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Abstract

In this paper, a new type of finite difference Hermite weighted essentially non-oscillatory

(HWENO) schemes are constructed for solving Hamilton-Jacobi (HJ) equations. Point values of

both the solution and its first derivatives are used in the HWENO reconstruction and evolved via

time advancing. While the evolution of the solution is still through the classical numerical fluxes

to ensure convergence to weak solutions, the evolution of the first derivatives of the solution is

through a simple dimension-by-dimension non-conservative procedure to gain efficiency. The main

advantages of this new scheme include its compactness in the spatial field and its simplicity in the

reconstructions. Extensive numerical experiments in one and two dimensional cases are performed

to verify the accuracy, high resolution and efficiency of this new scheme.
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1 Introduction

In this paper, we design a new finite difference Hermite weighted essentially non-oscillatory

(HWENO) method to solve the following Hamilton Jacobi (HJ) equation

φt + H(∇xφ) = 0, φ(x, 0) = φ0(x) x ∈ Ω ⊂ Rd

where ∇xφ = (φx1
, φx2

, ..., φxn)T . We consider only up to two dimensions for simplicity and hence

use x and y instead of x1 and x2 in the sequel.

The HJ equations come from many applications, from control theory and geometric optics, to

image processing and level set method and so on. It is well known that solutions of the nonlinear HJ

equation are typically continuous. However, the derivatives of the solutions could be discontinuous

even though the initial condition φ0(x) is smooth enough. The (weak) solution may not be unique

unless suitable assumptions (viscosity solutions) are made, see, e.g. [4].

It is well known that HJ equations are closely related to conservation laws, so many successful

numerical methods for solving conservation laws can be easily adapted to solve HJ equations. Hu

and Shu [6] proposed a discontinuous Galerkin (DG) method to solve the HJ equation. Li and

Shu [10] reinterpreted and simplified the two dimensional method of Hu and Shu. Zhu and Qiu

[22, 23] used HWENO method for the HJ equations on both structured and unstructured meshes.

Tao and Qiu [17] made use of the central HWENO method to solve the HJ equation successfully.

As most of the finite volume methods resort to solving the conservation laws for the derivatives of

the solution that seems to be not direct, Cheng and Shu [2] designed DG methods to directly solve

the HJ equation. Later, Yan and Osher [18] proposed a local DG (LDG) method to solve the HJ

equation directly. In [3] Cheng and Wang improved the work in [2] by utilizing the Roe speed and

entropy fix at the cell interface, and based on [3], Zheng and Qiu [20] developed HWENO schemes

to directly solve the HJ equations.

Comparing to the finite volume or DG methods, which evolve cell averages or a complete poly-

nomial, the finite difference methods, which evolve only point values, may be easier to implement
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and more efficient in multi-dimensions. Now, let us briefly review the early works. Crandall and

Lion [5] introduced first order monotone schemes which can converge to the viscosity solution.

Osher and Shu [11] presented higher order finite difference ENO schemes, and Jiang and Peng [7]

developed higher order finite difference weighted ENO (WENO) schemes. Qiu et al. [14, 12] put

forward Hermite WENO (HWENO) schemes for HJ equations with Runge-Kutta or Lax-Wendroff

time discretization. Finite difference schemes on unstructured meshes have also been designed. Ab-

grall [1] proposed first order monotone schemes on triangular meshes. Lafon and Osher [9] designed

second order schemes. Higher order WENO schemes were developed by Zhang and Shu [19], and

higher order HWENO schemes were proposed by Zhu and Qiu [21]. For a detailed review of high

order HJ equations about both the finite difference and finite volume method, we recommend [15].

In this paper, following the methods developed in [13, 14, 12], both φ and its first derivative

(e.g. φx in one dimension) at the grid points are used in the HWENO method to reconstruct

point values of the derivatives, and both of them are evolved by time marching. Comparing with

the classical WENO method developed by Jiang and Shu in [8], the HWENO method requires

extra work and storage but it is much more compact with the same order of accuracy. Comparing

with DG methods, the HWENO method could achieve high order accuracy by adaptive stencils

and hence could maintain the essentially non-oscillatory property. Notice that the HJ equations

cannot be written in a “conservation form”, hence it would seem more natural to use finite difference

methods based on point values instead of finite volume methods based on cell averages. In this way,

we could avoid the costly multi-dimensional reconstructions and could use dimension-by-dimension

interpolations, thereby reducing the computational cost and improving efficiency. It is important to

use numerical fluxes (monotone Hamiltonians) to evolve the solution itself for HJ equations to ensure

convergence to weak solutions. Since the derivatives of the HJ solution satisfy conservation laws,

previous HWENO schemes tend to use conservative approximations to evolve them as well, hence

causing complications and extra computational cost in multi-dimensional reconstruction. In this

paper, we design a new HWENO scheme which evolves the solution itself through classical numerical
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fluxes to ensure convergence to weak solutions, and evolves the derivatives of the solution in a

non-conservative fashion, thereby allowing efficient dimension-by-dimension interpolation resulting

in a gain of simplicity and efficiency. This strategy is similar to solvers for conservation laws,

such as discontinuous Galerkin methods or Hermite-type methods, which evolve cell averages in

a conservative fashion but evolves other degrees of freedom (such as slopes or point values at cell

interfaces) in a non-conservative fashion, without affecting convergence to weak solutions. Extensive

numerical experiments are performed to illustrate the good performance of our schemes.

