ANDERSON-THAKUR POLYNOMIALS AND MULTIZETA VALUES IN
POSITIVE CHARACTERISTIC

HUEI-JENG CHEN

ABSTRACT. Multizeta values in positive characteristic were first introduced and studied
by Thakur. He and Lara Rodriguez [9] discovered and conjectured certain zeta-like fami-
lies. Kuan, Lin and Yu stated more conjectures about zeta-like multizeta values in [7]. In
the present paper we study and give the transparent formula for certain Anderson-Thakur
polynomials. This enables us to confirm the conjectured zeta-like families.

1. INTRODUCTION
The study of arithmetic of zeta values begins by Euler’s famous evaluations: for m € N,

—Bay, (20y/=T)™"

2(2m)! ’

¢(2m) =

where Bs,, € Q are Bernoulli numbers. Euler’s formula implies that ((n)/(2my/—1)" is
rational if and only if n is even. The multiple zeta values ((sy,- - ,s,), where sq,...,s, are
positive integers with s; > 2, are generalizations of zeta values. These numbers were first
studied by Euler for the case of r = 2. Although there exist simple relations between zeta and
multiple zeta values, such as ((2,1) = ((3), sorting out all relations among these multiple
zeta values is a much involved problem. Here r is called the depth and w := ", s; is called
the weight of ((s1, ..., s,). Wecall ((s1,...,s,) Bulerian if the ratio {(s, . .., s,)/(2mv/—1)"
is rational.

Carlitz introduced and derived an analogue of Euler’s formula for what we now called
Carlitz zeta values (4(n) for n > 1. Let A = F [f] be the polynomial ring in the variable ¢
over a finite field F, and K = F () be its quotient field. Let ¢ be a variable independent of
. Let C be the Carlitz module and 7 is a fgndamental period of C. The Carlitz exponential

q )
function is defined by expg(2) = 3,5, % , where D,, =[]/, (#"" — 69'). We denote by
I',41 € A the Carlitz factorials and BC'(n) € K by the Bernoulli-Carlitz numbers. Carlitz

showed that
1 BC(n) -
Caiy = 3 L = Bz
acA+ a Fn+1

if ¢ — 1|n. Carlitz’s result implies that (4(n)/7" is rational in K if and only if ¢ — 1|n.
Anderson and Thakur [1] related the interesting value (4(n) to a special integral point Z,
in C®"(A) via the logarithm map of C®", where C®" denotes the n-th tensor power of the
Carlitz module (viewed as a Carlitz-Tate t-motive). As a consequence, one has that (4(n)/7"
is rational if and only if Z,, is an I [t]-torsion point, and this condition is equivalent to n
being divisible by ¢ —1. In [1] a key role is played by a sequence of distinguished polynomials
H, € Alt], now called the Anderson-Thakur polynomials. On the other hand, Yu [13] also
showed that the transcendence of (4(n)/7™ over K is equivalent to Z, being non-torsion

1



2 HUEI-JENG CHEN

on C®"(A), whence deriving that (4(n)/7™ is algebraic over K if and only if (4(n)/7" is
rational in K.

In the last decade, Thakur [10, 11] initiated the study of multizeta values (a(s1,--- , s,),
where s1, ..., s, are positive integers. He and his co-workers discovered interesting relations
among some multizeta values. Call C4(s1,...,s,) Fulerian (zeta-like resp.) if the ratio
Calst, 8/ (Ca(s1y---58:)/Ca(w) resp.) is rational in K. A basic question in this
respect is to find all Eulerian/zeta-like multizeta values. In [9], Lara Rodriguez and Thakur
gave particularly precise formulas for certain families of Eulerian/zeta-like multizeta values
and conjectured other ones. Their conjectures are supported by numerical data from con-
tinued fraction computations. On the other hand, Chang [3] also proved the subtle fact that
these ratios (a(s1, -+, s,) /7", Ca(s1, ..., 5:)/Ca(w) are either rational or transcendental over
K.

In an effort to understand relations among multizeta values, Chang, Papanikolas and Yu
[4] established an effective criterion for Eulerian/zeta-like multizeta values by constructing an
abelian t-module E’ defined over A and relating the values C4(s1,- - ,$,), Ca(w) to specific
integral points v, u; on E'(A). They proved that (a(sy,- - ,s,) is Eulerian (zeta-like) if and
only if v, is an F,[¢]- torsion point (respectively, us and v, have an F,[t]-linear relation inside
E'(A)). The integral points v, u, are constructed using the Anderson-Thakur polynomials.
Their theory connects possible F,(#)-linear relation of Ca(s1,---,s,) and (a(w) explicitly
with the possible IF,[t]-linear relation among v, and u, inside E'(A).

Just recently, Kuan-Lin [7] implemented algorithms basing on the criterion of Chang-
Papanikolas-Yu. They have collected more extensive data on zeta-like and Eulerian multizeta
values over the polynomial rings F,[f]. Particularly in [4, 9], a conjectured rule is spelled out
to specify all Eulerian multizeta values. Lists given in [7] suggest more families of zeta-like
multizeta values of arbitrary depth. These families are not covered by [9]. It is observed
that there should be only a few zeta-like families in higher depth, because of the conjectured
“splicing” condition (cf. [9]). Finding all zeta-like multizeta values is now in sight.

