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Abstract. Multizeta values in positive characteristic were first introduced and studied
by Thakur. He and Lara Rodŕıguez [9] discovered and conjectured certain zeta-like fami-
lies. Kuan, Lin and Yu stated more conjectures about zeta-like multizeta values in [7]. In
the present paper we study and give the transparent formula for certain Anderson-Thakur
polynomials. This enables us to confirm the conjectured zeta-like families.

1. Introduction

The study of arithmetic of zeta values begins by Euler’s famous evaluations: for m ∈ N,

ζ(2m) =
−B2m

(
2π
√
−1
)2m

2(2m)!
,

where B2m ∈ Q are Bernoulli numbers. Euler’s formula implies that ζ(n)/(2π
√
−1)n is

rational if and only if n is even. The multiple zeta values ζ(s1, · · · , sr), where s1, . . . , sr are
positive integers with s1 ≥ 2, are generalizations of zeta values. These numbers were first
studied by Euler for the case of r = 2. Although there exist simple relations between zeta and
multiple zeta values, such as ζ(2, 1) = ζ(3), sorting out all relations among these multiple
zeta values is a much involved problem. Here r is called the depth and w :=

∑r
i=1 si is called

the weight of ζ(s1, . . . , sr). We call ζ(s1, . . . , sr) Eulerian if the ratio ζ(s1, . . . , sr)/
(
2π
√
−1)w

is rational.
Carlitz introduced and derived an analogue of Euler’s formula for what we now called

Carlitz zeta values ζA(n) for n ≥ 1. Let A = Fq[θ] be the polynomial ring in the variable θ
over a finite field Fq and K = Fq(θ) be its quotient field. Let t be a variable independent of
θ. Let C be the Carlitz module and π̃ is a fundamental period of C. The Carlitz exponential

function is defined by expC(z) =
∑

n≥0
zq

n

Dn

, where Dn =
∏n−1

i=0 (θq
n − θqi). We denote by

Γn+1 ∈ A the Carlitz factorials and BC(n) ∈ K by the Bernoulli-Carlitz numbers. Carlitz
showed that

ζA(n) :=
∑
a∈A+

1

an
=
BC(n)

Γn+1

π̃n

if q − 1|n. Carlitz’s result implies that ζA(n)/π̃n is rational in K if and only if q − 1|n.
Anderson and Thakur [1] related the interesting value ζA(n) to a special integral point Zn

in C⊗n(A) via the logarithm map of C⊗n, where C⊗n denotes the n-th tensor power of the
Carlitz module (viewed as a Carlitz-Tate t-motive). As a consequence, one has that ζA(n)/π̃n

is rational if and only if Zn is an Fq[t]-torsion point, and this condition is equivalent to n
being divisible by q−1. In [1] a key role is played by a sequence of distinguished polynomials
Hn ∈ A[t], now called the Anderson-Thakur polynomials. On the other hand, Yu [13] also
showed that the transcendence of ζA(n)/π̃n over K is equivalent to Zn being non-torsion
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on C⊗n(A), whence deriving that ζA(n)/π̃n is algebraic over K if and only if ζA(n)/π̃n is
rational in K.

In the last decade, Thakur [10, 11] initiated the study of multizeta values ζA(s1, · · · , sr),
where s1, . . . , sr are positive integers. He and his co-workers discovered interesting relations
among some multizeta values. Call ζA(s1, . . . , sr) Eulerian (zeta-like resp.) if the ratio
ζA(s1, · · · , sr)/π̃w (ζA(s1, . . . , sr)/ζA(w) resp.) is rational in K. A basic question in this
respect is to find all Eulerian/zeta-like multizeta values. In [9], Lara Rodriguez and Thakur
gave particularly precise formulas for certain families of Eulerian/zeta-like multizeta values
and conjectured other ones. Their conjectures are supported by numerical data from con-
tinued fraction computations. On the other hand, Chang [3] also proved the subtle fact that
these ratios ζA(s1, · · · , sr)/π̃w, ζA(s1, . . . , sr)/ζA(w) are either rational or transcendental over
K.

In an effort to understand relations among multizeta values, Chang, Papanikolas and Yu
[4] established an effective criterion for Eulerian/zeta-like multizeta values by constructing an
abelian t-module E ′ defined over A and relating the values ζA(s1, · · · , sr), ζA(w) to specific
integral points vs, us on E ′(A). They proved that ζA(s1, · · · , sr) is Eulerian (zeta-like) if and
only if vs is an Fq[t]- torsion point (respectively, us and vs have an Fq[t]-linear relation inside
E ′(A)). The integral points vs, us are constructed using the Anderson-Thakur polynomials.
Their theory connects possible Fq(θ)-linear relation of ζA(s1, · · · , sr) and ζA(w) explicitly
with the possible Fq[t]-linear relation among vs and us inside E ′(A).

Just recently, Kuan-Lin [7] implemented algorithms basing on the criterion of Chang-
Papanikolas-Yu. They have collected more extensive data on zeta-like and Eulerian multizeta
values over the polynomial rings Fq[θ]. Particularly in [4, 9], a conjectured rule is spelled out
to specify all Eulerian multizeta values. Lists given in [7] suggest more families of zeta-like
multizeta values of arbitrary depth. These families are not covered by [9]. It is observed
that there should be only a few zeta-like families in higher depth, because of the conjectured
“splicing” condition (cf. [9]). Finding all zeta-like multizeta values is now in sight.

Inspired by this development we study Anderson-Thakur polynomials in more details in
this paper, for the purpose of deriving exact rational ratio between ζA(s1, · · · , sr) and ζA(w)
whenever such a ratio exists. In particular, we are able to verify : (1) Conjecture 4.6 of [9], (2)
Conjecture 5 of [7], (3) the conjectured list of all Eulerian multizeta values given in [4], Section
6.2, are indeed Eulerian. The strategy for proving zeta-like property for given multizeta
values is to handle recurrence relations among Anderson-Thakur polynomials Hn. In view
of the fact that these Hn are polynomials in both θ and t over Fq, we use Lucas Theorem
to establish q-th power recurrence when n has particular q-adic “shape”. Combining with
the obvious linear recurrence relating Hn to Hn−qi , we eventually arrive at more transparent
formulas for Hn.

