BAKER-SCHMIDT THEOREM FOR HAUSDORFF DIMENSIONS IN
FINITE CHARACTERISTIC

ABSTRACT. In 1962 Sprindzuk proved Mahler’s conjecture in both the real and complex
cases. Baker gave a generalized result by using a modified version of Sprindzuk’s method.
Later, Baker and Schmidt derived the Hausdorff dimensions of sets which are defiend in
terms of approximation by algebraic numbers of bounded degrees by using Baker’s theorem.
In this article we will prove two analogue theorems in the fields of formal power series over
finite finite fields.

1. INTRODUCTION

For an algebraic number «, let H(a) denote the height of the irreducible polynomial of «
with co-prime integral coefficients. For a real number { not algebraic of degree at most n,
let

: —log|¢ — a
wn(C) hgf’i,p log H(ar) '’
where « runs through all algebraic real numbers of degree less than n. A theorem due
to Dirichlet says that wy(f#) > 2. Liouville’s theorem implies that for any irrational real
algebraic number ¢ of degree d(¢), w1(¢) < d(¢). Finally, a celebrated theorem proved by
Roth [11] shows that if ¢ is an irrational real algebraic number, w;(¢) = 2.

For A > 1, KC()) is defined as the set of real numbers ¢ for which there exist infinitely
many rational numbers p/q such that |¢ — p/q| < 1/|q/**. According to Dirichlet’s theorem,
K(1) includes all irrational numbers. On the other hand, Roth’s theorem implies that if
A > 1, then IC(\) contains no algebraic elements. Khintchine [7] proved that for A > 1, IC(\)
has (Lebesgue) measure zero. It is natural to measure the “size” of a set of measure zero in
terms of its Hausdorff dimension. (The related definitions will be given in Section 3.) Due

1
to Jarnik [5], and Besicovitch [2], the Hausdorff dimension of K()) is X when A > 1.

Wirsing tried to generalize Roth’s theorem and considered the approximation by algebraic
elements of bounded degree. He proved [21] that if  is an algebraic number, then w, (¢) < 2n.
However, a corollary to the celebrated Subspace Theorem of Schmidt [13] showed that the
exponent 2n can be replaced by n + 1.

For n € N and A > 1, we denote by K, () the set of all ( € R such that, for any A < A,
there exist infinitely many algebraic numbers o with degree at most n satisfying

¢ —a| < H(a) (DY,

We denote by K, (A) the subset in K, (\) consisting of elements not belonging to IC,,(7) for
all 7 > \. Sprindzuk’s result [18, p.151] implies that for almost all real numbers ¢ and any
n € N, ¢ belongs to K, (1). Baker and Schmidt [3] studied the Hausdorff dimensions of these
sets and obtained the following result:

Theorem 1.1. ( Baker-Schmidt ) Let n be a positive integer. For A > 1, the Hausdorff
dimensions of IC,,(A) and K/, (A) equal 1/A.

In this article we will study Diophantine approximation in fields of power series over finite
fields. Let F, be a finite field with ¢ = p® elements. We consider A = F,[T], K = F, (T
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and K, = F,((1/T)) as analogues of Z, Q and R. The nonarchimedean absolute value
| - | comes from the infinity place 1/7. For ( € K., not algebraic of degree at most n, we
define w,(¢) the same way as in the classical case. It is not difficult to see that Dirichlet’s
theorem still holds. Mahler [9] worked out an analogue in fields of power series to Liouville’s
theorem. However, an analog of Roth’s theorem now fails. Mahler [9] gave a counterexample
by constructing an algebraic element ¢ with degree d({) > 1 such that w;(¢) = d(¢). For
counterexamples of the approximation by algebraic elements of bounded degree, we refer the
readers to [19, 20].
For n € N and A > 1, we define

K.(\) = {¢ € Ky | for any X < ), there exist infinitely many o € K
with d(o) < n satisfying |¢ — a| < (H(a))~ DX},

and

K.\ ={CeKK,(\) | C&K,(\) for all \' > \}.
Despite the failures of Roth’s theorem and Schmidt’s subspace theorem, we have parallel
results in the function field case by studying the measures and the Hausdorff dimensions
of K,(N) and K, (N). Guntermann [4] stated that one can deduce from Sprindzuk’s result
(c.f. [18, p.138]) that for almost all (in the sense of Haar measure) elements ¢ in K., and

any n € N, ¢ belongs to K (1). The aim of the present paper is to derive the Hausdorff
dimensions of I, (A) and K/ (X). We shall prove

Main Theorem 1. Forn € N and A > 1, the Hausdorff dimensions IC,,(\) and KC/,(\) equal
1/A.

The idea is inspired by Baker and Schmidt [3]. In Section 3.1 we consider a special family
of closed balls covering /C,,(A) to obtain the upper bound 1/\. To give the lower bound, we
need first prove

Main Theorem 2. Let 1)(H) be a positive monotonic decreasing function defined on positive
integers such that > W(H) converges. Then for almost all 8 € K, and any n € N there
exist only finitely many polynomials P(x) € A[X] with degree n such that

[P(O)] < (V(H(P)))",
where H(P) denotes the height of P.

