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Abstract

For a Lagrangian scheme solving the compressible Euler equations in cylindrical coor-

dinates, two important issues are whether the scheme can maintain spherical symmetry

(symmetry-preserving) and whether the scheme can maintain positivity of density and inter-

nal energy (positivity-preserving). While there were previous results in the literature either

for symmetry-preserving in the cylindrical coordinates or for positivity-preserving in carte-

sian coordinates, the design of a Lagrangian scheme in cylindrical coordinates, which is high

order in one-dimension and second order in two-dimensions, and can maintain both spheri-

cal symmetry-preservation and positivity-preservation simultaneously, is challenging. In this

paper we design such a Lagrangian scheme and provide numerical results to demonstrate its

good behavior.
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1 Introduction

There are two different and typical frameworks to describe the motion of fluid flow, name-

ly the Eulerian framework and the Lagrangian framework. When we mention the latter

framework, we refer to the kinematic description which considers a time dependent reference

frame that follows the fluid motion. Lagrangian methods are more suitable for problems

involving interfaces between materials or free surfaces and are widely applied in many fields

of multi-material flow simulations such as in astrophysics or in inertial confinement fusion

(ICF).

In these applications, there often exist spherical-symmetric models such as sphere-shape

capsules. When such models are simulated by Lagrangian methods in cylindrical coordinates,

it is a critical and challenging issue to preserve the spherical symmetry in the cylindrical

coordinate system which is distinct from that symmetry. For example, in the simulation of

an implosion problem with strong compressions, the preservation of spherical symmetry is

very important, since the small deviation from spherical symmetry due to numerical errors

may be amplified by Rayleigh-Taylor or other instabilities which may potentially produce un-

predictably large errors. Earlier strategies to design schemes in two-dimensional cylindrical

coordinates to preserve spherical symmetry often sacrifice momentum and energy conser-

vation, or at least momentum conservation. In [3], a cell-centered Lagrangian scheme was

developed based on the control volume discretization. By discretizing the source term in

the momentum equation compatibly, the scheme was designed to preserve one-dimensional

spherical symmetry in a two-dimensional cylindrical geometry using an equal-angel-zoned

grid without losing conservation. Based on the first order control volume scheme of Maire

in [12], Cheng and Shu applied the methodology in [3] to obtain the spherical symmetry

property. This modified scheme can keep several good properties, such as symmetry, con-

servation and the geometric conservation law (GCL). In order to get higher than first-order

symmetry-preserving schemes, Cheng and Shu in [6] presented a second-order cell-centered

Lagrangian scheme for solving Euler equations of compressible gas dynamics in cylindrical
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coordinates. This scheme not only preserves symmetry but also preserves the conservation

for mass, momentum and total energy as well as the GCL.

Another important issue in computational fluid dynamics is the positivity-preserving

property. As in a conservative approximation to Euler equations where density, momentum

and total energy are solved directly, the kinetic energy is computed from mass and mo-

mentum and then subtracted from the total energy to provide internal energy. Therefore, at

high Mach numbers, the internal energy appears as a small difference of two large quantities,

and is prone to large percentage errors. It may easily become negative numerically which

may lead to nonlinear instability and a failure of the numerical scheme. To overcome this

difficulty, many first order positivity-preserving Eulerian schemes were developed in earlier

years, for instance, the classical Godunov scheme [8], Lax-Friedrichs scheme [16, 20], the

modified HLLE scheme [8] and the HLLC scheme [1] and so on. Some of them are designed

also up to second order accuracy. Recently, Zhang and Shu proposed a general framework

of high-order positivity-preserving Eulerian schemes such as the Runge-Kutta discontinu-

ous Galerkin (RKDG) methods and the weighted essentially non-oscillatory (WENO) finite

volume schemes in [20, 21, 22].

Compared with Eulerian methods, positivity-preserving Lagrangian schemes are less in-

vestigated. The pioneering work on this issue includes the positivity-preserving Godunov-

type scheme based on the modified HLL Riemann solver [14], and the positive and entropic

schemes [9]. In [5], Cheng and Shu constructed high order positivity-preserving Lagrangian

schemes in one- and in two-dimensional spaces by developing an HLLC Riemann solver

and applying the Zhang-Shu positivity-preserving framework. More recently, cell-centered

high order positivity-preserving Lagrangian schemes for compressible flows in both one-

dimensional and two-dimensional spaces were presented by Vilar et al in [18, 19] relying on

the two-state solver. We remark that these schemes are designed in cartesian coordinates

and for problems without source terms. For equations in non-cartesian coordinates and with

source terms, positivity-preserving is more difficult to achieve. This is especially the case
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when symmetry-preserving must also be taken into consideration.

In this paper, we will focus on designing high order cell-centered Lagrangian schemes

which can achieve positivity-preserving and symmetry-preserving properties simultaneously.

This is not a straightforward combination of the symmetry-preserving technique in [3, 6] and

the positivity-preserving technique in [5, 18, 19], since the design of one technique must ensure

that the other property is not lost. In the one-dimensional case, for the positivity-preserving

property, we make an additional time step constraint by controlling the change rate of

the control volume to achieve this goal with any definition of positive acoustic impedance,

mainly following [5, 18, 19, 21]. For the extension to two-dimensions, the design and analysis

are similar, however the positivity-preserving limiter must be carefully applied in order

not to affect the spherical symmetry preservation when computed on an equal-angle-zoned

grid. For this purpose, our scheme is based on the work of Cheng and Shu in [6] and

makes a careful balance between the original symmetry-preserving framework and the new

positivity-preserving modification, in order to make sure one does not affect the performance

of the other. The final scheme thus has both symmetry-preserving and positivity-preserving

properties, as well as the GCL and conservation properties.

The remainder of this paper is organized as follows: In Section 2, we first formulate

the compressible Euler equations in cylindrical coordinates, describe the two-state Rieman-

n solver, and then design the first order and high order positivity-preserving Lagrangian

schemes in this one-dimensional case. In Section 3, we show how to extend the positivity-

preserving technique to two-dimensional cylindrical coordinates without destroying the o-

riginal spherical symmetry preservation. In Section 4, one- and two-dimensional numerical

examples are given to verify the performance of our positivity-preserving and symmetry-

preserving Lagrangian schemes. In Section 5, we will make some concluding remarks.
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2 One-dimensional case

The Euler equations for gas dynamics in one-dimensional cylindrical coordinates can be given

by the following integral form in the Lagrangian framework

d

dt

∫
Ω(t)

ρrdr = 0,

d

dt

∫
Ω(t)

ρurdr = −(rp)|Γr(t) + (rp)|Γl(t) +

∫
Ω(t)

pdr,

d

dt

∫
Ω(t)

ρErdr = −(rpu)|Γr(t) + (rpu)|Γl(t)

(2.1)

where r > 0 denotes the radial direction, ρ is density, u is velocity, p is pressure and E is

specific total energy, Γl(t) and Γr(t) are the left and right boundaries of the control volume

Ω(t). The system (2.1) presents the conservation of mass, momentum and total energy.

The set of equations is completed by the additional equation of state (EOS), which has

the following general form

p = p(ρ, e),

with the specific internal energy e = E− 1
2
u2. The thermodynamic sound speed for the fluid

flow is defined as a2 = pρ|s = ∂p
∂ρ

∣∣∣
s
.

2.1 First-order scheme

Let Ii = [ri− 1
2
, ri+ 1

2
] be the cell, ∆ri = ri+ 1

2
− ri− 1

2
be the size of the cell and mi =

∫
Ii
ρrdr

be the mass in the cell Ii, which keeps a constant value during the time marching according

to the first equation in (2.1). Then we introduce the cell averaged value in the cell Ii as

Ui = (ρi, ui, Ei)
⊤, in which the averaged values of density, velocity and total energy are

defined as follows

ρi =
1

Vi

∫
Ii

ρrdr, ui =
1

mi

∫
Ii

ρurdr, Ei =
1

mi

∫
Ii

ρErdr, (2.2)

where Vi =
∫
Ii
rdr denotes the volume of the cell obtained by rotating the cell Ii around the

origin of the coordinate (without the 2π factor).
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Based on these notations, we can rewrite the system in (2.1) in the following control

volume formulation 

ρi =
mi

Vi

,

mi
d

dt
ui = −(rp)|r=ri+1/2

+ (rp)|r=ri−1/2
+

∫
Ii

pdr,

mi
d

dt
Ei = −(rpu)|r=ri+1/2

+ (rpu)|r=ri−1/2
.

(2.3)

Notice that (2.3) is satisfied by the exact solution of the partial differential equations (PDEs)

(2.1) and is not a scheme yet. However, when the point values at the right-hand side in (2.3)

are approximated using the cell averages (2.2), it will become a scheme which evolves these

cell averages as well as moves the mesh. Moreover, we can get the fully discrete finite volume

Lagrangian scheme by using Euler forward time discretization which is as follows,

ρn+1
i =

mi

V n+1
i

,

un+1
i = un

i −
∆tn

mi

(ri+ 1
2
p∗
i+ 1

2
− ri− 1

2
p∗
i− 1

2
) +

∆tn

mi

∆riPs,

E
n+1

i = E
n

i −
∆tn

mi

(ri+ 1
2
p∗
i+ 1

2
u∗
i+ 1

2
− ri− 1

2
p∗
i− 1

2
u∗
i− 1

2
),

(2.4)

where Ps is the approximation of the source term, particularly in the first order case it can

be taken as pni . The intercell values p∗
i+ 1

2

and u∗
i+ 1

2

are the pressure and velocity at the

node ri+ 1
2
, respectively, obtained from an exact or approximate Riemann solver by giving

the left and right states, which are U
n

i and U
n

i+1 in the first order case. The scheme (2.4) is

not complete without the time integration of the trajectory equation, which enables us to

advance in the time the grid position, the cell size and volume as
rn+1
i+ 1

2

= rn
i+ 1

2
+∆tnu∗

i+ 1
2
,

∆rn+1
i = rn+1

i+ 1
2

− rn+1
i− 1

2

,

V n+1
i =

1

2
∆rn+1

i (rn+1
i+ 1

2

+ rn+1
i− 1

2

).

(2.5)

Thus the numerical scheme depends on the choice of the numerical flux, which is generally

obtained by exactly or approximately solving the Riemann problem at the cell interface ri+ 1
2

with the given left and right states respectively. In this paper, we will utilize the two-state
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Riemann solver proposed in [13, 18]. Specific formulas of this Riemann solver are given in

Appendix A, which will be used below. More details can be found in [13, 18].

2.2 First-order positivity-preserving scheme

For the desired property, we define the set of admissible states by

G =

U =

 ρ
u
E

 , ρ > 0, e = E − 1

2
|u|2 > 0 and a2 = pρ|s > 0

 . (2.6)

Lemma 2.1. The set of admissible states G is a convex set, referring to [5, 18, 21].

The scheme (2.4) is called positivity-preserving if {Un

i ∈ G, i = 1, . . . , N} implies {Un+1

i ∈

G, i = 1, . . . , N}.