This paper is organized as follows. In Section 2, we describe the detailed steps about the

construction and implementation of the finite difference HWENO schemes in both one and two

dimensions for the HJ equations. In Section 3, we present extensive numerical results to verify the

accuracy, stability and resolution of our method. Finally, a conclusion is given in Section 4.

2 The numerical method for the Hamilton-Jacobi equations

In this section, we will give the framework of the schemes first and then the detailed steps of

the HWENO reconstructions for both one and two dimensional Hamilton-Jacobi equations.

2.1 One dimensional Hamilton-Jacobi equations

The Hamilton-Jacobi equations in the one dimensional case can be written as:

φt + H(φx) = 0 φ(x, 0) = φ0(x) x ∈ [a, b]. (2.1)

For simplicity, we consider a uniform mesh that is defined as a = x0 < x1 < · · · < xN−1 < xN =

b. However, this assumption is not needed for our schemes. We denote φj = φ(xj , t) as the numerical

approximation to the viscosity solution and uj = φx(xj , t) as the numerical approximation to its

first derivative. Then, by taking the spatial derivative on both sides of (2.1), we obtain the following

system of equations: 




dφj

dt
= − H(φx)|x=xj

duj

dt
= − H1(uj)ux|x=xj

(2.2)
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where the H1(u) = ∂H
∂u . We replace H(φx)|x=xj

with a suitable monotone numerical flux, denoted

by Ĥ(u−

j , u+
j ), and we will use the simple local Lax-Friedrichs flux as an example in the sequel. For

stability, we also split H1(uj) into a positive part and a negative part locally, denoted by H+
1 j and

H−

1 j respectively, and approximate ux by upwind methods. Then, we have the following scheme:






dφj

dt
= − Ĥ(u−

j , u+
j )

duj

dt
= − H+

1 ju
−
x j − H−

1 ju
+
x j

(2.3)

where

Ĥ(u−

j , u+
j ) = H(

u−

j + u+
j

2
) − 1

2
α(u+

j − u−

j ) (2.4)

with α = max
u∈D

|H1(u)|, D = [min(u−

j , u+
j ),max(u−

j , u+
j )], and

H−

1 j =
1

2
(H1(

u−

j + u+
j

2
) − |H1(

u−

j + u+
j

2
)|), H+

1 j =
1

2
(H1(

u−

j + u+
j

2
) + |H1(

u−

j + u+
j

2
)|). (2.5)

u±

j and u±
x j , the left and right limits of the point values of u(xj , t) and ux(xj , t), will be approximated

by the HWENO method which we will describe in detail in the next subsection. Notice that, even

though we already have uj as part of our numerical solution, we would still want to obtain upwind-

biased approximations u±

j through the point values of φ and u nearby (of course without using uj

itself) in order to use the monotone flux to ensure stability and convergence to weak solutions.

We observe that either H−

1 j or H+
1 j is equal to zero. In practice, we need to compute u−

x j only

when H+
1 j is not equal to zero, and compute u+

x j only when H−

1 j is not equal to zero. This will

reduce the computational cost because only one of the u−
x j and u+

x j needs to be computed.

After the spatial discretization, we can rewrite the scheme as Ut = L(U), where L denotes

the operator of the spatial discretization, and then use the third-order total variation diminishing

(TVD) Runge-Kutta time discretization [16] to solve the semi-discrete form (2.3):






U(1) = Un + ∆tL(Un)

U(2) =
3

4
Un +

1

4
(U(1) + ∆tL(U(1)))

Un+1 =
1

3
Un +

2

3
(U(2) + ∆tL(U(2)))

(2.6)

5



2.2 HWENO reconstruction in one dimension

In this subsection, we will describe the HWENO reconstruction procedure for u±

j = φ±
x j and

u±
x j .

Step 1. Reconstruction of φ−
x j by the HWENO method from the point values {φi, ui}

1.1. Given the small stencils S0 = {xj−2, xj−1, xj}, S1 = {xj−1, xj , xj+1}, S2 = {xj−2, xj−1, xj , xj+1},

and the big stencil T = {S0, S1, S2}, we construct Hermite cubic polynomials p0(x), p1(x), p2(x),

and a fifth-degree polynomial q(x) such that:

p0(xj+i) = φj+i, i = −2,−1, 0, p′0(xj−1) = uj−1

p1(xj+i) = φj+i, i = −1, 0, 1, p′1(xj+1) = uj+1

p2(xj+i) = φj+i, i = −2,−1, 0, 1,

q(xj+i) = φj+i, i = −2,−1, 0, 1, q′(xj±1) = uj±1

In fact, we only need the derivative values of these polynomials at the point x = xj, which have

the following expressions:

p0x(xj) = −φj−2 + 4φj−1 − 5φi + 4uj−1∆x

2∆x

p1x(xj) = −φj−1 + 4φj − 5φj+1 + 2uj+1∆x

4∆x

p2x(xj) =
φj−2 − 6φj−1 + 3φj + 2φj+1

6∆x

qx(xj) = −φj−2 + 18φj−1 − 9φj − 10φj+1 + 9uj−1∆x + 3uj+1∆x

18∆x

1.2. For each small stencil Sm,m = 0, 1, 2, we compute the smoothness indicator, which mea-

sures the smoothness of the polynomials in each stencil: the smaller the indicator is, the smoother

the polynomial is in the stencil. We use the formula similar to [8] to figure out the indicators,

denoted by βm,m = 0, 1, 2:

