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ABSTRACT

We introduce a new troubled-cell indicator for the discontinuous Galerkin (DG) methods

for solving hyperbolic conservation laws. This indicator can be defined on unstructured

meshes for high order DG methods and depends only on data from the target cell and its

immediate neighbors. It is able to identify shocks without PDE sensitive parameters to

tune. Extensive one- and two-dimensional simulations on the hyperbolic systems of Euler

equations indicate the good performance of this new troubled-cell indicator coupled with a

simple minmod-type TVD limiter for the Runge-Kutta DG (RKDG) methods.
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1 Introduction

In this paper, we introduce a new troubled-cell indicator for the discontinuous Galerkin

methods for solving hyperbolic conservation laws.

The first discontinuous Galerkin (DG) method was introduced in 1973 by Reed and Hill

[18], in the framework of neutron transport (steady state linear hyperbolic equations). A

major development of the DG method was carried out by Cockburn et al. in a series of

papers [6, 5, 4, 3, 7], in which they established a framework to easily solve nonlinear time

dependent hyperbolic conservation laws:{
ut +∇ · f(u) = 0
u(x, 0) = u0(x)

(1.1)

using explicit, nonlinearly stable high order Runge-Kutta time discretization [21] and DG

discretization in space with exact or approximate Riemann solvers as interface fluxes and a

total variation bounded (TVB) limiter [20] to achieve non-oscillatory properties for strong

shocks. These schemes are termed RKDG methods.

An important component of RKDG methods for solving conservation laws (1.1) with

strong shocks in the solutions is a nonlinear limiter, which is applied to detect discontinuities

and control spurious oscillations near such discontinuities. Early examples of such limiters

are the minmod type TVB limiter [6, 5, 4, 3, 7], and the moment based limiters [1, 2]. These

limiters do control the oscillations well, however they may degrade accuracy when mistakenly

used in smooth regions of the solution, especially for high-order polynomial degrees. More

recently, weighted essentially non-oscillatory (WENO) limiters [17, 14, 16, 34, 33, 36, 37, 35]

were introduced which can achieve both high-order accuracy and non-oscillatory properties.

The WENO limiters are constructed by first (Step 1) identify the “troubled cells”, namely

those cells which might need the limiting procedure, through a troubled-cell indicator, and

then (Step 2) replace the solution polynomials in those troubled cells by reconstructed poly-

nomials using certain WENO methodology which maintain the original cell average (conser-

vation), have the same orders of accuracy as before, but are less oscillatory.
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In [15], various discontinuity detecting methods were systematically studied and com-

pared as troubled-cell indicators for the WENO limiter for RKDG methods for the compress-

ible Euler equations. While they found no universally better indicator for every problem, the

minmod type TVB indicator [5, 20] with a suitably chosen constant, Harten’s subcell resolu-

tion idea [9], and the shock detector of Krivodonova et al. (KXRCF) [12] performed better

than other methods. More recently, an alternative family of DG limiters which serves at the

same time as a new PDE-based limiter, as well as a troubled-cell indicator, was introduced

by Dumbser et al. [8]. The multiwavelet troubled-cell indicator was introduced by Vuik

and Ryan [24], and later the same authors used automated parameter selection based on

Tukey’s boxplot approach [23] to automatically determine the tuning parameter for various

troubled-cell indicators [25].

In this paper, we introduce a new reliable and efficient high-order troubled-cell indicator

for the DG methods on unstructured grids without PDE-sensitive parameters to tune. The

indicator, depending only on the polynomial in the target cell and its immediate neighbors, is

formally (k+1)-th order small in smooth regions for DG-Pk, and is of O(1) near shocks. This

nice separation of the indicator in smooth regions and shocks ensures that cells in smooth

regions will not be marked as troubled cells. We demonstrate the robust performance of our

indicator, coupled with the minmod-type TVD limiter [4, 7] for the RKDG methods, for

various numerical tests for the compressible Euler equations in 1D and 2D. We remark that

the TVD limiter may not be the best limiter to use in the troubled cells, however the focus

of this paper is on the troubled-cell indicators, not on limiters used in these troubled cells.

The rest of the paper is outlined as follows. In Section 2, we briefly review the RKDG

method, and then present the new troubled-cell indicator. In Section 3, we provide extensive

numerical results in 1D and 2D for the compressible Euler equations to show the good

performance of the new troubled-cell indicator. And we conclude in Section 4.
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2 New troubled-cell indicator for the RKDG method

In this section, we first briefly review the RKDG method for solving the conservation law

(1.1). Then, we present the new troubled-cell indicator to identify troubled cells. The

minmod-type TVD limiter [4, 7] is then used on these troubled cells.