Inspired by this development we study Anderson-Thakur polynomials in more details in
this paper, for the purpose of deriving exact rational ratio between C4(s1,--- ,s,) and (a(w)
whenever such a ratio exists. In particular, we are able to verify : (1) Conjecture 4.6 of [9], (2)
Conjecture 5 of [7], (3) the conjectured list of all Eulerian multizeta values given in [4], Section
6.2, are indeed Eulerian. The strategy for proving zeta-like property for given multizeta
values is to handle recurrence relations among Anderson-Thakur polynomials H,. In view
of the fact that these H,, are polynomials in both 6 and t over F,, we use Lucas Theorem
to establish ¢g-th power recurrence when n has particular ¢g-adic “shape”. Combining with
the obvious linear recurrence relating H,, to H,,_,i, we eventually arrive at more transparent
formulas for H,,.

The contents of this paper are arranged as follows. In Section 2, we set up preliminaries
and introduce the conjectured families of zeta-like multizeta values given in [7] and [9],
which we will prove later. In Section 3, we use generalized Lucas Theorem [6, p.75-76] to
study Anderson-Thakur polynomials. Then in Section 4 we apply Chang-Papanikolas-Yu’s
theorem [4, Theorem 2.5.2] to verify that all previously conjectured families of zeta-like
multizeta values are indeed zeta-like with exact formulas given in Theorem 4.4. At the end
of this paper we provide ‘recursive’ relations for two very special families of multizeta values
and derive that they are Eulerian (Theorem 5.1, 5.2) in Section 5.

q's
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2. PRELIMINARIES FOR MULTIZETA VALUES
2.1. Notation. We adopt the notation below in the following chapters.

F, = a finite field with ¢ = p' elements.

K =TF,(0), the rational function field in the variable 6.

oo = zero of 1/6, the infinite place of K.

| | = the nonarchimedean absolute value on K corresponding
to oo.

K.=F,((1/0)), the completion of K with respect to the abso-
lute value | - |.

A = TF,[0], the ring of polynomials in the variable 6.

A, = the set of monic polynomials in A.

Ay = the set of polynomials in A of degree d.

Ag= AgN A, the set of monic polynomials in A of degree d.

[n] = 07" — 0.
n—1 )

D,= ] 6" — 09 = [n][n —1]7--- [1}‘1"_1.
i=0

L,=T1[67 —6=n][n—1]---[1].
i=1

l, = (—=1)"L,.

t = a variable independent of 6.

2.2. Multizeta values. For s € N and d € Z>, put

Sis) = 3 ;GK.

a€Agy

For s € N the Carlitz-Goss zeta values are defined by

)= Suls) = 3 &€ Ko

a€A4

For a given tuple (s1,---,s,) € N’ the Thakur multizeta values of depth r and weight
w =Y s; are defined by

Clsr s = 3 Sals) o Suls)= Y

1 S .
as* - asr
di>->dr>0 a;€Ay 1 r
degay>--->degar>0

2.3. Bernoulli-Carlitz numbers BC(n). For a non-negative integer n, we express n as
n:Zniqi (0<n;<qg—1,n;, =0 fori>0),
=0

and we recall the definition of the arithmetic I'-function I',4q = [[2, D/ € A. We de-

note by (—G)ﬁ a fixed (¢ — 1)-th root of —f#. Let C be the Carlitz module and 7 =

(-0 o -
=1

)

0
T )~! be a fundamental period of C. The Carlitz exponential function is

n

defined by expa(z) = > . The Bernoulli-Carlitz numbers BC(n) € K are defined by

V4
n>0
=z -Dn
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z BC(n
_y B,

expe(2) = | .

When n is ‘even’ i.e., ¢ — 1|n, Carlitz derived an analogue of Euler’s formula as follows:

Lemma 2.4. (Carlitz [2])
(a) Forn>1, (a(n) = BC’(n)%n if ¢ — 1In.

1—‘n—&—l '
. _1 n—zr n_ i
(b)ForOSign,BC(q”_qz):( )Lq"q g+l
—1)"
Combining (a), (b) we get Ca(g" — 1) = ( - )

2.5. Anderson-Thakur polynomials. First we define polynomials G; € F,[t, 8] for i € Zx.
Put Gy =1. Fori € N, let

G = H —67).

For n = 0,1,2,..., we define the sequence of Anderson-Thakur polynomials H, € A[t] by
the generating function identity

-1
G = H,
(1_2Di|0t$q> _nzzor v

n+1 |0:t

We note that for 0 <n < ¢ — 1 we have H, = 1. For any infinite vector a = (ag, a, az, - -)
with integers a; > 0 and a; = 0 for j > 0, put m(a):= last index 7 such that a; # 0.

a _|_ e _|_ am a '
We define C, = (2o (*))
- aO!---am(g)! A
infinite vector a satisfying n =Y.~ a;q*. We have the following lemma giving two ways for
explicitly writing Anderson—Thakur polynomials:

. For n € N, a g power weighted partition of n is an

Lemma 2.6.
(a) Forn € Zsg, let S, ={a | n=>a;q", C, Z0 mod p} denote the set of all possible q
power weighted partition of n with nonzero C, mod p. Then

ZOHDW

n+1’9 =t

(b) Forn e N,
mo oo om,,
Fotilo=e = Dilo=t Dngisrlo=t

We will discuss more details about Anderson-Thakur polynomials in Section 3.
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2.7. Revisiting Lucas Theorem. To compute C; mod p, a useful tool is a generalization
of the Lucas Theorem.