Then we use an analogue of Minkowski’s geometry of numbers, which was proved by
Mabhler [8], and Main Theorem 2 to construct a regular system. (See Corollary 3.8 in Section
3.3.) Secondly we prove Proposition 3.10, which provides a way to estimate the Hausdorff
dimensions of sets related to regular systems. Combining with Proposition 3.10 we can
obtain the lower bound of the Hausdorff dimensions of IC,,(A) and K/, (\) in Section 3.4. One
difficulty arises from the separability of an irreducible polynomial over Q, which will be used
to claim that the discriminant is not zero. Another one arises from the fact that we can
assume that the leading coefficient of an irreducible integral polynomial is a positive integer
in the classical case, which Baker uses to make a reduction and control the measures of the
sets related to elements 6 in Main Theorem 2. These two properties do not hold in K.

2. MAIN THEOREM 2

2.1. An analogue of Baker’s theorem. Main Theorem 2 is an analogue in the function
field case of Baker’s Theorem [1]. For any real number 6, let ||0|| denotes the distance of
0 from the nearest integer. Mahler conjectured that almost all real numbers 6 have the

2



following property. For any positive integer n and positive number e, there are only finitely
many positive integer b such that

max [[b6]] < b= (ato),

=4,

This conjecture has been proved by Sprindzuk [15, 16]. Baker’s theorem gives the following
generalization of Sprindzuk’s result.

Corollary 2.1. ( Baker ) Let ¢(b) be a positive monotone decreasing function defined on
positive integers h such that > bp(b) converges. Then for almost all real numbers 6 and any
positive integer n, there are only finitely many positive integers b such that

max[[p]] < b ()"
j=1,--,n

2.2. Key reduction. The crucial part in the proof of Main Theorem 2 is to make a re-
duction to the approximation by irreducible polynomials with heights occurring in their
leading coefficients. From now on we p be the Haar measure on subsets in K, such that
w(B(a,q")) = ¢" 1, where B(a,q") denotes the closed ball of radius ¢" centered at a.

Proposition 2.2. Forn € N, § € K, and ¥(H) a positive monotonic decreasing function
defined on N such that Y 1(H) converges, let P(n,1,0) denote the set of all polynomials
P(z) with degree n, integral coefficients and height H such that

[P(O)] < (¥(H))"™

Let R(n, ) denote the set of all 0 € K for which P(n,v,0) contains infinitely many
elements. Further, let p(n,) denote the more restricted set for which infinitely many poly-
nomials in P are required (i) to be irreducible and (ii) to have |a,| > max{|ao|, -, |an—1|},
where P(x) = ag+ - - - + a,x™. Suppose that for every i, the sets p(m,v) (m=1,2,--- n)
are of measure zero. Then R(n,v) are also of measure zero for every 1.

To prove Proposition 2.2 and Main Theorem 2, we need several lemmas in the next section.
Then we will complete the proof in Section 2.5.

2.3. Preliminary lemmas.

Lemma 2.3. Let n be a positive integer. Then there exists a constant C(n) > 1 such that
for any polynomial P(x) = a,x™ + -+ -+ ag € Alz]| of degree n,

max |P(T")| > C(n) max |a|.
0<I<n 0<i<n

Proof. c.f.[18, p.120] O

Lemma 2.4. Let P(z) be a polynomial of degree n with distinct roots oy, -+ , ay,. Suppose
that |0 — aq| <10 — | fori=2,--- ,n. Then

|P(O)] = [P'(a1)]]0 — x|
and
[P(O)]Jar — az| > [P'(ar) [0 — au ]
If, further, |0 — ay| < |a; — | fori=2,--- ,n, then
|P(0)] < [P'(cn)]0 — .
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Proof. Suppose that the leading coefficient of P(x) is a. By the hypothesis we have
lar — a;| < max(|f — aa, (|0 — i) = |0 — o

for i =2,--- n. It follows that

0 — a1||P'(an)| = |al|0 — ayllan — as - -+ [ar — an|
< al|0 — a1|[0 — az| -+ |0 — |
= |P(0)].

and
10— a1 P|P'(en)| <10 — en]|0 — a|[P' ()] < [en — az[P(0)].
If further, [0 — ay| < |ag — o], we have
10 — a;| < max(|0 — aq], |on — a;|) = |1 — .

and hence
|P(0)] < [a]|0 — ar|Jer — |-+ |ay — a| = 10 — aq|[ P ()

O

Lemma 2.5. Let d > 0 be a fized integer. Let Py(z), Py(x) be polynomials over A =

1
F,[T»"] with deg P, = deg P, = n > 2. Suppose that the leading coefficients of Py, Py are a,b
respectively. Let aq,--- ,a, be roots of Py and By, -+ , B, be roots of Py. All of these roots
are supposed distinct and to have absolute values at most k (k > 1). Suppose also that

lar — | < |ag — o] and |y — B2 < |51 — Bi
fori =3, ,n. Let u = |a" 'P{(ay)(ay — az)7 '] and v = |0" 1 Py(B1) (B — B2) . If
la; — aol? < u™t and |81 — Baf* < v, then

k2 |y — Bi]? max{u, v} > 1.