2.1 Review of the RKDG methods

In this subsection, we give a brief review of the RKDG methods for solving conservation

laws (1.1) in two dimensions.

We first use the DG method to discretize the spatial variables. Given a triangulation

of the computational domain consisting of cells ∆j, the DG method has its solution as well

as the test function space given by V k
h = {v(x, y) : v(x, y)|∆j

∈ Pk(∆j)}, where Pk(∆j)

denotes the set of polynomials of degree at most k defined on ∆j. The semi-discrete DG

method for solving (1.1) is defined as follows: find the unique function uh ∈ V k
h , such that∫

∆j

(uh)t v dxdy =

∫
∆j

f(uh) · ∇v dxdy −
∫

∂∆j

f̂(uh) · n vds (2.1)

holds on all cells ∆j, for all the test functions v ∈ V k
h . Here n = (nx, ny)

T is the outward

unit normal of the triangle boundary ∂∆j, and f̂(uh) · n is a monotone numerical flux for

the scalar case and an exact or approximate Riemann solver for the system case. The local

Lax-Friedrichs flux [5] is used in all of our numerical tests.

The semi-discrete scheme (2.1) can be written as

ut = L(u),

where L(u) is the spatial discretization operator. We discretize it in time by a non-linearly

stable Runge-Kutta time discretization [21], e.g. the third-order version:

u(1) = un + ∆tL(un),

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tL(u(1)), (2.2)

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆tL(u(2)).
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2.2 The troubled-cell indicator

Here we introduce the new troubled-cell indicator for the RKDG method (2.1), (2.2). We

first relabel the target cell as ∆0, and denote the indicator stencil as S = {∆0, ∆1, ∆2, ∆3} as

shown in Figure 2.1. We then denote the DG-Pk solutions on these four cells as p`(x, y), ` =

0

1

2

3

Figure 2.1: The stencil S = {∆0, ∆1, ∆2, ∆3}

0, 1, 2, 3, respectively. We consider the following quantity defined on each target cell

I∆0 :=

∑3
j=1 | ¯̄p0 − ¯̄pj|

maxj∈{0,1,2,3}{|p̄j|}
, (2.3)

where

¯̄pj =
1

∆0

∫
∆0

pj(x, y) dxdy, p̄j =
1

∆j

∫
∆j

pj(x, y) dxdy,

i.e., ¯̄? denotes the cell average of the function ? on the target cell while ?̄ denotes the cell

average of the function ? on its own associated cell. Note that, in order to evaluate ¯̄p` for

` = 1, 2, 3, the polynomial data p`(x, y) on the neighboring cells are naturally extrapolated

to the target cell ∆0. The target cell ∆0 is treated as a troubled cell if

I∆0 > Ck (2.4)

for a constant Ck that depends only on the polynomial degree k.

Remark 2.1 The indicating quantity (2.3) is defined on any structured/unstructured mesh

in any space dimension, with the summation on the numerator over immediate neighbors of
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the target cell. Note that if ∆0 is a d-dimensional simplex, the indicating quantity is I∆0 =Pd+1
j=1 | ¯̄p0− ¯̄pj |

maxj∈{0,1,··· ,d}{|p̄j |} since a simplicial cell has d + 1 immediate neighbors. The computation

of this indicating quantity is relatively inexpensive since it only depends on the cell averages

and the extended cell averages of the target cell and its immediate neighbors.

Remark 2.2 In smooth regions, the DG-Pk solution without limiter is formally (k + 1)-th

order accurate, so both ¯̄p0 and ¯̄pj are formally (k + 1)-th order approximation to the same

cell average of the exact solution. Therefore, we expect the quantity | ¯̄p0 − ¯̄pj|, and hence

I∆0, to be of the size O(hk+1) in smooth regions, where h stands for the mesh size. Near

shocks, the quantity | ¯̄p0 − ¯̄pj|, and hence I∆0, is expected to behave wildly, resulting in an

O(1) value, which is expected to be larger for higher polynomial degree due to the oscillatory

nature of high order polynomials. The denominator in (2.3) ensure the indicating quantity

is dimensionless.

In the next section, we compare numerical results using this new indicator with one of

the best troubled-cell indicators found in [15], namely, the following KXRCF indicator [12].

The indicating quantity for KXRCF is

IKXRCF
∆0

:=

∣∣∣∫∂∆−
0

p(x, y)|∆0 − p(x, y)|∆`
ds

∣∣∣ /|∂∆−
0 |

h
k+1
2 ‖p(x, y)|∆0‖∆0

, (2.5)

and a cell is marked as troubled cell if IKXRCF
∆0

> Ck, where Ck is usually taken to be 1. Here

∂∆−
0 denotes the inflow part of the boundary of the cell ∆0, and ∆` the neighboring cells

sharing the edge(s) in ∂∆−
0 . The mesh size h is taken to be the radius of the circumscribed

circle on ∆0, and the norm in the denominator is a maximum norm based on local solution

maxima at integration points in two dimensions and a cell average in one dimension.