Theorem 2.8. (Dickson [6]) For any infinite vector a, C, 0 mod p if and only if there is
no carrying in computing the sum ag+- - -+ amq) in terms of base p expansion. Furthermore,
if Yai =g, ap = 35 g iy, with 0 < nj,ni; <p—1 and nj = Zm(g) nij. Then
Co =[1Cy, inFy, where nj = (noj,- -+, Nm(a),;, 0,0, ).

Proof. See [6, p.75-76]. O

By Theorem 2.8 we see that €, mod p can be computed as digits in base p expansion

separately. So we try to descend H, via the maps below. For simplicity we view C, as
elements in [F).

Definition 2.9. For any infinite vector a with C, # 0, let a = (dp, dy, - ), where a; = a;
mod ¢ with 0 < a; < g — 1. We define the following ‘reduction map’ of vectors.

ao—do al—dl
T(Q)::( ) ’)
q q

By Theorem 2.8 we see that C, = C5C.(,)

2.10. Binomial series to the Carlitz module. For k € Zx, let Wi(z) be the polynomials
in K[z] defined by

expa(zloges(u Z Uy (x

k>0
Here log(2) is the Carlitz logarithm defined by
29"
logg(z) = T
n>0 "

Then Wy (x) can be expressed as follows:

Proposition 2.11. (Anderson-Thakur [1])

L0 =07 e
Uy(x) = ZO D, ((_1)kLk)q :

Moreover, Wi(a) =0 for all a € F,[0] with degya < k and ¥, (%) =

This result is another key tool in the proof of Theorem 3.3. For our purpose, we replace 6
by t in Anderson-Thakur’s result so that Wy |o—(z) € F,(¢)[z].

2.12. Conjectures on Eulerian/Zeta-like Multizeta Values. There are families of zeta-
like multizeta values of arbitrary depth, for instance, in [9], they showed that for any ¢,
Call,g—1,(qg—1)q, -+ ,(q — 1)g") is zeta-like by giving the ratio of it to (4(¢"™). There
are certainly more families of zeta-like multizeta values of arbitrary depth, the following
conjecture is given in [9]:
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Conjecture 2.13.

(a) For any g,n>1 and r > 2,
m+r—2|n+r—3]--[n]
T P T T

Calg" =1, (g—1)g", -+, (g — 1)g"""?) = Calg™ 1 = 1).

(b) For any q,n >0,

2 N2 1y ntl _[n+2]-1 1 n+2
CA(L q 1, ((] 1)(] ) ) (q 1)(] ) - ll[n + 2] l(q_l)qnl(q_l)qn71 o l(q_l)qzlqz QA(q )
1 2 n—1 n

(¢c) Forq>2,n>0andr > 2,

—1)7+ —1 — 2 [n+1
Callg=1)g"=1,(q=1)g" ", -+, (g=1)g""" ") = ([1](qr-1[gq;27a](qr_g][?); - [r]_ 1]&14;)(]”] Calg™"=q"=1).

Remark 2.13.1. In [9] Conjecture 2.13 is proved in the depth 2 case. We refer to [9] for more
details, in particular [9, Theorem 3.1], where many depth 2 zeta-like multizeta values are
given with precise ratio to a(w).

According to Chang-Papanikolas-Yu criterion for zeta-like multizeta values in [4], Kuan-
Lin [7] wrote an algorithm and tested multizeta values with bounded weights and depths
by computer. From their output data, they gave another more extensive conjecture about
zeta-like families of arbitrary depth and also specific depth 3 zeta-like multizeta values.

Conjecture 2.14. (Kuan-Lin-Yu) Suppose that ¢ > 2. Then we have the following families
of zeta-like multizeta values:

(a) Forq=p'>2,1<p™"<q,n>0andr > 2, consider N; € Z>o for 0 <i <n—1 such
that 1 <> N; <q—1. If (¢ —1)(¢" = > Niq") < p™(q — 1)q"*, then

Calg" =D Nig', p™(qg—1)g" '+ p" (g — g™ )
18 zeta-like. In particular

Ca(L,p™(q—1),p"q(g = 1), . p"¢ (¢ —1))

18 zeta-like.

(b) In the case of depth r = 3,

3 -1

Calliglg—=1),¢* =" +q—1) = BHQ[]DWCA(QS)-

Remark 2.14.1. When n > 1 in Conjecture 2.13 (c), it corresponds to a special case of
Conjecture 2.14 (a) by taking p™ = ¢, Ng = N,y = land N; =0for0 <i <n-—1.
When n = 0 in Conjecture 2.13 (c), it corresponds to the case when n = 1 and Ny = 2 in
Conjecture 2.14 (a).
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Note that when the weight w is ‘even’, the statement that (a(s1,---,s,) is zeta-like is
equivalent to that it is Kulerian. In Section 4 we will prove non-Eulerian part of Conjecture
2.13 and Conjecture 2.14. The Eulerian part of Conjecture 2.13 will be treated in Section 5

3. INVESTIGATION INTO ANDERSON-THAKUR POLYNOMIALS

In general Anderson-Thakur polynomials H,, are complicated to investigate. However, for
index n having very special ¢g-adic expansion, we can give a nicer and simpler formula for
such H,,. For example, to prove Conjecture 2.14 (b), we need to compute the corresponding
Anderson-Thakur polynomials Hy, Hp_,1, Hp_p214 9 and Hgs_4. It is known that Hy = 1.
On the other hand, it can be directly proved that Hpe_, 1 =2 ylo=, Hps—1 = I'gs|o= and
(t - gryi?

