
BAKER-SCHMIDT THEOREM FOR HAUSDORFF DIMENSIONS IN
FINITE CHARACTERISTIC

Abstract. In 1962 Sprindžuk proved Mahler’s conjecture in both the real and complex
cases. Baker gave a generalized result by using a modified version of Sprindžuk’s method.
Later, Baker and Schmidt derived the Hausdorff dimensions of sets which are defiend in
terms of approximation by algebraic numbers of bounded degrees by using Baker’s theorem.
In this article we will prove two analogue theorems in the fields of formal power series over
finite finite fields.

1. Introduction

For an algebraic number α, let H(α) denote the height of the irreducible polynomial of α
with co-prime integral coefficients. For a real number ζ not algebraic of degree at most n,
let

wn(ζ) = lim sup
H→∞

− log |ζ − α|
logH(α)

,

where α runs through all algebraic real numbers of degree less than n. A theorem due
to Dirichlet says that w1(θ) ≥ 2. Liouville’s theorem implies that for any irrational real
algebraic number ζ of degree d(ζ), w1(ζ) ≤ d(ζ). Finally, a celebrated theorem proved by
Roth [11] shows that if ζ is an irrational real algebraic number, w1(ζ) = 2.

For λ ≥ 1, K(λ) is defined as the set of real numbers ζ for which there exist infinitely
many rational numbers p/q such that |ζ − p/q| < 1/|q|2λ. According to Dirichlet’s theorem,
K(1) includes all irrational numbers. On the other hand, Roth’s theorem implies that if
λ > 1, then K(λ) contains no algebraic elements. Khintchine [7] proved that for λ > 1, K(λ)
has (Lebesgue) measure zero. It is natural to measure the “size” of a set of measure zero in
terms of its Hausdorff dimension. (The related definitions will be given in Section 3.) Due

to Jarńık [5], and Besicovitch [2], the Hausdorff dimension of K(λ) is
1

λ
when λ > 1.

Wirsing tried to generalize Roth’s theorem and considered the approximation by algebraic
elements of bounded degree. He proved [21] that if ζ is an algebraic number, then wn(ζ) ≤ 2n.
However, a corollary to the celebrated Subspace Theorem of Schmidt [13] showed that the
exponent 2n can be replaced by n+ 1.

For n ∈ N and λ ≥ 1, we denote by Kn(λ) the set of all ζ ∈ R such that, for any λ′ < λ,
there exist infinitely many algebraic numbers α with degree at most n satisfying

|ζ − α| < H(α)−(n+1)λ′ .

We denote by K′n(λ) the subset in Kn(λ) consisting of elements not belonging to Kn(τ) for
all τ > λ. Sprindžuk’s result [18, p.151] implies that for almost all real numbers ζ and any
n ∈ N, ζ belongs to K′n(1). Baker and Schmidt [3] studied the Hausdorff dimensions of these
sets and obtained the following result:

Theorem 1.1. ( Baker-Schmidt ) Let n be a positive integer. For λ ≥ 1, the Hausdorff
dimensions of Kn(λ) and K′n(λ) equal 1/λ.

In this article we will study Diophantine approximation in fields of power series over finite
fields. Let Fq be a finite field with q = ps elements. We consider A = Fq[T ], K = Fq(T )
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and K∞ = Fq((1/T )) as analogues of Z, Q and R. The nonarchimedean absolute value
| · | comes from the infinity place 1/T . For ζ ∈ K∞ not algebraic of degree at most n, we
define wn(ζ) the same way as in the classical case. It is not difficult to see that Dirichlet’s
theorem still holds. Mahler [9] worked out an analogue in fields of power series to Liouville’s
theorem. However, an analog of Roth’s theorem now fails. Mahler [9] gave a counterexample
by constructing an algebraic element ζ with degree d(ζ) > 1 such that w1(ζ) = d(ζ). For
counterexamples of the approximation by algebraic elements of bounded degree, we refer the
readers to [19, 20].

For n ∈ N and λ ≥ 1, we define

Kn(λ) = {ζ ∈ K∞ | for any λ′ < λ, there exist infinitely many α ∈ K
with d(α) ≤ n satisfying |ζ − α| < (H(α))−(n+1)λ′},

and
K′n(λ) = {ζ ∈ Kn(λ) | ζ 6∈ Kn(λ′) for all λ′ > λ}.