We note that both numerators of (2.3) and (2.5) are formally O(hk+1) in smooth regions

and order O(1) near discontinuities. However, the numerator of (2.3) is observed to be

significantly larger (might be orders of magnitude larger) than that of (2.5) for high order

polynomials due to the oscillatory nature of high order polynomials, which results in a larger

gap of the indicating quantity between smooth regions and discontinuities.
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Also, we note that, due to the scaling of h(k+1)/2 in the denominator, the KXRCF indicator

tends to mark a lot more troubled cells than necessary for high-order DG methods. In our

1D numerical results in the next section, we decrease the power of h in the denominator of

(2.5) to be min{k,2}+1
2

, which seems to be strong enough to single out discontinuities.

2.3 The minmod-type limiter

After identifying the troubled cells, we are ready to apply limiters for the solution in the

troubled cells. We choose to take the characteristic-wise minmod-type limiter on the troubled

cells (with the TVB constant M taken to be 0); see details of the limiter in [4] for 1D systems,

and in [7] for 2D systems on triangular grids. Note that the limiter does not change the cell

averages for conservation.

3 Numerical results

In this section, we perform extensive numerical experiments for 1D and 2D compressible

Euler systems to investigate the effectiveness of the new troubled-cell indicator.

In our 1D simulations, we compare the results with a slightly modified KXRCF indicator

[12] where the power of h in the denominator is taken as min{k,2}+1
2

. We detect an element

as troubled if it is detected by either density or energy. The constant Ck for the KXRCF

indicator is taken as 1 in all tests. The original KXRCF indicator marks a lot more troubled

cells than this modified one for k = 4, 6; for this reason, we do not report results using the

original KXRCF indicator. The constant Ck for our new indicator is taken as 0.1 for k = 2,

0.5 for k = 4, and 5 for k = 6 in all our 1D tests, and is taken as 0.015× 2k−1 or 0.03× 2k−1

for k = 1, 2, 3 in our 2D tests. We note that similar results for the 1D simulations using odd

polynomial degrees k = 1, 3, 5 are obtained, but only results for even degrees k = 2, 4, 6 are

reported to save space.

Remark 3.1 As is true for most troubled-cell indicators, taking the threshold constant too

small would mark more troubled cells than necessary, especially for the cells near a shock,
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while taking it too big would leads to missed shocks. Here we show numerically that a good

choice of the constant Ck for the new indicator is insensitive to a particular test case, while

it only depends strongly on the polynomial degree. We tune the constant Ck via test-and-trial

for a specific test (Example 3.1 below in 1D, and Example 3.9 in 2D) on a relative coarse

mesh. As shown in the numerical experiments below, for a given polynomial degree, a fixed

choice of constant Ck works well for all tests considered in this section.

Since the limiter does not guarantee the positivity of density and/or pressure, we also

add a positivity preserving limiter [29, 30, 32] whenever a negative cell average of density

or pressure is observed. We use a similar implementation as suggested in [26] for the Euler

equations with chemical reactions and in [28] for the compressible Navier-Stokes equations

to incorporate the positivity-preserving limiter.

The implementation flow chart is given as follows:

(1.) Use SSP Runge-Kutta time discretization. The third-order version (2.2) is used for

k ≥ 2 in all the numerical tests, and a second-order version is used for k = 1 in our

2D tests.

(2.) Use DG-Pk spatial discretization (2.1) with a local Lax-Friedrichs flux. We run simu-

lations for P2, P4 and P6 in 1D and P1, P2 and P3 in 2D. We take the CFL number

to be 0.3 for P1, 0.15 for P2, 0.1 for P3, 0.06 for P4, and 0.03 for P6.

(3.) In each stage of the Runge-Kutta time discretization, monitor the cell averages of

density and pressure. If a negative cell average appears, redo the whole computation

by halving the time step, and applying the following Steps 3.1–3.3. If no negative cell

average is obtained, apply the following Steps 3.1–3.2.

(3.1.) Fix a threshold Ck in the troubled-cell indicator (2.4) for a given polynomial

degree k. Apply the indicator (2.4) with both density and total energy as the indi-

cating variable. Take the troubled cells as the union of those obtained from these two

indicating variables.
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(3.2.) Apply the characteristic-wise minmod-type limiter [4, 7] on the troubled

cells.

(3.3.) Apply the positivity-preserving limiter [31].