LT o
the set of all ¢ power weighted partition a of m with C, # 0 in [F,,. Furthermore, for given
bwith 0 <b; <q—1, let S, be the subset of S, collecting a satisfying a; = b, mod ¢ for
all . By Lemma 2.6 and to use the reduction maps r(a), we can compute Hys_z244-9.

Hpe o =Tp2 gi1lo= (These are special cases of Theorem 3.3). Recall that S,, is

Proposition 3.1.
Hopoqges = = [0 2o (= 00) 041 4 [ ooy — 07)]

Proof. For any ¢ power weighted partition (ag, a1, as,0,0,--+) of ¢ — ¢* + ¢ — 2, we see
that ag = q¢—2=p—2+(p—Up+---+(p—1)p™" modq. Let a; = a;o + ai1p +
<+ a;;pt mod g, where i = 1,2 and 0 < a;; < p—1 for j > 0. It follows that
if Cy # 0, then a;9+ azp < 1 and ay; +as; = 0 for j > 0. This implies a = (¢ —
2,0,0,---)or(¢—2,1,0,---) or (¢—2,0,1,0,---) and hence S_,24,-2 is the disjoint union
of Sq37q2+q,2’(q,270’0,...), Sq37q2+q,27(q,2’170’_..) and Sq37q2+q,2,(q,270,17...). The reduction map
a +— r(a) induces bijections

T Sg2rq-2,(q-2,00) > Sg2—q»
TS —q24g-2,(q-2,1,0,+) = Sg2—q—1,
T Sg g2 tq-2.(g-20.1-) —* Sg2-2g-

Moveover, we see that C, = Cy(q) if @ = (¢—2,0,0,--+) and C, = —Cy(g) ifa = (¢—2,1,0,---)
or (g—2,0,1,---). We obtain from Lemma 2.6 that

Hq3_q2+q_2 _ Go ao G a;
_Z Z _Cg(Do|ezt) H<Di|9:t)

F 3 2 —
q°—q +Q—1|97t 121

: Go do+do G; a;i+d;
:Z Z C@Cr(g)(m)q N H(m)q "

@ a€S;3 214 24 izl
L Hey G Hpn,  Go  Hpoy |,
1—\q2fq+1 |9=t Dl |9=t qufq |9=t D2 ’9:2& Fq272q+1 |9=t

On the other hand, by Lemma 2.6 (b) for n = ¢* — ¢, we have

Hq2—2q _ Dl’@:t |: Hq2—q . HqZ_q_1:|
Fq272q+1 ‘9:1‘/ Gl I

?—q+1 |9=t Fqu ’9=t
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Hp_ gy —(t — 09—ttt —99)[1]97 o

It follows that i i B ( >1 ( )T o=t
Pogrig-ilo= 210 D)oy [2llo=

I'-function, we can easily derive that I'js_j24, 1 = DI and the result follows.

. By definition of

O

3.2. Formula for Anderson-Thakur polynomials H,, with m = ¢" — Y N;¢*. For n € N,
consider a tuple (No, -+, Np—1) with N; € Zs satisfying 0 < Zn_l N; < g—1. This implies
"=, ' Ni¢' —1 > 0. We have the following formula for these special polynomials:

Theorem 3.3. Let n € N and N; € Zs satisfying 0 <> ", 'N; < q—1. Then

Hin s~ Nyqi- 1) ZE (n—1—i) Nig' L N
(33.1) TR = : 7)1—2 N.qt H(t —p1 ) o N;q’
Lgnos Nqgilo=t 1 L, ile=e vy

The key idea is using Lemma 2.6 and Theorem 2.8 to descend Anderson-Thakur polyno-

mials from H,, to suitable H,, with m < n.
H, n,_

Proof. We will prove by induction on n and N;. For n = 1 it is clear that % =

q—No |60=t
1 satisfying (3.3.1) for any 0 < Ny < ¢ — 1. For M > 2, suppose that the statement
holds for H =3 Nigi-1 with 1 < n < M. Our goal is to prove the formula (3.3.1) holds
for H C Ml i For the case Ny = 0, let a = (ag, -+ ,an-1,0,0,---) be a ¢ power
weighted partltlon of M — Eij\igl Ni¢" —1 with C, # 0. Then ap = q¢—1= (p—1) +

-+ (p— 1)p'! mod ¢q. By Theorem 2.8, it forces a; = 0 mod ¢q for i > 1. Then by
considering @ = (¢ — 1,0,0,--+), we have that r(a) is a ¢ power weighted partition of
g1 — Zi]\if Nj¢' — 1, where Nj = Ni;1. Conversely, if @’ € S Cy Mz g let @ =
(qay + q — 1,qa},- -+ ,qay, 1,0,0,---). We put Ny = 0 and N; = N/, for i > 1. Then
a € SqM_ZiJ\iglNiqi_l and r(a) = a'. Therefore, r : Sq]y[_zz]_vialNiqi_l — SqM*l—Zf-”ioQN{qZ—l is
bijective. Moreover, C, = C}.(,. It follows that

HqM_Zg\ialNiqi_l — Z Ca( GO )(l() H( GV )au
Lo sy glo=e g " Dolo=" ) Dulo=

M—-1 i
qJ\/I 721’:0 Niqt—1

Go / G /
= Cy(———)0+a-1 _ Y \qa,
> cg ) T )

v 0=t
a’es GM—1 E]u 2N’q 1 v>1 ’