The contents of this paper are arranged as follows. In Section 2, we set up preliminaries
and introduce the conjectured families of zeta-like multizeta values given in [7] and [9],
which we will prove later. In Section 3, we use generalized Lucas Theorem [6, p.75-76] to
study Anderson-Thakur polynomials. Then in Section 4 we apply Chang-Papanikolas-Yu’s
theorem [4, Theorem 2.5.2] to verify that all previously conjectured families of zeta-like
multizeta values are indeed zeta-like with exact formulas given in Theorem 4.4. At the end
of this paper we provide ‘recursive’ relations for two very special families of multizeta values
and derive that they are Eulerian (Theorem 5.1, 5.2) in Section 5.
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2. Preliminaries for Multizeta values

2.1. Notation. We adopt the notation below in the following chapters.

Fq = a finite field with q = pl elements.
K = Fq(θ), the rational function field in the variable θ.
∞ = zero of 1/θ, the infinite place of K.
| |= the nonarchimedean absolute value on K corresponding

to ∞.
K∞= Fq((1/θ)), the completion of K with respect to the abso-

lute value | · |.
A = Fq[θ], the ring of polynomials in the variable θ.
A+= the set of monic polynomials in A.
Ad = the set of polynomials in A of degree d.
Ad+= Ad ∩ A+, the set of monic polynomials in A of degree d.
[n] = θq

n − θ.

Dn=
n−1∏
i=0

θq
n − θqi = [n][n− 1]q · · · [1]q

n−1
.

Ln =
n∏
i=1

θq
i − θ = [n][n− 1] · · · [1].

ln = (−1)nLn.
t = a variable independent of θ.

2.2. Multizeta values. For s ∈ N and d ∈ Z≥0, put

Sd(s) =
∑
a∈Ad+

1

as
∈ K.

For s ∈ N the Carlitz-Goss zeta values are defined by

ζA(s) =
∞∑
d=0

Sd(s) =
∑
a∈A+

1

as
∈ K∞.

For a given tuple (s1, · · · , sr) ∈ Nr, the Thakur multizeta values of depth r and weight
w =

∑
si are defined by

ζA(s1, · · · , sr) =
∑

d1>···>dr≥0

Sd1(s1) · · ·Sdr(sr) =
∑
ai∈A+

deg a1>···>deg ar≥0

1

as11 · · · asrr
.

2.3. Bernoulli-Carlitz numbers BC(n). For a non-negative integer n, we express n as

n =
∞∑
i=0

niq
i (0 ≤ ni ≤ q − 1, ni = 0 for i� 0),

and we recall the definition of the arithmetic Γ-function Γn+1 :=
∏∞

i=0D
ni
i ∈ A. We de-

note by (−θ)
1
q−1 a fixed (q − 1)-th root of −θ. Let C be the Carlitz module and π̃ =

(−θ)
q
q−1

∞∏
i=1

(1 − θ

θqi
)−1 be a fundamental period of C. The Carlitz exponential function is

defined by expC(z) =
∑

n≥0
zq

n

Dn

. The Bernoulli-Carlitz numbers BC(n) ∈ K are defined by
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z

expC(z)
=
∑
n≥0

BC(n)

Γn+1

zn.

When n is ‘even’ i.e., q − 1|n, Carlitz derived an analogue of Euler’s formula as follows:

Lemma 2.4. (Carlitz [2])

(a) For n ≥ 1, ζA(n) =
BC(n)

Γn+1

π̃n if q − 1|n.

(b) For 0 ≤ i ≤ n, BC(qn − qi) =
(−1)n−iΓqn−qi+1

Lq
i

n−i

.

Combining (a), (b) we get ζA(qn − 1) =
(−1)n

Ln
π̃q

n−1.

2.5. Anderson-Thakur polynomials. First we define polynomials Gi ∈ Fq[t, θ] for i ∈ Z≥0.
Put G0 = 1. For i ∈ N, let

Gi =
i∏

j=1

(tq
i − θqj).

For n = 0, 1, 2, . . ., we define the sequence of Anderson-Thakur polynomials Hn ∈ A[t] by
the generating function identity(

1−
∞∑
i=0

Gi

Di|θ=t
xq

i

)−1
=
∞∑
n=0

Hn

Γn+1|θ=t
xn.

We note that for 0 ≤ n ≤ q − 1 we have Hn = 1. For any infinite vector a = (a0, a1, a2, · · · )
with integers ai ≥ 0 and aj = 0 for j � 0, put m(a):= last index i such that ai 6= 0.

We define Ca :=
(a0 + · · ·+ am(a))!

a0! · · · am(a)!
. For n ∈ N, a q power weighted partition of n is an

infinite vector a satisfying n =
∑∞

i=0 aiq
i. We have the following lemma giving two ways for

explicitly writing Anderson–Thakur polynomials:

Lemma 2.6.
(a) For n ∈ Z≥0, let Sn = {a | n =

∑
aiq

i, Ca 6≡ 0 mod p} denote the set of all possible q
power weighted partition of n with nonzero Ca mod p. Then

Hn

Γn+1|θ=t
=
∑
a∈Sn

Ca

∞∏
i=0

(
Gi

Di|θ=t
)ai .

(b) For n ∈ N,

Hn

Γn+1|θ=t
=

[logqn]∑
i=0

Gi

Di|θ=t
Hn−qi

Γn−qi+1|θ=t
.

We will discuss more details about Anderson-Thakur polynomials in Section 3.
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2.7. Revisiting Lucas Theorem. To compute Ca mod p, a useful tool is a generalization
of the Lucas Theorem.

Theorem 2.8. (Dickson [6]) For any infinite vector a, Ca 6≡ 0 mod p if and only if there is
no carrying in computing the sum a0+ · · ·+am(a) in terms of base p expansion. Furthermore,

if
∑
ai =

∑m
j=0 njp

j, ai =
∑m

j=0 ni,jp
j, with 0 ≤ nj, ni,j ≤ p − 1 and nj =

∑m(a)
i=0 ni,j. Then

Ca ≡
∏
Cnj in Fp, where nj = (n0,j, · · · , nm(a),j, 0, 0, · · · ).

Proof. See [6, p.75-76]. �

By Theorem 2.8 we see that Ca mod p can be computed as digits in base p expansion
separately. So we try to descend Hn via the maps below. For simplicity we view Ca as
elements in Fp.

Definition 2.9. For any infinite vector a with Ca 6= 0, let ã = (ã0, ã1, · · · ), where ai ≡ ãi
mod q with 0 ≤ ãi ≤ q − 1. We define the following ‘reduction map’ of vectors.

r(a) := (
a0 − ã0

q
,
a1 − ã1

q
, · · · ).

By Theorem 2.8 we see that Ca = CãCr(a).

2.10. Binomial series to the Carlitz module. For k ∈ Z≥0, let Ψk(x) be the polynomials
in K[x] defined by

expC(x logC(u)) =
∑
k≥0

Ψk(x)uq
k

.

Here logC(z) is the Carlitz logarithm defined by

logC(z) =
∑
n≥0

zq
n

ln
.

Then Ψk(x) can be expressed as follows:

Proposition 2.11. (Anderson-Thakur [1])

Ψk(x) =
k∑
i=0

∏i
j=1(θ

qi − θqk+j)
Di

(
x

(−1)kLk
)q
i

.