Note that the positivity-preserving limiter is only activated if a negative pressure/density

cell average is observed.

3.1 1D tests

We solve the 1D Euler equations (1.1) with

u = (ρ, ρµ,E)T , f(u) = (ρµ, ρµ2 + p, µ(E + p))T .

Here ρ is the density, µ is the velocity, E is the total energy, and p is the pressure, related

to the total energy by E = p
γ−1

+ 1
2
ρµ2.

Example 3.1. We consider a non-physical smooth test. We take γ = 3. The initial

conditions are:

ρ(x, 0) = 1 + 0.2 sin(π x), µ(x, 0) =
√

γρ(x, 0), p(x, 0) = ρ(x, 0)γ.

The computational domain is x ∈ [−1, 1]. Periodic boundary conditions are applied in this

test. By the choice of γ and the initial conditions, it is easy to verify that the exact solution

for density is nothing but the solution for the following scalar Burgers equation:

vt + (
√

γv2)x = 0

with initial condition v(x, 0) = 1 + 0.2 sin(π x), and the velocity and pressure satisfies µ =

√
γρ, and p = ργ. For the above initial condition, the solution is smooth up to time T =

5
√

3
6π

≈ 0.46. We compute the solution up to time t = 0.5. The computed densities ρ are

plotted at time t = 0.25 and t = 0.5 against the exact solution in Figure 3.1 for polynomial

degree k = 2, 4, 6 on N = 100 uniform cells. The indicator value I∆ := max{I∆(ρ), I∆(E)}

at time t = 0.25 and t = 0.5, along with the time history of the troubled cells are shown in
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Figure 3.2. It is clear from Figure 3.2 that no limiter is activated at time t = 0.25, and the

indicator is indeed high-order for smooth data.
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Figure 3.1: Smooth test. Left: k = 2; Middle: k = 4; Right: k = 6. Top: t = 0.25; bottom:
t = 0.5. Solid line: the exact solution; Squares: numerical solution. 100 cells. One point per
cell is plotted.

Example 3.2. We use the following Riemann initial condition for the Sod problem:

(ρ, v, p) = (1, 0, 1) for x ∈ [−5, 0]; (ρ, v, p) = (0.125, 0, 0.1) for x ∈ (0, 5].

Average (over time) and maximum percentages of cells being flagged as troubled cells for

the new and KXRCF indicators, are summarized in Table 3.1 for t = 2.0 using N = 200 and

N = 400 uniform cells. We observe from Table 3.1 that the percentage of troubled cells gets

reduced by about a half with a mesh refinement for the new indicator, which is a desired

property of the troubled cell indicator. On the other hand, the KXRCF indicator tends to

mark more cells on average when the mesh is refined. We do notice that the new indicator

tends to detect more cells if the polynomial degree k is higher, while the KXRCF indicator

tends to detect fewer cells with an increasing k, which is more desirable.
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Figure 3.2: Smooth test. Left: k = 2; middle: k = 4; right: k = 6. Top row: I∆ at t = 0.25;
middle row: I∆ at t = 0.5; Bottom row: Troubled cells (denoted by squares). 100 cells.

In Figures 3.3, we plot the computed densities ρ at t = 2.0 against the exact solution

with N = 200 uniform cells for k = 2, 4 and 6 using both indicators. The time history of the

troubled cells for both indicators are shown in Figure 3.4. We see that contact discontinuities

are initially marked as troubled cells for both indicators for all polynomial degrees, but are

left out after a few steps (except for the KXRCF indicator for k = 2 where they continue

to be marked as troubled cells) possibly due to the smearing of the DG solution. Similar

results are obtained for both indicators. We can observe that the results for all cases keep

sharp discontinuities and are mostly oscillation-free.
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Table 3.1: Average and maximum percentages of cells flagged as troubled cells subject to
different troubled-cell indicators for the Sod problem.

Schemes P2 P4 P6

N indicator Ave Max Ave Max Ave Max

200
new 1.38 2.50 1.67 4.00 1.95 5.00

KXRCF 3.09 5.00 1.66 3.50 1.41 3.00

400
new 0.69 1.25 0.81 2.00 0.91 2.50

KXRCF 2.41 3.75 1.81 2.50 1.47 2.50
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Figure 3.3: The Sod problem. t = 2.0. Top row: new indicator. Bottom row: KXRCF
indicator. Left: k = 2; Middle: k = 4; Right: k = 6. Solid line: the exact solution; Squares:
numerical solution. 200 cells. One point per cell is plotted.

Example 3.3. We use the following Riemann initial condition for the Lax problem:

(ρ, v, p) = (0.445, 0.698, 3.528) for x ∈ [−5, 0]; (ρ, v, p) = (0.5, 0, 0.571) for x ∈ (0, 5].

