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Abstract

This is an extension of our earlier work [9] in which a high order stable method

was constructed for solving hyperbolic conservation laws on arbitrarily distributed point

clouds. An algorithm of building a suitable polygonal mesh based on the random points

was given and the traditional discontinuous Galerkin (DG) method was adopted on the

constructed polygonal mesh. Numerical results in [9] show that the current scheme will

generate spurious numerical oscillations when dealing with solutions containing strong

shocks. In this paper, we adapt a simple weighted essentially non-oscillatory (WENO)

limiter, originally designed for DG schemes on two-dimensional unstructured triangular

meshes [27], to our high order method on polygonal meshes. The objective of this

simple WENO limiter is to simultaneously maintain uniform high order accuracy of

the original method in smooth regions and control spurious numerical oscillations near

discontinuities. The WENO limiter we adopt is particularly simple to implement and

will not harm the conservativeness and compactness of the original method. Moreover,

we also extend the maximum-principle-satisfying limiter for the scalar case and the

positivity-preserving limiter for the Euler system to our method. Numerical results for

both scalar equations and Euler systems of compressible gas dynamics are provided to

illustrate the good behavior of these limiters.
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1 Introduction

In this paper, we are interested in solving the following two-dimensional hyperbolic

conservation law {
ut + ∇ · F(u) = 0,
u(x, 0) = u0(x),

(1)

in the computational domain Ω ∈ R
2, where F = (f(u), g(u)) is the flux vector,

x = (x, y) ∈ Ω and ∇ = ( ∂
∂x

, ∂
∂y

). Here, u, f and g can be either scalars or vectors.

We assume that an arbitrarily distributed point cloud, namely a finite set of isolated,

unstructured points {xi}
N
i=1, together with the values of the initial condition at these

points {u0(xi), i = 1, · · · , N}, is given, and we seek an algorithm to obtain the point

values of the numerical solution in this point cloud for later time. One possible scenario

for such a set-up could be that the point clouds are locations of the observation posts

or places where measurements are being made, and evolution data would need to be

predicted and compared with future measurements. Unlike traditional problems where

a grid or mesh is given and the initial condition is assumed given as a function, here we

only have the knowledge of the initial values on the arbitrarily distributed point cloud.

Hence, it is difficult to apply the classical well developed grid- or mesh-based computa-

tional methods to this problem directly, such as the finite difference (FD) methods, the

finite volume (FV) methods, and the finite element (FE) methods. Meshless methods

[1, 14] are alternatives to traditional mesh-based methods. They provide numerical solu-

tions in terms of nodes without using any mesh to connect them or using a background

mesh only minimally. However, to our best knowledge, there are few papers devoted

to meshless methods for solving time-dependent hyperbolic conservation laws [18], and

conservation and stability appear to be particularly difficult for meshless methods for

such PDEs.

Recently, we designed a high order stable method for this problem in [9]. In order

to utilize traditional mesh-based methods which have many important good properties,

we provided a way to generate a suitable mesh based on the given point cloud. Each
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cell in the mesh is a polygon, and contains a minimum number of points in the original

point cloud so that a polynomial of a pre-defined degree can be constructed to represent

the initial condition to high order accuracy. Once the polygonal mesh is constructed,

we march the piecewise polynomial numerical solution in time by choosing the classical

discontinuous Galerkin (DG) methods. Due to the good properties of the DG method,

the new constructed method is conservative, stable and high order accurate, both for

linear and nonlinear equations.

The main difficulty in solving the conservation laws (1) is that solutions may contain

discontinuities even if the initial conditions are smooth. As we can see in the numerical

examples in [9], when dealing with solutions containing strong shocks, our current scheme

on the polygonal mesh will generate spurious numerical oscillations, just as DG schemes

without limiters on regular triangular or rectangular meshes will do. These spurious

oscillations may lead to nonlinear instability and eventual blow-ups of the codes. There-

fore, we need to apply nonlinear limiters to control these oscillations for our polygonal

mesh.

To achieve the full potential of high order accuracy and efficiency of our method,

we would like to find a robust high order limiting procedure to simultaneously maintain

uniform high order accuracy in smooth regions and control spurious numerical oscillations

near discontinuities. There are many successful works based on the WENO methodology

[10, 11] for DG methods on two-dimensional unstructured triangular meshes, which

would serve such a purpose. Zhu et al. [22] designed limiters using the usual WENO

reconstruction. They use the cell averages in an adaptive stencil to reconstruct the

values of the solutions at certain points in the target cell. Note that the DG method is

compact, that is, it uses the information only from the target cell and its immediate

neighboring cells. However, the reconstruction stencil in [22] contains not only the

immediate neighboring cells of the target cell but also the neighbors’ neighbors. To

reduce the width of the reconstruction stencil, [13] adopted a Hermite type WENO
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procedure, which uses not only the cell averages but also the first derivative or first order

moment information in the stencil. However the information of neighbors’ neighbors is

still needed for higher order methods. Also, it is complicated to perform the usual

WENO procedure or the Hermite type WENO procedure on unstructured meshes, with

the possibility of negative linear weights, as we would need to use extra special treatments

to handle them [19]. Recently, a new and simple WENO limiter [27] was designed. This

WENO limiter attempts to reconstruct the entire polynomial on the target cell, instead

of reconstructing point values or moments in the classical WENO reconstructions. In

fact, the entire reconstruction polynomial is just a convex combination of polynomials

on the target cell and its immediate neighboring cells (with suitable adjustments for

conservation). Hence, it will not harm the compactness of the DG method. Also, the

linear weights are always positive.

All the above mentioned WENO limiters are designed for DG methods on triangular

meshes. In our method [9] to solve conservation laws on random points, the generated

mesh consists of polygonal cells. Each polygon within the mesh can have arbitrary

number of edges and can be in any shape (even non-convex). Also, two neighboring

polygonal cells usually have more than one common edges. As far as we know, there

has been no prior work on WENO limiters on such a complex mesh. To control the

numerical oscillations near discontinuities in our method on random points, we extend

the work in [27] to the polygonal mesh. Numerical examples in this paper show that

we do achieve the purpose to simultaneously maintain uniform high order accuracy in

smooth regions and control spurious numerical oscillations near discontinuities on the

complex polygonal mesh.

An important property of the unique entropy solution to the scalar conservation law

(1) is that it satisfies a strict maximum principle, i.e., if

M = max
x

u0(x), m = min
x

u0(x), (2)

then u(x, t) ∈ [m, M ] for any x ∈ Ω and t > 0. In particular, the solution will not
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be negative if m > 0. For hyperbolic conservation law systems, the entropy solutions

generally do not satisfy the maximum principle. However, some important quantities

should be non-negative physically. For instance, density and pressure in compressible

Euler equations, and water height in shallow water equations. In practice, failure of

preserving positivity of such quantities may cause blow-ups of the computation. In [23]

and [24], genuinely high order accurate maximum-principle-satisfying and positivity-

preserving schemes were designed for scalar conservation laws and compressible Euler

equations on rectangular meshes.

An important component of the maximum-principle-satisfying and the positivity-

preserving limiters is to find a quadrature rule in the target cell which is accurate enough,

contains Gauss quadrature points on each edge of the cell, and has positive weights. [26]

developed a special quadrature rule which satisfies the above conditions over a triangle

and thus made a nontrivial extension of the aforementioned schemes to triangular meshes.

[20] further discussed an extension to the reactive Euler equations and proposed a slightly

different but very robust and simpler implementation to enforce the positivity of pressure.

In the quadrature rules in all these methods, one need to evaluate the point values on

quadrature points inside the target cell. The implementation is relevantly expensive if

the approximation polynomials are not available, as in the finite volume WENO method.

[25] proposed an alternative and simpler implementation to achieve the same maximum

principle or positivity. Instead of computing all the point values inside the cell, one only

need to compute the value at one single point, determined by the mean value theorem at

an unknown location, which results in a reduction of computational cost and complexity

of the procedure for WENO schemes. The same trick was also used in [21] for the shallow

water equations.