Moreover, Ψk(a) = 0 for all a ∈ Fq[θ] with degθ a < k and Ψk(θ
k) = 1.

This result is another key tool in the proof of Theorem 3.3. For our purpose, we replace θ
by t in Anderson-Thakur’s result so that Ψk|θ=t(x) ∈ Fq(t)[x].

2.12. Conjectures on Eulerian/Zeta-like Multizeta Values. There are families of zeta-
like multizeta values of arbitrary depth, for instance, in [9], they showed that for any q,
ζA(1, q − 1, (q − 1)q, · · · , (q − 1)qn) is zeta-like by giving the ratio of it to ζA(qn+1). There
are certainly more families of zeta-like multizeta values of arbitrary depth, the following
conjecture is given in [9]:
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Conjecture 2.13.

(a) For any q, n ≥ 1 and r ≥ 2,

ζA(qn − 1, (q − 1)qn, · · · , (q − 1)qn+r−2) =
[n+ r − 2][n+ r − 3] · · · [n]

[1]qn+r−2 [2]qn+r−3 · · · [r − 1]qn
ζA(qn+r−1 − 1).

(b) For any q, n ≥ 0,

ζA(1, q2 − 1, (q − 1)q2, · · · , (q − 1)qn+1) =
[n+ 2]− 1

l1[n+ 2]

1

l
(q−1)qn
1 l

(q−1)qn−1

2 · · · l(q−1)q
2

n−1 lq
2

n

ζA(qn+2).

(c) For q > 2, n ≥ 0 and r ≥ 2,

ζA((q−1)qn−1, (q−1)qn+1, · · · , (q−1)qn+r−1) =
(−1)r+1[n+ r − 1][n+ r − 2] · · · [n+ 1]

[1](qr−1−1)qn [2](qr−2−1)qn · · · [r − 1](q−1)qn
ζA(qn+r−qn−1).

Remark 2.13.1. In [9] Conjecture 2.13 is proved in the depth 2 case. We refer to [9] for more
details, in particular [9, Theorem 3.1], where many depth 2 zeta-like multizeta values are
given with precise ratio to ζA(w).

According to Chang-Papanikolas-Yu criterion for zeta-like multizeta values in [4], Kuan-
Lin [7] wrote an algorithm and tested multizeta values with bounded weights and depths
by computer. From their output data, they gave another more extensive conjecture about
zeta-like families of arbitrary depth and also specific depth 3 zeta-like multizeta values.

Conjecture 2.14. (Kuan-Lin-Yu) Suppose that q > 2. Then we have the following families
of zeta-like multizeta values:

(a) For q = pl > 2, 1 ≤ pm ≤ q, n > 0 and r ≥ 2, consider Ni ∈ Z≥0 for 0 ≤ i ≤ n− 1 such
that 1 ≤

∑
Ni ≤ q − 1. If (q − 1)(qn −

∑
Niq

i) ≤ pm(q − 1)qn−1, then

ζA(qn −
∑

Niq
i, pm(q − 1)qn−1, · · · , pm(q − 1)qn+r−3)

is zeta-like. In particular

ζA(1, pm(q − 1), pmq(q − 1), · · · , pmqr−2(q − 1))

is zeta-like.

(b) In the case of depth r = 3,

ζA(1, q(q − 1), q3 − q2 + q − 1) =
[3]− 1

[3][2][1]q2−q+1
ζA(q3).

Remark 2.14.1. When n ≥ 1 in Conjecture 2.13 (c), it corresponds to a special case of
Conjecture 2.14 (a) by taking pm = q, N0 = Nn−1 = 1 and Ni = 0 for 0 < i < n − 1 .
When n = 0 in Conjecture 2.13 (c), it corresponds to the case when n = 1 and N0 = 2 in
Conjecture 2.14 (a).
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Note that when the weight w is ‘even’, the statement that ζA(s1, · · · , sr) is zeta-like is
equivalent to that it is Eulerian. In Section 4 we will prove non-Eulerian part of Conjecture
2.13 and Conjecture 2.14. The Eulerian part of Conjecture 2.13 will be treated in Section 5

3. Investigation into Anderson-Thakur polynomials

In general Anderson-Thakur polynomials Hn are complicated to investigate. However, for
index n having very special q-adic expansion, we can give a nicer and simpler formula for
such Hn. For example, to prove Conjecture 2.14 (b), we need to compute the corresponding
Anderson-Thakur polynomials H0, Hq2−q−1, Hq3−q2+q−2 and Hq3−1. It is known that H0 = 1.
On the other hand, it can be directly proved that Hq2−q−1 = Γq2−q|θ=t, Hq3−1 = Γq3|θ=t and

Hq2−q = Γq2−q+1|θ=t
(t− θq)q−1

Lq−11 |θ=t
(These are special cases of Theorem 3.3). Recall that Sm is

the set of all q power weighted partition a of m with Ca 6= 0 in Fp. Furthermore, for given
b with 0 ≤ bi ≤ q − 1, let Sm,b be the subset of Sm collecting a satisfying ai ≡ bi mod q for
all i. By Lemma 2.6 and to use the reduction maps r(a), we can compute Hq3−q2+q−2.

Proposition 3.1.

Hq3−q2+q−2 = −[2]q−2|θ=t
[
(t− θq)q2−q+1 + [1]q

2−1|θ=t(t− θq)
]
.

Proof. For any q power weighted partition (a0, a1, a2, 0, 0, · · · ) of q3 − q2 + q − 2, we see
that a0 ≡ q − 2 = p − 2 + (p − 1)p + · · · + (p − 1)pl−1 mod q. Let ai ≡ ai,0 + ai,1p +
· · · + ai,l−1p

l−1 mod q, where i = 1, 2 and 0 ≤ ai,j ≤ p − 1 for j ≥ 0. It follows that
if Ca 6= 0, then a1,0 + a2,0 ≤ 1 and a1,j + a2,j = 0 for j > 0. This implies ã = (q −
2, 0, 0, · · · ) or (q− 2, 1, 0, · · · ) or (q− 2, 0, 1, 0, · · · ) and hence Sq3−q2+q−2 is the disjoint union
of Sq3−q2+q−2,(q−2,0,0,··· ), Sq3−q2+q−2,(q−2,1,0,··· ) and Sq3−q2+q−2,(q−2,0,1,··· ). The reduction map
a 7→ r(a) induces bijections

r : Sq3−q2+q−2,(q−2,0,0,··· ) → Sq2−q,

r : Sq3−q2+q−2,(q−2,1,0,··· ) → Sq2−q−1,

r : Sq3−q2+q−2,(q−2,0,1,··· ) → Sq2−2q.