Results similar to the previous example, at t = 1.3, are observed. To save space, we only

show the time history of the troubled cells for both indicators in Figure 3.5.

Example 3.4. The double rarefaction wave problem [13]. We use the following Riemann
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Figure 3.4: The Sod problem. Troubled cells (denoted by squares). Top row: new indicator.
Bottom row: KXRCF indicator. Left: k = 2; Middle: k = 4; Right: k = 6. 200 cells.

initial condition for the double rarefaction wave problem:

(ρ, v, p) = (7,−1, 0.2) for x ∈ [−1, 0]; (ρ, v, p) = (7, 1, 0.2) for x ∈ (0, 1].

This test does not have shocks but negative density/pressure might easily appear. Results

similar to the previous examples, at t = 0.6, are given in Table 3.2 and in Figures 3.6–

3.7. The new indicator performs better than KXRCF in terms having smaller percentage of

troubled cells. We specifically mention that the original KXRCF indicator marks even more

cells than this modified one for k = 4, 6.

Example 3.5. The LeBlanc problem. We use the following Riemann initial condition for

the LeBlanc problem:

(ρ, v, p) = (1, 0, 0.2/3) for x ∈ [−3, 0]; (ρ, v, p) = (10−3, 0, 2/3× 10−10) for x ∈ (0, 6].

γ is taken to be 5/3. We show results at t = 6.0 in Table 3.3 and in Figures 3.8–3.9, and

observe a similar pattern as in Example 3.2. Both methods are not able to sharply capture
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Figure 3.5: The Lax problem. Troubled cells (denoted by squares). Top row: new indicator.
Bottom row: KXRCF indicator. Left: k = 2; Middle: k = 4; Right: k = 6. 200 cells.

the location of the contact discontinuity and shock due to extreme initial data, with the

results for KXRCF indicator slightly better in terms of location of the shock.

Example 3.6. A higher order scheme would show its advantage when the solution contains

both shocks and complex smooth regions. A typical example for this is the problem of shock

interaction with entropy waves [22]. We solve the Euler equations with a moving Mach=3

Table 3.2: Average and maximum percentages of cells flagged as troubled cells subject to
different troubled-cell indicators for the double rarefaction wave problem.

Schemes P2 P4 P6

N indicator Ave Max Ave Max Ave Max

200
new 0.70 6.00 0.93 6.00 3.95 15.00

KXRCF 37.62 74.00 35.64 63.50 33.57 53.00

400
new 0.18 3.00 0.23 3.00 0.98 7.50

KXRCF 35.66 71.50 34.95 64.50 33.91 54.00
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Figure 3.6: The double rarefaction wave problem. t = 0.6. Top row: new indicator. Bottom
row: KXRCF indicator. Left: k = 2; Middle: k = 4; Right: k = 6. Solid line: the exact
solution; Squares: numerical solution. 200 cells. One point per cell is plotted.

shock interacting with sine waves in density, i.e. initially

(ρ, v, p) = (3.857143, 2.629369, 10.333333) for x < −4;

(ρ, v, p) = (1 + 0.2 sin(5x), 0, 1) for x ≥ −4.

The computed density ρ is plotted at t = 1.8 against a computed reference “exact” solution

on a very fine mesh.

We show results at t = 1.8 in Table 3.4 and in Figures 3.10–3.11, and observe a similar

pattern as in the previous example. Here we also notice from Figure 3.10 that the resolution

of the density structure behind the strong shock does not get better for higher order degree

approximations. This is expected to be caused by the choice of the low-order minmod-type

limiter on the troubled cells, since the wave structure behind the strong shock are propagated

from the shock, and the same limiter is used for all polynomial degrees on the detected shock

cells.
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Figure 3.7: The double rarefaction wave problem. Troubled cells (denoted by squares). Top
row: new indicator. Bottom row: KXRCF indicator. Left: k = 2; Middle: k = 4; Right:
k = 6. 200 cells.

Example 3.7. We consider the interaction of blast waves [27] with the initial conditions:

(ρ, v, p) = (1, 0, 1000) for 0 ≤ x < 0.1;

(ρ, v, p) = (1, 0, 0.01) for 0.1 ≤ x < 0.9;

(ρ, v, p) = (1, 0, 100) for 0.9 ≤ x.

A reflecting boundary condition is applied to both ends. The computed density ρ is plotted

at t = 0.038 against the reference “exact” solution, which is a converged solution computed

by the fifth order finite difference WENO scheme [10] with 2000 grid points.