1
Proof. For any two polynomials Pj, P, € A»?[z], denote by R(Py, P,) to be the resultant of
Py, P, and D(P) to be the discriminant of P,. Suppose that k2"’ |oy — f1]? max{u, v} < 1.
1

Since D(Py) € A»?_ it follows that

D) =1 J] i =yl 2 1.

1<i<j<n

For any 5 > 3, we have

(ular — asflas — a;))* = (Ja" " Pl(an)|az — a])?
= |a" [ [(1 = ai)(@2 — )
1=2
D(Py)|os — oy|?

~
H |oz2—ozi|2 H |C¥Z‘—C¥i/ 2
=3 3<i<i’<n

1 —3n
> (E)HQ 3

4

)



and this implies " 3" (u|a; — ag||ay — a;])? > 1. By assumption that |a; — ag| < u~! and
a1 — as| < fa; — a;, we have
(@) |z — a;] < max{lay — aal, lon — ajl} = [ar — oy,
(b) u?|oy — ao* < u.
We deduce that
k2" ulay — o)? > [ Y] o o > 1> K ulay — B,
which implies |a; — 1] < |a1 — ;| and hence |a; — 81| = |y — o|. Similarly we have

|CY1 —51’ < ‘ﬁl _ﬂj’ and ’BJ —Oél| = |51 _BJ‘ Hence

(1) [a"| [T 181 — ew| = ular = Bul[az — B,

i'=1
and
(2) [0"] H lay = Bir| = vl — Bi]| B2 — aul.
i'=1

Since R(Py, P,) € Az%d, by (1) and (2) it follows that

1< R(P,B) = (ab)” ][] low— B0l
1<ii’<n
< E"wvlog — Bu||ag — Billar — Ballas — Bal.

Note that o — o] < max{|ay —B1], 81— B2|} < v~2 and similarly |8 —as| < u™2. Moreover
g — Bo] < max{u’%, v’%}. We conclude that

u ot < EY oy — Billas — Billon — Ballas — Bl

1

< K|y — By max{u’%,v’%}u’%v’%
which implies
kQ”Q\al — Bi)? max{u, v} > 1.
This contradicts the original assumption so the proof is complete. 0
Lemma 2.6. Let p(n) be a positive monotonic decreasing function of the integral variable

n such that > p(n) converges. Then there exist a positive monotonic decreasing function
o(n) such that > o(n) converges, o(n) > p(n) for all n, and for every positive integer r,
o

(n) < 2r? forn > 2.

o(rn)
Proof. c.f. [1]. O
Lemma 2.7. For each H € N let U(H) denote a finite set of closed balls in K. Let V(H)
denote the subset of U(H) such that for each I € V(H) there is J # I in U(H) with

p(INJ) = sp(l).

DN | —

Let
VH)= |J TandvH)= |J InJ
IeV(H) IeV(H),J£I



Further, let W and w denote the set of points contained in infinitely many V(H) and in
infinitely many v(H), respectively. Then if w has measure zero, so also has W.

Proof. Note that

w= (1 U v

1<m<oco H>m

w= () U o).

1<m<oco H>m

and

If w has measure zero, then for any € > 0, there is a positive integer m such that
p( et <
m<H<n

for all n > m. Let {I;} be a subsystem of |, ., V(H) such that I} are pairwise disjoint
and the union of the I} equals |J,, <y, V(H). Then we take J;» € U(H) with the property
u(l; 0 Jps) = s(I7). Then

n( | VE) =) u(;)

m<H<n

S 2Zu(f;ﬂ<][;)
<2u( |J o(H)) <2

m<H<n
for each n > m. This implies u(W) = 0. O

Lemma 2.8. If S is a set in Ky, of measure zero, then S™' = {a™' | a € S, a # 0} also
has measure zero.

Proof. c.£.[18, p.70] O

2.4. Proof of Proposition 2.2.

Proof. Let T (n,1) be the set of real elements 6 in P(n, ) for which infinitely many poly-
nomials in P are required (i7) to have |a,| > max{|agl|,- - ,|a,_1|}. For 6 € R(n,v), by
Lemma 2.3 we know there exists [ € {0,1,---,n} such that there are infinitely many
P(z) € P(n,v,0) with P(T") > C(n)H(P). Let S; be the set of elements ¢ for which
P(x) satisfies this extra condition. Then it suffices to show that u(S;) = 0 or equivalently,
w(S;—TH =0forl =0,---,n, where S, —T' ={0 —-T" | 0 € S;}.

For ( =0 —T'€ S, — T, we have

|P(C+T"| = |P(0)] < ¥(H(P))"
for all P € P(n,1,0) and
H(P(z+T") < ¢"H(P) < ¢ H(P).