Moveover, we see that Ca = Cr(a) if ã = (q−2, 0, 0, · · · ) and Ca = −Cr(a) if ã = (q−2, 1, 0, · · · )
or (q − 2, 0, 1, · · · ). We obtain from Lemma 2.6 that

Hq3−q2+q−2

Γq3−q2+q−1|θ=t
=
∑
ã

∑
a∈Sq3−q2+q−2,ã

Ca(
G0

D0|θ=t
)a0
∏
i≥1

(
Gi

Di|θ=t
)ai

=
∑
ã

∑
a∈Sq3−q2+q−2,ã

CãCr(a)(
G0

D0|θ=t
)q

˜̃a0+ã0
∏
i≥1

(
Gi

Di|θ=t
)q

˜̃ai+ãi

= (
Hq2−q

Γq2−q+1|θ=t
)q − G1

D1|θ=t
(
Hq2−q−1

Γq2−q|θ=t
)q − G2

D2|θ=t
(

Hq2−2q

Γq2−2q+1|θ=t
)q

On the other hand, by Lemma 2.6 (b) for n = q2 − q, we have

Hq2−2q

Γq2−2q+1|θ=t
=
D1|θ=t
G1

[
Hq2−q

Γq2−q+1|θ=t
−

Hq2−q−1

Γq2−q|θ=t

]
.
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It follows that
Hq3−q2+q−2

Γq3−q2+q−1|θ=t
=
−(t− θq)q2−q+1

[2][1]q(q−1)|θ=t
+
−(t− θq)[1]q−1|θ=t

[2]|θ=t
. By definition of

Γ-function, we can easily derive that Γq3−q2+q−1 = Dq−1
2 and the result follows.

�

3.2. Formula for Anderson-Thakur polynomials Hm with m = qn −
∑

Niq
i. For n ∈ N,

consider a tuple (N0, · · · , Nn−1) with Ni ∈ Z≥0 satisfying 0 ≤
∑n−1

i=0 Ni ≤ q−1. This implies

qn −
∑n−1

i=0 Niq
i − 1 ≥ 0. We have the following formula for these special polynomials:

Theorem 3.3. Let n ∈ N and Ni ∈ Z≥0 satisfying 0 ≤
∑n−1

i=0 Ni ≤ q − 1. Then

(3.3.1)
Hqn−

∑
Niqi−1

Γqn−∑Niqi|θ=t
=

(−1)
∑n−2
i=0 (n−1−i)Niqi∏n−2

i=0 L
Niqi

n−1−i|θ=t

n−1∏
v=1

(t− θqv)
∑n−1−v
j=0 Njq

j

.

The key idea is using Lemma 2.6 and Theorem 2.8 to descend Anderson-Thakur polyno-
mials from Hn to suitable Hm with m < n.

Proof. We will prove by induction on n and Ni. For n = 1 it is clear that
Hq−N0−1

Γq−N0|θ=t
=

1 satisfying (3.3.1) for any 0 ≤ N0 ≤ q − 1. For M ≥ 2, suppose that the statement
holds for Hqn−

∑n−1
i=0 Niq

i−1 with 1 ≤ n < M . Our goal is to prove the formula (3.3.1) holds

for HqM−
∑M−1
i=0 Niqi−1. For the case N0 = 0, let a = (a0, · · · , aM−1, 0, 0, · · · ) be a q power

weighted partition of qM −
∑M−1

i=0 Niq
i − 1 with Ca 6= 0. Then a0 ≡ q − 1 = (p − 1) +

· · · + (p − 1)pl−1 mod q. By Theorem 2.8, it forces ai ≡ 0 mod q for i ≥ 1. Then by
considering ã = (q − 1, 0, 0, · · · ), we have that r(a) is a q power weighted partition of

qM−1 −
∑M−2

i=0 N ′iq
i − 1, where N ′i = Ni+1. Conversely, if a′ ∈ SqM−1−

∑M−2
i=0 N ′iq

i−1, let a =

(qa′0 + q − 1, qa′1, · · · , qa′M−1, 0, 0, · · · ). We put N0 = 0 and Ni = N ′i−1 for i ≥ 1. Then
a ∈ SqM−∑M−1

i=0 Niqi−1 and r(a) = a′. Therefore, r : SqM−∑M−1
i=0 Niqi−1 → SqM−1−

∑M−2
i=0 N ′iq

i−1 is

bijective. Moreover, Ca = Cr(a). It follows that

HqM−
∑M−1
i=0 Niqi−1

ΓqM−∑M−1
i=0 Niqi

|θ=t
=

∑
a∈S

qM−
∑M−1
i=0

Niq
i−1

Ca(
G0

D0|θ=t
)a0
∏
ν≥1

(
Gν

Dν |θ=t
)aν

=
∑

a′∈S
qM−1−

∑M−2
i=0

N′
i
qi−1

Ca′(
G0

D0|θ=t
)qa
′
0+q−1

∏
ν≥1

(
Gν

Dν |θ=t
)qa
′
ν

= (
HqM−1−

∑M−2
i=0 N ′iq

i−1

ΓqM−1−
∑M−2
i=0 N ′iq

i |θ=t
)q

= (
(−1)

∑M−3
i=0 (M−2−i)N ′iqi∏M−3

i=0 L
N ′iq

i

M−2−i|θ=t

M−2∏
i=1

(t− θqi)
∑M−2−i
j=0 N ′jq

j

)q

=
(−1)

∑M−3
i=0 (M−2−i)Ni+1q

i+1∏M−3
i=0 L

Ni+1qi+1

M−2−i |θ=t

M−2∏
i=1

(t− θqi)
∑M−2−i
j=0 Nj+1q

j+1

=
(−1)

∑M−2
i=1 (M−1−i)Niqi∏M−2

i=1 LNiq
i

M−1−i|θ=t

M−1∏
i=1

(t− θqi)
∑M−1−i
j=0 Njq

j

.

Note that the last step follows from the induction hypothesis and N0 = 0.
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Now we assume that N0 ≥ 1. By Lemma 2.6 (b) we have

(3.3.2)
HqM−

∑M−1
i=1 Niqi−(N0−1)−1

ΓqM−∑M−1
i=0 Niqi+1|θ=t

=
HqM−

∑M−1
i=0 Niqi−1

ΓqM−∑M−1
i=0 Niqi

|θ=t
+

M−1∑
j=1

Gj

Dj|θ=t

HqM−
∑M−1
i=0 Niqi−qj

ΓqM−∑M−1
i=0 Niqi−qj+1|θ=t

.