βm =
3∑

l=2

∆x2l−1(
∂l

∂xl
pm(xj))

2 m = 0, 1, 2 (2.7)
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1.3. We compute the linear weights, denoted by γm,m = 0, 1, 2, satisfying:

qx(xj) =

2∑

m=0

γmpmx(xj)

for all the point values of {φi} and {ui} in the big stencil T , which leads to

γ0 =
1

4
, γ1 =

1

3
, γ2 =

5

12

1.4. We compute the nonlinear weights based on the linear weights and the smoothness indica-

tors by:

ωm =
ω̄m∑2
k=0 ω̄k

, ω̄m =
γm

(βm + ε)2
, m = 0, 1, 2 (2.8)

where ε is a small positive number to avoid the denominator becoming zero. In our numerical tests,

we use ε = 10−6. The final HWENO approximation expression is:

φ−
x j =

2∑

m=0

ωmpmx(xj).

The reconstruction of u+
j is mirror symmetric with respect to xj of the above procedure.

Step 2. Reconstruction of u−
x j by the HWENO method from the point values {φi, ui}

2.1. Given the small stencils S0 = {xj−2, xj−1, xj}, S1 = {xj−1, xj , xj+1}, S2 = {xj−2, xj−1, xj , xj+1},

and the big stencil T = {S0, S1, S2}, we construct Hermite quartic polynomials p0(x), p1(x), p2(x),

and a sixth-degree polynomial q(x) such that:

p0(xj+i) = φj+i, i = −2,−1, 0, p′0(xj+i) = uj+i, i = −1, 0

p1(xj+i) = φj+i, i = −1, 0, 1, p′1(xj+i) = uj+i, i = 0, 1

p2(xj+i) = φj+i, i = −2,−1, 0, 1, p′1(xj) = uj

q(xj+i) = φj+i, i = −2,−1, 0, 1, q′(xj+i) = uj+1, i = −1, 0, 1

Again, we only need the second order derivative values of these polynomials at the point xj, which
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have the following expressions:

p0xx(xj) =
10uj∆x + 8uj−1∆x + φj−2 + 16φj−1 − 17φj

2(∆x)2

p1xx(xj) =
−4uj∆x − 2uj+1∆x + φj−1 − 8φj + 7φj+1

2(∆x)2

p2xx(xj) =
6uj∆x − φj−2 + 12φj−1 − 15φj + 4φj+1

6(∆x)2

qxx(xj) =
18uj∆x + 18uj−1∆x − 6uj+1∆x + φj−2 + 54φj−1 − 81φj + 26φj+1

18(∆x)2

2.2. For each small stencil Sm,m = 0, 1, 2, we compute the smoothness indicators respectively:

βm =

4∑

l=3

∆x2l−1(
∂l

∂xl
pm(xj))

2, m = 0, 1, 2 (2.9)

2.3. We compute the linear weights, denoted by γm,m = 0, 1, 2, satisfying:

qxx =
2∑

m=0

γmpmxx(xj)

for all the point values of {φi} and {ui} in the big stencil T , which leads to

γ0 =
1

4
, γ1 =

1

3
, γ2 =

5

12

2.4. We compute the nonlinear weights ωm as in (2.8), the final HWENO approximation

expression is:

u−
x j =

2∑

m=0

ωmpmxx(xj).

The reconstruction of u+
x j is mirror symmetric with respect to xj of the above procedure.

2.3 Two dimensional Hamilton-Jacobi equations

The Hamilton-Jacobi equation in the two dimensional case is written as

φt + H(φx, φy) = 0 φ(x, y, 0) = φ0(x, y) (x, y) ∈ [a, b] × [c, d] (2.10)

For simplicity, we also assume the computational domain has been uniformly meshed as a = x0 <

x1 < · · · < xN−1 < xN = b and c = y0 < y1 < · · · < yN−1 < yN = d. Furthermore, we define

φij = φ(xi, yj , t) as the numerical approximation to the viscosity solution, and uij = φx(xi, yj, t)
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and vij = φy(xi, yj , t) as the numerical approximations to its first order partial derivatives with

respect to the variables x and y, respectively. Then, by taking spatial derivatives on both sides of

(2.10), we have the following system of equations:






dφij

dt
= − H(φx, φy)

duij

dt
= − H1(u, v)ux − H2(u, v)vx

dvij

dt
= − H1(u, v)uy − H2(u, v)vy

(2.11)

where the H1(u) = ∂H
∂u and H2(u) = ∂H

∂v . As uy is equal to vx in the smooth case, we can also

rewrite the system of equations as the following:






dφij

dt
= − H(φx, φy)

duij

dt
= − H1(u, v)ux − H2(u, v)uy

dvij

dt
= − H1(u, v)vx − H2(u, v)vy

(2.12)

In the same way as before, we replace H(φx, φy) with a monotone numerical flux, and split

H1(u, v) and H2(u, v) into a positive part and a negative part respectively. Then we discretize