By Lemma 2.6 we can find a monotone decreasing function o(H) defined on positive integers
H with 3" o(H) convergent and such that o(H) > ¢ (H) for all H and o(H) < 2¢" o (q" H)
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for all H > 2. It follows that

[P(C+ T < (H(P)" < o(H(P))"
< (2¢ 20(qn H(P)))"
< (2" o (H(P(z +T"))"

Let ¢ = 2¢™ ¢ and denote P(z + T") by P(z). Then we have infinitely many P satisfying

PO < ¢(H(P))",

where ¢ is a monotone decreasing function such that > ¢ converges and the constant coeffi-

cients of P is P (T"). So the absolute value of the constant coefficient of P has the property
that

[P(TY)] > C(n)H(P) > C(n)g " H(P).
Let v = [T7"| = ¢ and Q(z) = x”ﬁ(%) = b,a™ + - -+ + bz + by. Denote by (@) as the
leading coefficient of (). Then
Q) = [P(T)] = vH(P) = yH(Q).
Now let Q(z) = Q(T™ z) = ((T"")"b,)a" + - - - + ((T"*)by ) + by. Then we have
UQ)| = (1)t
foralli=0,--- ,n—1, and H(Q) <~ "H(P). If |¢| > ¢, then

( 1
\Q(Tn2)| =1QC = 1¢P(Q)l
< (q")"o(H(P))"
< (¢")"$(y" H(Q))".
We apply Lemma 2.6 again so that there exist o’(n) > ¢(n) satisfying the conditions in

Lemma 2.2 and let ¢/(n) = 2¢"Vy~2""¢’(n). Then we deduce that if || > ¢V, then we can
find a function ¢’ such that
C_l
TTLQ G T(n7 ¢,)
Now let By = {(71 | ¢ € S —T'} and for N >0, Eyy ={¢' € Ey | [¢| > ¢V} Then

E, = |J E;n. By Lemma 2.8 it suffices to prove the claim that u(7 (n,¢')) = 0 for any ¢'.
N>0

Now we prove the claim by mathematical induction. It is true for n = 1 since T (1,¢') =
©(1,¢"). Assume that for any ¢, u(7(m,¢’)) =0 for m = 1,2,--- ,n — 1 and for any ¢'.
Hence by this assumption we have u(9R(m, ¢’)) = 0. For any 6 € T (n, ¢’), there are infinitely
many integral polynomials P(x) in P(n ng ,0) satisfying condition (ii). Because the set of
algebraic elements is of measure zero, we may assume that 6 is transcendental over K. If
there are infinitely many P also satlsfylng (i) then 0 € ¢(n,¢"). We suppose therefore that
all but finite P are reducible. Write P = P;--- P.. Then we have

|PO)] = |P(0)---|P-(0)] < ¢’(H(P))degP1+~-+degPT_
So there is at least one P; satisfying

|P(0)] < ¢ (H(P))2 P < ¢/ (H(P;))%eh,
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where the last inequality comes from the fact that
H(P)=H(P)---H(P,) > H(F)
fort=1,---,r. So we can find a positive integer m < n to deduce that there exist infinitely

n—1

many @ € P(m, ¢',0). It follows that T (n,¢’) C |J R(m, ¢’) except a measure zero set. So
m=1

by the induction hypothesis we complete our proof.

O
2.5. Proof of Main Theorem 2.

Proof. By Proposition 2.2 it suffices to show that u(p(n,v)) = 0. For ¢(1,%), for every
€ > 0, there exists Hy € ¢" such that

> W(H) <e

Now we may assume |f| < 1. Consider B(g,@) in K, for § € K with f,g € A and
(f,g9) = 1. Then

H>Hy f.g
Since
u B ) < g - 1y
f.9 g
and

we have p(¢(1,9)) < ¢ gy, W(H) < ge. Since € is arbitrary, we complete the proof for
n = 1. -

Suppose that for any v, p(e(m,v)) = 0 for m = 1,2,--- ;n — 1. We shall prove
w(p(n, 1)) = 0forn > 2. Let 2(n, H) be the set of polynomials P(x) with integral coefficients
and degree n and height H satisfying (i) and (ii) in Proposition 2.2. For P € 2(n, H), there

1
exist a unique positive integer d < n and a polynomial Q(z) € A»? [z] with no multiple roots
such that P(z) = Q(z)*". Denote by 24(n, H) as the subset for which the P’s are restricted
to (iii) P(z) = Q(z)?" so that Q(z) has no multiple roots. Let ¢q(n,v) be the subset for
which infinitely many polynomials P(z) belong to P € 24(n, H). Since p(n, ) = Ugpq(n, ),
it suffices to show that p(pa(n,1)) = 0. From now on we fix a positive integer d < n. If

n == 1, the proof is similar to the one of p(¢(1,v)) = 0. Hence we may assume n’ > 2.

d
p
Let o, - -+, ayy denote the roots of ). For each j =1,---,n/, put
. _ o . 1
7 =min jo; —ayl, v; = Q' ()| (W (H))" and gy = min{;, (1;15)2}