In this paper, our high order method on random points with the WENO limiter

does not in general satisfy a strict maximum-principle for the scalar case or a positivity-

preserving property for the Euler system. Hence, we also extend the aforementioned
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limiters into our scheme. Note that we generate a polygonal mesh based on the given

point cloud and apply DG method upon it. Hence, the first thing we need to do is to

find a suitable quadrature rule on the complex polygonal mesh. The easiest way is to

cut the polygon into small triangles and then use the quadrature rule in [26] for each

triangle, which contains all Gauss quadrature points on each edges of the triangle and

several points inside the triangle. By doing so, the number of quadrature points inside

the polygon is huge. The cost will be large even though we know the approximation

polynomials on each cell in our method. In fact, we do not need to consider the quadra-

ture points on the edges of triangles which are inside the polygon. Hence, we use the

trick in [21, 25] and extend it to our polygonal mesh, namely lumping all points inside

the cell into just one. Thus, we just need values on this one (artificial) point plus all

the points on the polygonal cell boundary to construct the limiter. When enforcing the

positivity of the pressure for the Euler system, we adopt the idea in [20] to simplify the

implementation.

This paper is organized as follows. We first review the high order method [9] in

Section 2. In Section 3, we describe the details of how to introduce the WENO limiting

procedure to this method. In Section 4, we describe the detailed procedure to construct

a maximum-principle-satisfying limiter for the scalar case and a positivity-preserving

limiter for the Euler system. In Section 5, numerical experiments are provided to verify

the accuracy and stability of our scheme with these limiters. Finally, concluding remarks

are provided in Section 6.

2 Formulation of the high order method on random

points

For self consistency, in this section, we give a brief overview of the high order method

in [9] to solve our problem. In Section 2.1, we first recall how to generate an appropriate

mesh based on the given point cloud and approximate the initial discrete data with a
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function. Then in Section 2.2, we show the formulation of the classical DG method on

our constructed polygonal mesh.

2.1 Mesh generation and the initial data approximation

At the initial time, we are given a set of random points {xi}
N
i=1, as shown by the blue

points in Figure 1. We need to cover the computational domain Ω with an appropriate

mesh {Vj}
M
j=1, based on the given point cloud. The purpose is to represent the initial

condition within each cell Vj with a polynomial in P k(Vj), by interpolating or fitting

the given initial values on the given points in this cell. Here, P k(Vj) is the space of

polynomials of degree up to k on Vj. Hence, each cell should contain at least K =

(k+1)(k+2)
2

points, where K is the degree of freedom of P k(Vj). The locations of the given

points in each cell is crucial. For example, when k = 1, the three interpolation points

can not be aligned along a straight line.
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Figure 1: Voronoi diagram for sixteen random points

The mesh generation includes two steps. The first step is to divide the computational

domain into small Voronoi regions {V̂i}
N
i=1. Each Voronoi region V̂i contains only one

point xi in the give point cloud and consists of all locations in Ω closer to xi than to any

other given point in the cloud:

V̂i = {x ∈ Ω | |x − xi| < |x − xj | for j = 1, · · · , N, j 6= i}. (3)
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We call xi as the generator of V̂i. Note that Voronoi regions are all polygons. The set

{V̂i}
N
i=1 forms a tessellation of Ω and is called a Voronoi diagram. Figure 1 shows the

Voronoi diagram for the given random points. For a comprehensive treatment, see [15].

The second step is to carefully group these small Voronoi regions into cells. Each

cell consists of at least K adjacent Voronoi regions. The locations of the corresponding

generator points should enable us to interpolate or fit the initial values with a polynomial

in P k. Considering the cell Vj , we denote the generator points in it as {xj
l }

L
l=1. By

choosing a set of basis functions {φm(x)}K
m=1 in Vj, we attempt to interpolate the initial

solution in Vj by

u0
j(x) =

K∑

m=1

αmφm(x), x ∈ Vj, (4)

such that

u0
j(x

j
l ) = u0(x

j
l ), l = 1, · · · , L. (5)

By denoting A = (al,m) with al,m = φm(xj
l ), ~α = (αm) and ~b = (u0(x

j
l )), we can rewrite

Equations (4) and (5) into the following matrix version:

A~α = ~b. (6)

When L = K, and if A is invertible, we can solve the above system of equations to obtain

~α. We denote the condition number of A as κ(A), which gives a bound on how inaccurate

the solution will be. We can easily see that each row of A relates to one generator point.

During the grouping procedure, even when L < K, we can still compute κ(A), which

can be viewed as a measure of closeness to a rank loss [8]. Hence, a crucial rule in our

algorithm is to bound κ(A) each time we add points into Vj, by using a threshold value

δ. We summarize the algorithm to group Voronoi regions into cells as follows. For a

more detailed explanation, we refer to [9].

• We check all generator points one by one, starting from x1. If xi has not been

distributed into any cells, we now start to create a new cell, say, Vj , and denote

xj
1 = xi.
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• Add all available immediate neighbors (immediate neighbors that have not been

assigned to any cells) of xj
1 into Vj one by one in ascending order of their index

numbers by checking the corresponding κ(A).

• If the number of points in Vj is still less than K, we use the following algorithm to

add only one point each time, until the total number of points reaches K: we find

out all available immediate neighboring points of Vj and rank them by the number

of their immediate neighbors in Vj in descending order. We check them one by one

until we find one that the corresponding κ(A) is less than δ.

• If we still can not find enough points that can pass the condition number test after

checking all available immediate neighbors of Vj , we put aside xi for a while, set

xj
1 = xi+1, and use the above algorithm to construct Vj again. At the end of the

algorithm, if xi is still available, we add it to the nearest existing cell. By doing

so, the number of points in this cell will be larger than K and we need to solve the

following least squares problem

min
~α

||~b − A~α||2 (7)

to determine the fitting polynomial.

2.2 DG method on the polygonal mesh

In the previous section, we have already divided Ω into polygonal cells {Vj}
M
j=1 and

approximated the initial value with a function u0(x): u0(x)|Vj
= u0

j(x), 1 6 j 6 M . It

belongs to the following finite element space consisting of piecewise polynomials

V k
h = {v : v|Vj

= vj ∈ P k(Vj), 1 6 j 6 M}, (8)

which is just the solution as well as the test function space in the DG method. In this

section, we adopt the Runge-Kutta discontinuous Galerkin (RKDG) method carried out

by Cockburn et al. in a series of papers [3, 4, 5, 6, 7] to march the initial function in

time. It uses DG discretization in space and the Runge-Kutta method in time.
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The DG method in space is defined as: find the unique solution uh ∈ V k
h such that,

for all test functions vh ∈ V k
h and all 1 6 j 6 M , we have

∫

Vj

(uh)tvhdx −

∫

Vj

F(uh) · ∇vhdx +

∫

∂Vj

F̂ nvhds = 0, (9)

where n is the outward unit normal vector of the cell boundary ∂Vj . F̂ n = F̂ n(u−
h , u+

h ,n)

is a monotone numerical flux define on ∂Vj for the scalar case or an approximate Riemann

solver for the system case, consistent with F ·n. Here u−
h and u+

h are the values of uh on

∂Vj taken from the inside the cell Vj and the outside of Vj , respectively.

The semi-discrete scheme (9) can be written as

(uh)t = L(uh, t)

where L(uh, t) is a spatial discretization operator. For the time discretization, we use

the total variation diminishing (TVD) third order Runge-Kutta method [17]. Starting

from un ∈ V k
h at time level n, we compute un+1 by

u(1) = un + ∆tL(un, tn),

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tL(u(1), tn + ∆t),

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆tL(u(2), tn +

1

2
∆t). (10)

3 The WENO limiter

As explained in [9], the method is conservative, stable, and high order accurate.

However, numerical results show that it will generate spurious numerical oscillations

when dealing with solutions containing strong shocks. In this section, we extend the

WENO limiter in [27] designed for the DG method on triangular meshes to our method

on polygonal meshes. The goal is to control the oscillations for shocked flows as well as

to maintain the original high order accuracy in smooth regions.