(2.12) into the following






dφij

dt
= − Ĥ(u−

ij , u
+
ij , v

−

ij , v
+
ij)

duij

dt
= − H+

1 iju
−
x ij − H−

1 iju
+
x ij − H2ijuyij

dvij

dt
= − H1ijvxij − H+

2 ijv
−
y ij

− H−

2 ijv
+
y ij

(2.13)

where Ĥ(u−

ij , u
+
ij , v

−

ij , v
+
ij) refers to a two-dimensional monotone flux, such as the simple local Lax-

Friedrichs flux defined as

Ĥ(u−

ij , u
+
ij , v

−

ij , v
+
ij) = H(

u−

ij + u+
ij

2
,
v−ij + v+

ij

2
) − 1

2
α(u+

ij − u−

ij) −
1

2
β(v+

ij − v−ij),

where α = max
u∈D,v∈E

|H1(u, v)| and β = max
u∈D,v∈E

|H2(u, v)|. With regard to α, we take D as

a local region and E as a global region, namely D = [min(u−

ij , u
+
ij),max(u−

ij , u
+
ij)] and E =

[min(v−, v+),max(v−, v+)]|[c,d]. We compute the coefficient β similarly, except that we then take

D globally and E locally. This way of computing the local Lax-Friedrichs flux is needed to ensure
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monotonicity, see [11]. H1ij , H2ij are the average values of H1 and H2 at (xi, yj) defined as the

following:

H1ij = H1(
u−

ij + u+
ij

2
,
v−ij + v+

ij

2
), H2ij = H2(

u−

ij + u+
ij

2
,
v−ij + v+

ij

2
),

and H−

1 , H+
1 , H−

2 , H+
2 as the negative and positive parts of H1 and H2 respectively, defined as

follows:

H−

1 ij =
1

2
(H1ij − |H1ij|), H+

1 ij =
1

2
(H1ij + |H1ij |),

H−

2 ij =
1

2
(H2ij − |H2ij|), H+

2 ij =
1

2
(H2ij + |H2ij |).

φ±
x ij , u±

x ij and v±x ij are the left and right limits of the point values u(xi, yj , t), ux(xi, yj, t) and

vx(xi, yj , t) with respect to the variable x, and φ±
y ij

, u±
y ij

and v±y ij
are the left and right limits of

the point values v(xi, yj, t), uy(xi, yj , t) and vy(xi, yj, t) with respect to the variable y. The values

of φ±
x ij , φ±

y ij
, u±

x ij and v±y ij
are reconstructed with the one dimensional method in each direction

with the other direction fixed. As to the mixed derivatives vx, uy, we simply use the fourth order

central approximations in the x and y directions, for there is reason to believe the mixed derivatives

play lesser role on spurious oscillations according to [14]:

vxij =
−vi+2,j + 8vi+1,j − 8vi−1,j + vi−2,j

12∆x
,

uyij =
−ui,j+2 + 8ui,j+1 − 8ui,j−1 + ui,j−2

12∆y
.

In practice, we only need to compute either u−
x ij or u+

x ij but not both. v−y ij
and v+

y ij
can be

computed similarly.

Then, we can rewrite the scheme (2.13) as Ut = L(U), where L denotes the operator of spa-

tial discretization, and use the third-order total variation diminishing (TVD) Runge-Kutta time

discretization (2.6) to solve the semi-discrete form (2.13).

3 Numerical results

In this section, we provide numerical experiments for the fifth order HWENO method in one and

two dimensional cases. In all the accuracy tests, we set ∆t = 0.6∆x
5

3 /α in the one dimensional case
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and ∆t = 1
α

0.6∆x
5
3

+ β

0.6∆y
5
3

in the two dimensional case, in order to guarantee that spatial numerical

errors dominate. In other tests, we simply take ∆t = 0.6∆x/α and ∆t = 1
α

0.6∆x
+ β

0.6∆y

in the one

and two dimensional cases respectively, unless otherwise indicated. The HWENO method for HJ

equations with conservative approximations to the derivative variables (HWENO-C), developed by

Qiu and Shu [14], using the same mesh partition, time steps and local Lax-Friedrichs flux, is used

for comparison in some of the numerical examples.

In Table 1, we provide a CPU time comparison between the method developed in this paper

which uses non-conservative approximation for the derivative variables (HWENO-NC) and the

HWENO-C method for accuracy tests in Examples 3.1, 3.2, 3.3 and 3.4 below. The total CPU

time for N = 10, 20, 40, 80, 160 and 320 cells is recorded. We observe that the HWENO-NC method

spends less CPU time than the HWENO-C method. The computations are performed on a Dell

Vostro 2420 with 4GB RAM.

Table 1: CPU time (in seconds) for the HWENO-NC and HWENO-C schemes.
Example 3.1 Example 3.2 Example 3.3 Example 3.4

HWENO-NC 2.2152 0.4680 0.1092 246.9964

HWENO-C 3.5568 0.6708 0.1248 268.7273

Example 3.1: We solve the following linear scalar equation:

φt + φx = 0, 0 ≤ x ≤ 2

with the initial condition φ(x, 0) = sin(πx), and periodic boundary condition. We compute the

solution up to t = 2, the numerical errors and numerical orders of accuracy for the HWENO-NC

method are shown in Table 2. We can see that the scheme achieves or exceeds fifth order accuracy,

and it actually yields smaller errors than the HWENO-C method.