Consider I;(P) = B(«j, tj) N Ko, where B(ay, p1;) denote closed balls in C, (£;(P) may be
empty.) We denote by S;(H) the set of all I;(P) as P runs through the elements of 2(n, H)
satisfying (iii). Then it follows from Lemma 2.4 that every element of p4(n, ) is contained in
infinitely many S;(H ) for some fixed j. We proceed to prove that the set of points contained
in infinitely many S;(H) has measure zero. (the proof for j # 1 is similar.) Now without
loss of generality we suppose that the roots of @) are so ordered that 7 = |a; — ag|. We list
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some crucial sets and notation as follows.

w= Q)" Q' (ar)(ar — az) |

An, H) = {P € 24(n, H) | |ay — ao|* > u™'},
B(n, H) = {P € 24(n, H) | oz — az|* <u™'},
fH)= |J nwe), = J &L,
PeA(n,H) PEB(n,H)
= U &
=) U e#H)

Since R(H)|J L£(H) = S1(H), it suffices to prove that x and ¢ have measure zero.
(1) p(r)
Since 1(H) is decreasing and ) ¢(H) converges, we have

Hy(H) — 0as H— oc.
So we may assume that ¢(H) < H~! for all H. For each P € (n, H), let

I(P) = B(ax, (Y(H)) " ) N K.
Then
1(P) € I(P) and u(1,(P)) < qu(H)p(I(P)).

Let U(H) denote the set of elements in I(P) and V(H) the maximal subset of U (H) satisfying
the property that for I(Py) € V(H), there is I(P,) € U(H) with I[(P;) = [(P,) such that

w(I(PYNI(P) > Su(I(R))

Let W and w be defined as in Lemma 2.7 respectively. To prove p(x) = 0 we only need to
prove

(a) p(w) =0 and

(b) the set of elements contained in infinitely many K(H) with those I;(P) excluded for
which the corresponding I(P) is in V(H ), has measure zero.

(a) Observe that for each 6 € I(P) we have

10— cn| < (W(H))or < HHQ(an)| ™ < [(an — an)ul ™ < Jag — asl.
So we can apply Lemma 2.4 and get
[P@)] = QO < (IQ(a)]|6 — an )" = (p(H))™ D"
If0 € I(P)NI(P,) with P, # P, in A(n, H), then the polynomial R = P, — P, would satisfy
deg R < (n' — 1)p,
H(R) < H,
[R(O)] < (4 (H))™ "
So we deduce that w is contained in
U R(m,

m<n—1
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and then pu(w) = 0 by Proposition 2.2 and the induction hypothesis.

(b) If I(Py) and I(P») are distinct elements in U(H) and I(Py) = (), then I(P)NI(P) =
®. Let S denote the set of elements contained in infinitely many R(H) with those I;(P)
excluded for which the corresponding I(P) is in V(H). Since |0 — a;| < |1 — ap] < 1, we
have I(P) C B(0,1). Moreover, there are (¢ — 1)H polynomials in A with absolute value H.
It follows that

dowt Y nepy<s > ) > g (H)u(I(P))

h>1,H=q"  I(P)¢V(H) h>1,H=q" a€A, |a|=H I(P)¢V(H), [(P)=a

< 3 @EuBO,)

h>1,H=q" a€A, |a|=H
< > uB(0,1)g(g — YHY(H) < oc.
h>1,H=qh
By measure theory, we conclude that

W N U U nen-o

1<m<oo h>m I(P)¢V(H)

(i1) pe(e)

Similarly we will claim that

For H = ¢" and [ € Z, let
S(n, H,1) ={P € B(n,H) | ¢ <u<q}

Note that in the proof Lemma 2.4 we see that u > u|ay —as||ag — ;| > 1, so we may assume

’

n —1
[ > 1. On the other hand, v < H »* |, which implies [ < ’; U For P, P, € S(n, H,l) with
I(P),I(P) # @, let ay, 51 be the roots of Py, P, satisfying the conditions in Lemma 2.5 and
u1, us be defined as in Lemma 2.5. Then we have

|y — B[ max{us, up} > 1.
by Lemma 2.5 and the fact that all roots of P, P, have absolute value less than 1. Choose
0; € I1(P;). Then

01 — au| < (111)?

1 n'—1
= (u; H »d

Similarly we have
l
|81 — 02| < q 2.
Since |y — B1]%¢" > |y — 1| max{ui, us} > 1, it follows that
;l
01 —6s] = |ar —B1+ 01 —oq + 1 — ba] = |as — B > q2.

Combining with the fact that |6;] < 1, we obtain that there are at most qHTl polynomials
P € S(n, H,l) for which I;(P) # ®. We conclude that
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YooY unP) <> u(I(P))

h>1,H=q" PEB(n,H)

This completes the proof of u(:) = 0. O

3. MAIN THEOREM 1

In this section we will give the proof of Main theorem 1. First we recall the definitions
of Hausdorff measures and Hausdorff dimensions. For any subset U of K., let |U| be the
diameter of U.