By adding and subtracting ∆tn

mi
∆rni p

n
i in the second equation of (2.4), the scheme (2.4)

can be rewritten as

U
n+1

i =

 ρn+1
i

un+1
i

E
n+1

i

 =


mi

V n+1
i

un
i − ∆tn

mi
(ri+ 1

2
p∗
i+ 1

2

− ri− 1
2
p∗
i− 1

2

) + ∆tn

mi
∆rni p

n
i +

∆tn

mi
∆rni (Ps − pni )

E
n

i − ∆tn

mi
(ri+ 1

2
p∗
i+ 1

2

u∗
i+ 1

2

− ri− 1
2
p∗
i− 1

2

u∗
i− 1

2

)


=

1

2
H+

1

2
W,

(2.7)

where

H =


mi

V n+1
i

un
i − 2∆tn

mi
(ri+ 1

2
p∗
i+ 1

2

− ri− 1
2
p∗
i− 1

2

) + 2∆tn

mi
∆rni p

n
i

E
n

i − 2∆tn

mi
(ri+ 1

2
p∗
i+ 1

2

u∗
i+ 1

2

− ri− 1
2
p∗
i− 1

2

u∗
i− 1

2

)

 ,

W =


mi

V n+1
i

un
i +

2∆tn

mi
∆rni (Ps − pni )

E
n

i

 .

(2.8)

It is obvious that U
n+1

i is a convex combination of H and W. To ensure that U
n+1

i can

preserve the positivity property, we could consider the sufficient condition that both H and

W are positivity-preserving.
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Before that, we would also want to obey the classical CFL condition, which reads as

∆tn ≤ λmin
i

∆rni
ani

= ∆t1, (2.9)

where λ ≤ 1 is the Courant number (we take λ = 0.5 in our computation), and ani is the

sound speed determined by cell averages. Meanwhile, in order to ensure that the cells will

not degenerate after the time step ∆tn, we would add another restriction on the time step

as follows

∆tn ≤ λ̃min
i

(
∆rni

(u∗
i− 1

2

− u∗
i+ 1

2

)+
,

rn
i+ 1

2

(−u∗
i+ 1

2

)+

)
= ∆t2, (2.10)

where c+ = max(c, 0) and λ̃ < 1/2 (we take λ̃ = 0.4 in our computation). This condition

guarantees the size of each cell ∆ri > 0 and the position ri+ 1
2
> 0, then Vi > 0, which can

ensure the positivity of density based on the first equality in the scheme (2.4).

Motivated by [18, 19], we put an additional constraint on the time step as

∆tn ≤ min
i

σV n
i∣∣∣ri+ 1

2
u∗
i+ 1

2

− ri− 1
2
u∗
i− 1

2

∣∣∣ = min
i

σmi

ρni

∣∣∣ri+ 1
2
u∗
i+ 1

2

− ri− 1
2
u∗
i− 1

2

∣∣∣ = ∆t3, (2.11)

where 0 < σ < 1, then we can ensure that the volume changes at most by a factor σ from tn

to tn+1 and hope to achieve positive internal energy by determining the factor σ.

Now we focus on finding the required condition to ensure the internal energy e(H) =

E(H) − 1
2
(u(H))2 > 0 in the similar way as that in [18]. Detailed derivation is omitted and

we can determine the factor σ in (2.11) as σ ≤ min(1, 1
2

ρni e
n
i

|pni |
) and obtain another time step

restriction

∆tn ≤ min
i

mi

ri− 1
2
z̃+
i− 1

2

+ ri+ 1
2
z̃−
i+ 1

2

= ∆t4, (2.12)

for the scheme (2.4). In particular, for the acoustic solver case, i.e. z̃+
i− 1

2

= z̃−
i+ 1

2

= ρni a
n
i ,

this condition writes ∆tn ≤ ∆rni
2ani

, which can be recovered by the classic CFL condition (2.9)

when λ = 0.5.

As for the sufficient condition for W ∈ G. Similarly, we only need to solve the quadratic

inequality e(W) = E(W)− 1
2
(u(W))2 ≥ 0, which is guaranteed if

∆tn ≤ min
i

(
−miu

n
i

2µ
+

mi

2|µ|
√

(un
i )

2 + 2eni

)
= ∆t5, (2.13)
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with µ = ∆rni (Ps − pni ). In particular, when we choose Ps as pni for the first order approxi-

mation of the source term, the condition (2.13) always holds for any ∆tn.

Theorem 2.2. For the first order Lagrangian scheme (2.4) with the numerical fluxes defined

in the two-state Riemann solver and any general positive wavespeeds definition, assuming

U
n

i ∈ G, U
n+1

i is ensured to be in the admissible set G under the following time step constraint

condition

∆tn ≤ min(∆t1,∆t2,∆t3,∆t4,∆t5), (2.14)

where ∆t1 is the classical CFL condition defined in (2.9), ∆t2 is defined by (2.10), ∆t3 reads

as that in (2.11) with σ ≤ min(1, 1
2

ρni e
n
i

|pni |
), ∆t4 is defined in (2.12) and ∆t5 is defined in (2.13)

with µ = ∆rni (Ps − pni ).

Now, let us make a summary about the first-order positivity-preserving scheme (2.4) and

give the algorithm flowchart for it at each time step:

(1) Assuming Ui ∈ G at the n-th time level, compute the numerical fluxes p∗
i+ 1

2

and u∗
i+ 1

2

for all i by (A.2).

(2) Compute the time step ∆tn by (2.14).

(3) Update the position of each cell vertex, and obtain the size and volume of each cell

by (2.5).

(4) Compute the averaged values Ui at the (n + 1)-th time level based on the scheme

(2.4).

2.3 High-order scheme

Now, we consider a general high-order finite volume Lagrangian scheme which has the same

general form as the first order Lagrangian scheme (2.4), where Ps is the approximation

with high order accuracy of the source term 1
∆ri

∫
Ii
pdr. For instance, if we perform a

third order scheme, we can compute Ps using the Gauss-Lobatto quadrature rule Ps =

1
6
p+
i− 1

2

+ 2
3
pi +

1
6
p−
i+ 1

2

.
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For a high-order accurate spacial discretization, by the information of the corresponding

cell-average variables from the cell Ii and its neighboring cells, we apply the techniques of

essentially non-oscillatory (ENO) reconstruction and local characteristic decomposition [10]

to obtain reconstruction polynomials, through which we can determine the values at the cell

interfaces {U∓
i± 1

2

}. Then the numerical fluxes p∗
i+ 1

2

and u∗
i+ 1

2

for all i can be computed by the

two-state Riemann solver stated in (A.1)-(A.2).

In this section, we consider the ENO reconstruction by treating the cell averages as

integrals on the usual control volumes. This is simply a standard reconstruction which can

be made arbitrarily high order accurate by increasing the polynomial degrees and the stencils.

We perform the ENO reconstruction on the conserved variables, namely density, momen-

tum and total energy (ρ, ρu, ρE)⊤, with a set of polynomials {Wi(r) = (ρi(r),Mi(r), Ei(r))⊤}

of degree k ≥ 1 in the cell Ii for each i, which implies

ρi =
1

Vi

∫
Ii

ρi(r)rdr =
mi

Vi

,

Mi =
1

Vi

∫
Ii

Mi(r)rdr =

∫
Ii
Mi(r)rdr

mi

· mi

Vi

= ρi · ui,

E i =
1

Vi

∫
Ii

Ei(r)rdr =
∫
Ii
Ei(r)rdr
mi

· mi

Vi

= ρi · Ei.

(2.15)

If we use polynomials of degree k in the reconstruction process, we obtain a (k+1)-th order

scheme.

2.4 High-order positivity-preserving schemes

In this section, we focus on how to design the high order scheme (2.4) to be positivity-

preserving when applying the ENO reconstruction (2.15).

Before that, let us consider the K-point Legendre Gauss-Lobatto quadrature rule in the

interval Ii, which is exact for integrals of polynomials with degree up to 2K − 3, and we

denote these quadrature points in Ii as

Si = {ri− 1
2
= r1i , r

2
i , . . . , r

K−1
i , rKi = ri+ 1

2
}. (2.16)
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Let ωα be the quadrature weights such that ωα > 0, α = 1, . . . , K, ω1 = ωK , and
K∑

α=1

ωα = 1.

Assuming that we perform the ENO reconstruction as in (2.15), we get a polynomial

vector {Wi(r) = (ρi(r),Mi(r), Ei(r))⊤} of degree k ≥ 1. We choose K to be the smallest

integer satisfying 2K − 3 ≥ k + 1, then the K-point Legendre Gauss-Lobatto quadrature

rule is exact for the integrals involved in the reconstruction (2.15), hence we have

W iVi =
K∑

α=1

ωαWαir
α
i ∆ri = (ω1W

+
i− 1

2

ri− 1
2
+ ω̃∗

iW
∗
i + ωKW

−
i+ 1

2

ri+ 1
2
)∆ri,

with

ω̃∗
i =

K−1∑
α=2

ωαr
α
i , W ∗

i =
1

ω̃∗
i

K−1∑
α=2

ωαWαir
α
i =

1

ω̃∗
i

(
W iVi

∆ri
− ω1W

+
i− 1

2

ri− 1
2
− ωKW

−
i+ 1

2

ri+ 1
2

)
,

(2.17)

which implies

ρi =
1

Vi

∫
Ii

ρi(r)rdr =
1

Vi

K∑
α=1

ωαmαi,

ui =
1

mi

∫
Ii

Mi(r)rdr =
1

mi

K∑
α=1

ωαmαiuαi,

Ei =
1

mi

∫
Ii

Ei(r)rdr =
1

mi

K∑
α=1

ωαmαiEαi,

(2.18)

where mαi = ραir
α
i ∆rni with

ραi = ρi(r
α
i ), uαi =

Mi(r
α
i )

ρi(rαi )
, Eαi =

Ei(rαi )
ρi(rαi )

.

Now, let us first introduce the artificial numerical fluxes p∗i and u∗i referring to [18], which

are computed from the left and right states U+
i− 1

2

and U−
i+ 1

2

. In order to keep accordance with

them, we also need to define the artificial local wavespeeds relative to this term, z̃∓,u

i± 1
2

, in the

same way as z̃∓
i± 1

2

. For example, if we take the Dukowicz definition of z̃∓
i± 1

2

proposed in [7],

z̃∓
i± 1

2

= ρ∓
i± 1

2

(a∓
i± 1

2

+ Γ|u∗
i± 1

2
− u∓

i± 1
2

|),

the artificial wavespeeds z̃∓,u

i± 1
2

read as

z̃∓,u

i± 1
2

= ρ∓
i± 1

2

(a∓
i± 1

2

+ Γ|u∗i − u∓
i± 1

2

|),
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where the artificial velocity u∗i and artificial pressure p∗i read as

u∗i =
z̃+,u

i− 1
2

u+
i− 1

2

+ z̃−,u

i+ 1
2

u−
i+ 1

2

z̃+,u

i− 1
2

+ z̃−,u

i+ 1
2

− 1

z̃+,u

i− 1
2

+ z̃−,u

i+ 1
2

(p−
i+ 1

2

− p+
i− 1

2

),

p∗i =
z̃+,u

i− 1
2

p−
i+ 1

2

+ z̃−,u

i+ 1
2

p+
i− 1

2

z̃+,u

i− 1
2

+ z̃−,u

i+ 1
2

−
z̃+,u

i− 1
2

z̃−,u

i+ 1
2

z̃+,u

i− 1
2

+ z̃−,u

i+ 1
2

(u−
i+ 1

2

− u+
i− 1

2

).