Despite the failures of Roth’s theorem and Schmidt’s subspace theorem, we have parallel
results in the function field case by studying the measures and the Hausdorff dimensions
of Kn(λ) and K′n(λ). Guntermann [4] stated that one can deduce from Sprindžuk’s result
(c.f. [18, p.138]) that for almost all (in the sense of Haar measure) elements ζ in K∞ and
any n ∈ N, ζ belongs to K′n(1). The aim of the present paper is to derive the Hausdorff
dimensions of Kn(λ) and K′n(λ). We shall prove

Main Theorem 1. For n ∈ N and λ ≥ 1, the Hausdorff dimensions Kn(λ) and K′n(λ) equal
1/λ.

The idea is inspired by Baker and Schmidt [3]. In Section 3.1 we consider a special family
of closed balls covering Kn(λ) to obtain the upper bound 1/λ. To give the lower bound, we
need first prove

Main Theorem 2. Let ψ(H) be a positive monotonic decreasing function defined on positive
integers such that

∑
ψ(H) converges. Then for almost all θ ∈ K∞ and any n ∈ N there

exist only finitely many polynomials P (x) ∈ A[X] with degree n such that

|P (θ)| < (ψ(H(P )))n,

where H(P ) denotes the height of P.

Then we use an analogue of Minkowski’s geometry of numbers, which was proved by
Mahler [8], and Main Theorem 2 to construct a regular system. (See Corollary 3.8 in Section
3.3.) Secondly we prove Proposition 3.10, which provides a way to estimate the Hausdorff
dimensions of sets related to regular systems. Combining with Proposition 3.10 we can
obtain the lower bound of the Hausdorff dimensions of Kn(λ) and K′n(λ) in Section 3.4. One
difficulty arises from the separability of an irreducible polynomial over Q, which will be used
to claim that the discriminant is not zero. Another one arises from the fact that we can
assume that the leading coefficient of an irreducible integral polynomial is a positive integer
in the classical case, which Baker uses to make a reduction and control the measures of the
sets related to elements θ in Main Theorem 2. These two properties do not hold in K.

2. Main Theorem 2

2.1. An analogue of Baker’s theorem. Main Theorem 2 is an analogue in the function
field case of Baker’s Theorem [1]. For any real number θ, let ||θ|| denotes the distance of
θ from the nearest integer. Mahler conjectured that almost all real numbers θ have the
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following property. For any positive integer n and positive number ε, there are only finitely
many positive integer b such that

max
j=1,··· ,n

||bθj|| < b−(
1
n
+ε).

This conjecture has been proved by Sprindžuk [15, 16]. Baker’s theorem gives the following
generalization of Sprindžuk’s result.

Corollary 2.1. ( Baker ) Let φ(b) be a positive monotone decreasing function defined on
positive integers h such that

∑
bφ(b) converges. Then for almost all real numbers θ and any

positive integer n, there are only finitely many positive integers b such that

max
j=1,··· ,n

||bθj|| < b−
1
nφ(b)n.

2.2. Key reduction. The crucial part in the proof of Main Theorem 2 is to make a re-
duction to the approximation by irreducible polynomials with heights occurring in their
leading coefficients. From now on we µ be the Haar measure on subsets in K∞ such that
µ(B(a, qh)) = qh+1, where B(a, qh) denotes the closed ball of radius qh centered at a.

Proposition 2.2. For n ∈ N, θ ∈ K∞ and ψ(H) a positive monotonic decreasing function
defined on N such that

∑
ψ(H) converges, let P(n, ψ, θ) denote the set of all polynomials

P (x) with degree n, integral coefficients and height H such that

|P (θ)| < (ψ(H))n.

Let R(n, ψ) denote the set of all θ ∈ K∞ for which P(n, ψ, θ) contains infinitely many
elements. Further, let ϕ(n, ψ) denote the more restricted set for which infinitely many poly-
nomials in P are required (i) to be irreducible and (ii) to have |an| ≥ max{|a0|, · · · , |an−1|},
where P (x) = a0 + · · ·+ anx

n. Suppose that for every ψ, the sets ϕ(m,ψ) (m = 1, 2, · · · , n)
are of measure zero. Then R(n, ψ) are also of measure zero for every ψ.