H M—2 ;
gM-1-S M2 Nlgi-1

r —2 v i|o=
qul_ZgOQNZ_/qz 0=t

M-3 AN gt M—2
(_1)2: (M_Q_Z)Niq 2 N
- (0 [Tt )=y
H LM 2— z|9 =t i=1
M-3 ) i+1 M—2
(_1)21 0 (M 2— )N1+1q H t B eq N +1q]+1
M-3  N;
Hz 0 LM+12qz ‘9=t i=1
M (M-1-i)Nygt ML .
! ])\/1721N H(t_eq) TS
Hi:l LM 1— 7,|9 =1
Note that the last step follows from the induction hypothesis and Ny = 0.

i+1
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Now we assume that Ny > 1. By Lemma 2.6 (b) we have

(3 3 2) HqM_ZM ' Nigt —(No—1)—1 H Ziwoqul_l . Z M ZM—qu-_qj

Lt 325t Mgt o= Lorospiot nigilo D; ‘9 tLpog it ygogalo—t

Note that ¢™ — "M Nt — ¢7 and ¢™ — 2! Nig? are congruent to ¢ — Ny mod ¢. If

we consider all possible vectors a = (¢ — Ny, ay, -+ ,ap;-1,0,0,--+) with 0 < a; < ¢—1 and
Cz #0, then Y% d; = Y110 d; < ¢ — 1. This implies ¢ — Y M0 Nig' — ¢/ = > " dig’ > 0
i>0
M M-1 i =i : ~ :
and ¢ — > .0, Nig' — Zaiq > 0. Hence for a given a, The reduction map a +— r(a)
i>0

induces bijections

T:SqM— iy qu—q]a_>SM - M (Nt gt =t —gi =1 =1

" SqM—Zf‘iEINiqi@ - SqM’l—Ef\ifl(Nﬂrdi)q“l—l'

By Lemma 2.6 (a) we have

HqM—Zf‘iEINiqi—qj _ Z Z O Go yao H( Gy yav
- a
FqM_Zif\ial Niqi_qj+1|9:t @ acS T D0|0:t vl DU|0:t
7 (l
- > CaCul gy )t T e
@ a'eS ,, o DO|0:t w1 Dv|9:t

_ M-1
M =15 T (Ny+d;)gi—1—gi—1-1

Gv ~H—_{V[*1.aii—_'—_
:ZC H( ) M=t (Nitd;)gt—t—gi 1 1)q

—~

a v>0 D ’0 t Fqul,ZZ{ZIl(Nieri)qifl,qul’0:t
Similarly,
HqM_ZJ\{—qu Z C’ H )dv< Hqul_Zi\i;l(Ni_i_di)qifl_l )q
D |0 t Pqul_Zif\iil(Ni_’_di)qifl|9:t

Since Zf\izl Ni+a; < q—1—Ny+ Ny—1 = g—2, by the induction hypothesis on M —1 < M,
one can show that

(M—2—(j—1))gi—t M—2-(-1)

H]u 1 Z 1 (N+az)ql 17qj—171 _ HqM_I*ZJvViil(Ni+UZL) i—1_1 (—1) (t eq )qj 1
FqM—l_Eg\iIl(Ni_,'_di)qz‘—l_qul|9=t Fqul—ZMll(N Y 1|9 =t L?\j[:127(j71)|9:t v=1
It follows that
i M—j—1
e o R e o U ) s f[ (t—07)"
FquZf‘ialNiq’quH"’:t FquZf‘iglNiq' ?\z—j—1|9=t v=1
By (3.3.2), we have
M-1 i1 M—j-1
HqM_ZJV[ N1 H‘IM—ZiAial Nigi (1- Z G, (—1)M j—1 J (i eqv)qj)

- Dilo=t L%[_j_1|9:t v=1

Lo _suzinglo=t  Don_gdics g
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Now we begin to prove that the formula (3.3.1) holds for ¢™ — Zij\igl N;¢* — 1. Let

M-1 G, (—1)M-i1 M—j—1

f(0):=1- -
jzo Djo—t LY,

(t o)

—j—1|9:t v=1

Let U denotes the collection of all subsets of {1,2,--- , M —1}. For I = {iy, -+ ,i,,} € U, we

put 67 = g+ and |I| = m, the number of elements in I. Then for i =0,--- , M — 1,
M—j—1 M-l
Gy H (t_gq“)qJ _ H th _gq Zgl \fl th M—1-[I]
v=1 v=1 €U
Since for distinct I, I, 87 # 6%, we have
) =1— Z(MZI ()M )0l (—1)H1.
IEU j=0 (_1)M7j71DjL?\]47j71‘9=t
Observe that
| IR0 )
(FDMLg e (CDMILY e

It follows that

(te — g (g Y M1

Z Z Hv 1t d )01(_ )|I\ 1— Z\I/M 1|07 (tM 1- |]\)01( )\I|'
)LD, L(JZ\/I o=t

IeU j=0 IeU

By Proposition 2.11, @M_1|9:t(tM—1—\f|) = 0if |[I| > 0, and Wy q|p— (#7171 = 1if T is
the empty set. In the later condition #/(—1)!l = 1 and hence f(6) = 1 —1 = 0. This implies

M-—1 G (_1)M7]71 M—]—l ) ] (_1)M*1 M-—1 Y
1— Z Lo H (t—07)" = (t —67) and we deduce that
j=1 Dj|9:t L?\/f—j—1|6:t v=1 LM_1|9:t v=1
1 M-1
S W Vi SO A v/l N G ) T —o)
FqM_ZiAial Niqi 0=t FqM—Z?igl Niqi+1‘0:t Lys—1o=t e

N\ M A (M—1—-i)N;gt M1 L .
( 1z>\4 2 ' N; : H (t — GqE)ZﬁOl TN
Hz 0 Lz\fql 1‘9 =t =1

4. MAIN RESULT ON ZETA-LIKE MULTIZETA VALUES
In this section we will prove Conjecture 2.13 (b) with ¢ > 2 and Conjecture 2.14.