Definition 3.1. Let S be a subset of K. For any positive number d, let

HF(S) = inf Y U],
where I = {U;} runs through all collections of countable closed sets that cover S with
|U;| < 6. The Hausdorff measure of S is defined by

HYS) = lim HL(S).

6—0
The Hausdorff dimension of S is
dimy(S) = inf{d > 0 | H*(S) = 0}.

Remark 3.2. We refer to [10] for the alternative definitions of Hausdorff measure and Haus-
dorft dimension.

First we give an upper bound of dimy (C,,(\)) and dimy (K], (N\)) in Section 3.1. To obtain
the lower bound of dimy (/C,,(A)) and dimy (K], (X)), we use Main Theorem 2 to construct a
regular system and apply it to Proposition 3.10. The consequence is stated in Section 3.4.

3.1. Upper bounds. One can show that the following definition is equivalent to the above
one.
dimy(S) = inf{d > 0 | for any § > 0, there exists a collection of countable closed balls

I ={B(a;,r;)} that cover S with r; < § and er < o0},

where r; € ¢”. We will obtain the upper bounds under this definition.

Proposition 3.3. For anyn € N and A > 1,

dimy (K (M) < dimy (K,,(N))

IA
> =
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Proof. 1t is clear that dimy (K, (M) < dimy (K, (N)). Given 0 < X' < A, consider a family
of closed balls I(a) = {B(a, (H(a))~™+Y2)1 where a runs through all algebraic elements
with degree at most n. (Note that there are countable many such closed balls.) Since

|B(a,r)| = max{q' € ¢* | ¢" <7}, for any p > 5,

D 1Bla,r)P < Y ((H(a)) "),

Now for ¢" € ¢V, there are at most ¢"*V+1) — ¢("+DH elements of a with H(a) = ¢". It
follows that

o0

Z ’[(a)‘p < Z(q(”Jrl)(thl) _ q(n+1)h)((qh)7(n+1))\’)p
«a h=0
< 3 (g = 1)) < oo
h=0

Since every (¢ in C,,(A) lies in infinitely many I(«), it follows that for § > 0 the closed
balls I(«) with |I(a)| < § form a closed coverings of K,,(A). Thus dimy K, () < p. If we

choose p arbitrarily close to v and )\ arbitrarily close to A, then we get

> =

3.2. Regular systems. Let ' be a countable set of elements in K, and N be a positive
valued function on I'. we call (I', N) a regular system if for any closed ball J | there is a
positive number k(J) such that, for all k& > k(J), there exist v1,--- ,v € I'()J satisfying

N(vi) <k, |yi—yl =1k t>cap))k,
where ¢; is a constant depending only on I and N.
Remark 3.4. The same property can be obtained for any finite union J of closed balls.

Definition 3.5.
1. For any regular system (I', V) and any positive valued function f(z) defined for x > 0,
we signify by (I', N; f) the set of all elements ¢ in K, for which there exist infinitely many
~ of I" such that

IC = < f(N(7)).

2. For any subset S of K, and any positive valued function g(z) defined for = > 0, we write
S < g if for every A > 0, 6 > 0, S is covered by a countable set closed balls I, I5,--- with

|I;] < A and
> g(nl) <.
=1
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Remark 3.6. We list some properties which we will use in Proposition 3.10 and 3.11.
(a) S1 <g,% <g=51US2<g.

(b) S < g for every countable set S provided that g(x) tends to 0 with x.

(c) If dimy(S) = d, then S < a2 for p > d and S £ x” for p < d.

3.3. On the distribution of algebraic elements. Let J be a finite union of closed balls.
For each positive integer n, let R;(n, H) denote the set of all ¢ in J for which there exists a
real algebraic element o with degree at most n and height at most H such that
(10g H)Sn(n+1)
C-ol < —Fm—
We prove
Proposition 3.7. u(R;(n,H)) — u(J) as H — .

Proof. Let D = max{|y| | v € J}. For H > 1 with H"*' > D=+ et ¢ be a tran-
scendental element in J but not in Ry(n, H). For any ci, ¢y, c3 > 0 with cjcocy ™ > 1, by
Minkowski’s linear form Theorem over function fields , there exists a polynomial

P(x) =ap+ a1z + -+ a,z”
with integral coefficients and deg P(z) < n such that

loe H 3n(n—1)
0<|P(O] <o BB

0< ‘P/<C)| < CQH,
a5] < ey
4 3(logH)3”’

Furthermore, since
n+1

min{ A" }>1,

Dn n—1)+1
if we choose ¢; to be such that

Hn+1
< -
a = (log H)?m(nfl)’
1
ph
H
c3 < min{% (log H)*"},
we can ensure that H(P) < H. Note that the numbers ¢; can be chosen so that they only
depend on n and J.
We now distinguish P into three cases:
1. H(P) <log H. If « is the zero of P nearest to ¢, then

ol < olplt < o BT

where C' and C” are constants. Since the number of polynomials P with H(P) < log H is
less than (qlog H)"™! it follows that

¢eUBa.c )

13
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(log H)4n+1

whose measure is less than ¢"*2C’ , which tends to 0 as H tends to infinity.