To prove Proposition 2.2 and Main Theorem 2, we need several lemmas in the next section.
Then we will complete the proof in Section 2.5.

2.3. Preliminary lemmas.

Lemma 2.3. Let n be a positive integer. Then there exists a constant C(n) ≥ 1 such that
for any polynomial P (x) = anx

n + · · ·+ a0 ∈ A[x] of degree n,

max
0≤l≤n

|P (T l)| ≥ C(n) max
0≤i≤n

|ai|.

Proof. c.f.[18, p.120] �

Lemma 2.4. Let P (x) be a polynomial of degree n with distinct roots α1, · · · , αn. Suppose
that |θ − α1| ≤ |θ − αi| for i = 2, · · · , n. Then

|P (θ)| ≥ |P ′(α1)||θ − α1|

and

|P (θ)||α1 − α2| ≥ |P ′(α1)||θ − α1|2.
If, further, |θ − α1| ≤ |α1 − αi| for i = 2, · · · , n, then

|P (θ)| ≤ |P ′(α1)||θ − α1|.
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Proof. Suppose that the leading coefficient of P (x) is a. By the hypothesis we have

|α1 − αi| ≤ max(|θ − α1|, (|θ − αi|) = |θ − αi|

for i = 2, · · · , n. It follows that

|θ − α1||P ′(α1)| = |a||θ − α1||α1 − α2| · · · |α1 − αn|
≤ |a||θ − α1||θ − α2| · · · |θ − αn|
= |P (θ)|.

and

|θ − α1|2|P ′(α1)| ≤ |θ − α1||θ − α2||P ′(α1)| ≤ |α1 − α2||P (θ)|.
If further, |θ − α1| ≤ |α1 − αi|, we have

|θ − αi| ≤ max(|θ − α1|, |α1 − αi|) = |α1 − αi|.

and hence

|P (θ)| ≤ |a||θ − α1||α1 − α2| · · · |α1 − αn| = |θ − α1||P ′(α1)|.
�

Lemma 2.5. Let d ≥ 0 be a fixed integer. Let P1(x), P2(x) be polynomials over A
1

pd =

Fq[T
1

pd ] with degP1 = degP2 = n ≥ 2. Suppose that the leading coefficients of P1, P2 are a, b
respectively. Let α1, · · · , αn be roots of P1 and β1, · · · , βn be roots of P2. All of these roots
are supposed distinct and to have absolute values at most k (k ≥ 1). Suppose also that

|α1 − α2| ≤ |α1 − αi| and |β1 − β2| ≤ |β1 − βi|

for i = 3, · · · , n. Let u = |an−1P ′1(α1)(α1 − α2)
−1| and v = |bn−1P ′2(β1)(β1 − β2)

−1|. If
|α1 − α2|2 < u−1 and |β1 − β2|2 < v−1, then

k2n
2 |α1 − β1|2 max{u, v} ≥ 1.

Proof. For any two polynomials P1, P2 ∈ A
1

pd [x], denote by R(P1, P2) to be the resultant of

P1, P2 and D(Pi) to be the discriminant of Pi. Suppose that k2n
2|α1 − β1|2 max{u, v} < 1.

Since D(P1) ∈ A
1

pd , it follows that

|D(P1)| = |a2n−2|
∏

1≤i<j≤n

|αi − αj|2 ≥ 1.

For any j ≥ 3, we have

(u|α1 − α2||α2 − αj|)2 = (|an−1P ′1(α1)||α2 − αj|)2

= |an−1
n∏
i=2

(α1 − αi)(α2 − αj)|2

=
D(P1)|α2 − αj|2

n∏
i=3

|α2 − αi|2
∏

3≤i<i′≤n
|αi − αi′ |2

≥ (
1

k
)n

2−3n,
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and this implies kn
2−3n(u|α1 − α2||α2 − αj|)2 ≥ 1. By assumption that |α1 − α2| < u−1 and

|α1 − α2| ≤ |α1 − αi|, we have

(a) |α2 − αj| ≤ max{|α1 − α2|, |α1 − αj|} = |α1 − αj|,
(b) u2|α1 − α2|2 < u.