4.1. Frobenius twisting. We fix the following automorphism of the field of Laurent series
over C,, which is referred to as Frobenius twisting:

Cult) = CulD).
f=>aitt = fED =3 gt
In [4], the following criterion is proved for deciding zeta-like multizeta values in terms of
Anderson-Thakur polynomials.
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Theorem 4.2. ( Chang-Papanikolas-Yu [4, Theorem 2.5.2, 4.4.2] ) Given a tuple (s1, s2, - , $;) €
N, then Ca(s1,- -+, s,) is zeta-like if and only if there exist 61, --- ,0, € K|[t] and a,b € F[t]
with a # 0 such that

& =08Vt —0w+65VHED =0y +bH T (t - 0)v;

s1—1
0y = 8y (t = O) e 5T H U (1 — gyt
(4.2.1) :
61 = 6,0 (t = O) e 4 6TV HT (1= 0y
5, =0t — )+ aH (- 6),
where Hy, _1,--+ ,Hg, 1, H,—1 are Anderson-Thakur polynomials.

If g — 1 does not divide w :=_ s;, then we have
a(0)Ls, -+ Ts Calst, -+, 8) +0(0)wCa(w) =0
Remark 4.2.2. If (61,---,d,,a,b) is a solution of (4.2.1), then for any nonzero f € F,[t],

(fé1,+-+, f6,, fa, fb) is also a solution of (4.2.1) since the set of elements in K|[t] fixed by
the Frobenius twisting is F,[¢].

According to this theorem, our strategy for proving given multizeta values to be zeta-like
is to actually solve system of Equations 4.2.1 by finding &y, -+ ,d, € K[t] and a,b € F,[t].
Since we are interested in tuples (s, - - -, s,) with s; of very special g-adic “shape ”, solutions
(0r,a) can be given immediately. Then an inductive procedure is used to go from a solution
(65, -+ ,0,,a’) of a subsystem of (4.2.1) with r — j+1 equations to a solution (J;_1,--- ,d,,a)
of a subsystem of (4.2.1) with r — j 4+ 2 equations. The precise statement is incorporated in
the following proposition.

Proposition 4.3. Fiz 1 < pM < q. For anyr > 2 and m € Z>y, let s; = pM(q — 1)gm 2
fori=2,---r. Let (02, ,d,,a) be defined as follows:

M _r4+m—3

fr = [2]1’ q .. [7“ — 1]qumequ+r72(q_1);

L _fz—l-l
fl L [T—Z+1] IM m+z 2

b 1= flomil(t = 0) -+ (£ — O )P0

0= — [1]qur+m—2[2]qur+m—3 o [T’ _ 1]qum] |9:t‘

Lpygmtio2q_1y for j < i <r;
(4.3.1)

Then for any 5 with 2 < j < r, the system of equations
0= 05t = Oyt - S HUT (- 0) b

(4.3.2) ‘
67‘—1 e 5”(1:1) (t _ 0)57” 1+58r _|_ 6 H( 11) 1( o 0)87‘—1“1‘87“;

8, = 6t — 0) + aH T (t — 0)*.
can be solved explicitly with (6;,--- ,9d,,a) given by (4.3.1).
Remark 4.3.3. It follows from the recursive definition of f; that

fg — (_l)erM(q_l)qm AR Pp]t{(q_l)qm+7“72.
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Proof. By using similar arguments in the proof of Theorem 3.3, one can show that
Hqum+2>2(q_1)_1 — Fqum+i*2(q—1)|9:t

for 1 < p™ < ¢. We obtain that (d;,--- ,d,,a) defined in (4.3.1) is a solution of the system
of equations (4.3.2) by straight forward manipulation.

U
Now we begin to prove Conjecture 2.13 (b) and Conjecture 2.14 (a).
Theorem 4.4. Suppose that ¢ > 2. Then we have the following zeta-like families.
)" ([n+2] - 1) 1
1L.o2—=1.(g—1)q2. - -- —1)g"t! :( ),
(a) CA( » q 9 (q )q b ) (q )q ) [1][Tl + 2] [1]qn+1 . [n]q2 CA(q )

(b) Form > 1, r>2and 1 < p™m < q, consider N; € Zsq for 0 < i < n —1 such that
L<Y N <qg—1 If(g—1)(¢" =2 Nig") <p™(qg—1)g"™", then

Calg" =D Nig',p™(q—1)g" - p" (g — g™ )

is zeta-like. In particular, if ¢ — 1 does not divide ¢" —>_ N;q", then we have

CA(Q” - Z Niqi7pm(q — 1)q”_1, - 7pm(q _ 1)qn+r—3)

(_1)(r—1)(1+2 Ni)LN—?—ZO—Q o Lg?-r(qum))q”’l

n m n+r—2 m, n—1 n 1)
- — — + _— Nz .
[1]pmqn+r73 [2]pmqn+'r74 .. [T _ 1]pmqn—1L7]1VEq10 . Li\fn72qn 2 <A(p q p q q Z q )

Remark 4.4.1. The zeta-like part of Theorem 3.1 (1) in [9] is a special case of Theorem 4.4
(b) by taking r = 2. Also, the zeta-like part of Theorem 3.2 in [9] is a special case of Theorem
4.4 (b) by taking n =0, N; = 0.