If we take the acoustic impedance z̃∓
i± 1

2

= ρ∓
i± 1

2

a∓
i± 1

2

, there will be no difference, i.e. z̃∓,u

i± 1
2

=

z̃∓
i± 1

2

.

Then, by adding and subtracting ∆tn

mi
∆rip

∗
i in the second equation in (2.4) and ∆tn

mi
∆rip

∗
iu

∗
i

in the third equation in (2.4) respectively, the scheme (2.4) becomes

U
n+1

i =
1

2
H+

1

2
W, (2.19)

where

H =



mi

V n+1
i

un
i −

2∆tn

mi

(ri+ 1
2
p∗
i+ 1

2
− ri− 1

2
p∗
i− 1

2
) +

2∆tn

mi

∆rip
∗
i

E
n

i −
2∆tn

mi

(ri+ 1
2
p∗
i+ 1

2
u∗
i+ 1

2
− ri− 1

2
p∗
i− 1

2
u∗
i− 1

2
) +

2∆tn

mi

∆rip
∗
iu

∗
i

 , (2.20)

and

W =



mi

V n+1
i

un
i +

2∆tn

mi

∆ri(Ps − p∗i )

E
n

i −
2∆tn

mi

∆rip
∗
iu

∗
i

 . (2.21)

We notice that H can be expressed as the following convex combination

H =
m∗

i

mi

F̂∗ +
ω1m1i

mi

F̂1 +
ωKmKi

mi

F̂K , (2.22)

where m∗
i =

K−1∑
α=2

ωαmαi, and F̂∗ = 1
m∗

i

(
mim

∗
i

V n+1
i

,
K−1∑
α=2

ωαmαiuαi,
K−1∑
α=2

ωαmαiEαi

)⊤

,

F̂1 =



mi

V n+1
i

u+
i− 1

2

− 2∆tn

ω1m1i

(ri− 1
2
p∗i − ri− 1

2
p∗
i− 1

2
)

E+
i− 1

2

− 2∆tn

ω1m1i

(ri− 1
2
p∗i u

∗
i − ri− 1

2
p∗
i− 1

2
u∗
i− 1

2
)

 , (2.23)
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F̂K =



mi

V n+1
i

u−
i+ 1

2

− 2∆tn

ωKmKi

(ri+ 1
2
p∗
i+ 1

2
− ri+ 1

2
p∗i )

E−
i+ 1

2

− 2∆tn

ωKmKi

(ri+ 1
2
p∗
i+ 1

2
u∗
i+ 1

2
− ri+ 1

2
p∗i u

∗
i )

 . (2.24)

We can see that H is a convex combination of three different terms in (2.22). Consequently,

if these terms belong to the convex admissible set G, then so does H. Among these terms,

F̂∗ only consists of the polynomial solution at the time level n at the interior Gauss-Lobatto

quadrature points. To ensure this quantity to be in G, a particular limitation will be designed

in the later section.

We notice that F̂1 and F̂K exactly mimic the first order scheme (2.4) but without the

source term. Thus we would like to apply the similar analysis as that in the first-order

scheme and then obtain F̂1, F̂K ∈ G under the following condition

∆tn ≤ω1min
i

 σ1∆rni∣∣∣u∗i − u∗
i− 1

2

∣∣∣ , σ2∆rni∣∣∣u∗
i+ 1

2

− u∗i

∣∣∣
 = ∆t3,

∆tn ≤ω1min
i

 ρ+
i− 1

2

∆rni

z̃+,u

i− 1
2

+ z̃+
i− 1

2

,
ρ−
i+ 1

2

∆rni

z̃−
i+ 1

2

+ z̃−,u

i+ 1
2

 = ∆t4,

(2.25)

with σ1 ≤ min

(
1,

ρ+
i− 1

2

e+
i− 1

2

2|p+
i− 1

2

|

)
, σ2 ≤ min

(
1,

ρ−
i+1

2

e−
i+1

2

2|p−
i+1

2

|

)
.

As for W, the density is obviously positive. We only need to find a sufficient condition

to ensure e(W) = E(W)− 1
2
u2(W) > 0, which is formulated as

∆tn ≤ min
i

(
− miµ

2∆rni (Ps − p∗i )
2
+

mi

2∆rni (Ps − p∗i )
2

√
µ2 + 2eni (Ps − p∗i )

2

)
= ∆t5, (2.26)

with µ = p∗iu
∗
i + (Ps − p∗i )u

n
i .

Theorem 2.3. If the numerical fluxes are determined by the two-state Riemann solver with

any general positive wavespeeds definition, assume U
n

i ∈ G and the polynomial solutions

Uαi ∈ G,α = 1, . . . , K, then U
n+1

i in the high order scheme (2.4) with the reconstruction in

(2.15) is also in the admissible set G if

∆tn ≤ min(∆t1,∆t2,∆t3,∆t4,∆t5), (2.27)
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where ∆t1 is the CFL condition in (2.9), ∆t2,∆t3,∆t4 and ∆t5 are defined in (2.10), (2.25)-

(2.26).

2.5 Positivity-preserving limiter

In order to ensure the positivity property for the high order scheme (2.4), we have assumed

that the values of reconstruction polynomials at Gauss-Lobatto quadrature points Uαi ∈

G,α = 1, . . . , K. To ensure this assumption, we need to make use of the particular limiter

introduced in [5, 18, 19, 21].

At the time level n, assume the polynomial reconstruction in the cell Ii is the same as

that we presented in the previous section 2.4, i.e Wi(r) with degree k. With the assumption

U
n

i ∈ G, we modify the reconstruction polynomial Wi(r) with a constant θi as follows

W̃i(r) = W i + θi(Wi(r)−W i), (2.28)

where θi ∈ [0, 1] is to be determined, such that U(W̃i(r)) ∈ G for all r located in the Gauss-

Lobatto quadrature points set Si defined in (2.16). In fact, we only need to require the three

points W+
i− 1

2

,W−
i+ 1

2

,W ∗
i to be in G, where W ∗

i = (ρ∗i ,M∗
i , E∗

i )
⊤ is defined in (2.17). Referring

to [5, 18, 21], the specific implementation can be taken as follows:

First, let us enforce the admissibility of the density. Choose a small number ε such that

ρi ≥ ε for all i. In practice, we usually take ε = 10−13. For each cell Ii, compute

ρ̂1i (r) = ρi + θ1i (ρi(r)− ρi), θ1i = min

{
1,

∣∣∣∣∣ ρi − ε

ρi − ρ+
i− 1

2

∣∣∣∣∣ ,
∣∣∣∣ ρi − ε

ρi − ρ∗i

∣∣∣∣ ,
∣∣∣∣∣ ρi − ε

ρi − ρ−
i+ 1

2

∣∣∣∣∣
}
. (2.29)

Second, enforce the positivity of the internal energy e = E − 1
2
|u|2 for each cell. Define

Ŵi(r) = (ρ̂i(r),Mi(r), Ei(r))⊤. For each cell Ii, if min
(
e(Ŵ+

i− 1
2

), e(Ŵ ∗
i ), e(Ŵ

−
i+ 1

2

)
)
≥ ε set

θ2i = 1; otherwise,

θ2i = min

 e(W i)

e(W i)− e(Ŵ+
i− 1

2

)
,

e(W i)

e(W i)− e(Ŵ ∗
i )

,
e(W i)

e(W i)− e(Ŵ−
i+ 1

2

)

 .

Then we get the limited polynomial

W̃i(r) = W i + θ2i (Ŵi(r)−W i). (2.30)
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It is easy to check that the cell average of W̃i(r) over Ii is not changed and is still W
n

i ,

and W̃+
i− 1

2

, W̃−
i+ 1

2

, W̃ ∗
i ∈ G. Moreover, the particular limiter does not destroy the high order

accuracy in smooth regions and more details and proof can be seen in [20].

2.6 High-order time discretization

To get a global high-order scheme, we generally make use of the classic third order SSP

Runge-Kutta type method to for time discretization, whose details can be found in many

references such as [5, 18].

At each step, the positivity-preserving limiter is performed to modify the polynomial.

Notice that the SSP Runge-Kutta schemes are convex combinations of Euler forward time

stepping, thus they are conservative, stable and positivity-preserving when the Euler forward

time stepping is conservative, stable and positivity-preserving.

3 Two-dimensional case

In this section, we focus on the compressible Euler system in the two-dimensional cylindrical

coordinates. Its specific integral form in the Lagrangian framework can be described as

follows 
d
dt

∫∫
Ω(t)

ρrdzdr = 0,
d
dt

∫∫
Ω(t)

ρuzrdzdr = −
∫
Γ (t)

pnzrdl,
d
dt

∫∫
Ω(t)

ρurrdzdr = −
∫
Γ (t)

pnrrdl +
∫∫

Ω(t)
pdzdr,

d
dt

∫∫
Ω(t)

ρErdzdr = −
∫
Γ (t)

pu · nrdl,

(3.1)

where z and r are the axial and radial directions respectively. u = (uz, ur) where uz, ur are

the velocity components in the z and r directions respectively, and n = (nz, nr) is the unit

outward normal to the boundary Γ (t) in the z-r coordinates.

The geometric conservation law (GCL) means that the rate of change of a Lagrangian

control volume should be computed consistently with the node motion, which can be formu-

lated as

d

dt

∫∫
Ω(t)

dV =

∫
Γ (t)

u · nrdl. (3.2)

This property should also hold in the fully-discretized scheme.
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3.1 Preliminaries

3.1.1 Basic notations

At first, let us make some notations referring to [4, 6]. Ω is the quadrilateral computational

cell with the unique index c. The boundary of the cell Ωc is ∂Ωc. Each vertex of the grid has

its own unique index p and the counterclockwise ordered list of the vertices of Ωc is denoted

by p(c). Vc and Ac denote the volume and the area of the cell Ωc respectively. There should

be a remark that Vc is obtained by rotating this cell around the azimuthal z-axis (without

the 2π factor), which can be formulated as Vc =
∫∫
Ωc

rdrdz.

Similar to (2.2), here we also define the cell averages of density, velocity and total energy

as follows:

ρc =
1

Vc

∫∫
Ωc

ρrdzdr, uz
c =

1

mc

∫∫
Ωc

ρuzrdzdr,

ur
c =

1

mc

∫∫
Ωc

ρurrdzdr, Ec =
1

mc

∫∫
Ωc

ρErdzdr,

(3.3)

where mc =
∫∫
Ωc

ρrdrdz is the mass in the cell Ωc, which keeps a constant during the time

marching according to the first equation in (3.1). With these assumptions, we can rewrite

the system (3.1) in the following form

ρc =
mc

Vc

,

mc
d

dt
uz
c = −

∫
∂Ωc

pnzrdl,

mc
d

dt
ur
c = −

∫
∂Ωc

pnrrdl +

∫∫
Ωc

pdzdr,

mc
d

dt
Ec = −

∫
∂Ωc

pu · nrdl.