Results similar to the previous examples, at t = 0.038, are shown in Table 3.5 and in

Figures 3.12-3.13. The new indicator performs better than the KXRCF indicator in terms

of marking fewer troubled cells and giving better resolution. Similar to the previous test, we

also notice from Figure 3.12 that the resolution does not get better for higher order degree

16



Table 3.3: Average and maximum percentages of cells flagged as troubled cells subject to
different troubled-cell indicators for the LeBlanc problem.

Schemes P2 P4 P6

N indicator Ave Max Ave Max Ave Max

300
new 1.55 2.67 1.57 3.67 2.66 5.00

KXRCF 4.38 8.33 3.76 7.67 3.75 9.33

600
new 0.75 1.33 0.76 1.83 1.06 2.50

KXRCF 2.79 7.17 2.26 5.50 2.25 5.83
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Figure 3.8: The LeBlanc problem. t = 6.0. Top row: new indicator. Bottom row: KXRCF
indicator. Left: k = 2; Middle: k = 4; Right: k = 6. Solid line: the exact solution; Squares:
numerical solution. 600 cells. One point per cell is plotted.

approximations, which is expected to be caused by the choice of the low-order minmod-type

limiter on the troubled cells.

Example 3.8. The Sedov blast wave problem. This problem contains very low density

with strong shocks. The exact solution is specified in detail in [11, 19]. The computational

domain is [−2, 2] and initial conditions are: ρ = 1, µ = 0 and E = 10−12 everywhere except

17



Figure 3.9: The LeBlanc problem. Troubled cells (denoted by squares). Top row: new
indicator. Bottom row: KXRCF indicator. Left: k = 2; Middle: k = 4; Right: k = 6. 600
cells.

that the energy in the center cell is the constant 3200000∆x (emulating a δ-function at the

center). The final computational time is t = 0.001.

Results similar to the previous examples, at t = 0.001, are shown in Table 3.6 and

in Figures 3.14-3.15. We can observe a similar pattern as the previous tests. The new

indicator marks about the same amount of troubled cells (maximum number of troubled

cells is 200 × 12% = 24 for k = 2, 200 × 12.5% = 25 for k = 4, and 200 × 15.5% = 31 for

k = 6 for both meshes), while the KXRCF tends to mark more cells with a mesh refinement.

3.2 2D tests

Now, we solve the three 2D compressible Euler tests considered in [7] on unstructured tri-

angular meshes. For the compressible Euler equations in 2D, the conserved variable u and

18



Table 3.4: Average and maximum percentages of cells flagged as troubled cells subject to
different troubled-cell indicators for the Shu-Osher problem.

Schemes P2 P4 P6

N indicator Ave Max Ave Max Ave Max

200
new 1.70 2.50 2.25 4.50 2.62 5.00

KXRCF 2.94 5.00 1.80 3.50 1.66 4.50

400
new 0.85 1.50 1.07 2.25 1.23 2.50

KXRCF 4.57 8.25 1.49 3.00 1.07 2.75

Table 3.5: Average and maximum percentages of cells flagged as troubled cells subject to
different troubled-cell indicators for the blast wave problem.

Schemes P2 P4 P6

N indicator Ave Max Ave Max Ave Max

200
new 4.81 8.00 4.28 7.50 5.27 9.00

KXRCF 25.71 36.00 20.69 31.50 19.34 30.50

400
new 2.21 4.00 2.03 3.75 2.21 4.50

KXRCF 20.78 30.25 15.35 23.75 13.59 22.75

Table 3.6: Average and maximum percentages of cells flagged as troubled cells subject to
different troubled-cell indicators for the Sedov blast wave problem.

Schemes P2 P4 P6

N indicator Ave Max Ave Max Ave Max

200
new 6.09 12.00 6.69 12.50 7.04 15.50

KXRCF 17.21 28.00 14.28 23.00 13.74 22.00

400
new 2.88 6.00 3.07 6.25 2.66 7.75

KXRCF 12.76 24.00 10.57 20.50 9.92 18.50
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Figure 3.10: The Shu-Osher problem. t = 1.8. Top row: new indicator. Bottom row:
KXRCF indicator. Left: k = 2; Middle: k = 4; Right: k = 6. Solid line: the exact solution;
Squares: numerical solution. 200 cells. One point per cell is plotted.

the flux variable f in the conservation laws (1.1) are given as follows:

u =


ρ
ρµ
ρν
E

 , f = (fx, fy) =




ρµ
ρµ2 + p

ρµν
µ(E + p)

 ,


ρν
ρµν

ρν2 + p
ν(E + p)


 ,

where ρ is the density, (µ, ν) is the velocity vector, E is the total energy, p = (γ − 1)
(
E − ρ

2
(µ2 + ν2)

)
is the pressure and γ is taken to be 1.4 in our test cases.