Proof. (a) Let w = ¢"*2. Let s; = 1, 55 = > —Tland s; = (qg—1)¢" " for 3 <i<n+2.
If n 42 > 3, we choose f; € A, §;, € K[t] and a € F,[t] as same as in Proposition 4.3 when
3 < i< n+2 Then § and a satisfy the subsystem of equations (4.3.1) for j = 3. If

n+ 2 =2, we define a = —[1]9]y—;. Now we let

8y = (—1)"[n + 1¥pmTulomil(t — 0) -~ (£ — 07)]"" 7 (t — 07) € A[t),
f={-In+2]LiLs- - Lny1}|o=t,
b= (=1)"([n+ 2] — Dlo—eln + 17l

We further put

B = (=1)""[n + 1)lo=Twlo—t,
Fo=B(t—0)", Fi =B(t—0)"(t—0v),
F=F(t—-6)" fori=2---n+1.
n+1
and let §; = ZFJ By this recursive formula we can see that do = —F),;;. Note that
=0
by Theorem 3.3, Hy, 1 = 1,Hy, 1 = Hp 5 = (07 — t)D‘f_2|9:t and Hy 1 = Tylo= =
(H?:ll fol) lo=¢. It follows from direct algebraic manipulation that the tuple (1, da, fd3, -, fOn12, fa,b)
satisfies the system of equations (4.2.1). Since ¢ — 1 does not divide ) s;, by Theorem 4.2
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we obtain that

—5(9)
CA<1,(]2— 1)q2(q_ ]-)7 7qn+1(q_ 1)) - CA(w>
F(0)a(@)I'1T 21T (g1)g2 - - - Dg1ygnes
_ (= ([n +2] - 1)
= AL
(b) Let s; = ¢" — S0 Nig!’ =p"(qg—1g"" 3 for 2 < i <randw = > s =
Pt — pgt 4 " Z Nq . Let (09,03, ,0,,a) be chosen in Proposition 4.3. Note

that the condition (¢ — 1)s; < sy is equivalent to N,,_; > g — p™. Therefore we can rewrite
the weight w as w = ¢"*" ! — "2 N/¢', where

N’r/1+r—2 :q_pmvN], :OfOI'TLSJ S TL+T—37
N, =Ny~ (¢g—p"),N;=Njfor 0<j<n-2
For b € F[t], we put
(_1)Z$:02(n—1—i)1viqi (_1)2?:01(n+r—2—i)Ngqi

g = Tyt
=0 o=t HzO n+r21|9t

b= —falo=tB1, fi = Ba,
Fo=bH )t -0, F,=F "t —0)" fori=1---r—1,

r—2
0 = ZFJ EKt
7=0

Moreover, these N/ satisfy the condition

By =T g5 nigilo=t

n+4r—2

n—1
0< >, Nj=) Ni<q-1L
1=0 =0

By Theorem 3.3 and the straight forward manipulation, we have

r—1
e r)ZBzH< 1)Ht_9q N

It follows that F,_; + fléé_l)Hs(l__li(t —0)" =0 and then

STV =0y + 05V H T (= 0) + bH (£ — 0)Y = 6.

Combining with Proposition 4.3, we see that the tuple (41, f109, -, f10,, f1a,b) satisfies the
system of equations (4.2.1).
If ¢ — 1 does not divide ) s;, we can apply f, in Remark 4.3.3 and get
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CA(Q" . Z Niqi,pm(q . 1)qn—17 L 7pm(q . 1)qn+r—3)
_b(0>1—‘qn+r71,z N{qi .
— i CA anrrfl o Nllqz)
fl (9)G(Q)Fqn_z Niqirpm(qfl)qnfl e Fpm(qfl)qnqtrfii Z
(_1)(r—1)(1+z N,-)Lﬁi . _L(Jlfrﬂ—(q—zom))q’”“1

_ 2 r—1 n+r—1 N/ % ]
[1]pmqn+r—3 [2]pmqn+r—4 L. [T _ 1]pmqn—1 LNOqO . Li\fn_Qqn—2 CA q Z Zq )

n—1 "~

At the end of this section we prove Conjecture 2.14 (b).

Theorem 4.5. For any q > 2, C4(1,q(q —1),¢* — ¢* + q — 1) is zeta-like. Furthermore,

Bl -1

CA(Lq(q—l),qS—qurq—l):W

Calg®).
Proof. Let
a = {Tg 3] Ho—e, b= {[1]°[2*(=[3] + 1) Mo,

_a[2]‘1_2[1]q_3|o:t _a0\(t _ ph\e® _ e
=g (t—09)(t — 05)7 — 0 +t+1],
—a[2]? 173
[3]o=¢
_% _ O\ (4 _ pa
by = S (6= ) (6= 09)

Then by Proposition 3.1 and Theorem 3.3, one can show that (91, d2, d3, a, b) satisfies (4.2.1).
Since ¢ > 2, the ratio of (4(1,q(¢ —1),¢* —¢* +q—1) to CA(q3) is
—b(0)Ls _ BI-
a(0)T1Tge—Tgrgerg1  [3] [2][1]q ot

3

(t—0)

5y = (t—0)7 (¢ —07)7 (¢t — 67),

5. MAIN RESULT ON EULERIAN MULTIZETA VALUES

In this section we will present two families of Eulerian multizeta values mentioned in
Conjecture 2.13 (a) and Conjecture 2.13 (b) for ¢ = 2. As a consequence, this confirms that
all the multizeta values conjectured to be Eulerian in [4], Section 6.2, are indeed Eulerian.