Example 3.2: We solve the Burgers equation:

φt +
1

2
(φx + 1)2 = 0, −1 ≤ x ≤ 1

with the initial condition φ(x, 0) = − cos(πx), and periodic boundary condition. We compute the
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Table 2: φt + φx = 0, φ(x, 0) = sin(πx). Periodic boundary conditions. t = 2
HWENO-NC HWENO-C

N L∞ error order L1 error order L∞ error order L1 error order
10 2.58E-02 1.06E-02 3.49E-02 2.58E-02
20 9.42E-04 4.77 4.40E-04 4.59 1.76E-03 4.31 1.16E-03 4.48
40 2.75E-05 5.10 1.56E-05 4.81 7.28E-05 4.59 4.49E-05 4.69
80 8.34E-07 5.05 4.95E-07 4.98 2.48E-06 4.87 1.54E-06 4.86
160 1.94E-08 5.43 1.02E-08 5.61 5.99E-08 5.37 3.62E-08 5.41
320 1.68E-10 6.86 8.66E-11 6.88 5.41E-10 6.79 3.22E-10 6.82

solution up to t = 0.5
π2 . At this time, the solution is still smooth. The numerical results are shown in

Table 3. Again, we can see that the scheme can reach its designed order of accuracy, and actually

yields smaller errors than the HWENO-C method for the more refined meshes.

Table 3: φt + 1
2(φx + 1)2 = 0, φ(x, 0) = − cos(πx). Periodic boundary conditions. t = 0.5/π2

HWENO-NC HWENO-C
N L∞ error order L1 error order L∞ error order L1 error order

10 2.20E-03 8.04E-04 1.76E-03 6.95E-04
20 1.64E-04 3.75 3.24E-05 4.63 1.15E-04 3.94 2.74E-05 4.66
40 1.27E-05 3.69 1.88E-06 4.11 1.50E-05 2.94 1.81E-06 3.92
80 5.10E-07 4.63 5.95E-08 4.98 6.25E-07 4.58 6.63E-08 4.77
160 1.70E-08 4.91 1.05E-09 5.82 2.11E-08 4.89 1.34E-09 5.63
320 2.87E-10 5.88 1.93E-11 5.76 4.08E-10 5.69 2.96E-11 5.50

Example 3.3: We solve the nonlinear scalar equation:

φt − cos(φx + 1) = 0, −1 < x < 1

with the initial condition φ(x, 0) = − cos(πx), and periodic boundary condition. When t = 0.5
π2 , the

solution is still smooth. The numerical results are shown in Table 4. Again, we observe that the

scheme can achieve its designed accuracy, and actually yields smaller errors than the HWENO-C

method for the more refined meshes.

Example 3.4: We solve the two dimensional Burgers equation

φt +
1

2
(φx + φy + 1)2 = 0 − 2 ≤ x, y ≤ 2

with the initial data φ(x, y, 0) = − cos(π
2 (x + y)) and periodic boundary condition. We compute

the result up to t = 0.5/π2 and the solution is still smooth at that time. Again, from Table 5, we

12



Table 4: φt − cos(φx + 1) = 0, φ(x, 0) = − cos(πx). Periodic boundary conditions. t = 0.5/π2

HWENO-NC HWENO-C
N L∞ error order L1 error order L∞ error order L1 error order

10 1.54E-03 7.38E-04 1.91E-03 8.74E-04
20 1.68E-04 3.20 2.96E-05 4.64 2.12E-04 3.17 4.62E-05 4.24
40 1.64E-05 3.35 1.96E-06 3.92 2.34E-05 3.18 2.66E-06 4.12
80 9.62E-07 4.10 7.24E-08 4.76 1.31E-06 4.16 1.08E-07 4.62
160 5.49E-08 4.13 2.64E-09 4.78 7.19E-08 4.19 4.06E-09 4.73
320 1.40E-09 5.29 7.60E-11 5.12 2.07E-09 5.12 1.27E-10 5.00

can see that the scheme achieves its designed order. The errors we obtain are comparable with the

one obtained by the HWENO-C method.

Table 5: φt + 1
2(φx + φy + 1)2 = 0, φ(x, y, 0) = − cos(π

2 (x + y)). Periodic boundary conditions.
t = 0.5/π2

HWENO-NC HWENO-C
N L∞ error order L1 error order L∞ error order L1 error order

10× 10 1.78E-03 8.31E-04 1.83E-03 8.96E-04
20× 20 3.64E-04 2.29 5.49E-05 3.92 4.19E-04 2.13 6.10E-05 3.88
40× 40 3.21E-05 3.51 2.97E-06 4.21 3.62E-05 3.54 3.16E-06 4.27
80× 80 1.36E-06 4.56 1.06E-07 4.81 1.46E-06 4.63 1.11E-07 4.84

160× 160 4.51E-08 4.91 3.17E-09 5.06 4.64E-08 4.98 2.61E-09 5.41
320× 320 9.86E-10 5.51 8.71E-11 5.19 8.74E-10 5.73 4.99E-11 5.71

Example 3.5: We solve the linear equation:

φt + φx = 0

with the initial condition φ(x, 0) = φ0(x − 0.5) together with the periodic boundary condition,

where

φ0(x) = −(

√
3

2
+

9

2
+

2π

3
)(x + 1) +






2 cos(
3πx2

2
) −

√
3 −1 ≤x < −1

3
,

3

2
+ 3 cos(2πx) −1

3
≤x < 0,

15

2
− 3 cos(2πx) 0 ≤x <

1

3
,

28 + 4π + cos(3πx)

3
+ 6πx(x − 1)

1

3
≤x < 1.