Note that the TVD third order Runge-Kutta method is just a convex combination of

first order forward Euler steps. For simplicity, we only consider the forward Euler time
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discretization in this section. We denote the numerical solution on the n-th time level

as un ∈ V k
h and denote

un|Vj
(x) = un

j (x) ∈ P k(Vj). (11)

Starting from un ∈ V k
h , we first reconstruct it to obtain a new function un,new ∈ V k

h and

then match the new function in time. That is, find un+1 ∈ V k
h , such that for all test

functions vh ∈ V k
h and all 1 6 j 6 M , we have

∫

Vj

un+1
j − un,new

j

∆t
vhdx −

∫

Vj

F(un,new) · ∇vhdx +

∫

∂Vj

F̂ n,newvhds = 0, (12)

where F̂ n,new is the flux computed by using the new function un,new. For the high order

Runge-Kutta method, we only need to repeat the same procedure for each Runge-Kutta

inner stage.

Figure 2: The stencil of the DG method

One can see that when using the DG method to solve un+1 on the target Vj , we

only need to use functions on Vj and its immediate neighboring cells, as shown in Figure

2. We denote this stencil as Sj = {Vj, Vj(1), Vj(2), · · · , Vj(Nj)}, where Nj is the number

of immediate neighboring cells of Vj . Note that unlike the triangular mesh case, Nj is

usually not equal to the the number of edges of Vj since two neighboring cells usually

share more than one common edges. In the WENO limiting procedure on Vj, we use the

same stencil to obtain un,new. Hence, the WENO limiter can maintain the compactness
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of the DG method which makes the method very suitable for parallel computing. For

convenience, we denote the solution polynomials on the stencil Sj as

p0(x) = un
j (x), pl(x) = un

j(l)(x), l = 1, · · · , Nj. (13)

3.1 The WENO limiting procedure for the scalar case

In this section, we consider conservation laws as shown in Eq. (1), where u, f and g

are scalars. Before we perform the WENO limiter, we first need to find out all troubled

cells which contain possible shocks and need the limiting procedure. As in [27], we adopt

the KXRCF shock detection technique [12]. We divide the boundary ∂Vj into two parts:

∂V −
j and ∂V +

j , where the flow is into (F′(u) · n < 0) and out of (F′(u) · n > 0) Vj

respectively. The target cell Vj is identified as a troubled cell when

|
∫

∂V −

j

(
p0(x) − pl(x)

)
ds|

h
k+1
2 |∂V −

i | · ‖p0‖
> Ck, (14)

where Ck is a constant. We choose h as the maximum distance between two points in

Vj. pl(x) denote solutions on the neighboring cells sharing ∂V −
j , and ‖ · ‖ is the standard

L2 norm in Vj. We remark that the KXRCF troubled cell indicator is just one of the

many possibilities and may not be the best one. We use it here for its simplicity, as our

main focus of this paper is not on troubled cell indicators. We refer the readers to [16]

for a detailed discussion about different troubled-cell indicators.

Assuming that Vj is a troubled cell, we now reconstruct un
j (x) to obtain un,new

j (x).

In order to maintain the original cell average of un
j in cell Vj , which is essential to keep

the conservativeness, we modify solutions on the neighboring cells as:

p̃l(x) = pl(x) −
1

|Vj|

∫

Vj

pl(x)dx +
1

|Vj|

∫

Vj

p0(x)dx, l = 1, 2, · · · , Nj , (15)

where |Vj| is the area of Vj. For notational consistency, we also denote p̃0(x) = p0(x). The

nonlinear WENO reconstructed polynomial on cell Vj is defined by a convex combination
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of these modified polynomials:

un,new
j (x) =

Nj∑

l=0

ωlp̃l(x). (16)

From Eq. (16), we know that un,new
j has the same cell average as p0(x) as long as

∑Nj

l=0 ωl = 1. Hence, we define the normalized nonlinear weights as

ωl =
ω̃l∑Nj

m=0 ω̃m

, l = 0, 1, · · · , Nj, (17)

where the non-normalized nonlinear weights ω̃l are defined as

ω̃l =
γl

(ε + βl)2
. (18)

Here ε > 0 is introduced to avoid the denominator to become 0. We take ε = 10−6 in

all our numerical tests. βl is the smoothness indicator, which measures how smooth the

function p̃l is on the target cell Vj. As in [2, 11], we define βl as

βl =

k∑

|s|=1

|Vj|
|s|−1

∫

Vj

( ∂|s|

∂xs1∂ys2
p̃l

)2
dx, (19)

where s = (s1, s2). When p̃l is not smooth, then βl will be large and hence ωl will be

relevantly small.

The linear weights {γl} are a set of positive numbers adding up to one. Note that

since p̃l for l = 0, 1, · · · , Nj are all (k + 1)-th order approximations to the exact solution

in smooth regions, there are no extra requirements on the linear weights in order to

maintain the original high order accuracy. As discussed in [27], since for smooth solutions

the central cell is usually the best one, we put a larger linear weight on the central cell

than on the neighboring cells. In this paper, we take

γ0 = 1 − 0.0005Nj, γl = 0.0005, l = 1, · · · , Nj , (20)

which can maintain the original high order accuracy in smooth regions and can keep

essentially non-oscillatory shock transitions in our numerical examples.
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For each cell Vj, j = 1, · · · , M , if it is a troubled cell, we replace the entire solution

polynomial un
j with the new reconstructed polynomial un,new

j , which is a convex combi-

nation of polynomials on this cell and its immediate neighboring cells. If the cell Vj is

not a troubled cell, we just let un,new
j = un

j . After the WENO limiter procedure, we just

replace un with un,new to march to the next time level by solving Equation (12).

3.2 The WENO limiting procedure for the Euler system

Let us consider the two-dimensional Euler system which is given by

ut + f(u)x + g(u)y = 0,

u =





ρ
m
n
E



 , f(u) =





m
ρu2 + p

ρuv
u(E + p)



 , g(u) =





n
ρuv

ρv2 + p
v(E + p)



 .
(21)

Here, ρ is the density, (u, v)T is the velocity vector, m = ρu and n = ρv are the momenta.

E is the total energy, and p is the pressure, with p(u) = (γ − 1)
(
E − 1

2
ρ(u2 + v2)

)
.

For convenience, we also denote the solution polynomials on cell Vj and its immediate

neighbors as

p0(x) = un
j (x), pl(x) = un

j(l)(x), l = 1, · · · , Nj, (22)

respectively. Each of them is a 4-component vector and each component is a k-th degree

polynomial.

As in the scalar case, we first identify the troubled cells using the KXRCF technique.

The boundary ∂Vj is also divided into two parts: ∂V −
j and ∂V +

j , where the flow is into

((u, v)T · n < 0) and out of ((u, v)T · n > 0) Vj respectively. In the system case, we take

both the density ρ and the total energy E as the indicator variables. The target cell Vj

is identified as a troubled cell when

|
∫

∂V −

j

(
ρ0(x) − ρl(x)

)
ds|

h
k+1
2 |∂V −

j | · ‖ρ0‖
> Ck, (23)
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or

|
∫

∂V −

j

(
E0(x) − El(x)

)
ds|

h
k+1
2 |∂V −

j | · ‖E0‖
> Ck, (24)

where ρl(x) and El(x) denote the density polynomials and the total energy polynomials

on the neighboring cells sharing the edge(s) in ∂V −
i .

Assuming Vj is a troubled cell, we now compute a new polynomial un,new
j on Vj to

replace the original one. To maintain the original cell average of p0(x) in cell Vj, we com-

pute as before the modified polynomial vectors p̃l(x), l = 0, · · · , Nj , corresponding to

the cell Vj and its immediate neighboring cells. In order to achieve better non-oscillatory

qualities, the WENO limiter is used with a local characteristic field decomposition. In

the triangular mesh case in [27], the characteristic-wise WENO limiting procedure is

performed along the normal directions of each edge of Vj. For the polygonal mesh in

this paper, we make a small modification. We denote nl = (nlx, nly)
T , l = 1, · · · , Nj as

the unit vector pointing from the center of Vj to the center of the neighboring cell Vj(l).