Note that qM −
∑M−1

i=0 Njq
i − qj and qM −

∑M−1
i=0 Niq

i are congruent to q −N0 mod q. If
we consider all possible vectors ã = (q −N0, ã1, · · · , ˜aM−1, 0, 0, · · · ) with 0 ≤ ãi ≤ q − 1 and

Cã 6= 0, then
∑∞

j=0 ãj =
∑M−1

j=0 ãj ≤ q− 1. This implies qM −
∑M−1

i=0 Niq
i− qj −

∑
i≥0

ãiq
i ≥ 0

and qM −
∑M−1

i=0 Niq
i −

∑
i≥0

ãiq
i ≥ 0. Hence for a given ã, The reduction map a 7→ r(a)

induces bijections

r : SqM−∑M−1
i=0 Niqi−qj ,ã → SqM−1−

∑M−1
i=1 (Ni+ãi)qi−1−qj−1−1

r : SqM−∑M−1
i=0 Niqi,ã

→ SqM−1−
∑M−1
i=1 (Ni+ãi)qi−1−1.

By Lemma 2.6 (a) we have

HqM−
∑M−1
i=0 Niqi−qj

ΓqM−∑M−1
i=0 Niqi−qj+1|θ=t

=
∑
ã

∑
a∈S

qM−
∑M−1
i=0

Niq
i−qj ,ã

Ca(
G0

D0|θ=t
)a0
∏
v≥1

(
Gv

Dv|θ=t
)av

=
∑
ã

∑
a′∈S

qM−1−
∑M−1
i=1

(Ni+ãi)q
i−1−qj−1−1

CãCa′(
G0

D0|θ=t
)qa
′
0+ã0

∏
v≥1

(
Gv

Dv|θ=t
)qa
′
v+ãv

=
∑
ã

Cã
∏
v≥0

(
Gv

Dv|θ=t
)ãv(

HqM−1−
∑M−1
i=1 (Ni+ãi)qi−1−qj−1−1

ΓqM−1−
∑M−1
i=1 (Ni+ãi)qi−1−qj−1|θ=t

)q

Similarly,

HqM−
∑M−1
i=0 Niqi

ΓqM−∑M−1
i=0 Niqi+1|θ=t

=
∑
ã

Cã
∏
v≥0

(
Gv

Dv|θ=t
)ãv(

HqM−1−
∑M−1
i=1 (Ni+ãi)qi−1−1

ΓqM−1−
∑M−1
i=1 (Ni+ãi)qi−1|θ=t

)q.

Since
∑M−1

i=1 Ni+ ãi ≤ q−1−N0+N0−1 = q−2, by the induction hypothesis on M−1 < M ,
one can show that

HqM−1−
∑M−1
i=1 (Ni+ãi)qi−1−qj−1−1

ΓqM−1−
∑M−1
i=1 (Ni+ãi)qi−1−qj−1|θ=t

=
HqM−1−

∑M−1
i=1 (Ni+ãi)qi−1−1

ΓqM−1−
∑M−1
i=1 (Ni+ãi)qi−1|θ=t

(−1)(M−2−(j−1))q
j−1

Lq
j−1

M−2−(j−1)|θ=t

M−2−(j−1)∏
v=1

(t−θqv)qj−1

.

It follows that

HqM−
∑M−1
i=0 Niqi−qj

ΓqM−∑M−1
i=0 Niqi−qj+1|θ=t

=
HqM−

∑M−1
i=0 Niqi

ΓqM−∑M−1
i=0 Niqi+1|θ=t

(−1)M−j−1

Lq
j

M−j−1|θ=t

M−j−1∏
v=1

(t− θqv)qj .

By (3.3.2), we have

HqM−
∑M−1
i=0 Niqi−1

ΓqM−∑M−1
i=0 Niqi

|θ=t
=

HqM−
∑M−1
i=0 Niqi

ΓqM−∑M−1
i=0 Niqi+1|θ=t

(1−
M−1∑
j=1

Gj

Dj|θ=t
(−1)M−j−1

Lq
j

M−j−1|θ=t

M−j−1∏
v=1

(t− θqv)qj).
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Now we begin to prove that the formula (3.3.1) holds for qM −
∑M−1

i=0 Niq
i − 1. Let

f(θ) := 1−
M−1∑
j=0

Gj

Dj|θ=t
(−1)M−j−1

Lq
j

M−j−1|θ=t

M−j−1∏
v=1

(t− θqv)qj .

Let U denotes the collection of all subsets of {1, 2, · · · ,M−1}. For I = {i1, · · · , im} ∈ U , we

put θI = θq
i1+···+qim , and |I| = m, the number of elements in I. Then for i = 0, · · · ,M − 1,

Gj

M−j−1∏
v=1

(t− θqv)qj =
M−1∏
v=1

(tq
j − θqv) =

∑
I∈U

θI(−1)|I|(tq
j

)M−1−|I|.

Since for distinct I1, I2, θ
I1 6= θI2 , we have

f(θ) = 1−
∑
I∈U

(
M−1∑
j=0

(tq
j
)M−1−|I|

(−1)M−j−1DjL
qj

M−j−1|θ=t
)θI(−1)|I|.

Observe that

1

(−1)M−j−1Lq
j

M−j−1|θ=t
=

∏j
v=1(t

qj − tqv+M−1
)

(−1)M−1Lq
j

M−1|θ=t
.

It follows that

f(θ) = 1−
∑
I∈U

(
M−1∑
j=0

∏i
v=1(t

qj − tqv+M−1
)(tq

j
)M−1−|I|

(−1)M−1DjL
qj

M−1|θ=t
)θI(−1)|I| = 1−

∑
I∈U

ΨM−1|θ=t(tM−1−|I|)θI(−1)|I|.

By Proposition 2.11, ΨM−1|θ=t(tM−1−|I|) = 0 if |I| > 0, and ΨM−1|θ=t(tM−1−|I|) = 1 if I is
the empty set. In the later condition θI(−1)|I| = 1 and hence f(θ) = 1− 1 = 0. This implies

1−
M−1∑
j=1

Gj

Dj|θ=t
(−1)M−j−1

Lq
j

M−j−1|θ=t

M−j−1∏
v=1

(t− θqv)qj =
(−1)M−1

LM−1|θ=t

M−1∏
v=1

(t− θqv) and we deduce that

HqM−
∑M−1
i=0 Niqi−1

ΓqM−∑M−1
i=0 Niqi

|θ=t
=

HqM−
∑M−1
i=0 Niqi

ΓqM−∑M−1
i=0 Niqi+1|θ=t

(−1)M−1

LM−1|θ=t

M−1∏
v=1

(t− θqv)

=
(−1)

∑M−2
i=0 (M−1−i)Niqi∏M−2

i=0 LNiq
i

M−1−i|θ=t

M−1∏
v=1

(t− θqv)
∑M−1−v
j=0 Njq

j

.

�

4. Main result on Zeta-like Multizeta values

In this section we will prove Conjecture 2.13 (b) with q > 2 and Conjecture 2.14.