We plot the results at t = 2.0 and t = 8.0 in Figure 1(a) and Figure 1(b) respectively, and observe

13



that our scheme can reach comparable resolution for the corner singularity with the one obtained

by the HWENO-C method.
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Figure 1: One dimensional linear equation. N = 100 cells. (a) t = 2.0, (b) t = 8.0. Solid line: the
exact solution; Square symbol: the HWENO-NC scheme; Plus symbol: the HWENO-C scheme.

Example 3.6: We solve one dimensional Burgers equation:

φt +
1

2
(φx + 1)2 = 0 − 1 ≤ x ≤ 1

with φ(x, 0) = − cos(πx) and periodic boundary conditions. We compute the solution up to t =

3.5/π2. At this time, the discontinuous derivative has already appeared in the solution. We show the

numerical results with the meshes N = 40 and N = 80 in Figure 2(a) and Figure 2(b) respectively.

We can see that both schemes give high resolution for this problem. We also plot the derivatives of

schemes with the meshes N = 40 and N = 80 in Figure 3(a) and Figure 3(b) respectively, and we

observe sharp resolution with correct shock location for both schemes. This verifies the claim that

our non-conservative treatments of the solution derivatives does not affect convergence to weak

solutions with correct shock speeds.
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Figure 2: One dimensional Burgers equation. t = 3.5/π2. (a) N = 40 and (b) N = 80. Solid
line: the exact solution; Square symbol: the HWENO-NC scheme; Plus symbol: the HWENO-C
scheme.
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Figure 3: The derivative of the one dimensional Burgers equation. t = 3.5/π2. (a) N = 40 and (b)
N = 80. Solid line: the exact solution; Square symbol: the HWENO-NC scheme; Plus symbol: the
HWENO-C scheme.
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Example 3.7: We solve the nonlinear equation with a non-convex / non-concave flux

φt − cos(φx + 1) = 0

with the initial data φ(x, 0) = − cos(πx) and periodic boundary conditions. This time, we compute

the solution up to t = 1.5/π2. We observe the results with N = 40 and N = 80, which are shown in

Figure 4, and find that both methods give high resolution in this case. We also plot the derivatives

of the schemes with the meshes N = 40 and N = 80 in Figure 5, and observe that both give correct

shock location and good resolution.
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Figure 4: H(u) = − cos(u + 1). t = 1.5/π2. (a) N = 40 and (b) N = 80. Solid line: the exact
solution; Square symbol: the HWENO-NC scheme; Plus symbol: the HWENO-C scheme.

Example 3.8: We solve the problem

φt +
1

4
(φ2

x − 1)(φ2
x − 4) = 0 − 1 < x < 1

with the initial data φ(x, 0) = −2|x|. As the derivative of φ(x, 0) is discontinuous, the initial value

of u is undefined at x = 0 which is a grid point. We simply take u(0, 0) = 0 in our code, and observe

that the value of u(0, 0) makes little influence on the final result in our numerical experiment. We
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Figure 5: The derivative plot, H(u) = − cos(u + 1). t = 1.5/π2. (a) N = 40 and (b) N = 80. Solid
line: the exact solution; Square symbol: the HWENO-NC scheme; Plus symbol: the HWENO-C
scheme.

plot the results at t = 1 with N = 40 and N = 80 cells in Figure 6 and Figure 7, observe that both

the function values and its derivatives give good results for both schemes.
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Figure 6: H(u) = (1/4)(u2 − 1)(u2 − 4). t = 1. (a) N = 40 and (b) N = 80. Solid line: the exact
solution; Square Symbol: the HWENO-NC scheme; Plus symbol: the HWENO-C scheme.
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Figure 7: The derivatives plot, H(u) = (1/4)(u2 − 1)(u2 − 4). t = 1. (a) N = 40 and (b)
N = 80. Solid line: the exact solution; Square Symbol: the HWENO-NC scheme; Plus symbol:
the HWENO-C scheme.

Example 3.9: We solve the two dimensional Burgers equation

φt +
1

2
(φx + φy + 1)2 = 0 − 2 ≤ x, y ≤ 2

with the initial data φ(x, y, 0) = − cos(π
2 (x + y)) and periodic boundary condition. We compute

the result up to t = 1.5/π2 and the derivative discontinuity has appeared in the solution. We plot

the results with 40 × 40 cells in Figure 8 and observe high resolution in this example.

