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Abstract

It is well known that semi-discrete high order discontinuous Galerkin (DG) methods sat-

isfy cell entropy inequalities for the square entropy for both scalar conservation laws (Jiang

and Shu (1994) [39]) and symmetric hyperbolic systems (Hou and Liu (2007) [36]), in

any space dimension and for any triangulations. However, this property holds only for the

square entropy and the integrations in the DG methods must be exact. It is significantly more

difficult to design DG methods to satisfy entropy inequalities for a non-square convex entropy,

and / or when the integration is approximated by a numerical quadrature. In this paper,

we develop a unified framework for designing high order DG methods which will satisfy en-

tropy inequalities for any given single convex entropy, through suitable numerical quadrature

which is specific to this given entropy. Our framework applies from one-dimensional scalar

cases all the way to multi-dimensional systems of conservation laws. For the one-dimensional

case, our numerical quadrature is based on the methodology established in Carpenter et al

(2014) [5] and Gassner (2013) [19]. The main ingredients are summation-by-parts (SBP)

operators derived from Legendre Gauss-Lobatto quadrature, the entropy conservative

flux within elements, and the entropy stable flux at element interfaces. We then generalize

the scheme to two-dimensional triangular meshes by constructing SBP operators on triangles

based on a special quadrature rule. A local discontinuous Galerkin (LDG) type treatment is

also incorporated to achieve the generalization to convection-diffusion equations. Extensive

numerical experiments are performed to validate the accuracy and shock capturing efficacy

of these entropy stable DG methods.
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1 Introduction

In this paper, we will deal with the numerical approximation of systems of conservation laws

in several space dimensions. The general form is

∂u

∂t
+

d∑

j=1

∂fj(u)

∂xj
= 0, (x, t) ∈ R

d × [0,∞) (1.1)

where u = [u1, · · · , up]T denotes the vector of state variables taking values in a convex

set Ω ∈ R
p, and the functions fj = [f 1

j , · · · , f pj ]T are called the flux functions. For each

1 ≤ j ≤ d, define the Jacobian matrix

Aj(u) = f ′j(u) = {
∂f ij
∂uk

(u)}1≤i,k≤p (1.2)

Then the system (1.1) is called hyperbolic if A(u,n) =
∑d

j=1 njAj(u) has p real eigenvalues

and a complete set of eigenvectors for all u ∈ Ω,n ∈ R
d.

It is well known that shock waves or contact discontinuities might develop at finite time

even for smooth initial condition. Hence we have to interpret (1.1) in the sense of distribution

and search for weak solutions. However, weak solutions are not necessarily unique. In order

to select the “physically relevant” solution among all weak solutions, we usually use the

following entropy functions as the admissibility criterion.

Definition 1.1. Assume that Ω is convex. A convex function U : Ω → R is called an entropy

function for (1.1) if there exist d functions Fj : Ω → R, 1 ≤ j ≤ d, called entropy fluxes,

such that the following integrability condition holds

U ′(u)f ′j(u) = F ′
j(u), 1 ≤ j ≤ d (1.3)

where U ′(u) and F ′
j(u) are viewed as row vectors.

In smooth regions, we can left-multiply U ′(u) to (1.1) and obtain an extra conservation

law for the entropy function

∂U(u)

∂t
+

d∑

j=1

∂Fj(u)

∂xj
= 0 (1.4)

Yet, at shock waves, we require the entropy to dissipate, which leads to the following defini-

tion of an entropy solution.

Definition 1.2. A weak solution u of (1.1) is called an entropy solution if for all entropy

functions U , we have

∂U(u)

∂t
+

d∑

j=1

∂Fj(u)

∂xj
≤ 0 (1.5)

in the sense of distribution.
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Formally integrating the entropy condition (1.5) in space, we come up with the bound

d

dt

∫

Rd

U(u)dx ≤ 0 (1.6)

That is, the total entropy is non-increasing with respect to time. If we further assume that

U is uniformly convex, the above bound indeed implies an a priori L2 bound of the entropy

solution [32]. For more details on the theory of systems of conservation laws, we refer the

readers to [14, 22, 23] and the references therein.

Entropy conditions play an essential role in the well-posedness of hyperbolic conservation

laws. It is natural to seek numerical schemes which satisfy a discrete version of (1.5) (and

(1.6) if we impose periodic or compactly supported boundary conditions), i.e., entropy stable

schemes. Entropy stability is the nonlinear analogue of the standard L2 stability discussed

in [28], and can be translated to L2 stability for uniformly convex U .

Entropy stability analysis is well-developed for first order schemes. In the case of scalar

conservation laws (p = 1), monotone schemes were shown to be consistent with all entropy

conditions and thus convergent to the unique entropy solution [13, 31]. The convergence is

guaranteed by the total variation diminishing (TVD) property [30] and Lax-Wendroff type

argument [43]. Osher [46] established a more general class of schemes, called E-schemes, that

preserve all entropy inequalities. Osher and Tadmor [47] also proved that E-schemes are in

fact necessary for all entropy inequalities to be valid. As for systems (p > 1), the Godunov

type schemes introduced in [32] are entropy stable for all entropy functions.

Both monotone schemes and E-schemes are at most first order (spatially) accurate [31,

46]. Therefore when designing high-order schemes, one usually expects entropy stability

for only a single entropy function. In the realm of finite volume methods, Tadmor [56, 57]

built the framework of entropy conservative fluxes and entropy stable fluxes (for a given

entropy function), and Lefloch, Mercier and Rohde [44] provided a procedure to compute

high order accurate entropy conservative fluxes. Using these ingredients, along with the sign

property of the essentially non-oscillatory (ENO) reconstruction [18], Fjordholm, Mishra and

Tadmor [17] presented a version of ENO schemes, called TeCNO, that are entropy stable and

arbitrarily order accurate. A second order generalization to higher dimensional unstructured

meshes is proposed in [49]. Besides, let us remark that Bouchut, Bourdaris and Perthame

[4] gave a second order accurate scheme that satisfies all entropy inequalities. It does not

contradict the argument by Osher and Tadmor since their scheme was not written in the

standard finite volume form.

Another popular category of high order numerical schemes is the discontinuous Galerkin

(DG) method developed in [10, 9, 8, 12]. Jiang and Shu [39] proved that the semi-discrete

DG schemes satisfy a discrete entropy inequality for the square entropy for scalar conser-
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vation laws, in arbitrary dimension and on arbitrary triangulations, which is extended to

symmetric systems by Hou and Liu [36]. However, these results are limited to the square

entropy function (L2 norm) only, as the test functions must live in the space of numerical

solutions and then U ′(u) has to be linear. For systems whose Jacobian matrices are not

symmetric, since the square function is not an entropy function, there is no entropy sta-

bility for the (unmodulated) DG methods. Moreover, all integrals in the DG formulation

are assumed to be evaluated exactly for the proof of this entropy condition, which can be

costly or even impossible to implement (e.g. in the case of Euler equations when the flux

functions are rational functions of u). In practice one often uses quadrature rules and sta-

bility might be affected. An alternative approach, initiated by Hughes, Franca and Mallet

[37], approximates the entropy variables v = U ′(u)T in the discrete space. Then entropy

stability is achieved for any given entropy function. The drawback of this approach is that

it requires nonlinear solvers at each time step, even for explicit time discretization. Hence

space-time DG formulation is often preferred [1, 35]. In addition, this approach still assumes

exact integration for the proof of entropy stability.

In recent years, there have been some developments on entropy stable DG type schemes

directly built upon numerical integration. DG schemes can be recast into the nodal formula-

tion after quadrature [41, 33]. By choosing Gauss-Lobatto quadrature points, the resulting

discrete operators satisfy the summation-by-parts (SBP) property [19]. Thanks to the SBP

property, the nodal DG scheme can be adjusted to fulfill an arbitrary entropy condition,

while conservation and high order accuracy are maintained. This adjustment is related to

the splitting technique for the Burgers equation [16, 19] and shallow water equations [20],

but not equivalent to any kind of splitting for the Euler equations [15, 5].

The main objective of this paper is to construct a unified framework of entropy stable

high order nodal DG schemes. We start with an one-dimensional methodology, in which

the entropy is conserved within elements, but dissipates at element interfaces. To be more

precise, the single element discretization is based on entropy conservative fluxes, and the weak

coupling between neighboring elements relies on entropy stable fluxes. Just like classical

DG methods, we can apply a TVD/TVB limiter and / or a bound-preserving limiter to

control oscillations and enhance robustness without violating the entropy condition. Next

we will move to the extension to two-dimensional triangular meshes. The main difficulty

is to find high order SBP operators on triangles. Inspired by [34], we will deduce the

formulation of SBP operators by introducing a special quadrature rule. Even though we

generally assume periodic or compactly supported boundary condition, we will prove that the

standard reflecting technique is entropy stable at the wall boundary for the Euler equations.

Finally, we will consider convection-diffusion equations, for which a nodal version of the local
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discontinuous Galerkin (LDG) method [11, 6] will be included to handle the diffusive term

while entropy stability still holds.

The rest of this paper is organized as follows. Section 2 is a brief tutorial on entropy

analysis that is necessary for the subsequent sections. Section 3 presents the one-dimensional

entropy stable nodal DG schemes as a reinterpretation of the methods in [5, 19, 20].

Compatibility with different limiters is also discussed. Section 4 is the major contribution

of this paper, which provides SBP operators on triangles and entropy stable nodal DG

schemes on triangular meshes. Entropy stability of wall boundary conditions will be proved.

Section 5 explains an LDG type approach to convection-diffusion equations. Numerical

experiments including smooth accuracy tests and discontinuous tests are reported in section

6. Concluding remarks are given in section 7. A few technical details are provided in the

appendix.

2 More on entropy analysis

2.1 Symmetrization

We continue the entropy analysis in section 1. Define the entropy variables v = U ′(u)T . If

we assume that U is strictly convex, the mapping u 7→ v is one-to-one and can be regarded

as a change of variables. Setting gj(v) = fj(u(v)), we rewrite the system (1.1) according to

the entropy variables

u′(v)
∂v

∂t
+

d∑

j=1

g′
j(v)

∂v

∂xj
= 0 (2.1)

By strict convexity, u′(v) = (U ′′(u))−1 is symmetric positive-definite. The following theorem

tells us the symmetry of g′
j(v) is equivalent to the existence of entropy function [24, 45]. Proof

can be found in [23].

Theorem 2.1. A strictly convex function U serves as an entropy function if and only if

u′(v) is symmetric positive-definite and g′
j(v) is symmetric for each 1 ≤ j ≤ d. (2.1) is

called the symmetrization of (1.1). Moreover, A(u,n) =
∑d

j=1 njf
′
j(u) =

∑d
j=1 njg

′
j(v)v′(u)

is similar to

v′(u)
1

2 (

d∑

j=1

njg
′
j(u))v′(u)

1

2 ,

which is another symmetric matrix. Hence existence of entropy function implies that (1.1)

is hyperbolic.

Now since u′(v) and g′
j(v) are both symmetric, there exist functions φ(v) and ψj(v),
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called potential function and potential fluxes, such that

φ′(v) = u(v)T , ψ′
j(v) = gj(v)T , 1 ≤ j ≤ d (2.2)

It is easy to verify that

φ(v) = u(v)Tv − U(u(v)), ψj(v) = gj(v)Tv − Fj(u(v)) (2.3)

Entropy conditions follows from the vanishing viscosity approach. Consider the following

viscous perturbation of the system (1.1)

∂uε
∂t

+

d∑

j=1

∂fj(uε)

∂xj
= ε∆uε, ε > 0 (2.4)

By left-multiplying U ′(uε) to (2.4) and integrating by parts (formally),

∂U(uε)

∂t
+

d∑

j=1

∂Fj(uε)

∂xj
= −ε

d∑

j=1

∂uTε
∂xj

U ′′(uε)
∂uε
∂xj

≤ 0

Sending ε → 0+ we recover the entropy condition (1.5). For some physical problems (e.g.

compressible Navier-Stokes equations), it is necessary to look at the more general form of

viscous perturbation

∂uε
∂t

+

d∑

j=1

∂fj(uε)

∂xj
= ε

d∑

j,l=1

∂

∂xj
(Cjl(uε)

∂uε
∂xl

) (2.5)

where Cjl(uε) are p× p matrices. Let vε = v(uε) and Ĉjl(vε) = Cjl(uε)u
′(vε). Then

∂uε
∂t

+
d∑

j=1

∂fj(uε)

∂xj
= ε

d∑

j,l=1

∂

∂xj
(Ĉjl(vε)

∂vε
∂xl

) (2.6)

Left-multiplying U ′(uε) = vTε to (2.6) gives us

∂U(uε)

∂t
+

d∑

j=1

∂Fj(uε)

∂xj
= −ε

d∑

j=1

∂vTε
∂xj

Ĉjl(vε)
∂vε
∂xj

In order to make the right hand side negative, we have to assume the following admissibility

condition 

Ĉ11(vε) · · · Ĉ1d(vε)

...
...

Ĉd1(vε) · · · Ĉdd(vε)


 is symmetric semi-positive-definite (2.7)

Therefore, the change of variables u 7→ v should symmetrize the viscous term simultaneously.
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2.2 Examples

Here we present some examples of hyperbolic conservation laws and the corresponding en-

tropy function-entropy flux pairs and potential function-potential flux pairs. For simplicity

we only focus on one-dimensional systems.