(3.4)

We denote the coordinates and velocity of the vertex p as (zp, rp) and up = (uz
p, u

r
p) respec-

tively. lpp+ and lpp− stand for the length of the edges [p, p+] and [p−, p], and npp+ and npp−

are the corresponding unit outward norms, where p− and p+ are the neighboring vertices of

the vertex p, see Figure 3.1.
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Figure 3.1: Notations of nodes and nodal variables

In order to calculate the discrete gradient operator over the cell Ωc, we need to denote

the two nodal pressures at each vertex p as πc
p and πc

p, which can be seen in Figure 3.1. These

two pressures are related to the two edges sharing the vertex p. With these, we also need to

define the half lengths and the unit outward normals of the edges connected to the vertex p

in the following way [6]

lcp =
1

2
lpp− , lcp =

1

2
lpp+ , nc

p = npp− , nc
p = npp+ . (3.5)

Besides, the pseudo-radii rcp and rcp are defined as

rcp =
1

3
(2rp + rp−), rcp =

1

3
(2rp + rp+), (3.6)

by which the GCL in (3.2) can be rewritten as the following form referring to [6, 12]

d

dt
Vc(t

n) =
∑
p∈p(c)

(rcpl
c
pn

c
p + rcpl

c
pn

c
p) · up. (3.7)

We will see that the formula is significant for our analysis of positivity preservation in the

later section.

Similarly, we denote

zcp =
1

3
(2zp + zp−), zcp =

1

3
(2zp + zp+),

ξcp =
√

(zcp)
2 + (rcp)

2, ξcp =
√
(zcp)

2 + (rcp)
2.

(3.8)
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These notations enable us to discretize the right-hand side of (3.4) and get the following

semi-discrete form

ρc =
mc

Vc

,

mc
d

dt
uz
c =

∑
p∈p(c)

(rcpl
c
pπ

c
pn

c,z
p + rcpl

c
pπ

c
pn

c,z
p ),

mc
d

dt
ur
c =

∑
p∈p(c)

(rcpl
c
pπ

c
pn

c,r
p + rcpl

c
pπ

c
pn

c,r
p ) +

∆tn

mc

AcPs,

mc
d

dt
Ec =

∑
p∈p(c)

(rcpl
c
pπ

c
pn

c
p + rcpl

c
pπ

c
pn

c
p) · up,

(3.9)

where nc
p = (nc,z

p , nc,r
p ) and nc

p = (nc,z
p , nc,r

p ).

3.1.2 Computation of the nodal pressure and velocity

If we denote Uc
p = (ρcp,u

c
p, E

c
p)

⊤, then the nodal pressure πc
p and πc

p can be determined in the

following way,
πc
p = pcp − z̃cp(up − uc

p) · nc
p,

πc
p = pcp − z̃cp(up − uc

p) · nc
p,

(3.10)

where pcp and pcp are the pressure values at the vertex p which are computed from Uc
p and

Uc
p respectively. z̃cp and z̃cp are the approximations of the acoustic impedance. For the sake

of the symmetry-preserving property, we limit the choices of z̃cp and z̃cp to be the Godunov

acoustic solver for the two-dimensional case, i.e.

z̃cp = ρcpa
c
p, z̃cp = ρcpa

c
p, (3.11)

which is different from that in the one-dimensional case.

The nodal velocity can be determined uniquely by requiring the scheme to satisfy the

conservation of momentum and total energy [12],

up = M−1
p

∑
c∈c(p)

[
rcpl

c
p[p

c
pn

c
p + z̃cp(n

c
p ⊗ nc

p)u
n
c ] + rcpl

c
p[p

c
pn

c
p + z̃cp(n

c
p ⊗ nc

p)u
n
c ]
]
, (3.12)

where the matrix Mp reads as

Mp =
∑
c∈c(p)

Mpc, Mpc = rcpl
c
pz̃

c
p(n

c
p ⊗ nc

p) + rcpl
c
pz̃

c
p(n

c
p ⊗ nc

p) (3.13)

with Mpc being the projection matrix along the two normals nc
p and nc

p.
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3.2 First-order scheme

Based on the notations and assumptions in previous subsections, we can rewrite (3.9) as the

following fully discrete finite volume Lagrangian scheme for the PDE system (3.1) in the

two-dimensional case

U
n+1

c =


ρn+1
c

uz,n+1
c

ur,n+1
c

E
n+1

c

 =



mc

V n+1
c

uz,n
c − ∆tn

mc

∑
p∈p(c)

(rcpl
c
pπ

c
pn

c,z
p + rcpl

c
pπ

c
pn

c,z
p )

ur,n
c − ∆tn

mc

∑
p∈p(c)

(rcpl
c
pπ

c
pn

c,r
p + rcpl

c
pπ

c
pn

c,r
p ) +

∆tn

mc

AcPs

E
n

c −
∆tn

mc

∑
p∈p(c)

(rcpl
c
pπ

c
pn

c
p + rcpl

c
pπ

c
pn

c
p) · up


. (3.14)

Once the nodal velocity up at the vertex p has been determined by (3.12), the cell vertex

and the area and volume of the cell will be updated as follows [12],

zn+1
p = znp +∆tnuz

p, rn+1
p = rnp +∆tnur

p,

An+1
c =

∑
p∈p(c)

(rc,n+1
p lc,n+1

p nc,r,n+1
p + rc,n+1

p lc,n+1
p nc,r,n+1

p ),

V n+1
c =

1

4
An+1

c

∑
p∈p(c)

rn+1
p .

(3.15)

3.3 First-order positivity- and symmetry-preserving scheme

In this section, we will discuss how to obtain the significant properties of positivity- and

symmetry-preserving for the scheme (3.14).

Before that, let us recall the general CFL condition for the two-dimensional case, which

is formulated as

∆tn ≤ λmin
c

lnc
anc

= ∆t1, (3.16)

where we again take the Courant number λ = 0.5, lnc is the length of the shortest edge of

the cell Ωc and anc is the sound speed computed by the cell averages. At the same time, to

avoid the degeneration of the cells, the time step should also be restricted as follows

∆tn ≤ λ̃min
c

(
2An

c

(b+ b̃+)+
, min
p∈p(c)

rnp
(−ur

p)
+
, 1

)
= ∆t2, (3.17)
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where b =
∑

p∈p(c)
(rpu

z
p+ + zp+u

r
p − zpu

r
p+ − rp+u

z
p), b̃ =

∑
p∈p(c)

(ur
pu

z
p+ − ur

p+u
z
p), b

+ = max(b, 0)

and λ̃ < 1
2
. In practice, we again choose it as 0.4.

Now, we start with the preservation of positivity. To achieve that, we put an additional

constraint on the time step [19], which can be formulated as follows

∆tn ≤ min
c

σV n
c∣∣∣∣∣ ∑p∈p(c)(rcplcpnc

p + rcpl
c
pn

c
p) · up

∣∣∣∣∣
= min

c

σmc

ρnc

∣∣∣∣∣ ∑p∈p(c)(rcplcpnc
p + rcpl

c
pn

c
p) · up

∣∣∣∣∣
= ∆t3,

(3.18)

with the factor σ ∈ (0, 1) to be determined.

Similarly, we define the admissible set G as

G =

U =

 ρ
u
E

 , ρ > 0, e = E − 1

2
|u|2 > 0 and a2 = pρ|s > 0

 . (3.19)

Making use of the scheme (3.14), we can know that the density will be positive as long

as the volume of the cell, Vc, is positive, which can be ensured under the restriction in (3.17)

since we update the cell position by (3.15). Therefore, we will pay more attention to the

positivity of the internal energy.

By adding and subtracting ∆tn

mc

∑
p∈p(c)

(rcpl
c
pn

c,z
p +rcpl

c
pn

c,z
p )pnc and

∆tn

mc

∑
p∈p(c)

(rcpl
c
pn

c,r
p +rcpl

c
pn

c,r
p )pnc

in the second and third equations in (3.14) respectively, we can partition the system (3.14)

into two parts, that is

U
n+1

c =


ρn+1
c

uz,n+1
c

ur,n+1
c

E
n+1

c

 =
1

2
H+

1

2
W, (3.20)
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where

H =



mc

V n+1
c

uz,n
c − 2∆tn

mc

∑
p∈p(c)

(rcpl
c
pπ

c
pn

c,z
p + rcpl

c
pπ

c
pn

c,z
p ) +

2∆tn

mc

∑
p∈p(c)

(rcpl
c
pn

c,z
p + rcpl

c
pn

c,z
p )pnc

ur,n
c − 2∆tn

mc

∑
p∈p(c)

(rcpl
c
pπ

c
pn

c,r
p + rcpl

c
pπ

c
pn

c,r
p ) +

2∆tn

mc

∑
p∈p(c)

(rcpl
c
pn

c,r
p + rcpl

c
pn

c,r
p )pnc

E
n

c −
2∆tn

mc

∑
p∈p(c)

(rcpl
c
pπ

c
pn

c
p + rcpl

c
pπ

c
pn

c
p) · up


,

(3.21)

and

W =



mc

V n+1
c

uz,n
c − 2∆tn

mc

∑
p∈p(c)

(rcpl
c
pn

c,z
p + rcpl

c
pn

c,z
p )pnc

ur,n
c − 2∆tn

mc

∑
p∈p(c)

(rcpl
c
pn

c,r
p + rcpl

c
pn

c,r
p )pnc +

2∆tn

mc

AcPs

E
n

c


. (3.22)

By this way, we express U
n+1

c as a convex combination consisting of H andW. Thus, assuming

U
n

c ∈ G, if we are able to prove H, W ∈ G, then we can ensure that U
n+1

c ∈ G.

Here we follow a similar way to get the sufficient condition for H ∈ G as that in one-

dimensional case and in [19], and by solving e(H) > 0 we get σ ≤ min(1, ρ
n
c e

n
c

2|pnc |
) for (3.18) and

the following time step constraint

∆tn ≤ min
c

mc∑
p∈p(c)

(rcpl
c
pz̃

c
p + rcpl

c
pz̃

c
p)

= ∆t4. (3.23)

The sufficient condition for W ∈ G can be described as e(W) > 0. Recalling that in [12]∑
p∈p(c)

(rcpl
c
pn

c,z
p + rcpl

c
pn

c,z
p ) = 0,

∑
p∈p(c)

(rcpl
c
pn

c,r
p + rcpl

c
pn

c,r
p ) = Ac,

(3.24)

we can write e(W) as

e(W) = enc − 2

(
∆tn

mc

)2

(AcPs − Acp
n
c )

2 − 2∆tn

mc

(AcPs − Acp
n
c )u

r,n
c . (3.25)
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This is a quadratic inequality e(W) ≥ 0, which is guaranteed by the following condition

∆tn ≤ min
c

(
−mcu

r,n
c

2µ
+

mc

2|µ|
√

(ur,n
c )2 + 2enc

)
= ∆t5, (3.26)

with µ = Ac(Ps − pnc ).