Example 3.10: We solve a problem from optimal control:

φt + sin(y)φx + (sin(x) + sign(φy))φy − 1

2
sin2(y) + cos(x) − 1 = 0, −π < x, y < π

with φ(x, y, 0) = 0 and periodic boundary conditions. In this case, the equation can be denoted as

φt +H(φx, φy, x, y) = 0, and our scheme can be obtained through the following system of equations

as before: 




dφij

dt
= − H(φx, φy, x, y)

duij

dt
= − H1(u, v, x, y)ux − H2(u, v, x, y)uy − Hx(u, v, x, y)

dvij

dt
= − H1(u, v, x, y)vx − H2(u, v, x, y)vy − Hy(u, v, x, y)
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Figure 8: Two dimensional Burgers equation. t = 1.5/π2 with the HWENO-NC schemes with
40× 40 cells. Contours of the solution in Figure 8(a) and the surface of the solution in Figure 8(b)

Following (2.13), we can easily deal with the terms H(φx, φy, x, y),H1(u, v, x, y),H2(u, v, x, y). The

additional terms Hx(u, v, x, y) and Hy(u, v, x, y) can be approximated as

Hx(u, v, x, y) |x=xi,y=yj
≈ Hx(

u−

ij + u+
ij

2
,
v−ij + v+

ij

2
, xi, yj)

Hy(u, v, x, y) |x=xi,y=yj
≈ Hy(

u−

ij + u+
ij

2
,
v−ij + v+

ij

2
, xi, yj)

The time step is still taken as ∆t = 1
α

0.6∆x
+ β

0.6∆y

. The solution and optimal control ω = sign(φ) at

t = 1 are plotted in Figure 9(a) and Figure 9(b), respectively. Again, we can observe that high

resolution is achieved by our method.

Example 3.11: We solve the problem with another neither convex nor concave Hamiltonian

φt + sin(φx + φy) = 0, −1 < x, y < 1

with φ(x, y, 0) = π(|y| − |x|). In this case, u(x, y, 0) is undefined along x = 0 and v(x, y, 0) is

undefined along y = 0, and we simply take u(0, y, 0) = 0 and v(x, 0, 0) = 0 respectively. We

compute the solution up to t = 1. The solution is shown in Figure 10. Again, we observe our

schemes can achieve high resolution.
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Figure 9: The optimal control problem. t = 1 with the HWENO-NC schemes with 60 × 60 cells.
Surface of the solution in Figure 9(a) and of the optimal control ω = sign(φy) in Figure 9(b)
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Figure 10: Two dimensional equation with a neither convex nor concave Hamiltonian. t = 1 by
the HWENO-NC schemes with 40 × 40 cells. Contours of the solution in Figure 10(a) and surface
of the solution in Figure 10(b)
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Example 3.12: We solve the two dimensional Eikonal equation

φt +
√

φ2
x + φ2

y + 1 = 0, 0 ≤ x, y < 1

with the initial data φ(x, y, 0) = 1
4 (cos(2πx) − 1)(cos(2πy) − 1) − 1. We compute the solution up

to t = 0.6. The solution is shown in Figure 11. High resolutions are observed with our scheme.
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Figure 11: Eikonal equation. t = 0.6 by the HWENO-NC schemes with 60 × 60 cells. Contours of
the solution in Figure 11(a) and surface of the solution in Figure 11(b)

Example 3.13: We solve






φt − (1 − εK)
√

φ2
x + φ2

y + 1 = 0, 0 ≤ x, y < 1

φ(x, y, 0) = 1 − 1

4
(cos(2πx) − 1)(cos(2πy) − 1)

where K is the mean curvature defined by:

K = −
φxx(1 + φ2

y) − 2φxyφxφy + φyy(1 + φ2
x)

(1 + φ2
x + φ2

y)
3/2

and ε is a small constant, with the initial data φ(x, y, 0) = 1− 1
4(cos(2πx)−1)(cos(2πy)−1) and peri-

odic boundary condition. When ε 6= 0, the equation can be denoted as φt+H(φx, φy, φxx, φxy, φyy) =
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0. The system of equations to be approximated then becomes






dφij

dt
= − H(φx, φy, φxx, φxy, φyy)

duij

dt
= − Hφx

ux − Hφy
uy − Hφxx

uxx − Hφxy
uxy − Hφyy

uyy

dvij

dt
= − Hφx

vx − Hφy
vy − Hφxx

vxx − Hφxy
vxy − Hφyy

vyy

The procedure to deal with the terms H, Hφx
and Hφy

are the same as before. Here, we simply

use fourth order central differences in each direction with the other direction fixed to approximate

the terms uxx, uyy :

uxxij = −ui+2,j − 16ui+1,j + 30ui,j − 16ui−1,j + ui−2,j

12∆x2

uyyij = −ui,j+2 − 16ui,j+1 + 30ui,j − 16ui,j−1 + ui,j−2

12∆y2

As to the term uxy, we take the following Qk polynomial approximation using the values {ukl, k =

i − 2, · · · , i + 2, l = j − 2, · · · , j + 2}:

uxyij = − 1

144∆x∆y
(ui−2,j−2 − 8ui−2,j−1 + 8ui−2,j+1 − ui−2,j+2 − 8ui−1,j−2 + 64ui−1,j−1

− 64ui−1,j+1 + 8ui−1,j+2 + 8ui+1,j−2 − 64ui+1,j−1 + 64ui+1,j+1 − 8ui+1,j+2

− ui+2,j−2 + 8ui+2,j−1 − 8ui+2,j+1 + ui+2,j+2).

The approximation to the terms vxx, vxy, vyy can be obtained in a similar way. The time step

is taken as ∆t = 1
α

0.6∆x
+ β

0.6∆y
+

γ1

0.3∆x2
+

γ2

0.3∆x∆y
+

γ3

0.3∆y2

, where γ1 = max
φxx

|Hφxx
|, γ2 = max

φxy

|Hφxy
|,

γ3 = max
φyy

|Hφyy
| and α, β are defined the same as before. The results of ε = 0 (pure convection)

and ε = 0.1 by the HWENO-NC method with 60×60 cells are presented in Figure 12(a) and Figure

12(b) respectively. The surfaces at t = 0 for ε = 0 and for ε = 0.1, and at t = 0.1 for ε = 0.1, are

shifted downward in order to show the details of the solution at later time.