Example 2.2.1. The linear symmetric system is of the form

∂u

∂t
+
∂(Au)

∂x
= 0 (2.8)

where A is a constant symmetric matrix. The standard energy U = 1
2
uTu serves as an

entropy function. Then v = u and

F =
1

2
uTAu, φ =

1

2
uTu, ψ =

1

2
uTAu (2.9)

Example 2.2.2. The shallow water equations model water flows with a free surface under

the influence of gravity. The governing equations (with flat bottom) are

∂

∂t

[
h
hw

]
+

∂

∂x

[
hw

hw2 + 1
2
gh2

]
= 0 (2.10)

Here h and w are the water depth and velocity, and g stands for the gravity acceleration

constant. In the absence of dry bed, the water depth is always positive and

Ω = {u ∈ R
2 : h > 0} (2.11)

The total (kinetic and potential) energy U = 1
2
hw2 + 1

2
gh2 is a convex function of u ∈ Ω and

serves as an entropy function with

v =

[
gh− 1

2
w2

w

]
, F =

1

2
hw3 + gh2w, φ =

1

2
gh2, ψ =

1

2
gh2w (2.12)

Example 2.2.3. The Euler equations of gas dynamics are

∂

∂t



ρ
ρw
E


 +

∂

∂x




ρw
ρw2 + p
w(E + p)


 = 0 (2.13)

Here ρ, w and p are the density, velocity and pressure of the gas. E is the total energy. In

the case of polytropic ideal gas, the equation of state is

E =
1

2
ρw2 +

p

γ − 1
(2.14)

7



where γ is ratio of specific heats. γ = 5/3 for monatomic gas and γ = 7/5 corresponds to

diatomic molecules. Assume that there is no vacuum. Then density and pressure need to be

positive and

Ω = {u ∈ R
3 : ρ > 0, p > 0} = {u ∈ R

3 : ρ > 0, (γ − 1)(E − (ρw)2

2ρ
) > 0} (2.15)

We can verify that Ω is a convex set and (2.13) is hyperbolic in Ω. The physical specific

entropy is s = log(pρ−γ). Harten [29] proved that there exists a family of entropy pairs that

are related to s and symmetrize (2.13). However, if we also want to symmetrize the viscous

term in the compressible Navier-Stokes equations with heat conduction [37], the only choice

of entropy pair satisfying (2.7) is

U = − ρs

γ − 1
, F = − ρws

γ − 1
(2.16)

The corresponding entropy variables and potential function-potential flux pair are

v =



γ−s
γ−1

− ρw2

2p

ρw/p
−ρ/p


 , φ = ρ, ψ = ρw (2.17)

3 Entropy stable high order nodal DG schemes in one

dimension

In this section, we proceed to unravel the entropy stable nodal DG scheme for one-dimensional

systems of conservation laws
∂u

∂t
+
∂f(u)

∂x
= 0 (3.1)

Let us make some standard assumptions. Firstly, we have periodic or compactly supported

boundary conditions. Secondly, time is always continuous, so that we conduct semidiscrete

analysis. Finally, the numerical solution is kept within the set Ω. For instance, density and

pressure are assumed to be positive for Euler equations.

Our starting point is the classical DG scheme. Given a domain decomposition

x1/2 < x3/2 < · · · < xN+1/2, Ii = [xi−1/2, x1+1/2], ∆xi = xi+1/2 − xi−1/2

and the discrete DG space of polynomial degree k

Vk
h = {wh : wh|Ii ∈ [Pk(Ii)]

p, 1 ≤ i ≤ N} (3.2)

we seek uh ∈ Vk
h such that for each wh ∈ Vk

h and 1 ≤ i ≤ N ,
∫

Ii

∂uTh
∂t

whdx−
∫

Ii

f(uh)
T dwh

dx
dx = −f̂Ti+1/2wh(x

−
i+1/2) + f̂Ti−1/2wh(x

+
i−1/2) (3.3)
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where f̂i+1/2 is a single-valued numerical flux at the element interface, depending on the

values of numerical solution from both sides

f̂i+1/2 = f̂(uh(x
−
i+1/2),uh(x

+
i+1/2)) (3.4)

In general, f̂i+1/2 is derived from some (exact or approximate) Riemann solver. (3.3) is

usually called the weak form. We obtain the strong form after a simple integration by parts
∫

Ii

(
∂uTh
∂t

+
f(uh)

T

∂x
)whdx = (f(uh(x

−
i+1/2))−f̂i+1/2)

Twh(x
−
i+1/2)−(f(uh(x

+
i−1/2))−f̂i−1/2)

Twh(x
+
i−1/2)

(3.5)

We are going to apply Legendre-Gauss-Lobatto quadrature rule with exactly k+1 quadrature

points to the two integrals in (3.3). Since the algebraic degree of accuracy is 2k − 1, the

Gauss-Lobatto quadrature is not exact for the first integral, but is exact for the second term

if f is linear.

3.1 Gauss-Lobatto quadrature and summation-by-parts

Consider the reference element I = [−1, 1] associated with Gauss-Lobatto quadrature points

−1 = ξ0 < ξ1 < · · · < ξk = 1

and quadrature weights {ωj}kj=0. Define the Lagrangian (nodal) basis polynomials

Lj(ξ) =

N∏

l=0
l 6=j

ξ − ξl
ξj − ξl

such that Lj(ξl) = δjl. Let 〈·, ·〉 and 〈·, ·〉ω denote the continuous and discrete inner product

〈u, v〉 =

∫ 1

−1

uvdξ, 〈u, v〉ω =
k∑

j=0

ωju(ξj)v(ξj)

The difference matrix D is set to be

Djl = L′
l(ξj) (3.6)

and the mass matrix M and stiffness matrix S are defined as

Mjl = 〈Lj , Ll〉ω = ωjδjl, so that M = diag{ω0, · · · , ωk} (3.7)

Sjl = 〈Lj, L′
l〉ω = 〈Lj, L′

l〉 (3.8)

The discrete inner product contributes to a diagonal mass matrix, but also introduces some

integration error. Such technique is typically termed mass lumping. On the other hand, the

stiffness matrix is integrated exactly as Lj(ξ)L
′
l(ξ) is of degree 2k − 1.
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Theorem 3.1 (summation-by-parts property). Set the boundary matrix

B = diag{−1, 0, · · · , 0, 1} (3.9)

Then we have

S = MD, MD +DTM = S + ST = B (3.10)

which is a discrete analogue of integration by parts.

Proof. Since Sjl =
∑k

j=0 ωrLj(ξr)L
′
l(ξr) = ωjL

′
l(ξj) = MjjDjl, clearly S = MD. Moreover,

Sjl + Slj = 〈Lj, L′
l〉 + 〈Ll, L′

j〉 = Lj(1)Ll(1) − Lj(−1)Ll(−1) = δkjδkl − δ0jδ0l

Hence B = S + ST .

Theorem 3.2. For each 0 ≤ j ≤ k we have

k∑

l=0

Djl =

k∑

l=0

Sjl = 0,

k∑

l=0

Slj = τj =





−1 j = 0

1 j = k

0 1 ≤ j ≤ k − 1

(3.11)

Proof. Since the sum of Lagrangian basis
∑k

l=0 Ll(ξ) = 1,

k∑

l=0

Djl =

k∑

l=0

L′
l(ξj) = 0,

k∑

l=0

Sjl = ωj

k∑

l=0

Djl = 0

k∑

l=0

Slj =

k∑

l=0

Bjl −
k∑

l=0

Sjl =

K∑

l=0

Bjl = Bjj = τj

Using the matrices above, we are able to convert (3.3) into a compact matrix vector for-

mulation based on nodal values. For clarity of notations we first work on scalar conservation

laws. The weak form is
∫

Ii

∂uh
∂t

whdx−
∫

Ii

f(uh)
dwh
dx

dx = −f̂i+1/2wh(x
−
i+1/2) + f̂i−1/2wh(x

+
i−1/2) (3.12)

By the change of variables between Ii and the reference element I = [−1, 1]

xi(ξ) =
1

2
(xi−1/2 + xi+1/2) +

ξ

2
∆xi

the weak form on I is

∆xi
2

∫

I

∂uh
∂t

whdξ −
∫

I

f(uh)
dwh
dξ

dξ = −f̂i+1/2wh(xi(1)) + f̂i−1/2wh(xi(−1)) (3.13)
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Now we bring forth vector notations. Let ~ui denote the values of uh at Gauss-Lobatto points

~ui =
[
uh(xi(ξ0)) · · · uh(xi(ξk))

]T

Likewise, we can define ~wi and ~f i

~wi =
[
wh(xi(ξ0)) · · · wh(xi(ξk))

]T
, ~f i =

[
f(ui0) · · · f(uik)

]T

We also put the numerical fluxes into a vector

~f i∗ =
[
f̂i−1/2 0 · · · 0 f̂i+1/2

]T

After applying Gauss-Lobatto quadrature, (3.13) becomes

∆xi
2

~wi
T
M
d~ui

dt
− (D ~wi)TM ~f i = − ~wi

T
B~f i∗ (3.14)

Since ~wi can be arbitrary,

∆xi
2
M
d~ui

dt
− ST ~f i = −B~f i∗ (3.15)

which is the nodal DG formulation [33]. Using the SBP property (3.10), we can deduce

another equivalent characterization, corresponding to the strong form (3.5).

∆xi
2
M
d~ui

dt
+ S ~f i = B(~f i − ~f i∗)

∆xi
2

d~ui

dt
+D~f i = M−1B(~f i − ~f i∗) (3.16)

It is also closely related to the spectral collocation method with a penalty type boundary

treatment.

For systems, the nomenclature is essentially the same. The weak and strong nodal forms

are
∆xi
2

M
d~ui

dt
− ST ~f i = −B~f i∗ (3.17)

∆xi
2

d~ui

dt
+ D~f i = M−1B(~f i − ~f i∗) (3.18)

Everything is understood as a Kronecker product herein.

~ui =



uh(xi(ξ0))

...
uh(xi(ξk))


 , ~f i =



f(ui0)

...
f(uik)


 , ~f i∗ =



f̂i−1/2

...

f̂i+1/2




M = M ⊗ Ip, D = D ⊗ Ip, S = S ⊗ Ip, B = B ⊗ Ip
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These nodal DG forms do not satisfy any entropy condition, even for the square entropy

function where we have entropy inequality for classical DG forms. However, due to the

flexibility of nodal representation, we can modify these nodal forms to make them entropy

stable. The key to this modification is the entropy conservative fluxes and entropy stable

fluxes proposed by Tadmor [56, 57], and defined as follows.

Definition 3.1. A consistent, symmetric two-point numerical flux fS(uL,uR) is entropy

conservative for a given entropy function U if

(vR − vL)
T fS(uL,uR) = ψR − ψL (3.19)

where vL,R and ψL,R are entropy variables and potential fluxes at the left and right states.

Definition 3.2. A consistent two-point numerical flux f̂(uL,uR) is entropy stable for a given

entropy function U if

(vR − vL)
T f̂(uL,uR) − (ψR − ψL) ≤ 0 (3.20)

3.2 Single element: entropy conservative fluxes

The first step is to achieve internal entropy balance. We will concentrate on a single element

and omit the superscript i. The modified scheme reads

∆x

2

duj
dt

+ 2

k∑

l=0

DjlfS(uj,ul) =
τj
ωj

(fj − f∗,j) (3.21)

Here fS(uj,ul) is the symmetric entropy conservative flux for a given entropy function U .

Notice that (3.18) can be written as

∆x

2

duj
dt

+

k∑

l=0

Djlf(ul) =
τj
ωj

(fj − f∗,j) (3.22)

Hence if we set fS(uj,ul) = 1
2
(f(uj) + f(ul))), we recover (3.18) (

∑k
l=0Djlf(uj) = 0). How-

ever, generally 1
2
(f(uj) + f(ul))) is not entropy conservative.

The following theorem states that (3.21) is conservative, high order accurate and (inter-

nally) entropy conservative. The theorem is presented in [15]. We refine the proofs therein.

Theorem 3.3. If fS(uj,ul) is consistent and symmetric, then (3.21) is conservative and

high order accurate. If we further assume that fS(uj,ul) is entropy conservative in the sense

of (3.19), then (3.21) is also entropy conservative within a single element.
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Remark 3.1. The conservation and entropy conservation of the scheme are both in the

discrete sense. Specifically, the discrete integral of u and U in the element are
∑k

j=0
∆x
2
ωjuj

and
∑k

j=0
∆x
2
ωjUj. As for accuracy, assume that u is a smooth solution. Then the penalty

term vanishes and we will show the truncation error at each collocation point is of k-th order

∂f(u)

∂x
(x(ξj)) −

4

∆x

k∑

l=0

DjlfS(u(x(ξj)),u(x(ξl))) = O(∆xk)

Notice that the truncation error is suboptimal, partly due to the fact that the Gauss-Lobatto

quadrature is exact for polynomials of degree only up to 2k−1. In order to maintain optimal

convergence, the algebraic degree of accuracy should be at least 2k (consult [8]). We will see

suboptimal convergence in some numerical tests.

