an a priori es-
timates for an IPDG method incorporating these spaces. We provide numerical
results to demonstrate the efficiency of the local spaces of polynomial-modulated
phase function with the knowledge of the phase values. The error levels obtained
with such local spaces is usually several order of magnitudes lower than those
with standard polynomial spaces. In the future, we would like to further inves-
tigate the method by looking for more concrete classes of local approximation
spaces satisfying our assumptions.
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u0,1 u0,10 u0,100

u3,1 u3,10 u3,100

u1,100 u2,100 u4,100

Figure 1: Plots for the real part of the exact solution in the examples.
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Example Domain κ Solution
1 Ω1 ω u1,ω := H

(1)
0 (ω

∣∣x− y1
∣∣)

2 Ω1 ω u2,ω :=
∑3
k=2H

(1)
0 (ω

∣∣x− yk
∣∣)

3 Ω1 ω u3,ω :=
∑4
k=2H

(1)
0 (ω

∣∣x− yk
∣∣)

4 Ω2 2ωx1 u4,ω := ex2eiωx
2
1

5 Ω2 2ωx1 u5,ω := ex2eiωx
2
1 + eiωx2

Table 1: Problem settings for different examples. Here, Ω1 = [0, 1]2, Ω2 =
[0.5, 1.5]2, ω is a constant. H(1)

0 is the zeroth order Hankel function of the first
kind. The variables y1,y2,y3 and y4 are (−1,−1), (0.3,−0.1), (0.7,−0.1) and
(0.5, 1.1), respectively. The variables x1 and x2 are the two coordinates of x.

1/h Local ω = 1 ω = 10 ω = 100
space Error Order Error Order Error Order

8

Q1
1,ω

4.353e-03 - 4.566e-03 - 2.757e-03 -
11 2.595e-03 1.62 3.016e-03 1.30 1.612e-03 1.68
16 1.356e-03 1.73 1.808e-03 1.37 8.686e-04 1.65
23 7.015e-04 1.82 1.019e-03 1.58 4.708e-04 1.69
32 3.776e-04 1.88 5.718e-04 1.75 2.673e-04 1.71
45 1.965e-04 1.92 3.041e-04 1.85 1.471e-04 1.75
64 9.909e-05 1.94 1.550e-04 1.91 7.899e-05 1.77
8

P 1

6.643e-03 - 1.646e-01 0.00 9.986e-01 -
11 3.827e-03 1.73 9.286e-02 1.80 9.985e-01 0.00
16 1.945e-03 1.81 4.565e-02 1.90 9.868e-01 0.03
23 9.877e-04 1.87 2.251e-02 1.95 1.023e+00 -0.10
32 5.259e-04 1.91 1.173e-02 1.97 1.014e+00 0.03
45 2.716e-04 1.94 5.961e-03 1.99 1.023e+00 -0.03
64 1.363e-04 1.96 2.955e-03 1.99 1.094e+00 0.19
8

Q2
1,ω

2.904e-04 - 4.687e-04 0.00 3.567e-04 -
11 1.266e-04 2.61 2.090e-04 2.54 1.751e-04 2.23
16 4.561e-05 2.72 7.647e-05 2.68 8.914e-05 1.80
23 1.641e-05 2.82 2.776e-05 2.79 4.261e-05 2.03
32 6.345e-06 2.88 1.080e-05 2.86 1.504e-05 3.15
45 2.347e-06 2.92 4.011e-06 2.90 4.895e-06 3.29
64 8.319e-07 2.95 1.425e-06 2.94 1.640e-06 3.10
8

P 2

3.481e-04 - 7.268e-03 0.00 1.009e+00 -
11 1.498e-04 2.65 2.751e-03 3.05 1.018e+00 -0.03
16 5.346e-05 2.75 8.840e-04 3.03 1.037e+00 -0.05
23 1.912e-05 2.83 2.968e-04 3.01 1.110e+00 -0.19
32 7.365e-06 2.89 1.103e-04 3.00 6.224e-01 1.75
45 2.718e-06 2.92 3.971e-05 3.00 2.284e-01 2.94
64 9.617e-07 2.95 1.383e-05 3.00 6.562e-02 3.54

Table 2: The relative L2-error for Example 1.
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1/h Local Error Order Local Error Orderspace space
8

Q1
2,100

7.448e-03 -

P 2

8.636e-03 -
11 4.312e-03 1.72 1.016e+00 -0.03
16 2.091e-03 1.93 1.028e+00 -0.03
23 8.712e-04 2.41 1.018e+00 0.03
32 3.927e-04 2.41 8.810e-01 0.44
45 1.782e-04 2.31 5.893e-01 1.18
64 8.199e-05 2.20 2.275e-01 2.70

Table 3: The relative L2-error for Example 2.

1/h Local Error Order Local Error Orderspace space
8

Q1
3,100

1.006e+00 -

P 3

1.029e+00 -
11 5.107e-03 1.65 1.037e+00 -0.02
16 2.878e-03 1.53 9.511e-01 0.23
23 9.378e-04 3.09 6.546e-01 1.03
32 2.181e-04 4.42 2.254e-01 3.23
45 6.422e-05 3.58 4.020e-02 5.06
64 2.150e-05 3.11 5.820e-03 5.48

Table 4: The relative L2-error for Example 3.
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1/h Local ω = 1 ω = 10 ω = 100
space Error Order Error Order Error Order