Here we take the DG polynomial degree to be k = 1 (second order), k = 2 (third order),

or k = 3 (fourth order). We compare the percentage of identified troubled cells using the

indicator (2.4) with two different choices of the threshold constant, namely, Ck = 0.03×2k−1

or Ck = 0.015×2k−1. The numerical results using both choices of the threshold constant are

similar, so we only present the figures with the threshold constant Ck = 0.015× 2k−1 to save

space. We remark again that the choice of the constant Ck is tuned by numerically testing on

the double Mach refection problem Example 3.9 on a coarse mesh. From numerical tests not
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Figure 3.11: The Shu-Osher problem. Troubled cells (denoted by squares). Top row: new
indicator. Bottom row: KXRCF indicator. Left: k = 2; Middle: k = 4; Right: k = 6. 200
cells.

reported in this paper, we observe that the shock indicator is not sensitive to the constant

Ck when it is in the range 0.015 × 2k−1 − 0.03 × 2k−1 for k = 1, 2, 3. Of course, taking a

larger threshold constant leads to slightly fewer detected troubled cells, as can be seen in

the tables below.

Example 3.9. Double Mach reflection. This problem is originally from [27]. The computa-

tional domain for this problem is [0, 4]× [0, 1]. The reflecting wall lies at the bottom, starting

from x = 1
6
. Initially a right-moving Mach 10 shock is positioned at x = 1

6
, y = 0 and makes

a 60◦ angle with the x-axis. For the bottom boundary, the exact post-shock condition is

imposed for the part from x = 0 to x = 1
6

and a reflective boundary condition is used for the

rest. At the top boundary, the flow values are set to describe the exact motion of a Mach

10 shock. We compute the solution up to t = 0.2.

Average (over time) and maximum percentages of cells being flagged as troubled cells for
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Figure 3.12: The blast wave problem. t = 0.038. Top row: new indicator. Bottom row:
KXRCF indicator. Left: k = 2; Middle: k = 4; Right: k = 6. Solid line: the exact solution;
Squares: numerical solution. 400 cells. One point per cell is plotted.

the indicator (2.4) with two difference thresholds Ck, are summarized in Table 3.7 for t = 0.2

using two consecutive meshes. The percentages of troubled cell get reduced by about a half

with a mesh refinement.

The simulation results using indicator (2.4) with Ck = 0.015×2k−1 on the fine mesh with

h = 1/240 are shown in Figure 3.16. The “zoom-in” pictures around the double Mach stem

to show more details are given in Figure 3.17. The troubled cells identified at the last time

step are shown in Figure 3.18. The approximations for k = 2 and k = 3 are better than

k = 1 around the double Mach stem, but are a bit more oscillatory. There is no significant

resolution improvement from k = 2 to k = 3.

Example 3.10. A Mach 3 wind tunnel with a step. This model problem is also originally

from [27]. The setup of the problem is as follows. The wind tunnel is 1 length unit wide and

3 length units long. The step is 0.2 length units high and is located 0.6 length units from
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Figure 3.13: The blast wave problem. Troubled cells (denoted by squares). Top row: new
indicator. Bottom row: KXRCF indicator. Left: k = 2; Middle: k = 4; Right: k = 6. 400
cells.

the left-hand end of the tunnel. The problem is initialized by a right-going Mach 3 flow.

Reflective boundary conditions are applied along the wall of the tunnel and inflow/outflow

boundary conditions are applied at the entrance/exit. The results are shown at t = 4.

The corner of the step is a singularity. To avoid an erroneous entropy layer at the

downstream bottom wall, we adopt the modification proposed by Woodward and Colella

[27] by resetting first 6 cells starting just to the right of the corner of the step, see a “zoom-

in” of the reset cells in Figure 3.19. We keep the solution of these 6 cells as piece-wise

constant, with the same entropy and enthalpy as (the cell average of) the cell just to the

left and below the corner of the step by modifying the density and velocity magnitude while

keeping pressure cell average fixed.

Average (over time) and maximum percentages of cells being flagged as troubled cells for

the indicator (2.4) with two difference thresholds Ck, are summarized in Table 3.8 for t = 4

using two consecutive meshes. The percentages of troubled cell get reduced by about a half
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Figure 3.14: The Sedov blast wave problem. t = 2.0. Top row: new indicator. Bottom row:
KXRCF indicator. Left: k = 2; Middle: k = 4; Right: k = 6. Solid line: the exact solution;
Squares: numerical solution. 400 cells. One point per cell is plotted.

with a mesh refinement.