Proof. Conservation:

d

dt
(
k∑

j=0

∆x

2
ωjuj) =

k∑

j=0

τj(fj − f∗,j) − 2
k∑

j=0

k∑

l=0

SjlfS(uj ,ul)

=
k∑

j=0

τj(fj − f∗,j) −
k∑

j=0

k∑

l=0

(Sjl + Slj)fS(uj,ul) (by symmetry)

=
k∑

j=0

τj(fj − f∗,j) −
k∑

j=0

k∑

l=0

BjlfS(uj ,ul) (SBP property)

=
k∑

j=0

τj(fj − f∗,j) −
k∑

j=0

τjf(uj) = −(f∗,k − f∗,0)

The only terms left are the interface numerical fluxes, which supports local conservation. It is

also globally conservative since the interface numerical fluxes will cancel out when summing

over elements.

Accuracy: let f̃S(x, y) = fS(u(x),u(y)) and f̃(x) = f(u(x)). Then f̃S is also symmetric

and consistent in the sense that f̃S(x, x) = f̃(x). Hence

∂f̃

∂x
(x) =

∂f̃S
∂x

(x, x) +
∂f̃S
∂y

(x, x) = 2
∂f̃S
∂y

(x, x)

Since the difference matrix D is exact for polynomials of degree up to k,

4

∆x

k∑

l=0

Djlf̃S(x(ξj), x(ξl)) = 2
∂f̃S
∂y

(x(ξj), x(ξj)) + O(∆xk) =
∂f̃

∂x
(x(ξj)) + O(∆xk)

Therefore the truncation error is O(∆xk) and the scheme is high order accurate.
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Entropy conservation:

d

dt
(

k∑

j=0

∆x

2
ωjUj) =

k∑

j=0

∆x

2
ωjv

T
j

duj
dt

=

k∑

j=0

τjv
T
j (fj − f∗,j) − 2

k∑

j=0

k∑

l=0

Sjlv
T
j fS(uj ,ul)

The second term is

k∑

j=0

k∑

l=0

(Bjl + Sjl − Slj)v
T
j fS(uj ,ul) =

k∑

j=0

τjv
T
j fj +

k∑

j=0

k∑

l=0

Sjl(vj − vl)
T fS(uj ,ul)

=
k∑

j=0

τjv
T
j fj +

k∑

j=0

k∑

l=0

Sjl(ψj − ψl) =
k∑

j=0

τj(v
T
j fj − ψj)

Then

d

dt
(

k∑

j=0

∆x

2
ωjUj) =

k∑

j=0

τj(ψj − vTj f∗,j) = (ψk − vTk f∗,k) − (ψ0 − vT0 f∗,0) (3.23)

We only have element boundary terms, so that the scheme is locally entropy conservative.

The global entropy stability remains unclear and will be discussed later.

In the scalar case, the entropy conservative flux is uniquely determined

fS(uL, uR) =

{
ψR−ψL

vR−vL
uL 6= uR

f(uL) uL = uR
(3.24)

A prototype model is the Burgers equation with square entropy function where f = U =
u2

2
. Then fS(uL, uR) = 1

6
(u2

L + uLuR + u2
R), which actually corresponds to the nodal DG

discretization of the canonical skew-symmetric splitting of Burgers equation [19, 55].

For systems, (3.19) is underdetermined and fS(uL,uR) is not unique. A generic choice of

entropy conservative flux is the following path integration [57].

fS(uL,uR) =

∫ 1

0

g(vL + λ(vR − vL))dλ (3.25)

which may not have an explicit formula and can be computationally expensive. Fortunately,

for many systems we are able to derive explicit entropy conservative fluxes that are easy to

compute. Let us revisit the examples in Section 2.

Example 3.2.1. For a linear symmetric system, the entropy stable flux is simply the arith-

metic mean

fS(uL,uR) =
1

2
(AuL + AuR) (3.26)

Therefore, (3.18) is already locally entropy (L2) conservative.
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Example 3.2.2. For shallow water equations, an explicit entropy conservative flux is

fS(uL,uR) =

[
1
2
(hLwL + hRwR)

1
4
(hLwL + hRwR)(wL + wR) + 1

2
ghLhR

]
(3.27)

It is also equivalent to the skew-symmetric splitting procedure in [20].

Example 3.2.3. For Euler equations, Ismail and Roe [38] suggested the following affordable

entropy conservative flux
f 1
S = z2(z3)log

f 2
S =

z3

z1
+
z2

z1
f 1
S

f 3
S =

1

2

z2

z1
(
γ + 1

γ − 1

(z3)log

(z1)log
+ f 2

S)

(3.28)

where

z =



z1

z2

z3


 =

√
ρ

p




1
w
p




zs and (zs)log are the arithmetic mean and the logarithmic mean

zs =
1

2
(zsL + zsR), (zs)log =

zsR − zsL
log zsR − log zsL

, s = 1, 2, 3

Another entropy conservative flux, which also preserves kinetic energy, was recommended

by Chandrashekar in [7]:

f 1
S = (ρ)logw

f 2
S =

ρ

2β
+ wf 1

S

f 3
S =

( 1

2(γ − 1)(β)log
− 1

2
w2

)
f 1
S + wf 2

S

(3.29)

where

β =
ρ

2p

Due to the presence of the logarithmic mean, these fluxes are no longer equivalent to any

kind of splitting.

3.3 Multiple elements: entropy stable fluxes

The single element analysis is not enough in that we are left with the element boundary

terms in (3.23). The next theorem establishes that entropy stable interface numerical fluxes

guarantee non-positive interface entropy production rate.
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Theorem 3.4. If the numerical flux f̂ at the element interface is entropy stable, then the

scheme (3.21) is entropy stable.

Proof. According to (3.23), the entropy production rate at the interface is

(ψik − (vik)
T f̂i+1/2) − (ψi+1

0 − (vi+1
0 )T f̂i+1/2) = (vi+1

0 − vik)
T f̂(uik,u

i+1
0 ) − (ψi+1

0 − ψik)

which is non-positive as f̂ is entropy stable. By the assumption of periodic or compactly

supported boundary condition, the whole scheme is entropy stable.

Remark 3.2. Along the lines of [15], the entropy stable nodal DG scheme can be written in

the finite volume manner

∆xi
2
ωj
duij
dt

+ (f ij+1/2 − f ij−1/2) = 0 (3.30)

where

f ij+1/2 =






f̂i−1/2 j = −1

f̂i+1/2 j = k

2
∑j

l=0

∑k
r=j+1 SlrfS(u

i
l,u

i
r) 0 ≤ j ≤ k − 1

(3.31)

The entropy stability is also transformed into

∆xi
2
ωj
dU i

j

dt
+ (F i

j+1/2 − F i
j−1/2) ≤ 0 (3.32)

where

F i
j+1/2 =





1
2
((vi−1

k + vi0)
T f̂i−1/2 − (ψi−1

k + ψi0)) j = −1
1
2
((vik + vi+1

0 )T f̂i+1/2 − (ψik + ψi+1
0 )) j = k∑j

l=0

∑k
r=j+1 Slr((v

i
l + vir)

T fS(u
i
l,u

i
r) − (ψl + ψr)) 0 ≤ j ≤ k − 1

(3.33)

A Lax-Wendroff type argument will yield that, if a sequence of numerical solutions whose

mesh size tends to zero converges boundedly and a.e. to some function, then the function

is a weak solution of (1.1) supporting the required entropy condition. This is enough to

determine the entropy solution of scalar conservation laws with strictly convex flux functions

[48].

One may be tempted to let f̂ be the entropy conservative flux, giving rise to an entropy

conservative scheme. However, entropy should be dissipated at shock waves and entropy

conservative schemes will produce strong oscillations near shocks. The construction of en-

tropy stable fluxes can be divided into two categories. In [38, 7, 5, 17], the authors build

f̂ by adding some numerical diffusion operators, of Lax-Friedrichs type or Roe type, to the
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entropy conservative flux, so that the amount of entropy dissipation can be precisely de-

termined. On the other hand, it has been known for decades that the widely used upwind

numerical fluxes, including monotone fluxes for scalar conservation laws and Godunov-type

fluxes for systems, are entropy stable. Here we will follow the latter approach because of

other desirable properties of upwind fluxes (e.g. bound-preserving property).

Theorem 3.5. In the scalar case, suppose f̂(uL, uR) is monotone such that f̂ is a non-

decreasing function of its first argument and a non-increasing function of its second argument.

Then f̂ is entropy stable.

Proof. By the mean value theorem, there exists ṽ between vL and vR such that

ψR − ψL = (vR − vL)g(ṽ) = (vR − vL)f(u(ṽ))

Since u(v) is an increasing function, u(ṽ) is also between uL and uR. By the monotonicity

of f̂ we have

(uR − uL)(f̂(uL, uR) − f(u(ṽ))) ≤ 0 (3.34)

Consequently

(ψR − ψL) − f̂(uL, uR)(vR − vL) = (vR − vL)(f(u(ṽ)) − f̂(uL, uR)) ≥ 0

We remark that (3.34) is exactly the characterization of the E-flux [46].

For systems, most popular numerical fluxes rely on Riemann solvers, which exactly com-

pute or approximate the solution of the Riemann problem





∂u
∂t

+ ∂f(u)
∂x

= 0

u(x, 0) =

{
uL x ≤ 0

uR x > 0

(3.35)

The solution of the Riemann problem is self-similar. We assume that our Riemann solver also

has self-similar structure and is denoted by q(x/t;uL,uR). Let λL and λR be the leftmost

and rightmost wave speed such that

q(r;uL,uR) =

{
uL r ≤ λL

uR r ≥ λR
(3.36)

The Riemann solver should be conservative. For any SL ≤ min{λL, 0} and SR ≥ max{λR, 0},
integrating along the rectangle [SL, SR] × [0, 1] yields

∫ SR

SL

q(r;uL,uR)dr − (SRuR − SLuL) + (fR − fL) = 0 (3.37)
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The Godunov-type flux follows from integration along [0, SR] × [0, 1] or [SL, 0] × [0, 1] [32]:

f̂(uL,uR) = fR +

∫ SR

0

q(r;uL,uR)dr − SRuR = fL −
∫ 0

SL

q(r;uL,uR)dr − SLuL (3.38)

The following theorem reveals the condition to make f̂ entropy stable.

Theorem 3.6. Assume that the Riemann solver also satisfies the entropy inequality such

that for any SL ≤ min{λL, 0} and SR ≥ max{λR, 0},
∫ SR

SL

U(q(r;uL,uR))dr − (SRUR − SLUL) + FR − FL ≤ 0 (3.39)

Then the corresponding Godunov-type flux is entropy stable.

Proof. By (3.38) and Jensen’s inequality,

∫ SR

0

U(q(r;uL,uR))dr ≥ SRU(
1

SR

∫ SR

0

q(r;uL,uR)dr) = SRU(uR +
1

SR
(f̂(uL,uR) − fR))

∫ 0

SL

U(q(r;uL,uR))dr ≥ −SLU(− 1

SL

∫ 0

SL

q(r;uL,uR)dr) = −SLU(uL +
1

SL
(f̂(uL,uR)− fL))

Summing them up and applying (3.39) gives

SR(U(uR+
1

SR
(f̂(uL,uR)− fR))−UR)−SL(U(uL+

1

SL
(f̂(uL,uR)− fL))−UL)+FR−FL ≤ 0

We send SR → ∞ and SL → −∞. The first term converges to vTR(f̂(uL,uR) − fR) and the

second term converges to vTL(f̂(uL,uR) − fL). The inequality above simplifies to

vTR(f̂(uL,uR)− fR)− vTL(f̂(uL,uR)− fL) +FR − FL = (vR − vL)T f̂(uL,uR)− (ψR − ψL) ≤ 0

which is exactly the condition of an entropy stable flux.

The Riemann problem can be solved exactly for shallow water equations and Euler equa-

tions. The resulting numerical flux is called Godunov flux. Since the exact solutions satisfy

entropy conditions, we immediately have the following corollary.

Corollary 3.1. Godunov flux is entropy stable.

The computation of exact Riemann solver often requires several Newton-Raphson itera-

tion steps. Practically we resort to approximate Riemann solvers to reduce computational
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cost. A commonly used approximate Riemann solver is the HLL Riemann solver [29], which

assumes a constant middle state. We first set values to λL and λR. Then

q(r;uL,uR) =






uL r ≤ λL

uR r ≥ λR
λRuR−λLuL−(fR−fL)

λR−λL
λL < r < λR

(3.40)

Inserting (3.38), we obtain the HLL flux

f̂(uL,uR) =






fL λL ≥ 0

fR λR ≤ 0
λRfL−λLfR+λLλR(uR−uL)

λR−λL
λL < 0 < λR

(3.41)

Note that the local Lax-Friedrichs flux is simply a special case of HLL flux by choosing

λL = −λ and λR = λ. The HLL flux (and local Lax-Friedrichs flux) is entropy stable

provided we approximate λL and λR properly.

Corollary 3.2. If λL is not larger than the true leftmost wave speed and λR is not smaller

than the true rightmost wave speed, the HLL flux is entropy stable.

Proof. It suffices to prove (3.39). Since the approximate wave fan is larger than the true wave

fan and the middle state is constant. The HLL Riemann solver is simply an average of the

exact Riemann solver. Another application of Jensen’s inequality completes the proof.