4.1. Frobenius twisting. We fix the following automorphism of the field of Laurent series
over C∞, which is referred to as Frobenius twisting :

C∞((t)) → C∞((t)),

f :=
∑

i ait
i 7→ f (−1) :=

∑
i ai

1
q ti.

In [4], the following criterion is proved for deciding zeta-like multizeta values in terms of
Anderson-Thakur polynomials.
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Theorem 4.2. ( Chang-Papanikolas-Yu [4, Theorem 2.5.2, 4.4.2] ) Given a tuple (s1, s2, · · · , sr) ∈
Nr, then ζA(s1, · · · , sr) is zeta-like if and only if there exist δ1, · · · , δr ∈ K[t] and a, b ∈ Fq[t]
with a 6= 0 such that

δ1 = δ
(−1)
1 (t− θ)w + δ

(−1)
2 H

(−1)
s1−1(t− θ)

w + bH
(−1)
w−1 (t− θ)w;

δ2 = δ
(−1)
2 (t− θ)s2+···+sr + δ

(−1)
3 H

(−1)
s2−1(t− θ)

s2+···+sr ;

...

δr−1 = δ
(−1)
r−1 (t− θ)sr−1+sr + δ

(−1)
r H

(−1)
sr−1−1(t− θ)

sr−1+sr ;

δr = δ
(−1)
r (t− θ)sr + aH

(−1)
sr−1(t− θ)

sr ,

(4.2.1)

where Hs1−1, · · · , Hsr−1, Hw−1 are Anderson-Thakur polynomials.
If q − 1 does not divide w :=

∑
si, then we have

a(θ)Γs1 · · ·ΓsrζA(s1, · · · , sr) + b(θ)ΓwζA(w) = 0

Remark 4.2.2. If (δ1, · · · , δr, a, b) is a solution of (4.2.1), then for any nonzero f ∈ Fq[t],
(fδ1, · · · , fδr, fa, fb) is also a solution of (4.2.1) since the set of elements in K[t] fixed by
the Frobenius twisting is Fq[t].

According to this theorem, our strategy for proving given multizeta values to be zeta-like
is to actually solve system of Equations 4.2.1 by finding δ1, · · · , δr ∈ K[t] and a, b ∈ Fq[t].
Since we are interested in tuples (s1, · · · , sr) with si of very special q-adic “shape ”, solutions
(δr, a) can be given immediately. Then an inductive procedure is used to go from a solution
(δ′j, · · · , δ′r, a′) of a subsystem of (4.2.1) with r−j+1 equations to a solution (δj−1, · · · , δr, a)
of a subsystem of (4.2.1) with r− j + 2 equations. The precise statement is incorporated in
the following proposition.

Proposition 4.3. Fix 1 ≤ pM ≤ q. For any r ≥ 2 and m ∈ Z≥0, let si = pM(q − 1)qm+i−2

for i = 2, · · · r. Let (δ2, · · · , δr, a) be defined as follows:

fr := [2]p
M qr+m−3 · · · [r − 1]p

M qmΓpM qm+r−2(q−1);

fi :=
−fi+1

[r − i+ 1]pM qm+i−2 ΓpM qm+i−2(q−1) for j ≤ i < r;

δi := fi|θ=t[(t− θ) · · · (t− θ
1

qr−i )]p
M qr+m−1

;

a := −
[
[1]p

M qr+m−2
[2]p

M qr+m−3 · · · [r − 1]p
M qm

]
|θ=t.

(4.3.1)

Then for any j with 2 ≤ j < r, the system of equations

δj = δ
(−1)
j (t− θ)sj+···+sr + δ

(−1)
j+1 H

(−1)
sj−1(t− θ)

sj+···+sr ;

...

δr−1 = δ
(−1)
r−1 (t− θ)sr−1+sr + δ

(−1)
r H

(−1)
sr−1−1(t− θ)

sr−1+sr ;

δr = δ
(−1)
r (t− θ)sr + aH

(−1)
sr−1(t− θ)

sr .

(4.3.2)

can be solved explicitly with (δj, · · · , δr, a) given by (4.3.1).

Remark 4.3.3. It follows from the recursive definition of fi that

f2 = (−1)rΓpM (q−1)qm · · ·ΓpM (q−1)qm+r−2 .
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Proof. By using similar arguments in the proof of Theorem 3.3, one can show that

HpM qm+i−2(q−1)−1 = ΓpM qm+i−2(q−1)|θ=t
for 1 ≤ pM ≤ q. We obtain that (δj, · · · , δr, a) defined in (4.3.1) is a solution of the system
of equations (4.3.2) by straight forward manipulation.

�

Now we begin to prove Conjecture 2.13 (b) and Conjecture 2.14 (a).

Theorem 4.4. Suppose that q > 2. Then we have the following zeta-like families.

(a) ζA(1, q2− 1, (q− 1)q2, · · · , (q− 1)qn+1) =
(−1)n+1([n+ 2]− 1)

[1][n+ 2]

1

[1]qn+1 · · · [n]q2
ζA(qn+2).

(b) For n ≥ 1, r ≥ 2 and 1 ≤ pm ≤ q, consider Ni ∈ Z≥0 for 0 ≤ i ≤ n − 1 such that
1 ≤

∑
Ni ≤ q − 1. If (q − 1)(qn −

∑
Niq

i) ≤ pm(q − 1)qn−1, then

ζA(qn −
∑

Niq
i, pm(q − 1)qn−1, · · · , pm(q − 1)qn+r−3)

is zeta-like. In particular, if q − 1 does not divide qn −
∑
Niq

i, then we have

ζA(qn −
∑

Niq
i, pm(q − 1)qn−1, · · · , pm(q − 1)qn+r−3)

=
(−1)(r−1)(1+

∑
Ni)LN0q0

n+r−2 · · ·L
(Nn−1−(q−pm))qn−1

r−1

[1]pmqn+r−3 [2]pmqn+r−4 · · · [r − 1]pmqn−1LN0q0

n−1 · · ·L
Nn−2qn−2

1

ζA(pmqn+r−2 − pmqn−1 + qn −
∑

Niq
i).

Remark 4.4.1. The zeta-like part of Theorem 3.1 (1) in [9] is a special case of Theorem 4.4
(b) by taking r = 2. Also, the zeta-like part of Theorem 3.2 in [9] is a special case of Theorem
4.4 (b) by taking n = 0, Ni = 0.

Proof. (a) Let w = qn+2. Let s1 = 1, s2 = q2 − 1 and si = (q − 1)qi−1 for 3 ≤ i ≤ n + 2.
If n + 2 ≥ 3, we choose fi ∈ A, δi ∈ K[t] and a ∈ Fq[t] as same as in Proposition 4.3 when
3 ≤ i ≤ n + 2. Then δi and a satisfy the subsystem of equations (4.3.1) for j = 3. If
n+ 2 = 2, we define a = −[1]q|θ=t. Now we let

δ2 = (−1)n[n+ 1]q|θ=tΓw|θ=t[(t− θ) · · · (t− θ
1
qn )]q

n+2

(t− θq) ∈ A[t],

f = {−[n+ 2]L1L2 · · ·Ln+1}|θ=t,
b = (−1)n([n+ 2]− 1)|θ=t[n+ 1]q|θ=t.