H
H
2. H(P) > logH and |P’ < (C"——— for some constant C”. Then H(P) <
(log H)?
og n
- H -
C'—————— for some constant C, which implies
(log H)*"

(10g H)?m(nfl)

0<[PEQ)| < < CH(P)™"(log H(P))™*",

where C is a constant obtained from C and ¢;. Let ¢(H) be a positive decreasing function
defined by ¢(H) = H '(log H)2. Now we let

Sy(n,H) ={¢ € J | 3 apolynomial P(z) € F,[T][x] such that deg P <n
and H(P) < H and 0 < |P(¢)] < (¢(H))"}.
Thus for H large enough, we have ¢ € S;(n, H(P)). It follows that ¢ lies also in
U SJ (n, M),
M>log H
a set whose measure tends to zero as H tends to infinity by Main Theorem 2.

3. |P'(Q)| >C" for some constant C”. Suppose that aq, - - - , a, are zeros of P and

(log H)?"
aq is nearest to (. It follows that

)3n2

¢ —ay] < ||§,<(?)|| < |P(O)|H Y(log H)*" < H~(+Dlos "

Hence if H is large, ¢ lies in R;(n, H), which contradicts the assumption made at the
beginning.

O
Corollary 3.8. The set I' of all real algebraic elements a with deg o < n, together with the
function N(a) = Ha™ lar syst
unction N(«) = (Tog H ()70 is a reqular system.

Proof. Let ¢(x) be the function defined by ¢(H) = %. Proposition 3.7 implies

p(Ry(n, H)) > Sl

for sufficiently large H. For k = o(H)~("*Y with sufficiently large H, let {y1,---,7:} be a
maximal subset of elements of I' with H(v;) < H and |y; — ;| > 1 for all i # j, so that for
any v € I' with H(vy) < H, there exists ; satisfying |y — 7| < % This implies

t

Bk c U BGuk™).

i=1
Since Ry(n,H) C |JUB(v,k™Y) and pu(JB(v,k7Y)) < qtk™!, we have t > cku(J), where

gl v
1

=_—. O
2q

&1
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Lemma 3.9. Let (I', N) be a regular system and f(x) be a positive valued function defined
on x > 0 such that f(x) decreases and N () goes to infinity as |y| grows. Then

(T, N; HHUT = {¢ € K | 3 arbitrary large k and v with N(v) < k such that | —~| < f(k)}.

Proof. Let S denote the the set on the right hand side. Since f(x) decreases, it is clear that
S is contained in (I', N; f) UT. On the other hand, Let {7;} denote the set of all elements
in I' such that

1€ =il < F(N (7).
Since N(7;) — o0 as |v;| = oo, by taking k; = N(r;) we see that

(I,N; ful C S.

Proposition 3.10. Let f(x), g(x) be positive functions defined for x > 0 such that
1
(a) f(z) decreases and f(zx) < —
qx

(b) g(x) and % both increase and tend to zero with x
g(x
(c) zg(f(x)) tends to infinity as x.
Then for any regular system (I'; N), we have (I', N; f) 4 g. In fact, for any reqular systems
(T;, N;) (i=1,2,--+), we have

for large x

o0

(@i, N f) £ g.

1=1

Proof. Since I is countable, by Remark 3.6 it suffices to prove that
(TN YT £ g

Choose a number kj sufficiently large so that
1
<
f@) < —
for all x > k¢ and
’Xo/g(Xo) < 1 = (T, N),

where A\g = f(ko). This choice is possible since f(z) — 0 as + — oo and x/g(x) — 0 as
x — 0. Now let I(\, g) = {B(a;,r;)} be any system of closed balls such that

ri <A <A and Zg(m)<5:: 1.

=1

We will prove that I(),g) is not a covering of (I', N; f) JI', which implies (I', N; f) T 4
g. We shall construct a sequence of increasing numbers ki, ko, -+ and a sequence of sets
Jo, J1,- -+ each a finite union of closed balls, such that

kj > 2]@;1 and Jj C ijl,

which satisfies

15



i) J;NI = forany I € I(\,g) with |I| > \; := f(k;),
i1) for every C € J; there exists v € I' such that [( — | < f(k;) and N(vy) < k;j,

iii) p(J;) > ?Cl%kj#(t]j—l)y

(
(
(
(iv) kig(Ns) > ¢’cr*u(Jj-a) ™
Since {J;} are closed bounded sets in K, we have ﬂ;io J; is non-empty. Moreover, by
the construction and Lemma 3.9, it follows that (2, J; is contained in (I', N; f) JI" but
disjoint from I(A,g). Thus (), g) cannot cover (I', N; f)|JI' and this completes the proof.
Note that the only condition above that will be also required in the case j = 0 is (i) and
this is plainly satisfied since A < Ag. So for Jy we take the unit ball B(a, 1). We assume that
ko, -+ ,kj—1 and Jo,-- -, J;—1 have already been defined and we proceed to construct k; and
J;. We take k; sufficiently large so that

k'j > k’(ijl), kj > Qk'jfl, (Z’U) holds and Clkj,u(Jj,1> > qV(ijl)y

where v(.S) denotes the number of closed balls in S and k(.J;_;) is referred to in the definition
of (I', N) with J = J;_;. Such k; exists because zg(f(z)) — oo as z — oo.