The computation of λL and λR is, however, not trivial. Simplistic approximation usually

fails to bound the true wave speeds. Toro [59, 60] recommends the two-rarefaction approx-

imation, and Guermond and Popov [27] prove that the two-rarefaction approximated wave

speeds indeed provide the correct bounds for Euler equations with 1 ≤ γ ≤ 5/3. We can

also prove the similar result for shallow water equations. More details on two-rarefaction

approximation will be given in Appendix A.

Remark 3.3. Semidiscrete analysis is a crucial assumption. Fully discrete entropy stability

analysis is available for first-order schemes, and implicit time integration [44]. The entropy

stability of high-order schemes equipped with explicit time integration, such as strong stability

preserving (SSP) Runge-Kutta methods [25, 52], is still an open problem. There are positive

results for the L2 stability of the Runge-Kutta DG discretization of linear advection equation

[64], but the nonlinear (in the sense of both flux function and entropy function) analogue is

difficult to prove.

19



3.4 Compatibility with limiters

As in the classical DG scheme, it is possible to design TVD/TVB limiter and / or bound-

preserving limiter as an extra stabilizing mechanism. Limiters tend to squeeze the data

towards the cell average, and hence make total entropy smaller. We formulate such intuition

in the following lemma.

Lemma 3.1. Suppose αj > 0,uj ∈ Ω for 0 ≤ j ≤ k with
∑k

j=0 αj = 1. Define the

average u =
∑k

j=0 αjuj. We modify these values without changing the average. That is, let

ũj = u + θj(uj − u) such that 0 ≤ θj ≤ 1 and
∑k

j=0 αjũj = u. Then for any convex entropy

function U , we have
k∑

j=0

αjU(ũj) ≤
k∑

j=0

αjU(uj) (3.42)

Proof. Since
∑k

j=0 αjũj =
∑k

j=0 αj(u + θj(uj − u)) = u,

k∑

j=0

αj(1 − θj)uj = (
k∑

j=0

αj(1 − θj))u

By the convexity of U ,

U(ũj) ≤ θjU(uj) + (1 − θj)U(u), (
k∑

j=0

αj(1 − θj))U(u) ≤
k∑

j=0

αj(1 − θj)U(uj)

Hence

k∑

j=0

αjU(ũj) ≤
k∑

j=0

αj(θjU(uj) + (1 − θj)U(u)) =

k∑

j=0

αjθjU(uj) + (

k∑

j=0

αj(1 − θj))U(u)

≤
k∑

j=0

αjθjU(uj) +

k∑

j=0

αj(1 − θj)U(uj) =

k∑

j=0

αjU(uj)

The bound-preserving limiter was developed by Zhang and Shu in [66, 67] to maintain

the physical bound Ω of numerical approximations, such as the maximum principle for scalar

conservation laws and positivity of density and pressure for Euler equations. This technique

is constructed on Gauss-Lobatto nodes, so that it perfectly matches our nodal DG scheme.

We will clarify the theoretical issues of bound-preserving limiter in Appendix B. In a nutshell,

we compute the cell average ui =
∑k

j=0
ωj

2
uij and perform a simple linear limiting procedure

with some 0 ≤ θ ≤ 1 such that ũij = ui + θ(uij − ui) ∈ Ω. Clearly, we have the following

entropy stability result due to Lemma 3.1.
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Theorem 3.7. Bound-preserving limiter does not increase entropy.

Bound-preserving limiter helps enhance robustness, but the solution profile may still

contain oscillations. The TVD/TVB limiter is well suited for damping oscillations. For

scalar conservation laws, the TVD type limiting procedure can be defined as

ũi0 = ui −m(ui − ui0, u
i+1 − ui, ui − ui−1), ũik = ui +m(uik − ui, ui+1 − ui, ui − ui−1)

ũij = ui + θ(uij − ui) with θ =
(ũi0 − ui) + (ũik − ui)

(ui0 − ui) + (uik − ui)
, 1 ≤ j ≤ k − 1

We set θ such that cell average does not change. The minmod function m is

m(a, b, c) =

{
smin{|a|, |b|, |c|} if s = sign(a) = sign(b) = sign(c)

0 otherwise

The TVB (total variation bounded) limiter is devised by replacing m with the modified

minmod function m̃ [50].

m̃(a, b, c) =

{
a if |a| ≤Mh2

sign(a) max{|m(a, b, c)|,Mh2} if |a| > Mh2

Here, h = max1≤i≤N ∆xi and M is a parameter that has to be tuned adequately.

Theorem 3.8. For scalar conservation laws, the TVD/TVB limiter mentioned above does

not increase entropy.

Proof. We only focus on the TVD limiter. The proof for the TVB limiter is exactly the

same. Without loss of generality we assume that ui = 0. According to Lemma 3.1, we only

need to show 0 ≤ ũij/u
i
j ≤ 1 for each 0 ≤ j ≤ k. By the definition of minmod function,

ũi0
ui0

= −m(−ui0,−ui−1, ui+1)

ui0
∈ [0, 1],

ũik
uik

=
m(uik,−ui−1, ui+1)

uik
∈ [0, 1]

It remains to prove that 0 ≤ θ ≤ 1. If ui0 and uik have the same sign, it is obvious. Otherwise

we assume that ui0 < 0, uik > 0 and ui0 + uik ≥ 0. Then ũi0 = −min{−ui0, (ui−1)−, (ui+1)+}
and ũik = min{uik, (ui−1)−, (ui+1)+}. It is easy to verify that 0 ≤ ũi0 + ũik ≤ ui0 + uik. Other

cases can be proved in a similar fashion.

Remark 3.4. In general the TVD/TVB limiter for systems is not guaranteed to be entropy

stable. The reason is that different components or characteristics are limited independently,

which does not satisfy the assumption of Lemma 3.1 and the influence on total entropy is

undecided. Certainly we could come up with a limiter that squeeze all components to the

same degree, but it might be too restrictive.
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Remark 3.5. There is a still a gap in our result: entropy stability relies on semi-discrete

analysis, while limiters can only be applied to fully discrete schemes. If we assume the fully

discrete version of (3.21) is entropy stable, since limiters do not increase total entropy, the

scheme modified by limiters is also entropy stable.

4 Generalization to triangular meshes

In this section, we move to the two-dimensional systems of conservation laws

∂u

∂t
+
∂f1(u)

∂x1
+
∂f2(u)

∂x2
= 0 (4.1)

The one-dimensional framework can be directly applied to rectangular meshes through tensor

product. The generalization to triangular meshes requires some extra effort in that we need

to find high order SBP operators on triangles. We prove that the SBP property is related

to a special quadrature rule of degree 2k − 1 on the triangle and of degree 2k over edges.

The mass matrix and boundary matrices come from quadrature weights and the difference

matrices can be devised appropriately.

4.1 SBP operators on triangles

The computational domain is divided into triangular elements. We assume periodic or

compactly supported boundary condition, and that there is no hanging node in the triangular

mesh. Without loss of generality we work on the reference element

T = {x : x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1} (4.2)

Let k ∈ N be the order of SBP operators. Pk(T ) is the set of polynomials of degree up to k

restricted on T . The dimension of Pk(T ) is

n∗
k =

(k + 1)(k + 2)

2

We aim to find a degree 2k − 1 quadrature rule associated with nk nodes {xj}nk

j=1 and

positive weights {ωj}nk

j=1. Vector notations are again adopted. The restriction of function u

on quadrature points is denoted by

~u =
[
u(x1) · · · u(xnk)

]T
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Let {pl(x)}n
∗

k

l=1 be a set of basis functions of Pk(T ). We define the Vandermonde matrix V

whose columns are the basis functions evaluated at nodes.

V =
[
~p1 ~p2 · · · ~pn∗

k

]

Likewise we introduce Vx1
and Vx2

whose columns are derivatives of the basis functions.

Vx1
=

[
∂x1

~p1 ∂x1
~p2 · · · ∂x1

~pn∗

k

]
, Vx2

=
[
∂x2

~p1 ∂x2
~p2 · · · ∂x2

~pn∗

k

]

The k-th order SBP operators, constructed on nodes {xj}nk

j=1, are defined as follows. It is

stronger than the definition in [34] as we also require diagonal boundary matrices.

Definition 4.1. Consider the diagonal mass matrix consisting of quadrature weights.

M = diag{ω1, · · · , ωnk
} (4.3)

Difference matrices D1, D2 are k-th order SBP approximation of the gradient operator if

(i). D1~p = ∂x1
~p and D2~p = ∂x2

~p for any p ∈ Pk(T ). In other words,

D1V = Vx1
, D2V = Vx2

(4.4)

(ii). Let S1 = MD1 and S2 = MD2 be the stiffness matrices. We have the SBP property

S1 + ST1 = B1 = diag{τ1,1, · · · , τ1,nk
}, S2 + ST2 = B2 = diag{τ2,1, · · · , τ2,nk

} (4.5)

B1 and B2 are diagonal boundary matrices such that τ1,j = τ2,j = 0 whenever xj /∈ ∂T .

B1 and B2 actually represent a quadrature rule over edges. The next theorem states that

the algebraic degree of accuracy of the boundary quadrature rule is at least 2k.

Theorem 4.1. Assume that there exist k-th order SBP difference matrices D1, D2, and

boundary matrices B1, B2. Then for any p ∈ P2k(T ), we have

nk∑

j=0

τ1,jp(x
j) =

∫

∂T

pn1dS,

nk∑

j=0

τ2,jp(x
j) =

∫

∂T

pn2dS (4.6)

where n = [n1 n2]
T is the outer normal vector on ∂T .

Proof. For any p1, p2 ∈ Pk(T ), integration by parts tells us

∫

T

(p1
∂p2

∂x1

+ p2
∂p1

∂x1

)dx =

∫

∂T

p1p2n1dS
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Since the left hand side is an integration of a degree 2k − 1 polynomial, it is equal to the

quadrature

~p1
TM∂x1

~p2 + ~p2
TM∂x1

~p1 = ~p1
TMD1 ~p2 + ~p2

TMD1 ~p1

= ~p1
T (S1 + ST1 )~p2 = ~p1

TB1 ~p2 =

nk∑

j=1

τ1,jp1(x
j)p2(x

j)
(4.7)

Hence the first equation of (4.6) holds for all p = p1p2 such that p1, p2 ∈ Pk(T ). In particular

it is satisfied by all monomials with degree up to 2k, and so satisfied by all p ∈ P2k(T ). By

the same token we can prove the second equation.

Corollary 4.1. If B1 and B2 correspond to a degree 2k boundary quadrature rule, then

V TMVx1
+ V T

x1
MV = V TB1V, V TMVx2

+ V T
x2
MV = V TB2V (4.8)

Proof. It is simply a rephrasing of (4.7).

We now turn to the opposite direction. The following theorem guarantees the existence

of SBP difference matrices as long as we have B1 and B2 satisfying (4.6). To the best of

our knowledge, this is the first construction of triangular SBP operators with diagonal mass

matrix and diagonal boundary matrices.

Theorem 4.2. Assume that nk ≥ n∗
k and V has linearly independent columns. If B1 and B2

correspond to a degree 2k boundary quadrature rule, there exist k-th order difference matrices

that meet the SBP property. To be more specific, if {pl(x)}n
∗

k

l=1 is an orthonormal set under

discrete norm M such that V TMV = I, then we can compute D1 and D2 by

D1 =
1

2
(M−1 + V V T )B1(I − V V TM) + Vx1

V TM (4.9a)

D2 =
1

2
(M−1 + V V T )B2(I − V V TM) + Vx2

V TM (4.9b)

Proof. It suffices to verify that the matrices given by (4.9) satisfy (4.4) and (4.5). For a

more general basis set we can always orthonormalize it and apply (4.9). Since V TMV = I

and (I − V V TM)V = 0, D1V = Vx1
and D2V = Vx2

. As for the SBP property,

S1 = MD1 =
1

2
(I +MV V T )B1(I − V V TM) +MV1V

TM

=
1

2
B1 +

1

2
(MV V TB1 − B1V V

TM) +M(Vx1
V T − 1

2
V V TB1V V

T )M

After summing S1 and its transpose, the first term becomes B1 and the second term vanishes.

By (4.8), the third term is

M(Vx1
V T + V V T

x1
− V V TB1V V

T )M = M((I − V V TM)Vx1
V T + V V T

x1
(I −MV V T ))M
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Since the columns of Vx1
are linear combinations of columns of V , (I − V V TM)Vx1

= 0,

the third term also vanishes. Therefore S1 + ST1 = B1. The proof of S2 + ST2 = B2 is the

same.

Remark 4.1. In the one-dimensional case, nk = n∗
k = k+1 and V is invertible. We simply

take D = V −1Vx. Here we always need more than n∗
k nodes to accomplish the quadrature

rule, which complicates the derivation of difference matrices.

Our remaining task is to find the quadrature rule that achieves interior and boundary

accuracy simultaneously. For boundary accuracy, we put k+1 Legendre-Gauss points along

each edge. Let {τj}nk

j=1 denote the Legendre-Gauss weights. Then the diagonal elements of

boundary matrices are

τ1,j =

{
n1(x

j)τj xj ∈ ∂T

0 xj /∈ ∂T
, τ2,j =

{
n2(x

j)τj xj ∈ ∂T

0 xj /∈ ∂T

Let us summarize the prerequisites of the quadrature rule.

• It is symmetric so that adjacent elements can be glued together.

• The quadrature weights should be positive to make M positive-definite.

• It is exact for polynomials up to degree 2k − 1.