Here we simply compute the center of a cell as the arithmetic mean of the locations

of all generator points in this cell. We perform the characteristic-wise WENO limiting

procedure in each nl direction to reconstruct a new polynomial vector (p0)
new
l and then

combine them to get un,new
j .

In the nl direction, we first denote the associate Jacobian matrix as
(
f ′(u), g′(u)

)T
·nl,

Then the matrix with the left eigenvectors of such Jacobian matrix as rows is

Ll =





B2+(unlx+vnly)/c

2
−B1u+nlx/c

2
−

B1v+nly/c

2
B1

2

nlyu − nlxv −nly nlx 0
1 − B2 B1u B1v −B1

B2−(unlx+vnly)/c

2
−B1u−nlx/c

2
−

B1v−nly/c

2
B1

2



 , (25)

and the matrix with the right eigenvectors as columns is

Rl =





1 0 1 1
u − cnlx −nly u u + cnlx

v − cnly nlx v v + cnly

H − c(unlx + vnly) −nlyu + nlxv
u2+v2

2
H + c(unlx + vnly)



 , (26)

where c =
√

γp/ρ, B1 = (γ − 1)/c2, B2 = B1(u
2 + v2)/2 and H = (E + p)/ρ. Now we

use the following steps to obtain (p0)
new
l :
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• We first project the modified polynomial vectors p̃m, m = 0, 1, · · · , Nj into the

characteristic fields:

p̄m = Ll · p̃m, m = 0, 1, · · · , Nj. (27)

• We perform the scalar WENO limiting procedure that has been specified in the last

subsection on each component of these vectors, and obtain a 4-component vector

p̄new
0 .

• The new polynomial vector (p0)
new
l in the nl direction is then computed by pro-

jecting p̄new
0 back into the physical space:

(p0)
new
l = Rl · p̄

new
0 . (28)

After we have performed the above procedure in all directions, the final new 4-

component solution polynomial vector on the troubled cell Vj is defined as

un,new
j =

∑Nj

l=1(p0)
new
l |Vj(l)|

∑Nj

l=1 |Vj(l)|
. (29)

For each cell Vj, j = 1, · · · , M in the computational domain Ω, if it is a troubled

cell, we perform the characteristic-wise WENO limiting procedure discussed above and

replace the entire solution polynomial un
j with the new 4-component solution polynomial

vector un,new
j in (29). If the cell Vi is not a troubled cell, we just let un,new

j = un
j . Then

we use the new polynomial to march to the next time level as in Equation (12).

4 Positivity-preserving limiter

Our method with WENO limiters described in the last section does not satisfy the

maximum-principle for the scalar conservation laws and the positivity-preserving prop-

erty for the Euler system directly. Hence, in this section, we extend the maximum-

principle-satisfying limiters and the positivity-preserving limiters in [20, 21, 25, 26] to

our method. In each time stage, we first use the WENO limiter to reconstruct solution
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polynomials in those troubled cells in order to control oscillations. Then we further

modify solutions in each cell before we march to the next time stage, such that the cell

averages on the next time level will satisfy the maximum-principle for the scalar case or

the positivity-preserving property for the Euler system.

Based on the given random point cloud, we have shown how to divide the domain

Ω into polygonal cells in Section 2.1. From the procedure of mesh generation, we know

that the numbers of edges for different polygonal cells can be totally different. Also, the

shape of each cell is arbitrary. In the following, we first show a quadrature rule on such

a complex polygonal mesh to compute the cell averages of the solutions in Section 4.1.

Based on this quadrature rule, limiters for the scalar conservation laws and the Euler

system will be shown in Section 4.2 and Section 4.3, respectively.

4.1 Decomposition of the cell average

Consider an arbitrary polygonal cell Vj with mj edges. In this section, we aim to find

a suitable quadrature rule to compute the cell average of the solution on Vj. Assume

q(x) ∈ P k(Vj), then the cell average of q(x) on Vj is defined as

q̄j =
1

|Vj|

∫

Vj

q(x)dx. (30)

Note that in the DG method, the edge integral in Equation (9) is approximated by the

(k + 1)-point Gauss quadrature. The quadrature rule we are going to find should be

exact for functions in P k(Vj) and include all the Gauss quadrature points on ∂Vj . Also,

all quadrature weights should be positive. In the following, We denote the β-th Gauss

quadrature point on the i-th edge of Vj as xj
i,β, i = 1, · · · , mj , β = 1, · · · , k+1. Also, we

use ωβ to denote the β-th quadrature weight of the (k + 1)-point Gauss rule on [−1
2
, 1

2
].

Besides the Gauss quadrature rule, we also consider the l-point Gauss-Lobatto rule on

[−1
2
, 1

2
] with 2l − 3 > k. We denote the corresponding α-th quadrature weight as ω̂α.

As shown in Figure 3, we subdivide Vj into several non-overlapping sub-domains such

that those sub-domains which share edges with ∂Vj are all triangles. Suppose there are nj

17



(nj 6 mj) such triangles on the boundary of Vj, which are denoted as V
(r)
j , r = 1, · · · , nj.

For the case in Figure 3, we have nj = 8. We further denote the rest region of Vj as

V
(nj+1)
j = Vj\(

⋃nj

r=1 V
(r)
j ), which is a polygon. Thus, we can divide the computation of

q̄j into several parts:

q̄j =
1

|Vj |

∫

Vj

q(x)dx =
1

|Vj|

nj∑

r=1

∫

V
(r)
j

q(x)dx +
1

|Vj |

∫

V
(nj+1)

j

q(x)dx. (31)

For the computation on each triangle V
(r)
j , 1 6 r 6 nj , we adopt the special numerical

quadrature derived in [26]:

1

|V
(r)
j |

∫

V
(r)
j

q(x)dx =
∑

x∈Q
(r)
j

ωxq(x). (32)

Here Q
(r)
j is the set of quadrature points in V

(r)
j , which includes all k+1 Gauss quadrature

points on each edge of V
(r)
j . Also, it is derived in [26] that ωx = 2

3
ωβω̂1 when x is the

β-th Gauss point on any edge of V
(r)
j . Hence, we can further compute q̄j as

q̄j =

nj∑

r=1

|V
(r)
j |

|Vj|

( ∑

x∈Q
(r)
j

T

∂Vj

ωxq(x) +
∑

x∈Q
(r)
j \∂Vj

ωxq(x)
)

+
1

|Vj|

∫

V
(nj+1)

j

q(x)dx

=

mj∑

i=1

k+1∑

β=1

aj
i,βq(x

j
i,β) +

nj∑

r=1

∑

x∈Q
(r)
j \∂Vj

|V
(r)
j |

|Vj|
ωxq(x) +

1

|Vj|

∫

V
(nj+1)

j

q(x)dx, (33)

Figure 3: cell subdivision
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where aj
i,β =

|V
(r)
j |

|Vj |
2
3
ωβω̂1 if xj

i,β ∈ ∂V
(r)

j .

If we denote

ξj =

∑nj

r=1

∑
x∈Q

(r)
j \∂Vj

|V
(r)
j |

|Vj |
ωxq(x) + 1

|Vj |

∫
V

(nj+1)

j

q(x)dx

1 −
∑mj

i=1

∑k+1
β=1 aj

i,β

=
q̄j −

∑mj

i=1

∑k+1
β=1 aj

i,βq(x
j
i,β)

1 −
∑mj

i=1

∑k+1
β=1 aj

i,β

, (34)

then we obtain a numerical quadrature rule

q̄j =

mj∑

i=1

k+1∑

β=1

aj
i,βq(x

j
i,β) + (1 −

mj∑

i=1

k+1∑

β=1

aj
i,β)ξj. (35)

It is easy to see that

mj∑

i=1

k+1∑

β=1

aj
i,β <

nj∑

r=1

k+1∑

β=1

|V
(r)
j |

|Vj|
2ωβω̂1 =

nj∑

r=1

|V
(r)
j |

|Vj|
2ω̂1 6 1. (36)

Hence, all quadrature weights in the new quadrature are positive. Note that it is easy

to prove that there exists some x∗
j ∈ Vj, such that q(x∗

j) = ξj . In fact, we do not need to

know the exact location of x∗
j , we only need the know the value of q at this point.