We deduce that

k2n
2

u|α1 − αj|2 ≥ kn
2−3nu|α1 − αj|2 > 1 > k2n

2

u|α1 − β1|2,
which implies |α1 − β1| < |α1 − αj| and hence |αj − β1| = |α1 − αj|. Similarly we have
|α1 − β1| < |β1 − βj| and |βj − α1| = |β1 − βj|. Hence

(1) |an|
n∏

i′=1

|β1 − αi′ | = u|α1 − β1||α2 − β1|,

and

(2) |bn|
n∏

i′=1

|α1 − βi′ | = v|α1 − β1||β2 − α1|.

Since R(P1, P2) ∈ A
1

pd , by (1) and (2) it follows that

1 ≤ R(P1, P2) = (ab)n
∏

1≤i,i′≤n

|αi − βi′|

≤ kn
2

uv|α1 − β1||α2 − β1||α1 − β2||α2 − β2|.

Note that |α1−β2| ≤ max{|α1−β1|, |β1−β2|} ≤ v−
1
2 and similarly |β1−α2| ≤ u−

1
2 . Moreover

|α2 − β2| ≤ max{u− 1
2 , v−

1
2}. We conclude that

u−1v−1 ≤ kn
2|α1 − β1||α2 − β1||α1 − β2||α2 − β2|

≤ kn
2|α1 − β1|max{u−

1
2 , v−

1
2}u−

1
2v−

1
2 ,

which implies

k2n
2|α1 − β1|2 max{u, v} ≥ 1.

This contradicts the original assumption so the proof is complete. �

Lemma 2.6. Let ρ(n) be a positive monotonic decreasing function of the integral variable
n such that

∑
ρ(n) converges. Then there exist a positive monotonic decreasing function

σ(n) such that
∑
σ(n) converges, σ(n) ≥ ρ(n) for all n, and for every positive integer r,

σ(n)

σ(rn)
≤ 2r2 for n ≥ 2.

Proof. c.f. [1]. �

Lemma 2.7. For each H ∈ N let U(H) denote a finite set of closed balls in K∞. Let V(H)
denote the subset of U(H) such that for each I ∈ V(H) there is J 6= I in U(H) with

µ(I ∩ J) ≥ 1

2
µ(I).

Let

V (H) =
⋃

I∈V(H)

I and v(H) =
⋃

I∈V(H),J 6=I

I ∩ J
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Further, let W and w denote the set of points contained in infinitely many V (H) and in
infinitely many v(H), respectively. Then if w has measure zero, so also has W .

Proof. Note that

W =
⋂

1≤m<∞

⋃
H≥m

V (H)

and

w =
⋂

1≤m<∞

⋃
H≥m

v(H).

If w has measure zero, then for any ε > 0, there is a positive integer m such that

µ(
⋃

m≤H≤n

v(H)) < ε

for all n ≥ m. Let {I∗j } be a subsystem of
⋃
m≤H≤n V (H) such that I∗j are pairwise disjoint

and the union of the I∗j equals
⋃
m≤H≤n V (H). Then we take JI∗j ∈ U(H) with the property

µ(I∗j ∩ JI∗j ) ≥ 1
2
µ(I∗j ). Then

µ(
⋃

m≤H≤n

V (H)) =
∑

µ(I∗j )

≤ 2
∑

µ(I∗j ∩ JI∗j )

= 2µ(
⋃

I∗j ∩ JI∗j )

≤ 2µ(
⋃

m≤H≤n

v(H)) < 2ε

for each n ≥ m. This implies µ(W ) = 0. �

Lemma 2.8. If S is a set in K∞ of measure zero, then S−1 = {α−1 | α ∈ S, α 6= 0} also
has measure zero.

Proof. c.f.[18, p.70] �

2.4. Proof of Proposition 2.2.

Proof. Let T (n, ψ) be the set of real elements θ in R(n, ψ) for which infinitely many poly-
nomials in P are required (ii) to have |an| ≥ max{|a0|, · · · , |an−1|}. For θ ∈ R(n, ψ), by
Lemma 2.3 we know there exists l ∈ {0, 1, · · · , n} such that there are infinitely many
P (x) ∈ P(n, ψ, θ) with P (T l) ≥ C(n)H(P ). Let Sl be the set of elements θ for which
P (x) satisfies this extra condition. Then it suffices to show that µ(Sl) = 0 or equivalently,
µ(Sl − T l) = 0 for l = 0, · · · , n, where Sl − T l = {θ − T l | θ ∈ Sl}.