Theorem 3.1. Consider the first-order scheme (3.14) based on the two-state Riemann solver

in (3.10)-(3.13) for the acoustic definition of wavespeeds z̃cp and z̃cp defined in (3.11). Assume

U
n

c ∈ G, then U
n+1

c is also in the set G under the following time step constraints

∆tn ≤ min (∆t1,∆t2,∆t3,∆t4,∆t5) , (3.27)

where ∆t1 is the classic CFL condition (3.16), ∆t2,∆t3,∆t4,∆t5 are defined in (3.17), (3.18),

(3.23), (3.26) respectively with σ ≤ min
(
1, ρ

n
c e

n
c

2|pnc |

)
for ∆t3 and µ = Ac(Ps − pnc ) for ∆t5.

Now, let us consider a one-dimensional spherical symmetric problem simulated on an

equal-angled polar grid, then we know the cell average Uc = (ρc,uc, Ec)
⊤ in the cell Ωc

are symmetric, which means ρc, Ec and the component of uc in the radial direction are the

same in all the cells with the same radial position, while the component of uc in the angular

direction is zero for all the cells. According to [6], for the preservation of symmetry, there is

a special requirement on the choice of the approximation Ps for pressure in the source term,

which should be determined as

Ps =
ξc
1
πc
1
+ ξc2π

c
2 + ξc

3
πc
3
+ ξc4π

c
4

ξc
1
+ ξc2 + ξc

3
+ ξc4

, (3.28)

where πc
1
, πc

2, π
c
3
and πc

4 are the values of pressure related to the two radial edges of the cell

Ωc. ξ
c
1
, ξc2, ξ

c
3
and ξc4 are defined as (3.8).
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Figure 3.2: The local ξ-θ coordinates for the cell Ωc.

Theorem 3.2. The first-order scheme (3.14) will keep both positivity and symmetry simul-

taneously when it is used for a spherical-symmetric problem on an equal-angle-zoned grid, if

the time step ∆tn satisfies the constraints in Theorem 3.1 and Ps is taken as (3.28).

At the end of this section, we make a summary for our first order positivity- and

symmetry-preserving Lagrangian scheme (3.14) for two-dimensional cylindrical coordinates

and give the following algorithm flowchart.

(1) Assuming U
n

c ∈ G at the time level n, compute the nodal pressure πc
p, π

c
p and velocity

up by (3.10)-(3.13) for all cells.

(2) Compute the pressure in the source term using (3.28).

(3) Compute the time step ∆tn by (3.27).

(4) Update the position of each cell vertex and then compute the area An+1
c and volume

V n+1
c of each cell by (3.15).

(5) Compute the new averaged values U
n+1

c by using the scheme (3.14).

3.4 High order scheme

For high order accuracy, the values of Uc
p and Uc

p at the vertex p in the scheme (3.14) will not

be the cell average Uc any more, but can be obtained from the reconstruction polynomials.

Considering a high order scheme, with both positivity and symmetry preservation, we

need to reconstruct polynomial functions in each cell Ωc based on the cell-average information
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of the cell Ωc and its neighbors. Then, the values of πc
p, π

c
p and up can be determined by

(3.10)-(3.13).

Here Ps is also determined as (3.28). Besides, if we simulate a spherically symmetric

problem, we would hope to keep the symmetry property with the reconstructed polynomials,

which puts more restrictions on the reconstruction. We would first need to transform the

cell averages of the variables in the neighboring cells which are involved in the reconstruction

from the usual (z, r) coordinates to the local polar coordinates (ξ, θ), where ξ stands for the

radial direction passing through the center of the edge and the origin, and θ refers to the

angular direction, orthogonal to ξ counter-clockwisely. Also, we perform the integral on the

area rather than over the usual control volume to get the reconstruction polynomial [6], which

can avoid the difficulty caused by different values of r in different cells. This approach of

reconstruction will limit the approximation to be at most second order accurate, regardless of

reconstruction polynomial degrees. This is however not a restriction in the two-dimensional

case as it is known that straight-edge quadrilateral based Lagrangian methods can be at

most second order accurate anyway [2].

In this paper, we apply the same technique of reconstruction to get polynomials from the

cell averages U
n

c = (ρc,uc, Ec)
⊤ as that in [6]. Hence we will not give more details about it

here.

After we perform the reconstruction on the local ξ-θ coordinates to obtain the polyno-

mials, we transform them into the original z-r coordinates for the calculation of the scheme

(3.14). According to [6], after reconstructing along each edge, we get four linear polynomials

in the cell Ωc,

{Um,c(z, r) = (ρm,c(z, r),um,c(z, r), Em,c(z, r))
⊤,m = 1 . . . , 4},

which satisfy ∫∫
Ωc

Um,c(z, r)dzdr = AcUc. (3.29)

Here we define the edge sequence m,m = 1, . . . , 4 of the cell Ωc as those connecting the

vertices “1” and “2”, “2” and “3”,“3” and “4”,“4” and “1” respectively.
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3.5 High order positivity- and symmetry-preserving scheme

Assume we have obtained the reconstruction polynomials Um,c(z, r) along each edge, and by

using the relation in (3.29) we can get

Uc =
1

4Ac

∫∫
Ωc

4∑
m=1

Um,c(z, r)dzdr. (3.30)

If we use a coordinate transformation to convert the cell Ωc with the general quadrilateral

shape in the z-r coordinates to the square [−1
2
, 1
2
] × [−1

2
, 1
2
] in the x-y coordinates (see

Figure 3.3), we can define the set of Gauss-Lobatto quadrature points for the cell Ωc to be

Sc = {(zα, rβ), α = 1, . . . , K, β = 1, . . . , K}, which are the pre-images under the coordinate

transformation of the Gauss-Lobatto quadrature points in the square [−1
2
, 1
2
]× [−1

2
, 1
2
]. We

require the Gauss-Lobatto quadrature rule to be exact for polynomials of degree 2k+1. This

is because a polynomial of degree k in the z-r coordinates becomes a polynomial of degree

2k in the x-y coordinates, since the Jacobian of the coordinate transformation is a bilinear

function [5].
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Figure 3.3: The transformation from the z-r coordinates to the x-y coordinates

In fact, since the reconstruction polynomials are linear, we just need to apply the Simpson

quadrature rule, in which the quadrature points consist of the cell vertices, the mid-points
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of each edge and the cell center, i.e. K = 3. ω1 = ω3 =
1
6
, ω2 =

2
3
. Based on these, we have

Uc =
1

Ac

∫∫
Ωc

Um,c(z, r)dzdr

=
1

Ac

∫ 1
2

− 1
2

∫ 1
2

− 1
2

Um,c(gm,c(x, y))

∣∣∣∣∂gm,c(x, y)

∂(x, y)

∣∣∣∣ dxdy
=

1

Ac

3∑
α=1

3∑
β=1

ωαωβ

∣∣∣∣∂gm,c(x, y)

∂(x, y)

∣∣∣∣
(xα,yβ)

Um,c(zα, rβ),

(3.31)

where Um,c(zα, rβ) is the value of Um,c(z, r) at the corresponding Gauss-Lobatto quadrature

points.
∣∣∣∂gm,c(x,y)

∂(x,y)

∣∣∣ is the Jacobian for the coordinate transformation [5]. Then if we denote

|J |α,βm,c =
∣∣∣∂gm,c(x,y)

∂(x,y)

∣∣∣
(xα,yβ)

and Um,c
α,β = Um,c(zα, rβ), we can rewrite the integral (3.31) by the

summation of the values at quadrature points as follows

Uc =
1

4Ac

∫∫
Ωc

4∑
m=1

Um,c(z, r)dzdr

=
1

4

4∑
m=1

ωm
∗ U

∗
m,c +

∑
p∈p(c)

(ωpU
c
p + ωpU

c
p),

(3.32)

where

ω1
∗ =

1

Ac

(
ω1ω2|J |3,21,c +

2∑
α=1

3∑
β=1

ωαωβ|J |α,β1,c

)
, ω2

∗ =
1

Ac

(
ω1ω2|J |2,32,c +

3∑
α=1

2∑
β=1

ωαωβ|J |α,β2,c

)
,

ω3
∗ =

1

Ac

(
ω1ω2|J |1,23,c +

3∑
α=2

3∑
β=1

ωαωβ|J |α,β3,c

)
, ω4

∗ =
1

Ac

(
ω1ω2|J |2,14,c +

3∑
α=1

3∑
β=2

ωαωβ|J |α,β4,c

)
,

and

ω1 =
1

4Ac

ω2
1|J |

3,1
4,c , ω1 =

1

4Ac

ω2
1|J |

3,1
1,c , ω2 =

1

4Ac

ω2
1|J |

3,3
1,c ,

ω2 =
1

4Ac

ω2
1|J |

3,3
2,c , ω3 =

1

4Ac

ω2
1|J |

1,3
2,c , ω3 =

1

4Ac

ω2
1|J |

1,3
3,c ,

ω4 =
1

4Ac

ω2
1|J |

1,1
3,c , ω4 =

1

4Ac

ω2
1|J |

1,1
4,c .

In fact, we do not need to know the values at the corresponding quadrature points except

the nodes at the cell edges according to the Remarks 3.3 and 3.4 in [5], that is to say, we

can directly express it as

U∗
1,c =

1

ω1
∗

(
AcU

n

c − 4ω1U
c
1 − 4ω2U

c
2

)
, U∗

2,c =
1

ω2
∗

(
AcU

n

c − 4ω2U
c
2 − 4ω3U

c
3

)
,

U∗
3,c =

1

ω3
∗

(
AcU

n

c − 4ω3U
c
3 − 4ω4U

c
4

)
, U∗

4,c =
1

ω4
∗

(
AcU

n

c − 4ω4U
c
4 − 4ω1U

c
1

)
,

(3.33)
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which is quite useful when implementing the positivity-preserving limiter.