4.2 Positivity-preserving limiter for scalar conservation laws

We consider the scalar conservation law (1) in this section. Based on the polygonal

mesh we established in Section 2.1, let us first discuss the first order global Lax-Friedrich

scheme on each polygon Vj :

un+1
j = un

j −
∆t

|Vj|

mj∑

i=1

F̂ (un
j , u

n
j[i],n

i
j)l

i
j = H(un

j , u
n
j[1], · · · , un

j[mj]
), (37)

where lij is the length of the i-th edge of Vj , denoted by ei
j , with outward unit normal

vector ni
j . j[i] denotes the index of the neighboring polygon along ei

j . The global Lax-

Friedrichs flux is defined by

F̂ (u, v,n) =
1

2
(F(u) · n + F(v) · n− a(v − u)), (38)
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where a = maxu,v |F
′(u) · n|. This flux satisfies the conservativity

F̂ (u, v,n) = −F̂ (v, u,−n). (39)

Following the standard proof on the triangular mesh, we can easily prove that H(·, · · · , ·)

is a monotone increasing function with respect to each argument under the CFL condition

a
∆t

|Vj |

mj∑

i=1

lij 6 1. (40)

Now let us consider our high order scheme. For simplicity, we only discuss the Euler

forward time discretization. Note that after the WENO limiting procedure described in

the last section, we obtain a new solution polynomial un,new, which has the same cell

average as un on Vj. By taking the test function vh as 1, we can rewrite Equation (12)

as

ūn+1
j = ūn

j −
∆t

|Vj|

mj∑

i=1

∫

ei
j

F̂ (u
int(Vj)
i , u

ext(Vj)
i ,ni

j)ds, (41)

where u
int(Vj)
i and u

ext(Vj)
i are the values of un,new on the edge ei

j obtained from the interior

and the exterior of Vj . By using the (k+1)-point Gauss quadrature to compute the edge

integral, the scheme becomes

ūn+1
j = ūn

j −
∆t

|Vj|

mj∑

i=1

k+1∑

β=1

F̂ (u
int(Vj)
i,β , u

ext(Vj)
i,β ,ni

j)ωβl
i
j, (42)

where u
int(Vj)
i,β and u

ext(Vj)
i,β denote the values of un,new evaluated at xj

i,β from the interior

and the exterior of the cell Vj respectively.

By using the quadrature rule we derived in the last section, we can prove the following

theorem:

Theorem 1. For the scheme (42) to satisfy the maximum principle

m 6 ūn+1
j 6 M, (43)

a sufficient condition is that each un,new
j (x) ∈ [m, M ], ∀x ∈ Sj

k and ξj ∈ [m, M ], where

Sj
k = {xj

i,β, i = 1, · · · , mj, β = 1, · · · , k + 1} and ξj is computed by letting q(x) =
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un,new
j (x) in (34), under the CFL condition

α
∆t

|Vj|

mj∑

i=1

lij 6 minr

|V
(r)
j |

|Vj |

2

3
ω̂1, (44)

where ω̂1 is the quadrature weight of the l-point Gauss-Lobatto rule on [−1
2
, 1

2
] for the

first quadrature point. For k = 2, 3, ω̂1 = 1
6

and for k = 4, 5, ω̂1 = 1
12

.

Proof. Rewrite Equation (42) as

ūn+1
j = ūn

j −
∆t

|Vj |

mj∑

i=1

k+1∑

β=1

F̂ (u
int(Vj)
i,β , u

ext(Vj)
i,β ,ni

j)ωβl
i
j

= ūn
j −

∆t

|Vj|

k+1∑

β=1

ωβ

( mj∑

i=1

F̂ (u
int(Vj)
i,β , u

ext(Vj)
i,β ,ni

j)l
i
j

)
. (45)

Then decompose the flux term inside the bracket:

mj∑

i=1

F̂ (u
int(Vj)
i,β , u

ext(Vj)
i,β ,ni

j)l
i
j

=

mj−1∑

i=1

(
F̂ (u

int(Vj)
i,β , u

ext(Vj)
i,β ,ni

j)l
i
j + F̂ (u

int(Vj)
i,β , u

int(Vj)
mj ,β ,−ni

j)l
i
j

)

+

mj−1∑

i=1

F̂ (u
int(Vj)
mj ,β , u

int(Vj)
i,β ,ni

j)l
i
j + F̂ (u

int(Vj)
mj ,β , u

ext(Vj)
mj ,β ,n

mj

j )l
mj

j , (46)

where the conservativity of the flux in Equation(39) is used.

Using the quadrature rule (35), we obtain

ūn+1
j =

mj∑

i=1

k+1∑

β=1

aj
i,βu

int(Vj)
i,β + (1 −

mj∑

i=1

k+1∑

β=1

aj
i,β)ξj

−
∆t

|Vj|

k+1∑

β=1

ωβ

( mj∑

i=1

F̂ (u
int(Vj)
i,β , u

ext(Vj)
i,β ,ni

j)l
i
j

)

= (1 −

mj∑

i=1

k+1∑

β=1

aj
i,β)ξj +

k+1∑

β=1

mj∑

i=1

aj
i,βHi,β, (47)

where

Hi,β = u
int(Vj)
i,β −

ωβ∆t

aj
i,β|Vj|

[
F̂ (u

int(Vj)
i,β , u

ext(Vj)
i,β ,ni

j)l
i
j + F̂ (u

int(Vj)
i,β , u

int(Vj)
mj ,β ,−ni

j)l
i
j

]
,
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for 1 6 i 6 mj − 1, and

Hmj ,β = u
int(Vj)
mj ,β −

ωβ∆t

aj
mj ,β|Vj|

[ mj−1∑

i=1

F̂ (u
int(Vj)
mj ,β , u

int(Vj)
i,β ,ni

j)l
i
j + F̂ (u

int(Vj)
mj ,β , u

ext(Vj)
mj ,β ,n

mj

j )l
mj

j

]
.

We know that Hi,β, 1 6 i 6 Mj are all formal monotone schemes under the condition

a
ωβ∆t

aj
i,β |Vj|

mj∑

i=1

lij 6 1.

Since aj
i,β =

|V
(r)
j |

|Vj |
2
3
ωβω̂1 if xj

i,β ∈ ∂V
(r)

j , we obtain the CFL condition (44).

Writing the right-hand side of (47) as a function H of u
int(Vj)
i,β , u

ext(Vj)
i,β and ξj, then

H is monotone increasing with respect to each argument. Hence, if all the point values

involved here are in the range [m, M ], then we have the maximum principle:

m = H(m, · · · , m) 6 ūn+1
j 6 H(M, · · · , M) = M.

As in [21], we now modify the solution polynomial un,new
j to get a new function

ũn,new
j ∈ P k(V ) which satisfies the conditions in the above theorem. For all Vj, we define

the following modified polynomial

ũn,new
j (x) = θ(un,new

j (x) − ūj) + ūj, θ = min

{∣∣∣∣
m − ūj

m̃j − ūj

∣∣∣∣ ,

∣∣∣∣∣
M − ūj

M̃j − ūj

∣∣∣∣∣ , 1

}
, (48)

with

M̃j = max{ξj, un,new
j (x),x ∈ Sj

k}, m̃j = min{ξj, un,new
j (x),x ∈ Sj

k}. (49)

Following the proof in [21] for the rectangular mesh, we can prove that this limiter

preserves the same high-oder accuracy and the conservation of the original polynomial.

After we get ũn,new
j , we then use it to march to the next time level.