For ζ = θ − T l ∈ Sl − T l, we have

|P (ζ + T l)| = |P (θ)| < ψ(H(P ))n

for all P ∈ P(n, ψ, θ) and

H(P (x+ T l)) ≤ qlnH(P ) ≤ qn
2

H(P ).

By Lemma 2.6 we can find a monotone decreasing function σ(H) defined on positive integers

H with
∑
σ(H) convergent and such that σ(H) ≥ ψ(H) for all H and σ(H) ≤ 2qn

2
σ(qn

2
H)
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for all H ≥ 2. It follows that

|P (ζ + T l)| < ψ(H(P ))n ≤ σ(H(P ))n

≤ (2qn
2

σ(qn
2

H(P )))n

≤ (2qn
2

σ(H(P (x+ T l)))n.

Let φ = 2qn
2
σ and denote P (x+ T l) by P̃ (x). Then we have infinitely many P̃ satisfying

|P̃ (ζ)| < φ(H(P̃ ))n,

where φ is a monotone decreasing function such that
∑
φ converges and the constant coeffi-

cients of P̃ is P (T l). So the absolute value of the constant coefficient of P̃ has the property
that

|P (T l)| ≥ C(n)H(P ) ≥ C(n)q−n
2

H(P̃ ).

Let γ = |T−n2| = q−n
2

and Q(x) = xnP̃ ( 1
x
) = bnx

n + · · · + b1x + b0. Denote by l(Q) as the
leading coefficient of Q. Then

|l(Q)| = |P (T l)| ≥ γH(P̃ ) = γH(Q).

Now let Q̃(x) = Q(T n
2
x) = ((T n

2
)nbn)xn + · · ·+ ((T n

2
)b1)x+ b0. Then we have

|l(Q̃)| ≥ |(T n2

)ibi|

for all i = 0, · · · , n− 1, and H(Q̃) ≤ γ−nH(P̃ ). If |ζ| ≥ q−N , then

|Q̃(
ζ−1

T n2 )| = |Q(ζ−1)| = |ζ−nP̃ (ζ)|

< (qN)nφ(H(P̃ ))n

≤ (qN)nφ(γnH(Q̃))n.

We apply Lemma 2.6 again so that there exist σ′(n) ≥ φ(n) satisfying the conditions in

Lemma 2.2 and let φ′(n) = 2qnNγ−2n
2
σ′(n). Then we deduce that if |ζ| ≥ q−N , then we can

find a function φ′ such that
ζ−1

T n2 ∈ T (n, φ′)

Now let E1 = {ζ−1 | ζ ∈ Sl − T l} and for N ≥ 0, E1,N = {ζ−1 ∈ E1 | |ζ| ≥ q−N}. Then
E1 =

⋃
N≥0

E1,N . By Lemma 2.8 it suffices to prove the claim that µ(T (n, φ′)) = 0 for any Φ′.

Now we prove the claim by mathematical induction. It is true for n = 1 since T (1, φ′) =
ϕ(1, φ′). Assume that for any φ′, µ(T (m,φ′)) = 0 for m = 1, 2, · · · , n − 1 and for any φ′.
Hence by this assumption we have µ(R(m,φ′)) = 0. For any θ ∈ T (n, φ′), there are infinitely
many integral polynomials P (x) in P(n, φ′, θ) satisfying condition (ii). Because the set of
algebraic elements is of measure zero, we may assume that θ is transcendental over K. If
there are infinitely many P also satisfying (i) then θ ∈ ϕ(n, φ′). We suppose therefore that
all but finite P are reducible. Write P = P1 · · ·Pr. Then we have

|P (θ)| = |P1(θ)| · · · |Pr(θ)| < φ′(H(P ))degP1+···+degPr .