Therefore, the scheme (3.14) in the high-order case can be rewritten as

U
n+1

c = ω∗U∗
c +

∑
p∈p(c)

(ωpF̂p + ωpF̂p), (3.34)

where U∗
c =

1
4ω∗

4∑
m=1

ωm
∗ U

∗
m,c but the first component reads as mc

ωV n+1
c

with ω∗ = 1
4

4∑
m=1

ωm
∗ , ω =

ω∗ +
∑

p∈p(c)
(ωp + ωp),

F̂p =



mc

ωV n+1
c

uc,z
p − ∆tn

ωpmc

rcpl
c
pπ

c
pn

c,z
p

uc,r
p − ∆tn

ωpmc

rcpl
c
pπ

c
pn

c,r
p +

∆tn

ωpmc

(
1

8
Ac)Ps

Ec
p −

∆tn

ωpmc

rcpl
c
pπ

c
pn

c
p · up


, (3.35)

and

F̂p =



mc

ωV n+1
c

uc,z
p − ∆tn

ωpmc

rcpl
c
pπ

c
pn

c,z
p

uc,r
p − ∆tn

ωpmc

rcpl
c
pπ

c
pn

c,r
p +

∆tn

ωpmc

(
1

8
Ac)Ps

Ec
p −

∆tn

ωpmc

rcpl
c
pπ

c
pn

c
p · up


. (3.36)

Obviously, U
n+1

c is a convex combination consisting of U∗
c and F̂p, F̂p, hence we only need

to ensure U∗
c and ∀p ∈ p(c), F̂p, F̂p are in the admissible set G. For each F̂p, we hope to

apply exactly the same techniques as those presented in the first order case to make sure

F̂p ∈ G [19], similarly for F̂p ∈ G, ∀p ∈ p(c).

Let us define all the corner nodes for each cell as a set Qc = {1, 1, 2, 2, 3, 3, 4, 4} and

assume the following formula always holds∑
q∈Qc

rcql
c
qπ

c,a
q nc

q = 0, (3.37)

where πc,a
q stands for some artificial pressure and its corresponding artificial velocity is uc

and πc,a
q ,uc are to be determined later.
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By adding the artificial term (3.37) in (3.14), F̂p is changed into

F̂p =



mc

ωV n+1
c

uc,z
p − ∆tn

ωpmc

(rcpl
c
pπ

c
pn

c,z
p − rcpl

c
pπ

c,a
p nc,z

p )

uc,r
p − ∆tn

ωpmc

(rcpl
c
pπ

c
pn

c,r
p − rcpl

c
pπ

c,a
p nc,r

p ) +
∆tn

ωpmc

(
1

8
Ac)Psc

Ec
p −

∆tn

ωpmc

(rcpl
c
pπ

c
pn

c
p · up − rcpl

c
pπ

c,a
p nc

p · uc)


. (3.38)

Lemma 3.3. For all p, F̂p exactly mimics the first order scheme defined in (3.14), so does

F̂p.

The proof of this lemma is given in the Appendix B, in which we also show how to

define and determine the artificial pressure πc,a
q and its corresponding artificial velocity uc in

(3.37)-(3.38). Therefore, by using the same analysis as that in the first order case, we have

the following conclusion.

Theorem 3.4. Consider the Lagrangian scheme (3.14) based on the two-state Riemann

solver defined in (3.10)-(3.13) with the acoustic definition of z̃cp and z̃cp defined in (3.11).

Assume U
n

c ∈ G and Um,c
α,β ∈ G for all m = 1, 4, α, β = 1, 3, then U

n+1

c ∈ G under the

following time step constraint

∆tn ≤ min (∆t1,∆t2,∆t3,∆t4,∆t5,∆t6) , (3.39)

where ∆t1 is the CFL condition (3.16), ∆t2 is defined in (3.17) and

∆t3 = min
p,c

 2ωpmc∑
q∈Qc

rcql
c
qz̃

q
p
,

2σpωpmc

ρcp

∣∣∣(up − uc) · rcplcpnc
p

∣∣∣
 ,

∆t4 = min
p,c

 2ωpmc∑
q∈Qc

rcql
c
qz̃

q
p

,
2σpωpmc

ρcp
∣∣(up − uc) · rcplcpnc

p

∣∣
 ,
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with σp ≤ min
(
1,

ρcpe
c
p

2|pcp|

)
, σp ≤ min

(
1,

ρcpe
c
p

2|pcp|

)
, and

∆t5 = min
p,c

(
−
ωpmcu

c,r
p

2µ1

+
ωpmc

2|µ1|

√
(uc,r

p )2 + 2ecp

)
,

∆t6 = min
p,c

(
−
ωpmcu

c,r
p

2µ2

+
ωpmc

2|µ2|

√
(uc,r

p )2 + 2ecp

)
where

µ1 =
1

8
AcPs − Acπ

c
p, µ2 =

1

8
AcPs − Acπ

c
p.

3.6 Positivity-preserving limiter

To achieve the preservation of symmetry, we need to perform the polynomial reconstruction

and positivity-preserving limitation along each edge and in the local ξ-θ coordinates for each

cell Ωc as that we presented before, that is to say, we first need to transform the polynomials

in the z-r coordinates Um,c(z, r) = (ρm,c(z, r),um,c(z, r), Em,c(z, r))
⊤ into the polynomials

defined in the ξ-θ coordinates Um,c(ξ, θ) = (ρm,c(ξ, θ),um,c(ξ, θ), Em,c(ξ, θ))
⊤.

Under the assumption U
n

c ∈ G, we would like to modify the polynomial reconstruc-

tion Um,c(ξ, θ) with a constant θc into another polynomial Ũm,c(ξ, θ) such that the values of

Ũm,c(ξ, θ) at its corresponding Gauss-Lobatto quadrature points can be set in G. The im-

plementation is similar to that for the high-order scheme in the one-dimensional case, which

can be described as the following modification on the reconstruction polynomial

Ũm,c(ξ, θ) = Uc + θc(Um,c(ξ, θ)− Uc), (3.40)

where θc ∈ [0, 1] is to be determined, such that Ũm,c(ξ, θ) ∈ G for all (ξ, θ) ∈ Sc.

In fact, we do not need to modify the values at all Gauss-Lobatto quadrature points, we

only need to modify the values of Um,c(ξ, θ) at the two nodes of its corresponding edge and

U∗
m,c defined in (3.33), which represents a lumped contribution from all other Gauss-Lobatto

quadrature points.

First, let us enforce the admissibility of the density. Choose a small number ε such that

ρc ≥ ε for all c. In practice, we usually take ε = 10−13. For the each edge of each cell Ωc,
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compute

ρ̂m,c(ξ, θ) = ρc + θ1m,c(ρm,c(ξ, θ)− ρc), θ1m,c = min

{
1,

∣∣∣∣ ρc − ε

ρc − ρcm

∣∣∣∣ ,
∣∣∣∣∣ ρc − ε

ρc − ρcm̃

∣∣∣∣∣ ,
∣∣∣∣ ρc − ε

ρc − ρ∗m,c

∣∣∣∣
}
,

(3.41)

with m = 1, 2, 3, 4 and m̃ = 1 + m̄ where m̄ = m (mod 4).

Second, enforce the positivity of the internal energy e for the cells. Define Ûm,c(ξ, θ) =

(ρ̂m,c(ξ, θ),um,c(ξ, θ), Em,c(ξ, θ))
⊤. For the each edge of each cell Ωc,

θ2m,c = min

{
1,

e(Uc)

e(Uc)− e(Û
c

m)
,

e(Uc)

e(Uc)− e(Û
c

m̃)
,

e(Uc)

e(Uc)− e(Û
∗
m,c)

}
.

Then we get the following limited polynomial relative to each edge

Ũm,c(ξ, θ) = Uc + θ2m,c(Ûm,c(ξ, θ)− Uc). (3.42)

After getting the limitation factors θ2m,c for m = 1, . . . , 4, we can get the modified values

at two node points along each edge of the cell Ωc. Then we need to transform back into

the z-r coordinates to update the time marching. Performing the limiter in the local ξ-θ

coordinates can ensure that the values at the Gauss-Lobatto points with the same radial

position and different angular position are the same, thus the property of symmetry can be

maintained.

Besides, it is easy to check that the cell average of Ũm,c(ξ, θ) over Ωc is not changed and

is still U
n

c , and Ũm,c(ξα, θβ) ∈ G for all relevant α, β (including the lumped ones). Moreover,

the particular limiter does not destroy the high order accuracy in smooth regions and can

keep symmetry.

3.7 High order time discretization

To obtain a Lagrangian scheme with uniformly second order accuracy both in time and space,

the time march stepping can be implemented by a second order strong stability preserving

(SSP) Runge-Kutta type method, which is detailed in [6].
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At each step, the reconstruction polynomials of each cell can be obtained based on the

information from itself and its neighbors. Then the limiter operation is performed to modify

the polynomial.

4 Numerical examples

In this section, we choose several challenging numerical examples in one- and two-dimensional

cylindrical coordinates to show the performance of our first order and high order positivity-

preserving and symmetry-preserving Lagrangian schemes. The examples are performed on

the ideal gas with γ = 5/3 unless otherwise stated. The Godunov acoustic solver is used

for all numerical tests, i.e. z̃ = ρa. All these examples encounter the problem of negative

internal energy if the usual high order Lagrangian scheme without the positivity-preserving

limiter is used.

In order to use larger time steps to improve efficiency as much as possible, we do not

restrict the time step as strictly as presented in previous theorems in our actual code. Instead,

we just take the time step ∆tn as the minimum of the classical CFL condition and the

condition for avoiding degeneration of cells, defined by (2.9)-(2.10) and (3.16)-(3.17) relative

to the one- and two-dimensional cases respectively, to march to the time level n + 1. If the

internal energy obtained is positive, we will continue to the next time step; otherwise, we

will come back to the previous time level n, and take a smaller time step such as 1
2
∆tn, and

proceed as before. The theorems in the previous sections ensure that we only need to come

back a finite number of times before we will obtain a positive internal energy. In fact, in our

following numerical tests, the coming-back case happens only seldomly.

4.1 One-dimensional tests

Example 1. Accuracy test.

We first test the accuracy of our schemes on a free-expansion problem. The initial
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condition is taken as

ρ = 1, u = 0, p = 1− r4, r ∈ [0, 1].

Free boundary condition is applied on the outer boundary. The errors and accuracy of the

scheme at t = 1 are listed in Tables 4.1-4.2 which are measured on the interval [r 1
10

N , r 9
10

N ],

where N is the total number of cells, to remove the influence from the boundary. The

percentage of the cells (averaged in space and time) in which the positivity-preserving limiter

has been performed is also listed in Table 4.2. We take the result of the third order positivity-

preserving Lagrangian scheme with 10,000 cells as our reference solution when computing the

errors. From these tables, we can clearly see that the first order and third order positivity-

preserving schemes with the positivity-preserving limiter have achieved the expected order

of accuracy in both L1 and L∞ norms for all the evolved conserved variables.