We can also use SSP high order time discretization and it will keep the positivity-

preserving property because of the convexity. In this case, we need to perform the

procedure above in each stage for a Runge-Kutta method or in each step for a multistep

method.
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4.3 Positivity-preserving limiter for the Euler equations

Consider the two-dimensional Euler system which is given by Equation (21). We

define the set of admissible states as

G =





u =





ρ
m
n
E





∣∣∣∣∣∣∣∣
ρ > 0 and p(u) > 0





. (50)

As in the last section, we consider the Euler forward time discretization. We also denote

ξj as in Equation (34), computed by the solution polynomial q = un,new
j . But in the

system case, it is a vector. We denote its components as ξj = (ξj
ρ, ξ

j
m, ξj

n, ξ
j
E)T . By

replacing the scalar variables with vectors in Equation (42), we obtain the following

scheme:

ūn+1
j = ūn

j −
∆t

|Vj|

mj∑

i=1

k+1∑

β=1

F̂ (u
int(Vj )
i,β ,u

ext(Vj)
i,β ,ni

j)ωβlij , (51)

We are interested in finding solutions within the admissible set G. Note that G is a

convex set. Following the same idea as in Theorem 1, we have the following theorem.

We omit the proof since it is almost the same as in Theorem 1.

Theorem 2. For the scheme (51) to satisfy the positivity property

ūn+1
j ∈ G, (52)

a sufficient condition is that each un,new
j (x) ∈ G, ∀x ∈ Sj

k and ξj ∈ G, where Sj
k =

{xj
i,β, i = 1, · · · , mj , β = 1, · · · , k + 1}, under the CFL condition

α
∆t

|Vj|

mj∑

i=1

lij 6 minr

|V
(r)
j |

|Vj |

2

3
ω̂1, (53)

where ω̂1 is the quadrature weight of the l-point Gauss-Lobatto rule on [−1
2
, 1

2
] for the

first quadrature point. For k = 2, 3, ω̂1 = 1
6

and for k = 4, 5, ω̂1 = 1
12

.

Given the vector of approximation polynomials un,new
j = (ρj , mj , nj, Ej)

T on cell Vj,

with its cell average ūn
j = (ρ̄j, m̄j , n̄j, Ēj)

T ∈ G, we use the following algorithm to modify

un,new
j into ũn,new

j ∈ G, and then use it to march to the next time level.
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1. In each cell, we enforce the positivity of density first. Set up a small number ε > 0

such that ρ̄j > ε for all Vj. In practice, we can choose ε = 10−13. Replace ρj(x) by

ρ̂j(x) = θ1

(
ρj(x) − ρ̄j

)
+ ρ̄j , θ1 = min{

ρ̄j − ε

ρ̄j − ρmin
, 1}, (54)

with ρmin = min{ρj(x),x ∈ Sj
k, ξj

ρ}.

2. The second step is to enforce the positivity of the pressure. Define ûj(x) =
(
ρ̂j(x), mj(x), nj(x), Ej(x)

)T
. For each x ∈ Sj

k, if p(ûj(x)) > 0, set θx = 1;

otherwise, set

θx =
p(ūn

j )

p(ūn
j ) − p(ûj(x))

. (55)

We replace q in (34) with ûj to obtain ξ̂j. If p(ξ̂j) > 0, set θξ = 1; otherwise, set

θξ =
p(ūn

j )

p(ūn
j ) − p(ξ̂j)

. (56)

Then we get the limited polynomial

ũn,new
j (x) = θ2(ûj(x) − ūn

j ) + ūn
j , θ2 = min{θx,x ∈ Sj

k, θξ}. (57)

Similar to the proof in [21], we can prove that the new polynomial ũn,new
j satisfies

the conditions in Theorem 2. Starting from un
j , we first replace it with a new solution

polynomial un,new
j by using the WENO limiter to control oscillations, then further modify

the new solution into ũn,new
j by using the positivity-preserving limiter to ensure that the

cell average of the next time level is within the admissible set G.

5 Numerical results

In this section, we provide numerical experiments to demonstrate the performance of

the WENO limiter and the positivity preserving limiter.

We use the third order TVD Runge-Kutta method [17] for the time discretization.

Second, third and fourth order DG schemes in the space are tested. Since the time
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discretization is only third order accurate, we take ∆t ∼ ∆x4/3 to obtain the fourth order

accurate results for accuracy test examples. For the examples containing discontinuities,

the positivity-preserving limiter is used for the third order scheme.

For accuracy test examples, the outmost nodes are set to be uniform as in [9], in

order to impose periodic boundary conditions. But all inner points are randomly gen-

erated that satisfy a uniform distribution in the computational domain. For examples

containing discontinuities, all points are randomly generated. Note that our mesh re-

finement is unstructured, that is, the generations of random points are independent with

the refinement of the number of points N .

In the procedure of grouping Voronoi regions into cells, we need to bound the condi-

tion number of the matrix A by a threshold value δ. As in [9], we take δ as 100, 1000

and 3000 for the second, third and fourth order schemes, respectively.

Since the initial data are only given on the point cloud and we care about the values

on these points for the later time, we show error tables measuring the numerical error on

the points from the point cloud. For the L∞ norm, we compute the maximum absolute

value of the error on these points. For the L1 norm, we multiply the absolute value of

the error on each point with the area of the corresponding Voronoi region, add them

together and divide the result by the area of the entire domain. For all figures, we divide

the computational domain by a triangulation with the given points as the vertexes and

thus plot the values on these points.

For the purpose of artificially generating a larger percentage of troubled cells in order

to test accuracy when the WENO reconstruction procedure is enacted in more cells, we

adjust the constant Ck in different examples when using KXRCF technique to identify

troubled cells. We list in each table the percentage of troubled cells among all the cells.

Example 1. Let us first consider the two-dimensional linear equation

ut + ux − 2uy = 0, 0 ≤ x, y ≤ 2π, (58)

with the initial condition u(x, y, 0) = sin(x + y) and a 2π-periodic boundary condition.
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Figure 4 shows N = 400 random points and the corresponding Voronoi diagram. Figure

5 shows mesh subdivisions of these points for different orders of schemes. Here we use

red lines to denote Voronoi edges and use black lines to denote cell boundaries of the

mesh. Numerical errors and numerical orders of accuracy for the high order method

with the WENO limiter comparing with the original high order method without limiter

at t = 2π are listed in Table 1. We list in the last column of the table the percentage of

troubled cells among all the cells. We can see that the WENO limiter keeps the designed

order of accuracy.
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(b) Voronoi diagram

Figure 4: Random points and the corresponding Voronoi diagram in the do-
main [0, 2π] × [0, 2π], N = 400.
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Figure 5: Mesh decomposition of the domain Ω = [0, 2π] × [0, 2π] based on 400
given points.
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Table 1: 2D linear equation with u(x, y, 0) = sin(x + y) at t = 2π.