Theorem 5.1. For any positive integer r > 1 and n, we have

Cald" —1,(g—1)g", -+ (g —1)g"*"?)
=A@ = D)Callg=1), -, (= Dd D" =Ca(@ =1, (g = )" (g — 1)g™72).
We obtained that

Calqg" =1, (g—1)g",--- , (¢ —1)g"" %) = n+r—2]n+r—3-[n]

n+r—1 1 ‘
[1]q"+r—2 [2]11”“_3 T Calg )
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Theorem 5.2. Let r be a positive integer greater than 1. If ¢ = 2, then we have
CA(l)CA(]'? 27 e Y 2r_1) - CA(lu 3) 227 e bl 2T_1) + (A(17 17 2, AR ,27._2)2‘

Furthermore, we have

Ca(1,3,22%,--- 2771 = rl 1 ! T Ca(27).

Ly[r] L%T_QL%T_S T L%z—?, r—2

Aside from Carlitz’s evaluations in Lemma 2.4, the key point of the proof is the relations
among the power sums Sy(m).

Lemma 5.3. For any d > 1, one has
Salq" = 1)Sa((g = 1)g") = Sa(q""" = 1) = Sal(g = 1)g") D> _ Sa(q" = 1)
d<d
Proof. See [11, pp.2332]. O
Proof of Theorem 5.1 By Lemma 5.3, we have

. Sald" = 1)Su((g—1)g") - Sa . ((a = 1" 7?)

dy>dg>-->dp._12>0
d=d;

= Z S (" = 1)S4,((g — 1)g™™) -+ Sa_, ((q — 1)g""2)

dy>do>>d,—1>0

_ Z Sd1<(q - 1)qn)5d/(q" — 1)Sd2((q — 1)qn+1) .. Sdr_1((q _ 1)qn+r—2)

dy>dg>-->d._12>0
d’'<dy

It follows that
CA(qn - 1)CA((C] — 1)(]”7 cee (C] _ 1)qn+r—2)

— Z + Z + Z Sd(qn — 1)Sd1((q — 1)q”) .. Sdr,l((q _ 1)qn+r—2>

dy>do>->dp_1>0  dy>dy>-->d._1>0  dy>dg>-->d._1>0
d>dy d=dq d<dq

= > Suq"=1)Su((g—1)g") - Sa,_, (g — 1)g" )

dy>dg>->d._1>0
d>dy

+ Z Sa (¢ = 1)y, (g — D@ -+ Sy (g — g™ 2)

d1>da>-->dr12>0
=Ca(¢" =1, (=", (g— D)@ ) + (" =1, (¢ = 1)g"™, -+ (g —1)g"T"?)

We will prove the second part by mathematical induction on r > 1. In fact we also prove
that

_1 n+r—1 _ 2 .. 1 1
Calg” =1, (g = 1)g", -+ (g = 1)g""" %) = [1](%+r>2 .. [[?j;jq"“][’r’ — [ﬁq—:L]ELn]lﬁq o

When r = 2, by Lemma 2.4, we have

Cald” = 1, (= g™ = Calg" — 1Ca((q = 1)g") — Calg™ — 1) = A1)

[

Assume that the statement holds for any n with depth < r, then by the above recursive
formula and induction hypothesis we have

Calg™ = 1).
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Calg" = 1,(g—1)g", -+, (¢ — 1)g"™"?)
=Calq" = 1)Cal(g— 1), (= Dg " = Cal@"" =1, (¢ = D", -+ (g — )" 72).
B | it R [ PP | | L LERI L P

@ _
Ln ([1]qr—2 . [r _ Q]qu_l ) [1]qn+r—2 . [r _ Q]qn+1 Ln+r_1
)"t r =21 [p 1] ey
B [1](1”“*2 o — Q]q"“} [r—1]9" Ly

m+r—=2]n+r—23]--[n

= [1]q"+r72[2]q"+r73 . [7, _ 1]qn gA(qn-f—r—l N 1)

O

Similarly, by Carlitz’s evaluations and relations on power sums we can prove Theorem 5.2.

Proof of Theorem 5.2 Observe that

Ca(1,1,2,--,277 ) = Y Sy(1)S, (1) -+ S, (277
dy>dy>-->dp>0

= D SaD)Sau(1)---Sa277).

dy>dg>-->dp>0
do<d<dq

It follows from Lemma 5.3 that

CA(l)CA(L 2, 2r_l)

= >+ Y >+ Y Y SaSa () Sa 2

d1>dg>->dp>0  dy>do>>dp>0  dy>dg>>dp>0  dy>dg>>dp>0  dp>dog>->dp>0

d>dy d=dq dy<d<dy d=dg d<dg
= S (2)S5,(2) -+ 5,27+ D S (D[Sn(3) + S, (2,1)] -+ S, (277)
d1>dg> - >dp>0 d1>dg> - >dp>0
d=dq d=dgy

+ > Sa1)Sa (1) Sa (27

dy1>dg>--->dr>0
d<dg

= CA(]-a 17 2a e 72T_2)2 + CA(lvga 22a e 72T_1)'

By the above formula and Lemma 2.4, Theorem 5.1 and [9, Theorem3.2], we have

1 [r] —1

1,3,2%, - 27 = ———— CR—

Ca(2").

O
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