So there is at least one Pi satisfying

|Pi(θ)| < φ′(H(P ))degPi ≤ φ′(H(Pi))
degPi ,
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where the last inequality comes from the fact that

H(P ) = H(P1) · · ·H(Pr) ≥ H(Pi)

for i = 1, · · · , r. So we can find a positive integer m < n to deduce that there exist infinitely

many Q ∈ P(m,φ′, θ). It follows that T (n, φ′) ⊂
n−1⋃
m=1

R(m,φ′) except a measure zero set. So

by the induction hypothesis we complete our proof.
�

2.5. Proof of Main Theorem 2.

Proof. By Proposition 2.2 it suffices to show that µ(ϕ(n, ψ)) = 0. For ϕ(1, ψ), for every
ε > 0, there exists H0 ∈ qN such that ∑

H≥H0

ψ(H) < ε.

Now we may assume |θ| ≤ 1. Consider B(f
g
, ψ(H)

H
) in K∞ for f

g
∈ K with f, g ∈ A and

(f, g) = 1. Then

ϕ(1, ψ) ⊂
⋃

H≥H0

⋃
f,g

B(
f

g
,
ψ(H)

H
).

Since

µ(
⋃
f,g

B(
f

g
,
ψ(H)

H
)) ≤ q(q − 1)Hψ(H)

and
qh+1∑
qh+1

ψ(H) ≥ qh(q − 1)ψ(qh+1),

we have µ(ϕ(1, ψ)) ≤ q
∑

H≥H0
ψ(H) < qε. Since ε is arbitrary, we complete the proof for

n = 1.
Suppose that for any ψ, µ(ϕ(m,ψ)) = 0 for m = 1, 2, · · · , n − 1. We shall prove

µ(ϕ(n, ψ)) = 0 for n ≥ 2. Let 2(n,H) be the set of polynomials P (x) with integral coefficients
and degree n and height H satisfying (i) and (ii) in Proposition 2.2. For P ∈ 2(n,H), there

exist a unique positive integer d ≤ n and a polynomial Q(x) ∈ A
1

pd [x] with no multiple roots

such that P (x) = Q(x)p
d
. Denote by 2d(n,H) as the subset for which the P ′s are restricted

to (iii) P (x) = Q(x)p
d

so that Q(x) has no multiple roots. Let ϕd(n, ψ) be the subset for
which infinitely many polynomials P (x) belong to P ∈ 2d(n,H). Since ϕ(n, ψ) = ∪ϕd(n, ψ),
it suffices to show that µ(ϕd(n, ψ)) = 0. From now on we fix a positive integer d ≤ n. If

n′ =
n

pd
= 1, the proof is similar to the one of µ(ϕ(1, ψ)) = 0. Hence we may assume n′ ≥ 2.

Let α1, · · · , αn′ denote the roots of Q. For each j = 1, · · · , n′, put

τj = min
i 6=j
|αi − αj|, νj = |Q′(αj)|−1(ψ(H))n

′
and µj = min{νj, (τjνj)

1
2}

Consider Ij(P ) = B(αj, µj)∩K∞, where B(αj, µj) denote closed balls in C∞ (Ij(P ) may be
empty.) We denote by Sj(H) the set of all Ij(P ) as P runs through the elements of 2(n,H)
satisfying (iii). Then it follows from Lemma 2.4 that every element of ϕd(n, ψ) is contained in
infinitely many Sj(H) for some fixed j. We proceed to prove that the set of points contained
in infinitely many S1(H) has measure zero. (the proof for j 6= 1 is similar.) Now without
loss of generality we suppose that the roots of Q are so ordered that τ1 = |α1 − α2|. We list
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some crucial sets and notation as follows.

u = |l(Q)n
′−1Q′(α1)(α1 − α2)

−1|
A(n,H) = {P ∈ 2d(n,H) | |α1 − α2|2 ≥ u−1},
B(n,H) = {P ∈ 2d(n,H) | |α1 − α2|2 < u−1},

K(H) =
⋃

P∈A(n,H)

I1(P ), L(H) =
⋃

P∈B(n,H)

I1(P ),

κ =
⋂
m≥1

⋃
H≥m

K(H),

ι =
⋂
m≥1

⋃
H≥m

L(H).

Since K(H)
⋃

L(H) = S1(H), it suffices to prove that κ and ι have measure zero.