number of DG without limiter DG with WENO limiter
points L1 norm order L∞ norm order L1 norm order L∞ norm order percentage

k = 1, Ck = 0.1

400 1.32E-01 – 3.55E-01 – 2.14E-01 – 5.01E-01 – 10.81%
1600 1.69E-02 2.97 7.23E-02 2.30 1.87E-02 3.52 7.23E-02 2.79 0.87%
6400 3.19E-03 2.40 2.00E-02 1.85 3.21E-03 2.54 2.00E-02 1.85 0.11%
25600 7.04E-04 2.18 7.84E-03 1.35 7.03E-04 2.19 7.84E-03 1.35 0.00%
102400 1.74E-04 2.02 2.33E-03 1.75 1.74E-04 2.02 2.33E-03 1.75 0.00%
average – 2.37 – 1.77 – 2.53 – 1.87 –

k = 2, Ck = 0.01

400 2.15E-02 – 8.57E-02 – 4.07E-02 – 1.13E-01 – 37.04%
1600 2.28E-03 3.24 1.84E-02 2.22 3.49E-03 3.55 2.32E-02 2.28 9.40%
6400 2.92E-04 2.96 2.16E-03 3.09 5.36E-04 2.70 4.24E-03 2.45 3.09%
25600 2.92E-05 3.32 3.86E-04 2.49 5.84E-05 3.20 5.60E-04 2.92 0.77%
102400 4.26E-06 2.78 5.90E-05 2.71 5.32E-06 3.46 7.23E-05 2.95 0.13%
average – 3.09 – 2.66 – 3.17 – 2.66 –

k = 3, Ck = 0.0005

400 7.28E-03 – 2.54E-02 – 1.86E-02 – 7.30E-02 – 81.82%
1600 3.89E-04 4.23 2.05E-03 3.63 6.44E-04 4.85 2.98E-03 4.61 19.70%
6400 2.20E-05 4.14 1.75E-04 3.55 2.30E-05 4.81 1.76E-04 4.08 0.37%
25600 1.66E-06 3.73 1.90E-05 3.21 1.65E-06 3.80 1.90E-05 3.21 0.00%
102400 9.56E-08 4.11 1.33E-06 3.84 9.56E-08 4.11 1.33E-06 3.84 0.00%
average – 4.03 – 3.52 – 4.37 – 3.88 –

Example 2. Consider the two-dimensional nonlinear scalar Burgers equation

ut + (
u2

2
)x + (

u2

2
)y = 0, 0 ≤ x, y ≤ 2π, (59)

with the initial condition u(x, y, 0) = 0.5 + sin(x + y) and periodic boundary conditions

in both directions. For this test case, we use the same mesh as in Example 1. Table

2 gives the L1 and L∞ errors and numerical orders of accuracy at t = 0.25 when the

solution is smooth. Similar to the previous example, we can see that the WENO limiter

keeps the designed order of accuracy, even when a large percentage of good cells are

artificially identified as troubled cells.

At t = 0.5, a shock begins to appear in the solution. We plot the solution surfaces

at t = 0.75 with N = 25600 points in Figure 6. We can see that the schemes give

non-oscillatory shock transitions for this problem.
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Table 2: 2D Burgers equation with u(x, y, 0) = 0.5 + sin(x + y) at t = 0.25.

number of DG without limiter DG with WENO limiter
points L1 norm order L∞ norm order L1 norm order L∞ norm order percentage

k = 1, Ck = 0.03

400 3.80E-02 – 2.30E-01 – 1.09E-01 – 6.68E-01 – 81.08%
1600 9.04E-03 2.07 6.39E-02 1.85 3.97E-02 1.46 5.24E-01 0.35 54.47%
6400 2.74E-03 1.72 3.90E-02 0.71 6.20E-03 2.68 2.10E-01 1.32 19.05%
25600 7.50E-04 1.87 1.61E-02 1.27 7.99E-04 2.96 1.42E-02 3.89 4.18%
102400 1.90E-04 1.98 5.36E-03 1.59 1.89E-04 2.08 5.36E-03 1.40 1.37%
average – 1.89 – 1.28 – 2.40 – 1.91 –

k = 2, Ck = 0.01

400 1.88E-02 – 1.52E-01 – 3.97E-02 – 6.02E-01 – 37.04%
1600 2.69E-03 2.80 4.70E-02 1.69 2.72E-03 3.87 4.64E-02 3.70 10.26%
6400 4.18E-04 2.69 1.24E-02 1.92 4.09E-04 2.73 1.39E-02 1.74 1.99%
25600 5.62E-05 2.89 2.44E-03 2.34 5.58E-05 2.87 2.17E-03 2.68 0.55%
102400 7.50E-06 2.91 6.51E-04 1.91 7.52E-06 2.89 1.19E-03 0.87 0.05%
average – 2.82 – 2.00 – 3.03 – 2.24 –

k = 3, Ck = 0.001

400 1.06E-02 – 1.03E-01 – 3.10E-02 – 5.15E-01 – 93.94%
1600 1.16E-03 3.19 3.92E-02 1.40 1.20E-03 4.69 2.16E-02 4.58 23.48%
6400 1.05E-04 3.47 3.55E-03 3.47 1.15E-04 3.39 4.36E-03 2.31 6.34%
25600 7.41E-06 3.82 3.80E-04 3.23 9.13E-06 3.66 4.64E-04 3.23 1.36%
102400 5.62E-07 3.72 6.18E-05 2.62 6.22E-07 3.88 9.08E-05 2.35 0.16%
average – 3.57 – 2.81 – 3.82 – 3.05 –

Example 3. Let us consider the two-dimensional Euler system which is given by Equa-

tion (21). The initial condition is set to be ρ(x, y, 0) = 1+0.2 sin(x+y), u(x, y, 0) = 0.7,

v(x, y, 0) = 0.3 and p(x, y, 0) = 1, 0 ≤ x, y ≤ 2π. The boundary conditions are periodic.

γ = 1.4 is used in the computation. The exact solution is ρ(x, y, t) = 1+0.2 sin(x+y−t),
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Z

(c) P 3, Ck = 0.001

Figure 6: 2D Burgers on random point cloud. t = 0.75. N = 25600.
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u(x, y, t) = 0.7, v(x, y, t) = 0.3 and p(x, y, t) = 1. Table 3 gives the L1 and L∞ errors and

numerical orders of accuracy of the density at t = 2π. Similar to the previous example,

we can see that the WENO limiter keeps the designed order of accuracy.

Table 3: 2D Euler equation with ρ(x, y, 0) = 1+0.2 sin(x+y), u(x, y, 0) = 0.7, v(x, y, 0) =
0.3 and p(x, y, 0) = 1 at t = 2π.

number of DG without limiter DG with WENO limiter
points L1 norm order L∞ norm order L1 norm order L∞ norm order percentage

k = 1, Ck = 0.01

400 2.78E-02 – 8.91E-02 – 5.74E-02 – 1.24E-01 – 14.41%
1600 3.80E-03 2.87 1.91E-02 2.22 4.87E-03 3.56 2.29E-02 2.44 1.31%
6400 6.45E-04 2.56 4.91E-03 1.96 6.49E-04 2.91 4.90E-03 2.22 0.00%
25600 1.42E-04 2.19 1.61E-03 1.60 1.42E-04 2.20 1.61E-03 1.60 0.00%
102400 3.34E-05 2.09 5.26E-04 1.62 3.34E-05 2.09 5.26E-04 1.62 0.00%
average – 2.41 – 1.84 – 2.66 – 1.96 –

k = 2, Ck = 0.0006

400 4.42E-03 – 2.74E-02 – 9.23E-03 – 5.95E-02 – 61.11%
1600 4.30E-04 3.36 4.11E-03 2.74 8.57E-04 3.43 4.24E-03 3.81 23.50%
6400 4.35E-05 3.30 5.81E-04 2.82 6.28E-05 3.77 6.43E-04 2.72 1.44%
25600 5.24E-06 3.05 7.67E-05 2.92 5.24E-06 3.58 7.67E-05 3.07 0.00%
102400 6.63E-07 2.98 1.23E-05 2.64 6.63E-07 2.98 1.23E-05 2.64 0.00%
average – 3.18 – 2.80 – 3.49 – 3.03 –

k = 3, Ck = 0.0001

400 1.30E-03 – 6.86E-03 – 2.37E-02 – 1.15E-01 – 84.85%
1600 6.45E-05 4.33 5.12E-04 3.74 2.78E-04 6.41 3.61E-03 5.00 12.88%
6400 3.45E-06 4.23 4.41E-05 3.54 3.55E-06 6.29 4.41E-05 6.36 0.00%
25600 2.14E-07 4.01 2.61E-06 4.08 2.14E-07 4.05 2.61E-06 4.08 0.00%
102400 1.39E-08 3.95 2.97E-07 3.14 1.39E-08 3.95 2.97E-07 3.14 0.00%
average – 4.13 – 3.66 – 5.17 – 4.76 –

Example 4. Consider the two-dimensional vortex evolution problem, which is an ideal-

ized problem for the two-dimensional Euler equations. The setup of this problem is: The

mean flow is ρ = 1, p = 1 and (u, v) = (1, 1) (diagonal flow). We add, to this mean flow,

an isentropic vortex (perturbation in (u, v) and the temperature T = p
ρ
, no perturbation

in the entropy S = p
ργ ):

(δu, δv) =
ǫ

2π
e0.5(1−t2)(−ȳ, x̄), δT = −

(γ − 1)ǫ2

8γπ2
e1−r2

, δS = 0, (60)

where (x̄, ȳ) = (x− 7, y− 7), r2 = x̄2 + ȳ2, and the vortex strength ǫ = 5. The computa-
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tional domain is taken as [0, 14] × [0, 14], extended periodically in both directions. It is

clear that the exact solution of the Euler equation with the above initial and boundary

conditions is just the passive convection of the vortex with the mean velocity. Table 4

gives the L1 and L∞ errors and numerical orders of accuracy of the density at t = 0.2.