We further put

B = (−1)n+1[n+ 1]q|θ=tΓw|θ=t,

F0 = B(t− θ)w, F1 = B(t− θ)w(t− θ
w
q ),

Fi = F
(−1)
i−1 (t− θ)w for i = 2, · · ·n+ 1.

and let δ1 =
n+1∑
j=0

Fj. By this recursive formula we can see that δ2 = −Fn+1. Note that

by Theorem 3.3, Hs1−1 = 1, Hs2−1 = Hq2−2 = (θq − t)Dq−2
1 |θ=t and Hw−1 = Γw|θ=t =

(
∏n+1

i=1 D
q−1
i )|θ=t. It follows from direct algebraic manipulation that the tuple (δ1, δ2, fδ3, · · · , fδn+2, fa, b)

satisfies the system of equations (4.2.1). Since q − 1 does not divide
∑
si, by Theorem 4.2
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we obtain that

ζA(1, q2 − 1, q2(q − 1), · · · , qn+1(q − 1)) =
−b(θ)Γw

f(θ)a(θ)Γ1Γq2−1Γ(q−1)q2 · · ·Γ(q−1)qn+1

ζA(w)

=
(−1)n+1([n+ 2]− 1)

[n+ 2]L1[1]qn+1 [2]qn · · · [n]q2
ζA(w).

(b) Let s1 = qn −
∑n−1

i=0 Niq
i, si = pm(q − 1)qn+i−3 for 2 ≤ i ≤ r and w =

∑
si =

pmqn+r−2 − pmqn−1 + qn −
∑
Niq

i. Let (δ2, δ3, · · · , δr, a) be chosen in Proposition 4.3. Note
that the condition (q − 1)s1 ≤ s2 is equivalent to Nn−1 ≥ q − pm. Therefore we can rewrite
the weight w as w = qn+r−1 −

∑n+r−2
i=0 N ′iq

i, where

N ′n+r−2 = q − pm, N ′j = 0 for n ≤ j ≤ n+ r − 3,

N ′n−1 = Nn−1 − (q − pm), N ′j = Nj for 0 ≤ j ≤ n− 2.

For b ∈ Fq[t], we put

B1 = Γqn−∑Niqi |θ=t
(−1)

∑n−2
i=0 (n−1−i)Niqi∏n−2

i=0 L
Niqi

n−1−i|θ=t
, B2 = Γqn+r−1−

∑n+r−2
i=0 N ′iq

i |θ=t
(−1)

∑n−1
i=0 (n+r−2−i)N ′iqi∏n−1

i=0 L
N ′iq

i

n+r−2−i|θ=t
,

b = −f2|θ=tB1, f1 = B2,

F0 = bH
(−1)
w−1 (t− θ)w, Fi = F

(−1)
i−1 (t− θ)w for i = 1, · · · r − 1,

δ1 =
r−2∑
j=0

Fj ∈ K[t].

Moreover, these N ′i satisfy the condition

0 ≤
n+r−2∑
i=0

N ′i =
n−1∑
i=0

Ni ≤ q − 1.

By Theorem 3.3 and the straight forward manipulation, we have

H
(−r)
w−1 =

B2

B1

H
(−1)
s1−1

r−1∏
i=1

(t− θ
1

qi )
∑n−1
j=0 N

′
jq
j

.

It follows that Fr−1 + f1δ
(−1)
2 H

(−1)
s1−1(t− θ)

w = 0 and then

δ
(−1)
1 (t− θ)w + f1δ

(−1)
2 H

(−1)
s1−1(t− θ)

w + bH
(−1)
w−1 (t− θ)w = δ1.

Combining with Proposition 4.3, we see that the tuple (δ1, f1δ2, · · · , f1δr, f1a, b) satisfies the
system of equations (4.2.1).
If q − 1 does not divide

∑
si, we can apply f2 in Remark 4.3.3 and get
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ζA(qn −
∑

Niq
i, pm(q − 1)qn−1, · · · , pm(q − 1)qn+r−3)

=
−b(θ)Γqn+r−1−

∑
N ′iq

i

f1(θ)a(θ)Γqn−∑NiqiΓpm(q−1)qn−1 · · ·Γpm(q−1)qn+r−3

ζA(qn+r−1 −
∑

N ′iq
i)

=
(−1)(r−1)(1+

∑
Ni)LN0q0

n+r−2 · · ·L
(Nn−1−(q−pm))qn−1

r−1

[1]pmqn+r−3 [2]pmqn+r−4 · · · [r − 1]pmqn−1LN0q0

n−1 · · ·L
Nn−2qn−2

1

ζA(qn+r−1 −
∑

N ′iq
i).

�

At the end of this section we prove Conjecture 2.14 (b).

Theorem 4.5. For any q > 2, ζA(1, q(q − 1), q3 − q2 + q − 1) is zeta-like. Furthermore,

ζA(1, q(q − 1), q3 − q2 + q − 1) =
[3]− 1

[3][2][1]q2−q+1
ζA(q3).

Proof. Let

a = {Γq3 [3]}|θ=t, b = {[1]q−3[2]q−2(−[3] + 1)}|θ=t,

δ1 =
a[2]q−2[1]q−3|θ=t

[3]|θ=t
(t− θ)q3

[
(t− θq)(t− θ

1
q )q

3 − θq2 + t+ 1
]
,

δ2 =
−a[2]q−2[1]q−3|θ=t

[3]|θ=t
(t− θ)q3(t− θ

1
q )q

3

(t− θq),

δ3 =
a[2]q−2|θ=t

[1]|θ=t
(t− θ)q3(t− θq).

Then by Proposition 3.1 and Theorem 3.3, one can show that (δ1, δ2, δ3, a, b) satisfies (4.2.1).
Since q > 2, the ratio of ζA(1, q(q − 1), q3 − q2 + q − 1) to ζA(q3) is

−b(θ)Γq3
a(θ)Γ1Γq2−qΓq3−q2+q−1

=
[3]− 1

[3][2][1]q2−q+1
.

�

5. Main result on Eulerian multizeta values

In this section we will present two families of Eulerian multizeta values mentioned in
Conjecture 2.13 (a) and Conjecture 2.13 (b) for q = 2. As a consequence, this confirms that
all the multizeta values conjectured to be Eulerian in [4], Section 6.2, are indeed Eulerian.