(i) µ(κ)
Since ψ(H) is decreasing and

∑
ψ(H) converges, we have

Hψ(H)→ 0 as H →∞.
So we may assume that ψ(H) < H−1 for all H. For each P ∈ A(n,H), let

I(P ) = B(α1, (ψ(H))−1µ1) ∩K∞.
Then

I1(P ) ⊂ I(P ) and µ(I1(P )) ≤ qψ(H)µ(I(P )).

Let U(H) denote the set of elements in I(P ) and V(H) the maximal subset of U(H) satisfying
the property that for I(P1) ∈ V(H), there is I(P2) ∈ U(H) with l(P1) = l(P2) such that

µ(I(P1) ∩ I(P2)) ≥
1

2
µ(I(P1)).

Let W and w be defined as in Lemma 2.7 respectively. To prove µ(κ) = 0 we only need to
prove
(a) µ(w) = 0 and
(b) the set of elements contained in infinitely many K(H) with those I1(P ) excluded for
which the corresponding I(P ) is in V(H), has measure zero.
(a) Observe that for each θ ∈ I(P ) we have

|θ − α1| ≤ (ψ(H))−1ν1 ≤ H−n
′+1|Q(α1)|−1 ≤ |(α1 − α2)u|−1 ≤ |α1 − α2|.

So we can apply Lemma 2.4 and get

|P (θ)| = |Q(θ)|pd ≤ (|Q′(α1)||θ − α1|)p
d

= (ψ(H))(n
′−1)pd .

If θ ∈ I(P1)∩I(P2) with P1 6= P2 in A(n,H), then the polynomial R = P1−P2 would satisfy

degR ≤ (n′ − 1)pd,

H(R) ≤ H,

|R(θ)| ≤ (ψ(H))(n
′−1)pd .

So we deduce that w is contained in ⋃
m≤n−1

R(m,ψ)
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and then µ(w) = 0 by Proposition 2.2 and the induction hypothesis.
(b) If I(P1) and I(P2) are distinct elements in U(H) and l(P1) = l(P2), then I(P1)∩I(P2) =

Φ. Let S denote the set of elements contained in infinitely many K(H) with those I1(P )
excluded for which the corresponding I(P ) is in V(H). Since |θ − α1| ≤ |α1 − α2| ≤ 1, we
have I(P ) ⊂ B(0, 1). Moreover, there are (q− 1)H polynomials in A with absolute value H.
It follows that∑

h≥1,H=qh

µ(
⋃

I(P ) 6∈V(H)

I1(P )) ≤
∑

h≥1,H=qh

∑
a∈A, |a|=H

∑
I(P )6∈V(H), l(P )=a

qψ(H)µ(I(P ))

≤
∑

h≥1,H=qh

∑
a∈A, |a|=H

qψ(H)µ(B(0, 1))

≤
∑

h≥1,H=qh

µ(B(0, 1))q(q − 1)Hψ(H) <∞.

By measure theory, we conclude that

µ(S) = µ(
⋂

1≤m<∞

⋃
h≥m

⋃
I(P )6∈V(H)

I1(P )) = 0.

(ii) µ(ι)
Similarly we will claim that ∑

H

∑
P∈B(n,H)

µ(I1(P )) <∞.

For H = qh and l ∈ Z, let

S(n,H, l) = {P ∈ B(n,H) | ql−1 ≤ u < ql}.
Note that in the proof Lemma 2.4 we see that u ≥ u|α1−α2||α2−αj| ≥ 1, so we may assume

l ≥ 1. On the other hand, u ≤ H
n′−1

pd , which implies l ≤ h(n′−1)
pd

. For P1, P2 ∈ S(n,H, l) with

I(P1), I(P2) 6= Φ, let α1, β1 be the roots of P1, P2 satisfying the conditions in Lemma 2.5 and
u1, u2 be defined as in Lemma 2.5. Then we have

|α1 − β1|2 max{u1, u2} ≥ 1.

by Lemma 2.5 and the fact that all roots of P1, P2 have absolute value less than 1. Choose
θi ∈ I(Pi). Then

|θ1 − α1| ≤ (τ1ν1)
1
2

= (u−11 H
n′−1

pd (ψ(H)n
′
))

1
2

≤ (q−l+1H
n′(1−pd)−1

pd )
1
2

≤ q−
l
2 .