• The quadrature points include k + 1 Legendre-Gauss points on each edge.

Quadrature rules that meet these requirements are investigated in the literature. We use

the software presented in [63] to obtain the rules of order k = 1, 2, 3 and 44. The locations

of quadrature points are illustrated in Figure 4.1. For reference, we also list the coordinates

of quadrature points and their quadrature weights in Appendix C.

(a) k = 1, nk = 6 (b) k = 2, nk = 10 (c) k = 3, nk = 18 (d) k = 4, nk = 22

Figure 4.1: Distributions of quadrature points on T with k = 1, 2, 3, 4.

4http://lsec.cc.ac.cn/phg/download/quadrule.tar.bz2
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Remark 4.2. The same requirements also arise in [68] where the authors tried to implement

bound-preserving limiter on triangular meshes. They proposed a generic quadrature rule based

on three warped transformation from a unit square to T . However, nk = 3k(k + 1) for such

technique, which is unnecessarily large.

To compute the difference matrices, we follow the standard practice in spectral element

method and start with the set of orthonormal polynomials on triangle [40]. It is not an

orthonormal basis under the discrete norm as the quadrature rule is not equal to exact inte-

gration for polynomials of degree 2k. We still need to perform orthonormalization procedure.

However, the condition number of the Vandermonde matrix will be small enough to prevent

large error. For k = 1, 2, it is possible to use symbolic computation exclusively and compute

the exact values of SBP matrices.

Finally, for a general triangle element T̂ such that the Jacobian matrix of affine mapping

T 7→ T̂ is denoted by J , the local SBP operators are

M̂ = det(J)M

D̂1 =
1

det(J)
(J22D1 − J21D2), D̂2 =

1

det(J)
(−J12D1 + J11D2)

B̂1 = J22B1 − J21B2, B̂2 = −J12B1 + J11B2

(4.10)

Remark 4.3. Conceptually, the SBP framework can be further generalized to

higher dimensional simplex elements and even polygonal elements without any

difficulty, as long as we find the quadrature rules, which could be a challenging

task in practice.

4.2 The entropy stable nodal DG schemes

With the SBP operators at hand, we are ready to mimic the procedure in Section 3 and

develop high order entropy stable nodal DG schemes on triangular meshes. Analogously, we

define the two-dimensional entropy conservative fluxes and entropy stable fluxes.

Definition 4.2. Consistent, symmetric numerical fluxes f1,S(uj,ul) and f2,S(uj ,ul) are en-

tropy conservative for a given entropy function U if

(vl − vj)
T f1,S(uj ,ul) = ψ1,l − ψ1,j , (vl − vj)

T f2,S(uj ,ul) = ψ2,l − ψ2,j (4.11)

Definition 4.3. Given a normal vector n ∈ R
2, a directional numerical flux f̂(u,uout,n) is

consistent if

f̂(u,u,n) = n1f1(u) + n2f2(u) (4.12)
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It is called conservative if

f̂(uout,u,−n) = −f̂(u,uout,n) (4.13)

A consistent and conservative directional numerical flux is entropy stable for a given entropy

function U if

(vout − v)T f̂(u,uout,n) − (ψout

n
− ψn) ≤ 0, where ψn = n1ψ1 + n2ψ2 (4.14)

Here the “out” superscript refers to the value from the other side of the interface.

Computationally efficient entropy conservative fluxes can be described in the same man-

ner as in Section 3.2. The directional numerical fluxes correspond to directional Riemann

solvers with the flux function fn. As a consequence, the upwind numerical fluxes are still

entropy stable. Since two-dimensional shallow water equations and Euler equations are ro-

tationally invariant, the one-dimensional Riemann solvers can be directly used.

For clarity of notations, we explain the entropy stable nodal DG scheme on the reference

element. Numerical solution collocated at the nk quadrature points will be evolved. Let ~u

denote the numerical solution and ~f∗ stand for the vector of interface fluxes:

f∗,j =

{
f̂(uj ,u

out
j ,n(xj)) xj ∈ ∂T

0 xj /∈ ∂T

Similar to (3.21), the entropy stable nodal DG scheme is given by

duj
dt

+ 2

nk∑

l=1

D1,jlf1,S(uj,ul) + 2

nk∑

l=1

D2,jlf2,S(uj ,ul) =
1

ωj
(τ1,jf1,j + τ2,jf2,j − τjf∗,j) (4.15)

The main properties of the scheme are outlined in the following theorem. We will omit most

parts of the proof since it is almost the same as its one-dimensional counterpart.

Theorem 4.3. Assume that f1,S and f2,S are symmetric and consistent, and that f̂ is con-

servative and consistent. Then (4.15) is conservative and k-th order accurate. If we further

assume that f1,S and f2,S are entropy conservative, and that f̂ is entropy stable, (4.15) is

entropy conservative within single element and entropy stable across interfaces.

Proof. The proof of accuracy is the same as Theorem 3.3. As for conservation and entropy

stability, we have

d

dt
(

nk∑

j=1

ωjuj) = −
nk∑

j=1

τjf∗,j (4.16)

and

d

dt
(

nk∑

j=1

ωjUj) =

nk∑

j=1

(τ1,jψ1,j + τ2,jψ2,j − τjv
T
j f∗,j) =

nk∑

j=1

τj(ψn,j − vTj f∗,j) (4.17)
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Hence the scheme is locally conservative and entropy conservative. Since f̂(uj ,u
out
j ,n) and

f̂(uout
j ,uj,−n) cancel out, the scheme is also globally conservative. The entropy production

rate at interface xj is

τj(v
out
j − vj)

T f̂(uj ,u
out
j ,n) − τj(ψ

out
n,j − ψn,j) ≤ 0

Therefore entropy is dissipated at the interface.

Remark 4.4. The bound-preserving limiter can again be imposed naturally without affecting

entropy stability. However, it is hard to design entropy stable TVD/TVB limiters.

Remark 4.5. The link between the entropy stable nodal DG scheme and the classical DG

scheme seems vague due to the fact that the degree of freedom (nk) is larger than the di-

mension of the underlying polynomial basis (n∗
k). We can build the bridge by considering

the virtual element framework [2, 3]. Let V k(T ) be a local space containing Pk(T ) such that

dimV k(T ) = nk. {Ll(x)}nk

l=1 is the set of Lagrangian basis functions such that Ll ∈ V k(T )

and Ll(x
j) = δjl. We define the discrete inner product 〈·, ·〉ω corresponding to M , and dis-

crete bilinear forms 〈·, ·〉τ1 and 〈·, ·〉τ2 corresponding to B1 and B2. Πk
ω is set to be the L2

projection to Pk(T ) under 〈·, ·〉. Recalling (4.9), we can characterize the stiffness matrices

as

S1,jl =
1

2
〈(I + Πk

ω)lj, (I − Πk
ω)ll〉τ1 + 〈Πk

ωlj ,
∂(Πk

ωll)

∂x1
〉ω (4.18a)

S2,jl =
1

2
〈(I + Πk

ω)lj, (I − Πk
ω)ll〉τ2 + 〈Πk

ωlj ,
∂(Πk

ωll)

∂x2
〉ω (4.18b)

If we choose f1,S(uj + ul) = 1
2
(f1(uj) + f1(ul)) and f2,S(uj + ul) = 1

2
(f2(uj) + f2(ul)), (4.15)

turns into the nodal DG scheme

M
d~u

dt
− ST1

~f1 − ST2
~f2 = −B~f∗, B = B ⊗ Ip, B = diag{τ1, · · · , τnk

} (4.19)

with virtual element type stiffness matrices.

4.3 Wall boundary condition of Euler equations

So far we have always assumed periodic or compactly supported boundary condition. There

is a need to investigate the solid wall boundary condition of Euler equations. We will prove

that the commonly used mirror state treatment is entropy stable. This subsection extends

the one-dimensional analysis in [54].

Consider the two-dimensional Euler equation

∂

∂t




ρ
ρw1

ρw2

E


 +

∂

∂x




ρw1

ρw2
1 + p

ρw1w2

w1(E + p)


 +

∂

∂y




ρw2

ρw1w2

ρw2
2 + p

w2(E + p)


 = 0 (4.20)
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Here, w =
[
w1 w2

]T
is the velocity field. The equation of state is

E =
1

2
ρ(w2

1 + w2
2) +

p

γ − 1
(4.21)

The entropy function, entropy variables and potential fluxes are given by

U = − ρs

γ − 1
, v =




γ−s
γ−1

− ρ(w2

1
+w2

2
)

2p

ρw1/p
ρw2/p
−ρ/p


 , ψ1 = ρw1, ψ2 = ρw2 (4.22)

At the wall boundary, we prescribe the no penetration condition; that is,

wn = w1n1 + w2n2 = 0 (4.23)

Suppose that we have a numerical state u on the solid wall. In order to weakly impose the

no penetration condition, we have to provide an artificial state uout on the other side of

the interface, and compute the numerical flux f̂(u,uout,n). Let wn⊥ = n2w1 − n2w2. The

reflecting technique introduces a mirror state such that

ρout = ρ, pout = p, wout
n

= −wn, wout
n⊥ = wn⊥ (4.24)

The following theorem affirms the entropy stability of the reflecting technique.

Theorem 4.4. If f̂(u,uout,n) is Godunov flux or HLL flux and uout is taken to be the mirror

state (4.24), then such boundary treatment is entropy stable.

Proof. According to (4.17), we need to prove that the entropy production rate at the interface

ψn − vT f̂(u,uout,n)

is non-positive. By rotational symmetry, it it enough to consider the vertical wall x1 = 0.

Then n =
[
1 0

]T
and

u =
[
ρ ρw1 ρw2 E

]T
, uout =

[
ρ −ρw1 ρw2 E

]T

The numerical flux simply solves the one-dimensional Riemann problem in x direction. The

exact Riemann solver will give a middle state u∗ such that w∗
1 = 0. Hence the Godunov flux

is

f̂(u,uout,n) = f1(u
∗) =

[
0 p∗ 0 0

]T
(4.25)

For the HLL Riemann solver, the two-rarefaction approximation yields λL = −λ and λR = λ.

Then we actually have the local Lax-Friedrichs flux

f̂(u,uout,n) =
1

2
(f1(u) + f1(u

out)) − λ

2
(uout − u) =

[
0 p+ λρw1 0 0

]T
(4.26)
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In both cases only the second component of f̂ is nonzero. On the other hand, since

v =
[
γ−s
γ−1

− ρ(w2

1
+w2

2
)

2p
ρw1

p
ρw2

p
−ρ
p

]T
, ψn = ρw1

vout =
[
γ−s
γ−1

− ρ(w2

1
+w2

2
)

2p
−ρw1

p
ρw2

p
−ρ
p

]T
, ψout

n
= −ρw1

we can easily verify that

ψn − vT f̂(u,uout,n) = (vout)T f̂(u,uout,n)−ψout
n

=
1

2
((vout − v)T f̂(u,uout,n)− (ψout

n
−ψn))

It is non-positive due to the entropy stability of Godunov flux and HLL flux.

5 Generalization to convection-diffusion equations

In this section, we consider the entropy stable discretization of convection dominated convection-

diffusion equations in two space dimensions. Recalling (2.6), we use the the second derivatives

of entropy variables to represent the diffusion term:

∂u

∂t
+

2∑

j=1

∂

∂xj
(fj(u) −

2∑

l=1

Ĉjl(v)
∂v

∂xl
) = 0 (5.1)

where [
Ĉ11(v) Ĉ12(v)

Ĉ21(v) Ĉ22(v)

]

should be symmetric semi-positive-definite to ensure entropy dissipation. The convective

part will be handled in the same way as section 4. For the diffusive part, we present an

approach closely resembling the LDG method of Cockburn and Shu [11], with provable

entropy stability. The treatment on Cartesian meshes was recognized in [5].

We rewrite (5.1) as the mixed formulation

∂u

∂t
+

2∑

j=1

∂

∂xj
(fj(u) − qj) = 0, qj =

2∑

l=1

Ĉjl(v)θθθl, θθθl =
∂v

∂xl
(5.2)

Let Q =
[
q1 q2

]
and Θ =

[
θθθ1 θθθ2

]
. The LDG type approach evolves the nodal discretiza-

tion of u and Θ simultaneously. The coupling between adjoining elements are achieved by

f̂(u,uout,n) and single-valued numerical fluxes of v and q:

v̂ = v̂(v,vout), Q̂ =
[
q̂1 q̂2

]
= Q̂(v,vout, Q,Qout) (5.3)

Once again ~u, ~θθθ1 and ~θθθ2 denote the numerical solutions collocated at the SBP nodes in the

reference element. ~q1 and ~q2 are given by

qj,r =

2∑

l=1

Ĉjl(vr)θθθl,r, 1 ≤ r ≤ nk
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Additionally, we also let ~v∗, ~q1,∗ and ~q2,∗ describe the vectors of corresponding numerical

fluxes. The nodal version of the LDG scheme is

d~u

dt
+ C.D.T −

2∑

j=1

Dj~qj = C.B.T −
2∑

j=1

M−1Bj(~qj − ~qj,∗) (5.4a)

~θθθl − Dl~v = −M−1Bl(~v − ~v∗), l = 1, 2 (5.4b)

where C.D.T and C.B.T are the convective difference terms and convective boundary terms

in (4.15). We can also write down the component-wise formulation:

dur
dt

+ 2
2∑

j=1

nk∑

s=1

Dj,rsfj,S(ur,us) −
2∑

j=1

nk∑

s=1

Dj,rsqj,s =
2∑

j=1

τj,r
ωr

(fj,r − qj,r + qj,∗,r) −
τr
ωr

f∗,r

(5.5a)

θθθl,r −
nk∑

s=1

Dl,rsvs =
τl,r
ωr

(v∗,r − vr), l = 1, 2 (5.5b)

As indicated in the next theorem, the conventional LDG fluxes will lead to an entropy stable

scheme.