Table 4.1: Errors of the first order scheme in 1D cylindrical coordinates using N initially
uniform cells

N Norm Density order Momentum order Energy order

50
L1 0.44E-2 0.45E-2 0.56E-2
L∞ 0.15E-1 0.85E-2 0.18E-1

100
L1 0.23E-2 0.93 0.22E-2 0.97 0.29E-2 0.93
L∞ 0.78E-2 1.00 0.46E-2 0.86 0.92E-2 0.98

200
L1 0.11E-2 0.96 0.11E-2 1.00 0.15E-2 0.96
L∞ 0.39E-2 1.01 0.23E-2 1.01 0.46E-2 1.00

400
L1 0.61E-3 0.96 0.56E-3 1.01 0.77E-3 0.98
L∞ 0.19E-2 1.00 0.11E-2 1.08 0.23E-2 0.99

800
L1 0.32E-3 0.93 0.27E-3 1.02 0.39E-3 0.99
L∞ 0.97E-3 1.00 0.52E-3 1.05 0.11E-2 0.99
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Table 4.2: Errors of the third order scheme with positivity-preserving limiter in 1D cylindrical
coordinates using N initially uniform cells

N Norm Density order Momentum order Energy order limited cells(%)

50
L1 0.26E-5 0.28E-5 0.28E-5

0.41
L∞ 0.72E-5 0.58E-5 0.57E-5

100
L1 0.34E-6 2.96 0.35E-6 2.98 0.36E-6 2.93

0.22
L∞ 0.83E-6 3.10 0.70E-6 3.06 0.82E-6 2.79

200
L1 0.34E-7 3.33 0.45E-7 2.98 0.44E-7 3.04

0.16
L∞ 0.91E-7 3.19 0.80E-7 3.11 0.11E-6 2.85

400
L1 0.36E-8 3.22 0.58E-8 2.95 0.53E-8 3.05

0.08
L∞ 0.12E-7 2.91 0.10E-7 3.01 0.14E-7 2.94

800
L1 0.40E-9 3.16 0.78E-9 2.94 0.68E-9 3.02

0.05
L∞ 0.15E-8 2.96 0.13E-8 2.96 0.19E-8 3.00

Example 2. Sedov blast wave in a cylindrical coordinate [17].

The initial computational domain is [0, 1.125]. The initial condition is

ρ = 1, u = 0,

The specific internal energy e is 0 except in the cells connected to the origin where they

share a total value of 0.244816. In the practical simulation, as we cannot simulate vacuum,

e is usually set to be a small positive value such as 10−6. Here we take e to be a smaller

positive value, that is 10−14 which is demonstrated to bring much more challenge to the

scheme. The ideal gas is used with γ = 1.4. Reflective boundary condition is applied on the

outer boundary. The analytical solution is a shock with a peak density of 6 at r = 1 and at

time t = 1. The numerical results with our first and third order schemes using 20 cells at

t = 1 are shown in Figure 4.1 and convergence plots can be seen in Figure 4.2. We can see

the position of the shock has been captured very accurately. Although the internal energy

and pressure are quite small, they can always be kept positive.
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Figure 4.1: The results of the Sedov problem with 20 cells at t = 1.
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Figure 4.2: The convergence results of the Sedov problem on the meshes with refinement at
t = 1.

Example 3. The Noh problem in a cylindrical coordinate system [15].

The Noh problem is a classic test problem which is widely used to validate the perfor-

mance of Lagrangian schemes on strong discontinuities. The initial computational domain

is [0,1]. The initial density is 1, the initial pressure is 0, and the initial velocity is directed

toward the origin with magnitude 1. The analytic solution is a shock generated by bringing

the cold gas to rest at the origin. The density behind the shock is 16, and the shock speed

is 1/3. But in practical numerical simulation, we can not take the pressure to be zero. In

the literature, the pressure is usually chosen as large as 10−5. However, in this test, to verify

the performance of the positivity-preserving property in our scheme, we choose the initial

pressure as small as 10−13, which brings significant challenge to the scheme. In fact, the

third order Lagrangian scheme fails to compute it without the positivity-preserving limiter,
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even with very small time steps. Figures 4.3-4.4 show the results of our first order and third

order schemes on the different grids at t = 0.6. We can observe that density and pressure

are positive and the shock is captured very well, which demonstrates the good performance

of our scheme when the pressure and internal energy tend to zero.
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Figure 4.3: The results of the Noh problem with 40 cells at t = 0.6.
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Figure 4.4: The convergence results of the Noh problem with different meshes at t = 0.6.

4.2 Two-dimensional tests

In this subsection, we perform numerical experiments in two-dimensional cylindrical coordi-

nates. Purely Lagrangian computation, the initially equal-angled polar grid and the second

order scheme (3.14) with (3.10)-(3.13) is used in the following tests unless otherwise stated.

Reflective boundary conditions are applied to the z and r axes in all the tests. ξ =
√
z2 + r2

is the radial coordinate. uξ and uθ represent the values of velocity in the radial and angular

directions in the cell’s local polar coordinates.
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Example 1. We test the accuracy of the scheme (3.14) on a free expansion problem.

The initial computational domain is [0, 1] × [0, π/2] defined in the polar coordinates. At

t = 0, we have

ρ = 1, uξ = 0, uθ = 0, p = 1− ξ4.

We perform the test on two different types of grids as shown in Figures 4.5-4.6. The

first is an initially equal-angled polar grid. The second is an initially non-uniform smooth

polar grid, for which each internal grid vertex is obtained by a smooth perturbation from an

equal-angled polar grid as follows

zk,l = ξk cos θl + ϵ sin(2πξk) sin(4θl),

rk,l = ξk sin θl + ϵ sin(2πξk) sin(4θl),

where ϵ = 0.02. ξk = k−1
K

, θl =
l−1
L

π
2
, (zk,l, rk,l) is the z-r coordinates of the grid points

with the sequential indices (k, l), k = 1, ..., K, l = 2, ..., L in the radial and angular directions

respectively. K,L represent the number of cells in the above mentioned two directions.

Free boundary condition is applied on the outer boundary. The grids at t = 1 are given

in the right figures of Figures 4.5-4.6. In the figures, we use the black points to represent

the cells where the positivity-preserving limiter has been enacted at t = 1. We can clearly

observe the symmetry-preserving property of the scheme on the equal-angled polar grid. The

error and accuracy of the scheme on these two kinds of grids at t = 1 are listed in Tables

4.3-4.4. Due to the numerical singularity, accuracy degeneracy phenomena may happen at

the origin and the free outer boundary, thus we remove several points in these two areas to

avoid the influence of boundary conditions in the convergence results. Here we measure the

error and accuracy on the interval [ξ 1
10

K+1, ξ 9
10

K ] × [θ1, θL]. The time-averaged percentage

of the cells in which the positivity-preserving limiter has been performed is also listed in

the tables. Here we take the result of the one-dimensional third order positivity-preserving

Lagrangian scheme in the spherical coordinate with 10,000 cells as our reference solution.

From the tables, we can see the expected second order accuracy in both L1 and L∞ norms
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for all the evolved conserved variables on both kinds of grids.

Figure 4.5: The equal-angled polar grid of the free expansion problem with 20 × 20 cells.
Left: initial grid; Right: grid at t = 1. The black points in the figure represent the cells
where the positivity-preserving limiter has been enacted at t = 1.

Table 4.3: Errors of the scheme in 2D cylindrical coordinates for the free expansion problem
using K × L initially equal-angled polar grid cells

K = L Norm Density order Momentum order Energy order limited cells(%)

10
L1 0.15E-2 0.19E-2 0.20E-2

8.15
L∞ 0.89E-2 0.29E-2 0.68E-2

20
L1 0.62E-3 1.27 0.45E-3 2.12 0.42E-3 2.22

4.06
L∞ 0.21E-2 2.08 0.75E-3 1.94 0.16E-2 2.12

40
L1 0.18E-3 1.81 0.11E-3 1.96 0.11E-3 1.93

2.09
L∞ 0.41E-3 2.44 0.17E-3 2.19 0.28E-3 2.58

80
L1 0.44E-4 2.03 0.26E-4 2.16 0.27E-4 2.07

1.09
L∞ 0.10E-3 2.00 0.42E-4 1.97 0.69E-4 2.02

37



Figure 4.6: The smooth non-equal-angled polar grid of the free expansion problem with
20×20 cells. Left: the initial grid; Right: the grid at t = 1. The black points in the figure of
the grid represent the cells where the positivity-preserving limiter has been enacted at t = 1.

Table 4.4: Errors of the scheme in 2D cylindrical coordinates for the free expansion problem
using K × L initially smooth non-equal-angled polar grid cells

K = L Norm Density order Momentum order Energy order limited cells(%)

10
L1 0.15E-2 0.20E-2 0.19E-2

7.97
L∞ 0.11E-1 0.44E-2 0.79E-2

20
L1 0.62E-3 1.26 0.46E-3 2.07 0.44E-3 2.14

3.93
L∞ 0.23E-2 2.23 0.13E-2 1.81 0.17E-2 2.20

40
L1 0.18E-3 1.76 0.13E-3 1.88 0.12E-3 1.86

2.02
L∞ 0.41E-3 2.45 0.29E-3 2.12 0.29E-3 2.55

80
L1 0.47E-4 1.97 0.33E-4 1.95 0.34E-4 1.83

1.05
L∞ 0.11E-3 1.94 0.82E-4 1.83 0.86E-4 1.78

Example 2 (The spherical Sedov problem in a cylindrical coordinate system on the polar

grid [17]).

The spherical Sedov blast wave problem in a cylindrical coordinate system is a commonly

used example of a diverging shock wave. The initial computational domain is a 1
4
-circle region

defined in the polar coordinates by [0, 1.125]× [0, π/2]. The initial condition is,

ρ = 1, uξ = 0, uθ = 0.

The specific internal energy is 10−14 except in the cells connected to the origin where they

share a total value of 0.2468. Reflective boundary condition is applied on the outer boundary.

The analytical solution is a shock with a peak density of 4 at radius unity at time unity. The
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final grid and the surface of density and pressure obtained by the second order scheme with

40× 40 cells are displayed in Figures 4.7. We observe the expected symmetry in the plots of

grid, density and pressure. The density and pressure as a function of ξ at all the cell centers

on 20 × 20, 40 × 40 and 80 × 80 grids are shown in Figure 4.8 respectively. In the figures,

we observe that the values of density and pressure with the same ξ coincide with each other

completely, which clearly demonstrates the symmetry-preserving property of the scheme.

The shock position, peak density and pressure agree with the analytical solutions better

with the refinement of grid, which verifies the good performance of the scheme in symmetry-

preserving, positivity-preserving, non-oscillation and accuracy properties. The centers of all

the cells where the positivity-preserving limiter has been effective with the time marching

are shown in the right figure of Figure 4.8, which shows that the limiter always acts along

the front of the shock wave in this test.

Figure 4.7: The results of the Sedov problem on an equal-angled polar grid with 40 × 40
cells at t = 1. Left: the grid; Middle: density contour; Right: pressure contour.
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Figure 4.8: The results of the Sedov problem on an equal-angled polar grid at t = 1. Left:
ρ vs ξ at all the cell centers on 20× 20, 40× 40 and 80× 80 grids respectively. Middle: p vs
ξ at all the cell centers on 20× 20, 40× 40 and 80× 80 grids respectively. Solid line: exact
solution; Symbols: second order scheme. Right: Black points: the cell centers where the
positivity-preserving limiter has been enacted with the time marching on the 40 × 40 grid,
Red lines: grids at t = 0 and t = 1.

Example 3 (Implosion problem of Lazarus [11]).

In this self-similar implosion problem, initially a sphere of unit radius has the following

condition,

ρ = 1, uξ(t) =
−αf

(1− ft)1−α
, uθ(t) = 0, e = 10−14,

where α = 0.6883545, f = 1− εt− δt3, ε = 0.185, δ = 0.28.