4 Conclusion

In this paper, we present a high order scheme based on the finite difference framework for

the Hamilton-Jacobi equations in one and two dimensions. The main advantage of this scheme is
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Figure 12: Propagating surface. 60 × 60 cells. Figure 12(a): ε = 0; Figure 12(b): ε = 0.1

its compactness and efficiency. Both the solution values and its first derivatives are used in the

HWENO reconstruction and evolved via time marching. Extensive numerical experiments in one

dimensional and two dimensional cases show that the scheme can achieve high order accuracy in

the smooth region and can maintain high resolution when the derivative becomes discontinuous.

References

[1] R. Abgrall. Numerical discretization of the first-order Hamilton-Jacobi equation on triangular

meshes. Commum. Pur. Appl. Math., 49:1339–1373, 1996.

[2] Y. Cheng and C.-W. Shu. A Discontinuous Galerkin finite element method for directly solving

the Hamilton-Jacobi equations. J. Comput. Phys., 223:398–415, 2007.

[3] Y. Cheng and Z. Wang. A new Discontinuous Galerkin finite element method for directly

solving the Hamilton-Jacobi equations. J. Comput. Phys., 268:134–153, 2014.

23



[4] M. Crandall and P. L. Lions. Viscosity solutions of Hamilton-Jacobi equations. Trans. Americ.

Math. Soc., 277:1–42, 1983.

[5] M. Crandall and P. L. Lions. Two approximations of solutions of Hamilton-Jacobi equations.

Trans. Americ. Math. Soc., 43:1–19, 1984.

[6] C. Hu and C.-W. Shu. A Discontinuous Galerkin finite element method for Hamilton-Jacobi

equations. SIAM J. Sci. Comput., 21:666–690, 1999.

[7] G. Jiang and D. Peng. Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J. Sci.

Comput., 21:2126–2143, 1999.

[8] G. S. Jiang and C.-W. Shu. Efficient implementation of weighted ENO schemes. J. Comput.

Phys., 126:202–228, 1996.

[9] F. Lafon and S. Osher. High order two dimensional nonoscillatory methods for solving

Hamilton-Jacobi scalar equations. J. Comput. Phys., 123:235–253, 1996.

[10] F. Li and C.-W. Shu. Reinterpretation and simplied implementation of a Discontinuous

Galerkin method for Hamilton-Jacobi equations. Appl. Math. Lett., 18:1204–1209, 2005.

[11] S. Osher and C.-W. Shu. High-order essentially nonoscillatory schemes for Hamilton-Jacobi

equations. SIAM J. Numer. Anal, 28:907–922, 1991.

[12] J. Qiu. Hermite WENO schemes with Lax-Wendroff type time discretizations for Hamilton-

Jacobi equations. J. Comput. Math., 25:131–144, 2007.

[13] J. Qiu and C.-W. Shu. Hermite WENO schemes and their application as limiters for Runge-

Kutta Discontinuous Galerkin method: one-dimensional case. J. Comput. Phys., 193:115–135,

2004.

[14] J. Qiu and C.-W. Shu. Hermite WENO schemes for Hamilton-Jacobi equations. J. Comput.

Phys., 204:82–99, 2005.

24



[15] C.-W. Shu. High order numerical methods for time dependent Hamilton-Jacobi equations. in

Mathematics and Computation in Imaging Science and Information Processing, S.S. Goh, A.

Ron and Z. Shen, Editors, Lecture Notes Series, Institute for Mathematical Sciences, National

University of Singapore, World Scientific Press, 11:47–91, 2007.

[16] C.-W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock capturing

schemes. J. Comput. Phys., 77:439–471, 1988.

[17] Z. Tao and J. Qiu. Dimension-by-dimension moment-based central Hermite WENO schemes

for directly solving Hamilton-Jacobi equations. Adv. Comput. Math., submitted.

[18] J. Yan and S. Osher. A local Discontinuous Galerkin method for directly solving Hamilton-

Jacobi equations. J. Comput. Phys., 230:232–244, 2011.

[19] Y. T. Zhang and C.-W. Shu. High order WENO schemes for Hamilton-Jacobi equations on

triangular meshes. SIAM J. Sci. Comput, 24:1005–1030, 2003.

[20] F. Zheng and J. Qiu. Directly solving the Hamilton-Jacobi equations by Hermite WENO

schemes. J. Comput. Phys., 307:423–445, 2016.

[21] J. Zhu and J. Qiu. Hermite WENO schemes for Hamilton-Jacobi equations on unstructured

meshes. J. Comput. Phys., 254:76–92, 2013.

[22] J. Zhu and J. Qiu. Finite volume Hermite WENO schemes for solving the Hamilton-Jacobi

equation. Commun. Comput. Phys., 15:959–980, 2014.

[23] J. Zhu and J. Qiu. Finite volume Hermite WENO schemes for solving the Hamilton-Jacobi

equations II: unstructured meshes. Computers Math. Appl., 68:1137–1150, 2014.

25