Theorem 5.1. We introduce the average form {·} and the jump form [·] over the element

boundary with outer normal vector n =
[
n1 n2

]T
.

{v} =
1

2
(v + vout), {Q} =

1

2
(Q+Qout)

[v] = (v − vout)nT , [Q] = (Q−Qout)n
(5.6)

Given parameters α ≥ 0 and βββ ∈ R
2, if we use the LDG fluxes

v̂(v,vout) = {v} + [v]βββ, Q̂(v,vout, Q,Qout) = {Q} − [Q]βββT − α[v] (5.7)

Then the nodal scheme (5.4) is entropy stable.

Proof. We multiply (5.4a) by ~vTM and (5.4b) by ~qTl M, and sum them up. The convective

part is already entropy stable. The remaining terms are

−
2∑

l=1

~qTl M
~θθθl +

2∑

l=1

(~vTMDl~ql + ~qTl MDl~v − ~vTBl(~ql − ~ql,∗) − ~qTl Bl(~v − ~v∗))

= −
2∑

l=1

~qTl M
~θθθl +

2∑

l=1

(~vTBl~ql,∗ + ~qTl Bl~v∗ − ~vTBl~ql)

The first sum is the interior contribution, it is non-positive since

−
2∑

l=1

~qTl M
~θθθl = −

nk∑

r=1

ωr(

2∑

l=1

qTl,rθθθl,r) = −
nk∑

r=1

ωr(

2∑

j=1

2∑

l=1

θθθTj,rĈjl(vr)θθθl,r) ≤ 0
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The boundary contribution reduces to

nk∑

r=1

2∑

l=1

τl,r(v
T
r ql,∗,r+qTl,rv∗,r−vTr ql,r) =

nk∑

r=1

τr(
2∑

l=1

nl,r(v
T
r ql,∗,r+qTl,rv∗,r−vTr ql,r)) ≡

nk∑

r=1

τrAr

If xr ∈ ∂T , we add the corresponding terms from the other side of the interface. The

contribution at xr is

Ar + Aout
r =

2∑

l=1

nl,r[(vr − vout
r )T q̂l(vr,v

out
r , Qr, Q

out
r )

+ (ql,r − qout
l,r )T v̂(v,vout) − (vTr ql,r − (vout

r )Tqout
l,r )]

(5.8)

due to the identity

vTr ql,r − (vout
r )Tqout

l,r =
1

2
(vr + vout

r )T (ql,r − qout
l,r ) +

1

2
(vr − vout

r )T (ql,r + qout
l,r )

Rearranging the terms in (5.8) and plugging (5.7) yields

Ar + Aout
r = tr([vr]

T Q̂(vr,v
out
r , Qr, Q

out
r )) + [Qr]

T v̂(vr,v
out
r ) − {vr}T [Qr] − tr([vr]

T{Qr})
= −αtr([vr]

T [vr]) ≤ 0

Therefore the boundary contribution is also non-positive and our nodal LDG scheme is

entropy stable.

Remark 5.1. Both α and βββ may be a function of x. We can also replace α by a symmetric

positive-definite p× p matrix.

6 Numerical experiments

In this section, we test the performance of the entropy stable nodal DG schemes (3.21) and

(4.15). One-dimensional tests are performed on uniform grids and two-dimensional tests

are performed on unstructured triangular meshes generated by Gmsh5 [21]. The schemes

are integrated in time with third order SSP Runge-Kutta method (given in Appendix B).

Unless otherwise pointed out, Godunov flux will be employed at element interfaces. For

Euler equations, the ratio of specific heat γ is taken to be 7/5, and the entropy conservative

flux (3.29) will be used as it seems to give better results than (3.28).

5http://gmsh.info/
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6.1 Smooth tests

Various test problems with smooth solutions are presented to validate the accuracy of the

scheme. We would like to compute on elements of degree k = 2, 3, 4. If k = 2, we set the CFL

number to be 0.15; otherwise we will let ∆t = CFL · h(k+1)/3 where h is the characteristic

length of the mesh, so that time error will be dominated by space error.

Example 6.1.1. We solve the one-dimensional linear advection equation

∂u

∂x
+
∂u

∂t
= 0, x ∈ [0, 2π]

with periodic boundary condition and initial data u(x, 0) = sin4(x). The exact solution is

u(x, t) = sin4(x − t). The entropy function in this case is the exponential function U = eu,

and the entropy conservative flux is given by

fS(uL, uR) =
(uR − 1)euR − (uL − 1)euL

euR − euL
, if uL 6= uR

When |uL − uR| is small, such formula suffers from round-off effect. Instead, we should use

Taylor’s expansion to approximate the numerator and the denominator. Numerical errors

and orders of convergence of the entropy stable nodal DG scheme with k = 2, 3, 4 are listed

in Table 6.1. The scheme is evolved up to t = 2π. We observe optimal convergence for all

values of k, better than the prediction of truncation error analysis. Probably the reason is

that Gauss-Lobatto quadrature is exact for the linear convective part.

Example 6.1.2. Next we consider the one-dimensional Burgers equation

∂u

∂t
+
∂(u2/2)

∂x
= 0, x ∈ [0, 2π]

with periodic boundary condition and initial data u(x, 0) = 0.5 + sin x. The exact solution

can be obtained by tracing back characteristic lines. We choose square entropy function

U = u2/2. Then the entropy stable nodal DG scheme is equivalent to the skew-symmetric

splitting. In Table 6.2, we present the errors at t = 0.5 when the solution is still smooth. It

is evident that the convergence rate is slightly below optimal, especially for the L∞ error.

However, when k = 3 we still have optimal convergence.

Example 6.1.3. We continue to solve some two-dimensional smooth test cases. The first

example is the two-dimensional linear advection equation

∂u

∂t
+

∂u

∂x1
+

∂u

∂x2
= 0, x ∈ [0, 1]2
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Table 6.1: Example 6.1.1: accuracy test of the one-dimensional linear advection equation
associated with initial data u(x, 0) = sin4(x) and exponential entropy function at t = 2π.

k N L1 error order L2 error order L∞error order
2 20 7.030e-2 - 3.347e-2 - 2.688e-2 -

40 5.363e-3 3.712 2.669e-3 3.649 2.340e-3 3.522
80 4.575e-4 3.551 2.205e-4 3.598 1.846e-4 3.664
160 4.414e-5 3.374 2.230e-5 3.305 2.582e-5 2.838
320 4.745e-6 3.218 2.595e-6 3.103 3.626e-6 2.832
640 5.485e-7 3.113 3.181e-7 3.028 4.794e-7 2.919

3 20 3.097e-3 - 1.514e-3 - 1.890e-3 -
40 1.675e-4 4.208 8.672e-5 4.126 1.359e-4 3.798
80 1.053e-5 3.993 5.372e-6 4.013 8.928e-6 3.928
160 6.571e-7 4.002 3.354e-7 4.001 5.664e-7 3.978
320 4.107e-8 4.000 2.096e-8 4.000 3.553e-8 3.995

4 10 2.608e-2 - 1.178e-2 - 8.580e-3 -
20 8.325e-4 4.969 3.763e-4 4.969 3.497e-4 4.617
40 2.623e-5 4.988 1.179e-5 4.997 9.860e-6 5.149
80 8.170e-7 5.004 3.683e-7 5.000 3.084e-7 4.999
160 2.553e-8 5.000 1.151e-8 5.000 9.454e-9 5.028

Table 6.2: Example 6.1.2: accuracy test of the one-dimensional Burgers equation associated
with initial data u(x, 0) = 0.5 + sin x and square entropy function at t = 0.5.

k N L1 error order L2 error order L∞error order
2 40 1.320e-3 - 1.178e-3 - 3.269e-3 -

80 2.071e-4 2.672 2.284e-4 2.366 7.923e-4 2.045
160 3.162e-5 2.711 4.316e-5 2.404 2.078e-4 1.931
320 4.724e-6 2.743 7.979e-6 2.435 5.100e-5 2.026
640 6.911e-7 2.773 1.450e-6 2.460 1.290e-5 1.983
1280 9.930e-8 2.799 2.606e-7 2.477 3.209e-6 2.008

3 40 4.344e-5 - 4.566e-5 - 1.658e-4 -
80 3.348e-6 3.698 3.703e-6 3.624 1.610e-5 3.364
160 2.344e-7 3.836 2.771e-7 3.740 1.306e-6 3.624
320 1.577e-8 3.894 1.950e-8 3.829 9.301e-8 3.812
640 1.036e-9 3.928 1.336e-9 3.868 6.252e-9 3.895

4 20 6.782e-5 - 6.319e-5 - 1.525e-4 -
40 2.630e-6 4.688 2.849e-6 4.471 1.126e-5 3.760
80 1.067e-7 4.624 1.374e-7 4.375 7.149e-7 3.977
160 4.203e-9 4.666 6.385e-9 4.427 4.342e-8 4.041
320 1.576e-10 4.737 2.858e-10 4.481 2.620e-9 4.050

with periodic boundary condition and initial data u(x, 0) = sin(2πx1) sin(2πx2), and square

entropy function U = u2/2. The exact solution is u(x, t) = u(x1 − t, x2 − t, 0). We test the
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two-dimensional entropy stable nodal DG scheme on a hierarchy of unstructured triangular

meshes. Errors and orders of convergence at t = 0.2 are shown in Table 6.3. Once again we

obtain optimal convergence.

Table 6.3: Example 6.1.3: accuracy test of the two-dimensional linear advection equation
associated with initial data u(x, 0) = sin(2πx1) sin(2πx2) and square entropy function at
t = 0.2.

k h L1 error order L2 error order L∞error order
2 1/8 3.380e-3 - 6.000e-3 - 6.890e-2 -

1/16 5.032e-4 2.748 9.868e-4 2.604 1.809e-2 1.930
1/32 6.170e-5 3.028 1.213e-4 3.024 2.292e-3 2.981
1/64 7.916e-6 2.962 1.551e-5 2.967 3.387e-4 2.758
1/128 9.890e-7 3.001 1.926e-6 3.010 4.419e-5 2.938
1/256 1.244e-7 2.991 2.414e-7 2.996 5.929e-6 2.898

3 1/8 2.329e-4 - 4.375e-4 - 8.752e-3 -
1/16 2.114e-5 3.461 3.536e-5 3.629 8.228e-4 3.411
1/32 1.790e-6 3.562 2.810e-6 3.654 6.194e-5 3.731
1/64 1.429e-7 3.647 2.210e-7 3.668 4.310e-6 3.845
1/128 1.063e-8 3.748 1.658e-8 3.737 3.183e-7 3.759
1/256 7.341e-10 3.856 1.160e-9 3.838 2.194e-8 3.859

4 1/8 1.295e-5 - 2.230e-5 - 6.184e-4 -
1/16 4.534e-7 4.837 9.969e-7 4.483 6.627e-5 3.222
1/32 1.528e-8 4.891 2.824e-8 5.141 1.401e-6 5.564
1/64 4.923e-10 4.956 8.940e-10 4.982 6.046e-8 4.535
1/128 1.547e-11 4.992 2.773e-11 5.011 1.897e-9 4.994

Example 6.1.4. We consider the two-dimensional Burgers equation

∂u

∂t
+
∂u2

∂x1
+
∂u2

∂x2
= 0, x ∈ [0, 1]2

with periodic boundary condition and initial data u(x, 0) = 0.5 sin(2π(x1 + x2)), and square

entropy function U = u2/2. Exact solution follows from the solution of one-dimensional

Burgers equation of η = x1 + x2. The entropy stable nodal DG scheme is evolved up to

t = 0.05 when the solution is still smooth. Errors and orders of convergence are displayed

in Table 6.4. The results are similar to its one-dimensional counterpart. Convergence rate

is below optimal.