Now let 71, -+, be the elements of I satisfying the conditions in the definition of (I, N)
with k = k; and J = J;_1, and let F' be the set of balls B(v;, A;) such that r; # r; lie in a
single closed ball of J;_;. Since t > ¢1k;p(J;-1), we have

qg—1

I/(F) Z t— V(ijl) Z Clkj,U/(ijl) — I/(Jj,1> Z Clkj,u(ijl)-

1
The fact that closed balls in F are disjoint follows from the fact that \; = f(k;) < P and

qr;
1
i — 75| > o Furthermore, they are all contained in J;_; and so, by (i), they are disjoint

from any GJ I(\, g) with |I] > X;_5.

We write F' = F' + F”, where F’ consists of those closed balls in I’ that are contained in
a closed ball of I(A, g) and F" consists of all other closed balls in F. Let I be a closed ball
in I(\, g). If I contains n closed balls in F, then at least |I| > A;. If n > 1, it follows that

n < gk;|1|.
Thus, if |I| > A;, we have
n < qk;|I| + 1.
Since g(x) increases, one can show that
g(11)
n < qk;|I| + —/——=.
M)

This implies v(F') < @' + @*, where

®' - Skl & = > 4L
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and the summations are taken over all closed balls I in I(), ¢g) with [I| < A;_;. Now, since
x/g(x) increases and ), g(|/|) < 1, we have

®' =0t S iy o)

(1!
< qk; Ao g(/1])
T9(Nj-1) ;
A1
< q]{;.]—.
Tg(Aj-1)
When j = 1, it follows from the definitions of ky and Jy that
A 1 1
V< gk 2 < kg = =ik
@ =q 1g(>\0) 7 1K1 7 1 1M( 0)
When 5 > 1, by
1
(122) p(Jj-1) > ?cﬂj-lkj-mum)
and
(iv) kj1g(N\j1) > ¢ *u(Jj2) 7,
we have

EB< ClgM(J 1)-

On the other hand, since we can choose ¢1 = ¢1(I', N) under the restriction of ¢; < 1, we
obtain from (iv) that

1 1 1
ST g0 = ;C%kjﬂ(t]jfl) < pakinlJia).
j
Hence we have
¢ +1 ¢ +1 .
(F/> < @ + @ < q Clk’jﬂ(l]j—l) S ml/(F),
whence " ) ,
—1)—q¢ -1
v F// > q q v F )
sy
Now let J; be the set of all closed balls in F” if \; € ¢” and let J; be the set

Aj
{B(vi, — . 2) | By, A;) € F'}
if \; € ¢”. Tt is clear that J; is disjoint from any I € I(\,g) with |I| > Aj, and so (i)
holds. Because closed balls in J; are of the forms either B(v;, A;) or B(%, 1) (depending on
whether or not \; belongs to ¢%,) (ii) also holds. Since

*lg—1)—¢*—1

J) > Nv(F7) > v(F)\;
u(J5) = A (F") = -1 (F)A,
4 2
q'(¢g—1)—¢ -1
Z ( q5 Cl)\jl{?j,u<<]j_1)7

1
> q—201)\jkj/i(t]jfl>
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we see that (iii) is satisfied.

For the last part of the proposition we choose a sequence {l(n)},n = 1,2,--- of positive
integers such that for each positive integer 7, [(j) = ¢ has infinitely many solutions j and we
replace the condition (44) by the condition that for each ¢ € J; there is a v € I'y(;) such that

€=l < f(k;) and Ny (v) < kj.
0

3.4. Lower bounds.

Proposition 3.11. If A > 1, then

dimy (K,,(N)) > dimy (K], (N))

IV
>/.I —

for any 7 > A. It follows that

> =

R

Proof. From Proposition 3.3 we have dimy (IC,,(7)) < — <

>|=

K (MK (A) < .
Therefore by Remark 3.6 it suffices to show that K, (A) £ z. Let

I' = the set of all real algebraic elements o with dega < n,

H(&)n+1
M= Tog Ay
fle) = 52,
g(x) = 2.

Then (I', N) is a regular system and (I', N; f) A g by Corollary 3.8 and Proposition 3.10.
This implies that

> =

On the other hand,

H(a)" !

N (0)) = H(@) ™" log H (@) log (1o )

< C’H(a)_(”+1)’\(log H(a))3n(n+1))\+1
for some constant C. Note that for any X' < A\, we have
CH (o)~ DO (og H(a))>" D2 0 as H(a) — oo.
It follows that f(N(a)) < H(a)~ VX for H(a) sufficiently large and hence
(T, N5 f) C Ku(N).
This concludes the proof that dimg (K, (X)) > 1. O
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