The simulation results using indicator (2.4) with Ck = 0.015 × 2k−1 on the mesh with

h = 1/80 are shown in Figure 3.20. The troubled cells identified at the last time step are

shown in Figure 3.21. We notice no erroneous Mach stem in Figure 3.20 due to Woodward

and Colella’s corner modification.

Example 3.11. Shock passing a backward facing corner (diffraction). The setup of the

problem is the following: the computational domain is the union of [0, 1]×[6, 11] and [1, 13]×

[0, 11]; the initial condition is a pure right-moving shock of Mach = 5.09, initially located

at x = 0.5 and 6 ≤ y ≤ 11, moving into undisturbed air ahead of the shock with a density

of 1.4 and a pressure of 1. The boundary conditions are inflow at x = 0, 6 ≤ y ≤ 11, outflow

at x = 13, 0 ≤ y ≤ 11, and Neumann at 1 ≤ x ≤ 13, y = 0 and at 0 ≤ x ≤ 13, y = 11. No

special treatment is done at the corner which is a singularity of the solution. The results are
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Figure 3.15: The Sedov blast wave problem. Troubled cells (denoted by squares). Top row:
new indicator. Bottom row: KXRCF indicator. Left: k = 2; Middle: k = 4; Right: k = 6.
400 cells.

shown at t = 2.3.

Average (over time) and maximum percentages of cells being flagged as troubled cells for

the indicator (2.4) with two difference thresholds Ck, are summarized in Table 3.9 for t = 2.3

using two consecutive meshes. The percentages of troubled cell get reduced by about a half

with a mesh refinement.

The simulation results using indicator (2.4) with Ck = 0.015 × 2k−1 on the mesh with

h = 1/20 and h = 1/40 are shown in Figure 3.22. The troubled cells identified at the last

time step are shown in Figure 3.23.

4 Concluding remarks

In this paper we have introduced a new troubled-cell indicator for the RKDG methods.

Extensive one- and two-dimensional simulations on the hyperbolic systems of Euler equations

indicate that this new indicator is able to capture shocks without a PDE sensitive parameter
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Table 3.7: Average and maximum percentages of cells flagged as troubled cells subject to
different thresholds for the indicator (2.4) for the double Mach reflection problem.

Schemes P1 P2 P3

h threshold Ave Max Ave Max Ave Max

1/120
Ck = 0.03× 2k−1 0.93 1.25 0.61 0.75 0.62 0.87
Ck = 0.015× 2k−1 1.27 1.79 0.91 1.21 0.92 1.31

1/240
Ck = 0.03× 2k−1 0.46 0.60 0.30 0.37 0.31 0.43
Ck = 0.015× 2k−1 0.63 0.90 0.45 0.60 0.46 0.64

Table 3.8: Average and maximum percentages of cells flagged as troubled cells subject to
different thresholds for the indicator (2.4) for the forward step problem.

Schemes P1 P2 P3

h threshold Ave Max Ave Max Ave Max

1/40
Ck = 0.03× 2k−1 4.44 5.49 2.30 3.04 3.41 4.35
Ck = 0.015× 2k−1 7.43 8.94 4.48 5.58 5.36 6.72

1/80
Ck = 0.03× 2k−1 2.29 2.75 1.16 1.53 1.78 2.28
Ck = 0.015× 2k−1 3.91 4.66 2.25 2.78 2.72 3.37

Table 3.9: Average and maximum percentages of cells flagged as troubled cells subject to
different thresholds for the indicator (2.4) for the shock diffraction problem.

Schemes P1 P2 P3

h threshold Ave Max Ave Max Ave Max

1/20
Ck = 0.03× 2k−1 1.20 1.97 0.82 1.34 0.74 1.28
Ck = 0.015× 2k−1 1.71 2.84 1.22 1.97 1.20 2.00

1/40
Ck = 0.03× 2k−1 0.60 0.97 0.42 0.67 0.38 0.66
Ck = 0.015× 2k−1 0.83 1.40 0.61 1.01 0.61 1.03
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Figure 3.16: Double Mach refection problem. Top to bottom: second order to fourth order
(k = 1, 2, 3). 30 equally spaced density contours from 1.5 to 21.5. The mesh points on
the boundary are uniformly distributed with cell length h = 1/240. The threshold for the
troubled-cell indicator (2.4) is Ck = 0.015× 2k−1.

to tune. The search for robust high-order limiters on the troubled cells consists of our ongoing

work.
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Figure 3.22: Shock diffraction problem. Top to bottom: second order to fourth order (k =
1, 2, 3). Left: coarse mesh, h = 1/20; right: fine mesh, h = 1/40. Threshold Ck = 0.015 ×
2k−1. 20 equally spaced density contours from 0.066227 to 7.0668.
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