Example 6.1.5 (Isentropic vortex). The last smooth test case is the isentropic vortex ad-

vection problem for the two-dimensional Euler equations, taken from Shu [51]. The compu-

tational domains is [0, 10]2 and the initial condition is given by

w1(x, 0) = 1 − (x2 − y2)φ(r), w2(x, 0) = 1 + (x1 − y1)φ(r)
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Table 6.4: Example 6.1.4: accuracy test of the two-dimensional Burgers equation associated
with initial data u(x, 0) = 0.5 sin(2π(x1 + x2)) and square entropy function at t = 0.05.

k h L1 error order L2 error order L∞error order
2 1/16 1.354e-3 - 3.275e-3 - 5.954e-2 -

1/32 2.394e-4 2.500 7.046e-4 2.217 1.646e-2 1.855
1/64 3.900e-5 2.618 1.406e-4 2.325 4.894e-3 1.750
1/128 5.773e-6 2.756 2.456e-5 2.518 1.269e-3 1.948
1/256 8.431e-7 2.776 4.109e-6 2.579 2.413e-4 2.394

3 1/16 1.890e-4 - 6.252e-4 - 1.968e-2 -
1/32 2.482e-5 2.929 1.058e-4 2.563 4.859e-3 2.018
1/64 2.327e-6 3.415 1.106e-5 3.258 7.311e-4 2.733
1/128 2.065e-7 3.494 1.158e-6 3.255 1.195e-4 2.613
1/256 1.898e-8 3.444 1.236e-7 3.229 1.299e-5 3.202

4 1/16 3.740e-5 - 1.454e-4 - 6.039e-3 -
1/32 2.787e-6 3.746 1.427e-5 3.349 1.068e-3 2.500
1/64 1.348e-7 4.370 7.651e-7 4.221 8.839e-5 3.595
1/128 5.566e-9 4.598 3.722e-8 4.362 6.398e-6 3.788
1/256 2.293e-10 4.602 1.696e-9 4.456 3.059e-7 4.387

T (x, 0) = 1 − γ − 1

2γ
φ(r)2, ρ(x, 0) = T

1

γ−1 , p(x, 0) = T
γ

γ−1

where (y1, y2) is the initial center of the vortex and

φ(r) = εeα(1−r2), r =
√

(x1 − y1)2 + (x2 − y2)2

The parameters are ε = 5
2π

, α = 0.5 and (y1, y2) = (5, 5). The vortex will be advected in

the diagonal direction and the exact solution is u(x, t) = u(x1 − t, x2 − t, 0). We use the

exact solution to prescribe boundary conditions. Table 6.5 summarizes errors and orders of

convergence of the density at t = 1. Here the convergence rate is also slightly below

optimal, but better than Burgers equation. It is probably due to the linear

behavior of exact solution.

6.2 Discontinuous tests

Discontinuous test problems are provided to illustrate shock-capturing capability. We will

only show the numerical solutions of schemes with k = 2 and CFL number 0.15. The bound-

preserving limiter can be added to make the scheme robust. Specifically, for Euler equations,

it is named the positivity-preserving limiter to prevent negative density or negative pressure.

However, due to the lack of entropy stable non-oscillatory limiters for systems or in two

dimensions (we only prove the entropy stability of one-dimensional TVD/TVB limiter for

scalar equations), there are still spurious oscillations in some test results.
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Table 6.5: Example 6.1.5: accuracy test of isentropic vortex problem for two-dimensional
Euler equations at t = 1. Results of the density are tabulated.

k h L1 error order L2 error order L∞error order
2 10/8 2.299e-1 - 6.053e-2 - 8.735e-2 -

10/16 4.204e-2 2.451 1.223e-2 2.307 2.957e-2 1.563
10/32 6.598e-3 2.671 1.918e-3 2.673 5.162e-3 2.518
10/64 9.330e-4 2.822 2.688e-4 2.835 1.064e-3 2.279
10/128 1.273e-4 2.873 3.609e-5 2.897 1.717e-4 2.631
10/256 1.652e-5 2.947 4.779e-6 2.917 2.280e-5 2.913

3 10/8 4.344e-2 1.160e-2 2.960e-2
10/16 3.976e-3 3.450 1.155e-3 3.327 4.271e-3 2.793
10/32 3.632e-4 3.453 1.030e-4 3.487 2.652e-4 4.009
10/64 3.041e-5 3.578 8.538e-6 3.593 4.557e-5 2.541
10/128 2.536e-6 3.584 7.148e-7 3.578 3.793e-6 3.587
10/256 1.990e-7 3.672 5.670e-8 3.656 2.720e-7 3.802

4 10/8 7.754e-3 - 2.136e-3 - 8.836e-3 -
10/16 3.941e-4 4.298 1.308e-4 4.030 5.582e-4 3.985
10/32 1.546e-5 4.672 4.858e-6 4.750 2.549e-5 4.452
10/64 5.620e-7 4.782 1.806e-7 4.749 1.680e-6 3.923
10/128 2.020e-8 4.798 6.433e-9 4.812 8.998e-8 4.223

Example 6.2.1. We consider the following Riemann problem of Buckley-Leverett equation

∂u

∂t
+

∂

∂x

( 4u2

4u2 + (1 − u)2

)
= 0, u(x, 0) =

{
−3 if x < 0

3 if x ≥ 0

The exact entropy solution contains two shock waves connected by a flat rarefaction wave

that is close to 0. For such a nonconvex flux function, the choice of entropy function will

affect the performance of numerical scheme substantially. We first test the scheme with

square entropy function U = u2/2. The computational domain is [−0.5, 0.5] and the end

time t = 1. We also apply the bound-preserving limiter with Ω = [−3, 3]. The numerical

solution on 80 cells is plotted in the left panel of Figure 6.1. Evidently it does not agree

with the entropy solution. Then we try an ad hoc entropy function U =
∫

arctan(20u)du.

The entropy variable v = arctan(20u), which emphasizes the states near u = 0. In fact it

can be viewed as a mollified version of the Kruzhkov’s entropy function [42] U = |u|. The

numerical solution with the same setting is depicted in the right panel of Figure 6.1. The

result is quite satisfactory thanks to the carefully chosen entropy function.

Example 6.2.2 (Sod’s shock tube). It is a classical Riemann problem of one-dimensional
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Figure 6.1: Example 6.2.1. Numerical solution of the Riemann problem of Buckley-Leverett
equation at t = 1 with the square entropy function and an ad hoc entropy function. Com-
putational domain [−0.5, 0.5] is decomposed into N = 80 cells. Bound-preserving limiter is
used. The solid line represents the exact entropy solution and the triangle symbols are cell
averages.

Euler equations. The computational domain is [−0.5, 0.5] and the initial condition is

(ρ, w, p) =

{
(1, 0, 1) if x < 0

(0.125, 0, 0.1) if x ≥ 0

The exact solution contains a left rarefaction wave, a right shock wave and a middle contact

discontinuity. The classical DG scheme tends to blow up due to emergence of negative density

or negative pressure unless we apply positivity-preserving limiter or TVD/TVB limiter. The

entropy stable nodal DG scheme, on the other hand, can be evolved without any limiter.

Figure 6.2 illustrates the profiles of density, velocity and pressure at t = 0.13 with 130 cells.

All waves are resolved correctly despite some slight oscillations at the right shock wave.

Entropy stability contributes to a more robust scheme for this test problem.

Example 6.2.3 (Sine-shock interaction). This benchmark test problem of one-dimensional

Euler equations was given by Shu and Osher in [53]. The solution has complicated structure

in that it contains both strong and weak shock waves and highly oscillatory smooth waves.

The computational domain is [−5, 5] and the initial condition is

(ρ, w, p) =

{
(3.857143, 2.629369, 10.3333) if x < −4

(1 + 0.2 sin(5x), 0, 1) if x ≥ −4

We compute the reference solution using a first order scheme on a very fine mesh with 80000

cells. Once again the classical DG scheme suffers from negative pressure or negative density,
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Figure 6.2: Example 6.2.2: Numerical solution of Sod’s shock tube problem at t = 0.13 with
130 cells. We do not apply any limiter. The solid line represents the exact entropy solution
and the triangle symbols are cell averages.

while the entropy stable nodal DG scheme works without any limiter. The plots of density,

velocity and pressure at t = 1.8 with 150 cells are displayed in Figure 6.3. The scheme

performs well despite some minor oscillations.

Example 6.2.4 (two-dimensional Riemann problem). We solve the Riemann problem of

the two-dimensional Burgers equation

∂u

∂t
+
∂u2

∂x1
+
∂u2

∂x2
= 0, x ∈ [0, 1]2
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Figure 6.3: Example 6.2.3: Numerical solution of sine-shock interaction test problem at
t = 1.8 with 150 cells. We do not apply any limiter. The solid line represents the reference
solution computed with 80000 cells and the triangle symbols are cell averages.

subject to the initial condition

u(x, 0) =





0.25 if x1 < 0.5 and x2 < 0.5

−0.1 if x1 < 0.5 and x2 ≥ 0.5

0.4 if x1 ≥ 0.5 and x2 < 0.5

−0.5 if x1 ≥ 0.5 and x2 ≥ 0.5
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The exact solution for t > 0 is as follows [61, 26]

u(x, t) =






0.25 if x1 <
1
2
− 3t

5
and x2 <

1
2

+ t
30

−0.1 if x1 <
1
2
− 3t

5
and x2 ≥ 1

2
+ t

30

0.25 if 1
2
− 3t

5
≤ x1 <

1
2
− t

4
and x2 <

−8x1

7
+ 15

14
− 15t

28

−0.5 if 1
2
− 3t

5
≤ x1 <

1
2
− t

4
and x2 ≥ −8x1

7
+ 15

14
− 15t

28

0.25 if 1
2
− t

4
≤ x1 <

1
2

+ t
2

and x2 <
x1

6
+ 5

12
− 5t

24

−0.5 if 1
2
− t

4
≤ x1 <

1
2

+ t
2

and x2 ≥ x1

6
+ 5

12
− 5t

24
2x1−1

4t
if 1

2
+ t

2
≤ x1 <

1
2

+ 4t
5

and x2 < x1 − 5
18t

(x1 + t− 1
2
)2

−0.5 if 1
2

+ t
2
≤ x1 <

1
2

+ 4t
5

and x2 ≥ x1 − 5
18t

(x1 + t− 1
2
)2

0.4 if x1 ≥ 1
2

+ 4t
5

and x2 <
1
2
− t

10

−0.5 if x1 ≥ 1
2

+ 4t
5

and x2 ≥ 1
2
− t

10

We choose the square entropy function U = u2/2 and run the entropy stable nodal DG

scheme up to t = 0.5 on a triangular mesh with h = 1/128. The bound-preserving limiter

with Ω = [−0.5, 0.4] is also imposed. The numerical result is shown in the left panel of

Figure 6.4, and the absolute value error is also plotted in the right panel where

we use logarithmic scale and values less than 10−16 are transformed to 10−16. The

scheme successfully captures the correct profile. Error is very small unless near

shock waves.
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(b) absolute value of error

Figure 6.4: Example 6.2.4: Numerical solution and error of a Riemann problem of two-
dimensional Burgers equation at t = 0.5 on a mesh with h = 1/128. Entropy function is
U = u2/2 and bound-preserving limiter is used. Error is shown in logarithmic scale.

Example 6.2.5 (double Mach reflection). This famous test problem of two-dimensional

Euler equations was proposed by Woodward and Colella in [62] and has been intensively
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studied in the last few decades. It involves a Mach 10 shock which makes a 60
◦

angle with a

reflecting wall. The undisturbed air ahead of the shock has a density of 1.4 and a pressure of

1. Usually people solve the problem with rectangular computational domain and horizontal

wall. Here we use the flexibility of the triangular mesh to consider the original physical

problem with a horizontally moving shock and a wall inclined with a 30
◦

angle (e.g. [58]).

We illustrate the computational domain and the unstructured mesh with h = 1/20 in Figure

6.5. Initially the shock is positioned at x1 = 0. Inflow/outflow boundary conditions are

prescribed for the left and right boundaries, and at the top boundary the flow values are set

to describe the exact motion of shock.

(− 0. 1, 0) (0, 0)

(2. 7, 0. 9
√

3)

(2. 7, 2)(− 0. 1, 2)

wall

Figure 6.5: Example 6.2.5: illustration of the computational domain and the unstructured
mesh with h = 1/20.

The entropy stable nodal DG scheme is implemented with positivity-preserving limiter

and local Lax-Friedrichs flux. We do not use Godunov flux since the exact Riemann solver

at element interface sometimes contains vacuum state. The plots of density and pressure at

t = 0.2 with mesh size h = 1/240 are given in Figure 6.6. Similar to the observations in [65],

the solution is more oscillatory than results obtained via WENO scheme or DG scheme with

TVD/TVB limiter, but it also catches some interesting features such as the small roll-ups

due to Kelvin-Helmholtz instability, which indicates low numerical dissipation of our scheme.

Example 6.2.6 (shock diffraction). A shock wave diffracting at a sharp corner is another

popular test problem for two-dimensional Euler equations. In [12, 67] the results of a Mach
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Figure 6.6: Example 6.2.5: profiles of density and pressure at t = 0.2 on a mesh with
h = 1/240. 40 equally spaced contour levels are used for both plots.

5.09 shock diffracting at a 90
◦

edge are presented. Here we would like to study a Mach 10

shock diffracting at a 120
◦

degree [68]. The computational domain and the triangular mesh

with h = 1/4 are demonstrated in Figure 6.7. The shock is initially located at x1 = 3.4

and 6 ≤ x2 ≤ 11, moving into undisturbed air with a density of 1.4 and a pressure of 1.

Boundary conditions are inflow at the left/top boundary (in accordance with the exact shock

motion), and outflow at the right/bottom boundary.

We still use positivity-preserving limiter and local Lax-Friedrichs interface flux. The

contour plots of density and pressure at t = 0.9 with mesh size h = 1/40 are depicted
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(0, 0) (13, 0)

(13, 11)(0, 11)

(0, 6) (2
√

3 , 6)wall

wall

Figure 6.7: Example 6.2.6: illustration of the computational domain and the unstructured
mesh with h = 1/4.

in Figure 6.8. The result is comparable to the one in [68] despite some oscillations and

overshoots near the shock wave.