8

Q1
4,ω

1.040e-03 - 8.770e-04 - 7.100e-04 -
11 5.550e-04 1.96 4.710e-04 1.95 3.740e-04 2.02
16 2.640e-04 1.98 2.260e-04 1.96 1.790e-04 1.96
23 1.280e-04 1.99 1.110e-04 1.96 8.750e-05 1.97
32 6.640e-05 1.99 5.790e-05 1.97 4.560e-05 1.97
45 3.360e-05 2.00 2.950e-05 1.98 2.320e-05 1.98
64 1.660e-05 2.00 1.470e-05 1.98 1.160e-05 1.98
8

P 1

6.609e-03 0.00 1.183e+00 - 1.000e+00 -
11 3.535e-03 1.97 1.159e+00 0.06 1.000e+00 0.00
16 1.682e-03 1.98 8.450e-01 0.84 1.000e+00 0.00
23 8.168e-04 1.99 5.160e-01 1.36 1.000e+00 0.00
32 4.227e-04 1.99 2.992e-01 1.65 1.003e+00 -0.01
45 2.140e-04 2.00 1.612e-01 1.81 9.983e-01 0.01
64 1.058e-04 2.00 1.612e-01 1.90 9.956e-01 0.01
8

Q2
4,ω

1.087e-05 - 1.098e-05 - 1.169e-05 -
11 4.206e-06 2.98 4.233e-06 2.99 4.469e-06 3.02
16 1.373e-06 2.99 1.378e-06 2.99 1.425e-06 3.05
23 4.636e-07 2.99 4.645e-07 3.00 4.718e-07 3.05
32 1.724e-07 2.99 1.726e-07 3.00 1.740e-07 3.02
45 6.209e-08 3.00 6.213e-08 3.00 6.260e-08 3.00
64 2.171e-08 2.98 2.161e-08 3.00 2.184e-08 2.99
8

P 2

1.690e-04 - 4.346e-01 - 1.000e+00 -
11 6.546e-05 2.98 1.794e-01 2.78 1.001e+00 0.00
16 2.139e-05 2.99 5.125e-02 3.34 1.002e+00 0.00
23 7.225e-06 2.99 1.378e-02 3.62 9.999e-01 0.01
32 2.688e-06 2.99 4.096e-03 3.67 1.001e+00 0.00
45 9.676e-07 3.00 1.196e-03 3.61 1.029e+00 -0.08
64 3.366e-07 3.00 3.509e-04 3.48 1.090e+00 -0.16

Table 5: The relative L2-error for Example 4.

1/h Local Error Order Local Error Orderspace space
8

Q1
5,100

6.744e-04 -

P 2

9.946e-01 0.00
11 3.581e-04 1.99 9.868e-01 0.02
16 1.759e-04 1.90 1.039e+00 -0.14
23 8.594e-05 1.97 9.676e-01 0.20
32 4.397e-05 1.97 9.552e-01 0.04
45 1.913e-05 2.44 9.760e-01 -0.06
64 7.799e-06 2.55 1.032e+00 -0.16

Table 6: The relative L2-error for Example 5.
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1/h Local ω = 1 ω = 10 ω = 100
space Ctinv,h Cinv,1,h Ctinv,h Cinv,1,h Ctinv,h Cinv,1,h

8

Q1
1,ω

3.716 6.003 3.722 6.250 3.722 15.854
16 3.716 6.001 3.722 6.064 3.722 9.933
32 3.715 6.000 3.722 6.016 3.722 7.332
64 3.715 6.000 3.722 6.004 3.722 6.383
8

Q2
1,ω

4.856 12.535 4.886 12.672 4.971 20.628
16 4.826 12.534 4.881 12.568 4.927 15.333
32 4.808 12.533 4.880 12.542 4.894 13.350
64 4.771 12.533 4.880 12.535 4.887 12.748

1/h Local ω = 1 ω = 10 ω = 100
space Cinv,2,h Cinv,2,h Cinv,2,h

8

Q2
1,ω

69.856 77.962 401.012
16 69.789 71.928 188.971
32 69.773 70.316 110.651
64 69.769 69.905 82.130

1/h Local
Ctinv,h Cinv,1,h h3CQ,h

Local
Ctinv,h Cinv,1,h h4CQ,hspace space

8

Q1
2,100

5.515 23.056 0.1181

Q1
3,100

5.631 23.512 1.510e-02
16 5.508 20.498 0.2360 6.073 22.822 2.179e-02
32 5.257 19.911 0.4107 6.051 21.244 3.212e-02
64 5.135 19.695 0.4224 6.023 21.093 3.755e-02

1/h Local ω = 1 ω = 10 ω = 100
space Ctinv,h Cinv,1,h Ctinv,h Cinv,1,h Ctinv,h Cinv,1,h

8

Q1
4,ω

3.726 6.007 3.783 6.677 3.885 26.661
16 3.714 6.002 3.741 6.185 3.835 15.090
32 3.708 6.000 3.721 6.048 3.763 9.459
64 3.705 6.000 3.712 6.012 3.732 7.085
8

Q2
4,ω

5.152 12.537 5.177 12.904 5.631 23.512
16 5.145 12.534 5.177 12.631 6.073 22.822
32 4.866 12.534 5.142 12.558 6.051 21.244
64 4.194 12.533 4.889 12.540 6.023 21.093

1/h Local ω = 1 ω = 10 ω = 100
space Cinv,2,h Cinv,2,h Cinv,2,h

8

Q2
4,ω

69.995 89.934 998.594
16 69.827 75.480 363.086
32 69.783 71.264 168.749
64 69.771 70.148 101.619

1/h Local
Ctinv,h Cinv,1,h h3CQ,hspace

8

Q1
5,100

3.952 26.705 2.574e-03
16 4.508 15.552 1.167e-03
32 4.784 13.911 1.134e-03
64 4.854 14.044 1.136e-03

Table 7: The numerical values of the constants for different local spaces.
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