We can see that the WENO limiter maintains the designed order of accuracy of the

original DG method.

Table 4: 2D Euler system. The smooth vortex evolution problem at t = 0.2.

number of DG without limiter DG with WENO limiter
points L1 norm order L∞ norm order L1 norm order L∞ norm order percentage

k = 1, Ck = 0.01

400 4.18E-03 – 1.13E-01 – 6.41E-03 – 2.41E-01 – 15.04%
1600 1.11E-03 1.92 4.38E-02 1.36 3.32E-03 0.95 1.87E-01 0.37 7.93%
6400 4.20E-04 1.40 2.45E-02 0.84 8.81E-04 1.91 4.55E-02 2.04 3.72%
25600 1.09E-04 1.94 6.24E-03 1.98 1.35E-04 2.71 1.07E-02 2.09 0.92%
102400 3.07E-05 1.83 2.53E-03 1.30 3.12E-05 2.11 3.21E-03 1.73 0.21%
average – 1.75 – 1.38 – 2.00 – 1.66 –

k = 2, Ck = 0.001

400 3.76E-03 – 7.30E-02 – 7.91E-03 – 3.26E-01 – 30.91%
1600 5.94E-04 2.66 1.88E-02 1.95 2.58E-03 1.62 1.24E-01 1.39 20.89%
6400 9.29E-05 2.68 3.37E-03 2.48 1.43E-04 4.17 7.00E-03 4.15 7.50%
25600 1.56E-05 2.57 1.05E-03 1.68 1.76E-05 3.03 1.11E-03 2.65 2.23%
102400 2.37E-06 2.72 2.46E-04 2.09 2.72E-06 2.69 2.87E-04 1.96 0.45%
average – 2.65 – 2.06 – 3.02 – 2.71 –

k = 3, Ck = 0.001

400 4.30E-03 – 8.02E-02 – 1.07E-02 – 3.49E-01 – 37.14%
1600 5.06E-04 3.09 1.44E-02 2.48 2.51E-03 2.09 1.14E-01 1.62 14.18%
6400 4.38E-05 3.53 2.15E-03 2.74 5.84E-05 5.42 6.96E-03 4.03 1.87%
25600 2.94E-06 3.90 1.99E-04 3.43 3.02E-06 4.27 2.55E-04 4.77 0.05%
102400 2.38E-07 3.63 2.11E-05 3.24 2.36E-07 3.68 1.82E-05 3.81 0.00%
average – 3.57 – 3.00 – 4.06 – 3.73 –

Example 5. We consider the double Mach reflection problem. The computational do-

main is set to be [0, 4]× [0, 1]. The reflection wall lies at the bottom of the computational

domain starting from x = 1
6
. Initially a right-moving Mach 10 shock is positioned at

x = 1
6
, y = 0 and makes a 60◦ angle with the x-axis. For the bottom boundary, the

exact post-shock condition is imposed for the part from x = 0 to x = 1
6
, and a reflective

boundary condition is used for the rest. At the top boundary of the computational do-
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main, the flow values are set to describe the exact motion of the Mach 10 shock. The

initial pre-shock condition is

(ρ, p, u, v) = (1.4, 1, 0, 0), (61)

and the post-shock condition is

(ρ, p, u, v) = (8, 116.5, 8.25 cos(30◦),−8.25 sin(30◦)). (62)

We take Ck = 0.01 in the troubled cell indicator. For the second order scheme (P 1),

we use N = 400000 totally random points. For the third order scheme (P 2), we use

N = 1664000 random points. We show a sample mesh with N = 1000 points to illustrate

our mesh subdivisions. Figure 7 shows N = 1000 random points and the corresponding

Voronoi diagram. Figure 8 shows mesh subdivisions of these points for different orders

of schemes. The density contours at t = 0.2 are plotted in Figure 9. The “zoomed-in”

pictures around the double Mach stem to show more details are given in Figure 10. In

all the plots, we use 29 contours equally distributed from ρ = 1.3 to 23. We can see that

the resolution around the double Mach region improves with an increasing k.
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Figure 7: Double Mach reflection problem. N = 1000 random points and the
corresponding Voronoi diagram.
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Figure 8: Double Mach reflection problem. Mesh subdivision. Top: second
order (k = 1) scheme. Bottom: third order (k = 2) scheme.

Figure 9: Double Mach reflection problem. Top: second order (k = 1) scheme
with 400000 random points. Bottom: third order (k = 2) scheme with 1664000
random points.
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Figure 10: Zoomed-in figure. Double Mach reflection problem. Left: second
order (k = 1) scheme with 400000 random points. Right: third order (k = 2)
scheme with 1664000 random points.

Example 6. Let us consider the problem of a shock passing a backward facing corner

(diffraction). The setup is the following: the computational domain is the union of

[0, 1]× [6, 11] and [1, 13]× [0, 11]; the initial condition is a pure right-moving Mach 5.09

shock, initially located at x = 0.5 and 6 6 y 6 11, moving into undisturbed air ahead of

the shock with a density of 1.4 and pressure of 1. The boundary conditions are inflow

at x = 0, 6 6 y 6 11, outflow at x = 13, 0 6 y 6 11 and 1 6 x 6 13, y = 0, and

reflective at the walls 0 6 x 6 1, y = 6 and x = 1, 0 6 y 6 6. At the top boundary,

we use the exact solution of a free-moving Mach 5.09 shock. We choose Ck = 0.01 in

this example. N = 219200 random points are used in the second order scheme (P 1).

N = 493200 random points are used in the third order scheme (P 2). The density at t =

2.3 is presented in Figure 11. We use 20 equally spaced contour lines from 0.066227 to

7.0668.
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Figure 11: Shock diffraction problem. Left: second order (k = 1) scheme
with 219200 random points. Right: third order (k = 2) scheme with 493200
random points.

6 Concluding remarks

In this paper, we adapt a simple WENO limiter [27] original designed for DG method

on the triangular mesh to our previous work in [9] for solving hyperbolic conservation

laws on a set of two dimensional arbitrarily distributed points. As in [9], a polygonal

mesh can be constructed based on the given random points, in which each cell has arbi-

trary number of edges and can be in any shape. The extended WENO limiter is designed

on such a complex polygonal mesh. The goal is to simultaneously maintain uniform high

order accuracy of the original method in smooth regions and control spurious numeri-

cal oscillations near discontinuities. Also, we extend the maximum-principle-satisfying

limiter for the scalar case and the positivity-preserving limiter for the Euler system case

in [20, 21, 26, 25] to our method on polygonal mesh. On each time level, we first use

the WENO limiter to reconstruct the solutions on those troubled cells, and then use

the maximum-principle-satisfying limiter or the positivity-preserving limiter to further

modify the solution polynomials in each cell if necessary. Finally, we replace the solution

on each cell with the new solution polynomial, and perform the normal DG procedure to

march to the next time level. Since the WENO limiter uses information only from imme-
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diate neighbors, it is very simple to implement and can maintain the compactness of the

original method. Numerical results are also provided to demonstrate the performance of

these limiters.
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