We test the problem on an equal-angled polar grid of 200× 30 cells in the initial compu-

tational domain [0, 1] × [0, π/2] defined in the polar coordinates. Free boundary condition

is applied on the outer boundary. The numerically converged result computed using a one-

dimensional third-order Lagrangian code in the spherical coordinate with 10,000 cells is used

as a reference solution. We display the results of the second order scheme in Figures 4.9-4.10.

In the plots of the grid, density contour and pressure contour, we notice the expected sym-

metry. In the plot of density and pressure as a function of ξ at all the cell centers, we observe

the non-oscillatory, symmetry-preserving and positivity-preserving properties of the scheme.

The centers of all the cells where the positivity-preserving limiter has been performed with

the time marching are shown in the right figure of Figure 4.10. In the figure, we could see

that the limiter acts near the shock front and the outer boundary in this test.
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Figure 4.9: The results of the Lazarus problem on an equal-angled polar grid with 200× 30
cells at t = 0.8. Left: grid; Middle: density contour; Right: pressure contour.

Figure 4.10: The results of the Lazarus problem on an equal-angled polar grid with 200× 30
cells at t = 0.74, 0.8. Left: ρ vs ξ at all the cell centers; Middle: p vs ξ at all the cell centers.
Solid line: reference solution; Symbols: second order scheme. Right: Black points: the cell
centers where the positivity-preserving limiter has been enacted with the time marching,
Red lines: the grids at t = 0 and t = 0.74.

Example 4 (The Noh problem in a cylindrical coordinate system on the polar grid [15]).

In this test case, the perfect gas has the following initial condition,

ρ = 1, uξ = −1, uθ = 0, e = 10−13.

The equal-angled polar grid is applied in the 1
4
-circle computational domain defined in the

polar coordinates by [0, 1]× [0, π/2]. Free boundary condition is applied on the outer bound-

ary. The shock is generated by bringing the cold gas to rest at the origin. The analytical post

shock density is 64 and the shock speed is 1/3. Figure 4.11 shows the results of the second
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order scheme including the final grid, density contour and pressure contour with 100 × 20

cells at t = 0.6. The density and pressure as a function of ξ at all the cell centers on 25× 5,

50×10 and 100×20 grids are given in Figure 4.12 respectively, where we observe the results

are convergent, symmetric, positivity-preserving and non-oscillatory near the shock.

Figure 4.11: The results of the Noh problem on an equal-angled polar grid with 100 × 20
cells at t = 0.6. Left: the grid; Middle: density contour; Right: pressure contour. The black
points in the figure of the grid represent the cells where the positivity-preserving limiter has
been enacted.

Figure 4.12: The results of the Noh problem on equal-angled polar grids with 25×5, 50×10
and 100× 20 cells respectively at t = 0.6. Left: ρ vs ξ at all the cell centers. Right: p vs ξ
at all the cell centers. Solid line: exact solution; Symbols: numerical solution.

Example 5 (Spherical Sedov problem on the Cartesian grid).

The spherical symmetry problem simulated on the initially rectangular grid is demon-

strated to be much more challenging for a Lagrangian scheme due to the shock direction
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being not aligned with the grid line. In this example, we test the spherical Sedov blast

wave problem in a cylindrical coordinate system on the initially rectangular grid. The initial

computational domain is a 1.125×1.125 square consisting of 30×30 uniform cells. Its initial

condition is

ρ = 1, uz = 0, ur = 0.

The specific internal energy e is 10−14 except in the cell connected to the origin where it has

a value of 0.2468. Reflective boundary condition is applied on the right and top boundaries.

Figures 4.13-4.14 show the results of our second order scheme (3.14) with (3.10)-(3.13). From

the figures, we can observe the results of our second order scheme are positivity-preserving

and roughly symmetric even on this non-polar grid.

Figure 4.13: The results of the Sedov problem on a Cartesian grid with 30×30 cells at t = 1.
Left: grid; Middle: density contour ; Right: pressure contour. The black points in the figure
of grid represent the cells where the positivity-preserving limiter has been enacted.
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Figure 4.14: The results of the Sedov problem on a Cartesian grid with 30×30 cells at t = 1.
Left: ρ vs ξ at all the cell centers; Right: p vs ξ at all the cell centers. Solid line: exact
solution; Symbols: second order scheme.

Example 6 (Spherical Noh problem on the Cartesian grid [15]).

In this example, we test the spherical Noh implosion problem on a Cartesian grid to verify

the robustness of the scheme. The initial domain is [0, 1] × [0, 1]. The initial state of the

fluid is (ρ, uξ, uθ, e) = (1,−1, 0, 10−13). Free boundary condition is applied on the right and

top boundaries. The analytical solution is the same as that in Example 4. Figures 4.15-4.16

show the results of the second order scheme with 30× 30 initially uniform rectangular cells

at t = 0.6. From these figures, we can see that there is no grid distortion along the axes, the

spherical symmetry of the shock front is preserved well, the shock position is correct and the

positivity of density and pressure is maintained very well, which demonstrate the robustness

of the scheme on the Cartesian grid.
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Figure 4.15: The results of the Noh problem on a Cartesian grid with 30×30 cells at t = 0.6.
Left: the grid; Middle: density contour; Right: pressure contour. The black points in the
figure of the grid represent the cells where the positivity-preserving limiter has been enacted
at t = 0.6.

Figure 4.16: The results of the Noh problem on a Cartesian grid with 30×30 cells at t = 0.6.
Left: ρ vs ξ at all the cell centers. Right: p vs ξ at all the cell centers. Solid line: exact
solution; Symbols: numerical solution.

5 Conclusion

In this paper, we focus on the methodology to design positivity-preserving and symmetry p-

reserving Lagrangian schemes in one- and two- dimensional cylindrical coordinates for solving

compressible Euler equations with general equations of state. Firstly, we develop the first or-

der positivity-preserving Lagrangian scheme and high order positivity-preserving Lagrangian

scheme by using positivity-preserving limiter for Euler equations in one-dimensional cylindri-

cal coordinates, which are performed based on the two-state Riemann solver [13, 18]. Then
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for the two-dimensional cylindrical coordinate case, we consider the preservation of positivity

and symmetry simultaneously (the spherical symmetry is considered when computed on an

equal-angle-zoned initial grid). To achieve this goal, we need to discuss the mutual impact

of these two properties on each other, then make a balance between them. The main idea

is to perform the area based reconstruction in a local ξ-θ coordinate [6], and perform the

positivity-preserving limiter also for such reconstructions and in such local coordinates. Our

schemes also maintain other good properties such as conservation for mass, momentum and

total energy and the geometric conservation law. Several numerical examples in cylindrical

coordinates are given to demonstrate the good performance of the schemes in terms of accu-

racy, positivity-preserving, symmetry-preserving, non-oscillation and robustness properties.

Appendix A. Two-state Riemann solver

Let UL = (ρL, uL, EL)
⊤ and UR = (ρR, uR, ER)

⊤ be the initial left and right states, then the

left and right intermediate states as U∗
− and U∗

+ can be determined by the Rankine-Hugoniot

relations 
1
ρ∗−

= 1
ρL

+
u∗
−−uL

z̃L

u∗
− = uL − p∗−−pL

z̃L

E∗
− = EL − p∗−u∗

−−pLuL

z̃L

and


1
ρ∗+

= 1
ρR

− u∗
+−uR

z̃R

u∗
+ = uR +

p∗+−pR
z̃R

E∗
+ = ER +

p∗+u∗
+−pRuR

z̃R

, (A.1)

where z̃L and z̃R are the local approximations of the acoustic impedance. According to the

continuity of the pressure and the velocity across a contact discontinuity, we can obtain the

associated numerical fluxes

u∗
− = u∗

+ = u∗ =
z̃LuL + z̃RuR

z̃L + z̃R
− 1

z̃L + z̃R
(pR − pL), (A.2a)

p∗− = p∗+ = p∗ =
z̃LpR + z̃RpL

z̃L + z̃R
− z̃Lz̃R

z̃L + z̃R
(uR − uL). (A.2b)

Appendix B. A proof for Lemma 3.3

We notice that the condition (3.37) can be rewritten as∑
q∈Qc\p

rcql
c
qπ

c,a
q nc

q = −rcpl
c
pπ

c,a
p nc

p. (B.1)
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To make F̂p defined in (3.38) mimicking the first order scheme (3.14), we introduce

πq
p =

 πc
p, if q = p

πc,a
p , otherwise

(B.2)

where πq
p is also some artificial pressure and its corresponding artificial velocity is denoted

as uq
p. Then based on (B.1), F̂p for arbitrary p finally reads

F̂p =



mc

ωV n+1
c

uc,z
p − ∆tn

ωpmc

∑
q∈Qc

rcql
c
qπ

q
pn

c,z
q

uc,r
p − ∆tn

ωpmc

∑
q∈Qc

rcql
c
qπ

q
pn

c,r
q +

∆tn

ωpmc

(
1

8
Ac)Ps

Ec
p −

∆tn

ωpmc

∑
q∈Qc

rcql
c
qπ

q
pn

c
q · uq

p


. (B.3)

Hence F̂p is nothing but the first order scheme defined in (3.14), so is F̂p.

If we apply the formula in (3.10) to the artificial numerical flux πq
p, we can get∑

q∈Qc

rcql
c
qπ

q
pn

c
q =

∑
q∈Qc

rcql
c
q(p

c
p − z̃qp(up − uq

p) · nc
q)n

c
q

= pcp
∑
q∈Qc

rcql
c
qn

c
q −

∑
q∈Qc

rcql
c
qz̃

q
p(up − uq

p) · nc
qn

c
q

= Acp
c
per −

∑
q∈Qc

rcql
c
qz̃

q
p(n

c
q ⊗ nc

q)(up − uq
p)

= Acp
c
per −

∑
q∈Qc

M q
pc(up − uq

p)

where er = (0, 1)⊤, M q
pc = rcql

c
qz̃

q
p(n

c
q ⊗nc

q). Making use of (3.38) and (B.1), the last relation

above can be rewritten as

(πc
p − πq

p)r
c
pl

c
pn

c
p = Acp

c
per −M

p
pc(up − uc

p)−
∑

q∈Qc\p

M q
pc(uc − uc

p)

= Acp
c
per −M

p
pc(up − uc

p)−M
p
c (uc − uc

p)

where M
p
c =

∑
q∈Qc\p

M q
pc. Finally, by means of (3.10), we can define the artificial pressure πc,a

p

as

πc,a
p rcpl

c
pn

c
p = pcpr

c
pl

c
pn

c
p +M

p
c (uc − uc

p)− Acp
c
per, (B.4)
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then the condition (B.1) makes us to determine the artificial velocity uc uniquely

uc =

∑
p∈p(c)

(M
p
c +Mp

c )

−1 ∑
p∈p(c)

(
(M

p
c +Mp

c )up − pcpr
c
pl

c
pn

c
p − pcpr

c
pl

c
pn

c
p + Ac(p

c
p + pcp)er

)
.

(B.5)
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