7 Concluding remarks

In this paper, we construct a (formally) high order entropy stable nodal DG scheme for

systems of conservation laws. It does not require exact integration and can be stable with

respect to an arbitrary entropy function. Therefore the limitations of the Jiang-Shu cell

entropy inequality are circumvented. Our scheme has good flexibility in that it is compatible

with

(i) bound-preserving limiter and (one-dimensional scalar) TVD/TVB limiter.

(ii) unstructured triangular meshes, and potentially simplex meshes and polygonal meshes.

(iii) convection-diffusion equations through an LDG type approach.

(iv) reflecting wall boundary conditions of Euler equations.

The entropy stability is guaranteed by three main ingredients: high order SBP operators,

entropy conservative fluxes and entropy stable fluxes. The usual nodal DG scheme can be

recovered if we take the entropy conservative flux to be the arithmetic mean. The major

obstacle to exceeding one-dimensional framework is the construction of multi-dimensional
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Figure 6.8: Example 6.2.6: profiles of density and pressure at t = 0.9 on a mesh with
h = 1/20. 40 equally spaced contour levels are used for both plots.

SBP operators with diagonal mass matrix and diagonal boundary matrices. We achieve this

by finding a special quadrature rule and the formula of difference matrices (4.9).

We perform a large number of numerical tests whose results are comparable to existing

schemes. In some cases the entropy stable nodal DG scheme shows better robustness and

potential of computing physically correct solution if we choose a different entropy function.

However, we should also point out some disadvantages of our scheme:

(i) The quadrature rule is of degree 2k − 1. We detect reduced orders of con-

vergence in nonlinear smooth tests.

(ii) For triangular meshes, the degree of freedom on each element is larger

than the dimension of polynomial space, which is computationally more

expensive than the classic DG scheme.

(iii) The stabilization due to entropy dissipation at element interfaces is not
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enough. There are evident oscillations in some profiles of Euler equations.

The investigation of entropy stable oscillation control mechanism, such as entropy stable

limiters for systems, and introduction of artificial viscosity, is a possible direction of our

future study.

A Two-rarefaction approximation

For Euler equations, the solution of the Riemann problem consists of three characteristic

waves. The left wave and right wave are either rarefaction fans or shocks, and the middle

wave is a contact discontinuity. The pressure is continuous across the contact discontinuity

and thus constant in the middle region, denoted by p∗. We find the exact value of p∗ by

solving the following equation.

ϕ(p∗, pL, ρL) + ϕ(p∗, pR, ρR) + wR − wL = 0 (A.1)

where

ϕ(p∗, p, ρ) =




ϕr(p

∗, p, ρ) = 2a
γ−1

((p
∗

p
)(γ−1)/2γ − 1) if p∗ ≤ p (rarefaction wave)

ϕs(p
∗, p, ρ) = p∗−p√

(ρ((γ−1)p∗+(γ+1)p)/2
if p∗ > p (shock wave)

(A.2)

and a =
√
γp/ρ is the sound speed. ϕ is a continuous, strictly increasing and concave

function of p∗ (see [60]), so that we can use Newton-Raphson iteration to find the unique

root. Once we have p∗, the leftmost and rightmost wave speeds are given by

λL = wL − aLq(p
∗, pL), λR = wR + aRq(p

∗, pR) (A.3)

such that

q(p∗, p) =

{
1 if p∗ ≤ p√

1 + γ+1
2γ

(p
∗

p
− 1) if p∗ > p

(A.4)

The following inequality is proved in [27].

Theorem A.1. If 1 < γ ≤ 5/3, ϕs(p
∗, p, ρ) ≥ ϕr(p

∗, p, ρ) for p∗ > p.

Proof. Substitute x = (p∗/p)(γ−1)/2γ . Then

ϕr(p
∗, p, ρ) =

2a

γ − 1
(x− 1), ϕs(p

∗, p, ρ) =
a

γ

x2γ/(γ−1) − 1√
(γ − 1)/2γ + ((γ + 1)/2γ)x2γ/(γ−1)

Let α = 2γ/(γ − 1) ∈ [5,∞). We need to show that

(
xα − 1

x− 1
)2 ≥ α + α(α− 1)xα, for x > 1
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Rearranging the term yields

(
xα − 1

x− 1
− 1

2
α(α− 1)(x− 1))2 ≥ α2 +

1

4
α2(α− 1)2(x− 1)2 (A.5)

By Taylor’s expansion

xα − 1

x− 1
≥ α +

1

2
α(α− 1)(x− 1) +

1

6
α(α− 1)(α− 2)(x− 1)2

Inserting this inequality, we have

(
xα − 1

x− 1
− 1

2
α(α− 1)(x− 1))2 ≥ (α+

1

6
α(α− 1)(α− 2)(x− 1)2)2

≥ α2 +
1

3
α2(α− 1)(α− 2)(x− 1)2

Since α ≥ 5, (α − 2)/3 ≥ (α − 1)/4 and so (A.5) is valid. We note that in most physical

applications γ does fall into the range (1, 5/3] (5/3 for monatomic gas and 7/5 for diatomic

gas).

Invoking Newton-Raphson iteration during all flux computations can be time-consuming.

The two-rarefaction approximation assumes that the left wave and the right wave are both

rarefaction waves, and provides an explicit formula of p∗, λL and λR. Thanks to (A.1), the

approximated wave speeds bound the true wave speeds. Then we can take these wave speeds

to construct entropy stable HLL flux (or local Lax-Friedrichs flux).

Theorem A.2. The two-rarefaction approximation solves the equation

ϕr(p
∗
tr, pL, ρL) + ϕr(p

∗
tr, pR, ρR) + wR − wL = 0 (A.6)

The explicit solution is

p∗tr = (
aL + aR + (γ − 1)(wL − wR)/2

aL/p
(γ−1)/2γ
L + aR/p

(γ−1)/2γ
R

)2γ/(γ−1) (A.7)

The approximated wave speeds are

λtr,L = wL − aLq(p
∗
tr, pL), λtr,R = wR + aRq(p

∗
tr, pR) (A.8)

Then q∗tr ≥ q∗, λtr,L ≤ λL and λtr,R ≥ λR.

Proof. By Theorem A.1, ϕr ≤ ϕ for all p > 0. As both ϕ and ϕr are strictly increasing,

p∗tr ≥ p∗. q is also an increasing function of p∗. Hence λtr,L ≤ λL and λtr,R ≥ λR.
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The same argument also works for shallow water equations. We will omit the details, only

giving the key inequality without proof. The exact Riemann solver reduces to the equation

ϕ(h∗, hL) + ϕ(h∗, hR) + wR − wL = 0 (A.9)

where

ϕ(h∗, h) =

{
ϕr(h

∗, h) = 2(
√
gh∗ −

√
gh) if h∗ ≤ h

ϕs(h
∗, h) = (h∗ − h)

√
1
2
g h

∗+h
h∗h

if h∗ > h
(A.10)

When h∗ > h, it is easy to prove that

ϕs(h
∗, h) ≥ ϕr(h

∗, h) (A.11)

Therefore two-rarefaction approximation will produce proper wave speeds.

B Bound-preserving limiter

We introduce the superscript n to represent the current time step. For the sake of simplicity

we shall consider Euler forward time discretization and assume uniform grid. Let λ = ∆t/∆x

be the ratio of time step and mesh size. Let us start with the first order scheme

ui,n+1 = H(ui−1,n,ui,n,ui+1,n;λ) = ui,n − λ(f̂(ui,n,ui+1,n) − f̂(ui−1,n,ui,n)) (B.1)

It is bound-preserving if ui,n,ui,n,ui+1,n ∈ Ω implies ui,n+1 ∈ Ω provided that λ ≤ λ0 for

some λ0 > 0. We will see that the upwind numerical fluxes in section 3.3 also correspond to

bound-preserving first order schemes.

Theorem B.1. For scalar conservation laws, if f̂ is monotone and Lipschitz continuous

of both arguments, and Ω = [m,M ] for m,M ∈ R, the corresponding first order scheme is

bound-preserving.

Proof. Since f̂ is monotone, H is non-decreasing with respect to ui,n−1 and ui,n+1. Let L be

the Lipschitz constant of f̂ . Then H is also a non-decreasing function of ui,n provided that

λ ≤ 1
2L

. Now if ui−1,n, ui,n, ui+1,n ∈ [m,M ],

ui,n+1 ≥ H(m,m,m;λ) = m, ui,n+1 ≤ H(M,M,M ;λ) = M

We see that H is bound-preserving with λ0 = 1
2L

.

Theorem B.2. For systems, if the exact Riemann solver is bound-preserving (e.g. no dry

bed for shallow water equations or no vacuum for Euler equations), then the Godunov scheme

and HLL scheme are bound-preserving.
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Proof. First order schemes can be regarded as an averaging procedure of Riemann solvers

when λ is small enough such that waves originated from different interfaces do not intersect.

Since Ω is a convex set, the Godunov scheme is bound-preserving. The HLL scheme is also

bound-preserving due to the fact that the HLL Riemann solver is another average of the

exact Riemann solver.

High order schemes are generally not bound-preserving. However, we can still make sure

that the cell average at next time step is in Ω. The next theorem paves the path for high

order bound-preserving limiter. It can be formulated in a more general manner, but we stay

within the context of entropy stable nodal DG scheme.

Theorem B.3. For the entropy stable nodal DG scheme whose underlying first order scheme

is bound preserving, if ui,nj ∈ Ω for each 1 ≤ i ≤ N and 0 ≤ j ≤ k, we have ui,n+1 ∈ Ω under

the CFL condition λ ≤ ω0

2
λ0.

Proof. Since the scheme is conservative,

ui,n+1 = ui,n − λ(f̂(ui,nk ,ui+1,n
0 ) − f̂(ui−1,n

k ,ui,n0 ))

=

k∑

j=0

ωj
2

ui,nj − λ(f̂(ui,nk ,u
i+1,n
0 ) − f̂(ui−1,n

k ,ui,n0 ))

=

k−1∑

j=1

ωj
2

ui,nj +
ω0

2
H(ui−1,n

k ,ui,n0 ,ui,nk ;
2λ

ω0
) +

ω0

2
H(ui,n0 ,ui,nk ,ui+1,n

0 ;
2λ

ω0
)

If λ ≤ ω0

2
λ0, the last two terms are in Ω. Then ui,n+1 ∈ Ω as it is a convex combination of

elements in Ω.

The bound-preserving limiter is a simple linear scaling procedure ũi,nj = ui,n + θi,n(ui,nj −
ui,n) to enforce ũi,nj ∈ Ω. It can be enforced as long as ui,n ∈ Ω. Roughly speaking, for each

0 ≤ j ≤ k we compute

θi,nj = max{s ∈ [0, 1] : ui,n + s(ui,nj − ui,n) ∈ Ω}

Then we simply let θi,n = min0≤j≤k θ
i,n
j . A combination of mathematical induction and

Theorem B.3 tell us that we can apply such limiter at each time step, leading to a robust

scheme whose numerical solution never goes out of Ω. For implementation details and the

proof that bound-preserving limiter is genuinely high order accurate, one may check the

papers by Zhang and Shu [66, 67].
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Finally, the magic of SSP time discretization enables us to go beyond Euler forward time

stepping. In this paper, we use the third order SSP Runge-Kutta method. For an ODE

system ut = Lu, the three stages at the n-th time step are

u(1) = un + ∆tL(un) (B.2a)

u(2) =
3

4
un +

1

4
(u(1) + ∆tL(u(1))) (B.2b)

un+1 =
1

3
un +

2

3
(u(2) + ∆tL(u(2))) (B.2c)

Since it is a convex combination of Euler forward steps, all the previous analyses are still

valid.

C Quadrature rules on a triangle

The special quadrature rules designed for triangular SBP operators are listed in Table C.1.

As indicated in [63], we divide the quadrature points into symmetry orbits. The orbit S3 only

includes one point, the barycenter of the triangle. The three points in S21 are determined

by a single abscissa, and the six points in S111 are determined by two abscissas. Table C.2

shows the idea of symmetry orbits.
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Table C.1: Quadrature rules for SBP operators with k = 1, 2, 3, 4. Exact values of abscissas
and weights are available for k = 1, 2, so that we can use symbolic computation to derive
SBP operators.

orbit abscissas weight

S111 (0, 1
2
−

√
3

6
) 1

12

(a) k = 1, nk = 6

orbit abscissas weight
S3

1
3

9
40

S12
1
2

1
20

S111 (0, 1
2
−

√
15

10
) 1
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(b) k = 2, nk = 10

orbit abscissas weight
S111 (0, 0.330009478207572) 0.0202282703414950
S111 (0, 0.0694318442029737) 0.00754950743628280
S111 (0.1870738791912771, 0.5841571139756569) 0.0555555555555556

(c) k = 3, nk = 18

orbit abscissas weight
S3

1
3

0.0455499555988567
S12

1
2

0.00926854241697489
S12 0.4384239524408185 0.0623683661448868
S12 0.1394337314154536 0.0527146648104222
S111 (0, 0.230765344947159) 0.0102652298402145
S111 (0, 0.046910077030668) 0.00330065754050081

(d) k = 4, nk = 22

Table C.2: Symmetry orbits on a triangle

orbit barycentric coordinates # of points
S3(

1
3
) (1

3
, 1

3
, 1

3
) 1

S21(α) permutation of (α, α, 1− 2α) 3
S111(α, β) permutation of (α, β, 1− α− β) 6
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