Theorem 5.1. For any positive integer r > 1 and n, we have

ζA(qn − 1, (q − 1)qn, · · · , (q − 1)qn+r−2)

= ζA(qn − 1)ζA((q − 1), · · · , (q − 1)qr−2)q
n − ζA(qn+1 − 1, (q − 1)qn+1, · · · , (q − 1)qn+r−2).

We obtained that

ζA(qn − 1, (q − 1)qn, · · · , (q − 1)qn+r−2) =
[n+ r − 2][n+ r − 3] · · · [n]

[1]qn+r−2 [2]qn+r−3 · · · [r − 1]qn
ζA(qn+r−1 − 1).
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Theorem 5.2. Let r be a positive integer greater than 1. If q = 2, then we have

ζA(1)ζA(1, 2, · · · , 2r−1) = ζA(1, 3, 22, · · · , 2r−1) + ζA(1, 1, 2, · · · , 2r−2)2.
Furthermore, we have

ζA(1, 3, 22, · · · , 2r−1) =
[r]− 1

L1[r]

1

L2r−2

1 L2r−3

2 · · ·L22
r−3L

22
r−2

ζA(2r).

Aside from Carlitz’s evaluations in Lemma 2.4, the key point of the proof is the relations
among the power sums Sd(m).

Lemma 5.3. For any d ≥ 1, one has

Sd(q
n − 1)Sd((q − 1)qn) = Sd(q

n+1 − 1)− Sd((q − 1)qn)
∑
d′<d

Sd′(q
n − 1)

Proof. See [11, pp.2332]. �

Proof of Theorem 5.1 By Lemma 5.3, we have∑
d1>d2>···>dr−1≥0

d=d1

Sd(q
n − 1)Sd1((q − 1)qn) · · ·Sdr−1((q − 1)qn+r−2)

=
∑

d1>d2>···>dr−1≥0

Sd1(q
n+1 − 1)Sd2((q − 1)qn+1) · · ·Sdr−1((q − 1)qn+r−2)

−
∑

d1>d2>···>dr−1≥0

d′<d1

Sd1((q − 1)qn)Sd′(q
n − 1)Sd2((q − 1)qn+1) · · ·Sdr−1((q − 1)qn+r−2)

It follows that

ζA(qn − 1)ζA((q − 1)qn, · · · , (q − 1)qn+r−2)

=
∑

d1>d2>···>dr−1≥0

d>d1

+
∑

d1>d2>···>dr−1≥0

d=d1

+
∑

d1>d2>···>dr−1≥0

d<d1

Sd(q
n − 1)Sd1((q − 1)qn) · · ·Sdr−1((q − 1)qn+r−2)

=
∑

d1>d2>···>dr−1≥0

d>d1

Sd(q
n − 1)Sd1((q − 1)qn) · · ·Sdr−1((q − 1)qn+r−2)

+
∑

d1>d2>···>dr−1≥0

Sd1(q
n+1 − 1)Sd2((q − 1)qn+1) · · ·Sdr−1((q − 1)qn+r−2)

= ζA(qn − 1, (q − 1)qn, · · · , (q − 1)qn+r−2) + ζA(qn+1 − 1, (q − 1)qn+1, · · · , (q − 1)qn+r−2)

We will prove the second part by mathematical induction on r > 1. In fact we also prove
that

ζA(qn − 1, (q − 1)qn, · · · , (q − 1)qn+r−2) =
(−1)n+r−1[n+ r − 2] · · · [n+ 1][n]

[1]qn+r−2 · · · [r − 2]qn+1 [r − 1]qnLn+r−1
π̃q

n+r−1−1.

When r = 2, by Lemma 2.4, we have

ζA(qn − 1, (q − 1)qn) = ζA(qn − 1)ζA((q − 1)qn)− ζA(qn+1 − 1) =
[n]

[1]qn
ζA(qn+1 − 1).

Assume that the statement holds for any n with depth < r, then by the above recursive
formula and induction hypothesis we have
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ζA(qn − 1, (q − 1)qn, · · · , (q − 1)qn+r−2)

= ζA(qn − 1)ζA((q − 1), · · · , (q − 1)qr−2)q
n − ζA(qn+1 − 1, (q − 1)qn+1, · · · , (q − 1)qn+r−2).

=
(−1)n

Ln
π̃q

n−1(
(−1)r−1[r − 2] · · · [1]

[1]qr−2 · · · [r − 2]qLr−1
π̃q

r−1−1)q
n − (−1)n+r−1[n+ r − 2] · · · [n+ 1]

[1]qn+r−2 · · · [r − 2]qn+1Ln+r−1
π̃q

n+r−1−1

=
(−1)n+r−1[n+ r − 2] · · · [n+ 1][n]

[1]qn+r−2 · · · [r − 2]qn+1][r − 1]qnLn+r−1
π̃q

n+r−1−1

=
[n+ r − 2][n+ r − 3] · · · [n]

[1]qn+r−2 [2]qn+r−3 · · · [r − 1]qn
ζA(qn+r−1 − 1).

�

Similarly, by Carlitz’s evaluations and relations on power sums we can prove Theorem 5.2.

Proof of Theorem 5.2 Observe that

ζA(1, 1, 2, · · · , 2r−1) =
∑

d1>d2>···>dr≥0
d>d1

Sd(1)Sd1(1) · · ·Sdr(2r−1)

=
∑

d1>d2>···>dr≥0
d2<d<d1

Sd(1)Sd1(1) · · ·Sdr(2r−1).

It follows from Lemma 5.3 that

ζA(1)ζA(1, 2, · · · , 2r−1)

=
∑

d1>d2>···>dr≥0
d>d1

+
∑

d1>d2>···>dr≥0
d=d1

+
∑

d1>d2>···>dr≥0
d2<d<d1

+
∑

d1>d2>···>dr≥0
d=d2

+
∑

d1>d2>···>dr≥0
d<d2

Sd(1)Sd1(1) · · ·Sdr(2r−1)

=
∑

d1>d2>···>dr≥0
d=d1

Sd1(2)Sd2(2) · · ·Sdr(2r−1) +
∑

d1>d2>···>dr≥0
d=d2

Sd1(1)[Sd2(3) + Sd2(2, 1)] · · ·Sdr(2r−1)

+
∑

d1>d2>···>dr≥0
d<d2

Sd(1)Sd1(1) · · ·Sdr(2r−1)

= ζA(1, 1, 2, · · · , 2r−2)2 + ζA(1, 3, 22, · · · , 2r−1).

By the above formula and Lemma 2.4, Theorem 5.1 and [9, Theorem3.2], we have

ζA(1, 3, 22, · · · , 2r−1) =
1

L2r−2

1 L2r−3

2 · · ·L22
r−3L

22
r−2

[r]− 1

L1[r]
ζA(2r).

�
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