Similarly we have

|β1 − θ2| ≤ q−
l
2 .

Since |α1 − β1|2ql > |α1 − β1|2 max{u1, u2} ≥ 1, it follows that

|θ1 − θ2| = |α1 − β1 + θ1 − α1 + β1 − θ2| = |α1 − β1| > q
−l
2 .

Combining with the fact that |θi| ≤ 1, we obtain that there are at most q
l+1
2 polynomials

P ∈ S(n,H, l) for which I1(P ) 6= Φ. We conclude that
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∑
h≥1,H=qh

∑
P∈B(n,H)

µ(I1(P )) ≤
∑
H

h(n′−1)

pd∑
l=1

∑
P∈S(n,H,l)

µ(I1(P ))

≤
∑
H

h(n′−1)

pd∑
l=1

q
l+1
2 (q−l+1H

n′(1−pd)−1

pd )
1
2

= q
∑
H

h(n′−1)

pd∑
l=1

H
n′(1−pd)−1

2pd

≤ q
∑
h≥1

(q
−h
2pd )

h(n′ − 1)

pd
<∞.

This completes the proof of µ(ι) = 0. �

3. Main theorem 1

In this section we will give the proof of Main theorem 1. First we recall the definitions
of Hausdorff measures and Hausdorff dimensions. For any subset U of K∞, let |U | be the
diameter of U .

Definition 3.1. Let S be a subset of K∞. For any positive number d, let

Hd
δ(S) = inf

∑
i

|Ui|d,

where I = {Ui} runs through all collections of countable closed sets that cover S with
|Ui| ≤ δ. The Hausdorff measure of S is defined by

Hd(S) = lim
δ→0
Hd
δ(S).

The Hausdorff dimension of S is

dimH(S) = inf{d > 0 | Hd(S) = 0}.
Remark 3.2. We refer to [10] for the alternative definitions of Hausdorff measure and Haus-
dorff dimension.

First we give an upper bound of dimH(Kn(λ)) and dimH(K′n(λ)) in Section 3.1. To obtain
the lower bound of dimH(Kn(λ)) and dimH(K′n(λ)), we use Main Theorem 2 to construct a
regular system and apply it to Proposition 3.10. The consequence is stated in Section 3.4.

3.1. Upper bounds. One can show that the following definition is equivalent to the above
one.

dimH(S) = inf{d > 0 | for any δ > 0, there exists a collection of countable closed balls

I = {B(ai, ri)} that cover S with ri ≤ δ and
∑
i

rdi <∞},

where ri ∈ qZ. We will obtain the upper bounds under this definition.

Proposition 3.3. For any n ∈ N and λ ≥ 1,

dimH(K′n(λ)) ≤ dimH(Kn(λ)) ≤ 1

λ

11



Proof. It is clear that dimH(K′n(λ)) ≤ dimH(Kn(λ)). Given 0 < λ′ < λ, consider a family
of closed balls I(α) = {B(α, (H(α))−(n+1)λ′)}, where α runs through all algebraic elements
with degree at most n. (Note that there are countable many such closed balls.) Since
|B(a, r)| = max{qi ∈ qZ | qi ≤ r}, for any ρ > 1

λ′
,∑

α

|B(a, r)|ρ ≤
∑
α

((H(α))−(n+1)λ′)ρ.

Now for qh ∈ qN, there are at most q(n+1)(h+1) − q(n+1)H elements of α with H(α) = qh. It
follows that

∑
α

|I(α)|ρ ≤
∞∑
h=0

(q(n+1)(h+1) − q(n+1)h)((qh)−(n+1)λ′)ρ

≤
∞∑
h=0

(qn+1 − 1)qh(n+1)(1−λ′ρ) <∞

Since every ζ in Kn(λ) lies in infinitely many I(α), it follows that for δ > 0 the closed
balls I(α) with |I(α)| ≤ δ form a closed coverings of Kn(λ). Thus dimHKn(λ) ≤ ρ. If we

choose ρ arbitrarily close to
1

λ′
and λ′ arbitrarily close to λ, then we get

dimHKn(λ) ≤ 1

λ
.

�

3.2. Regular systems. Let Γ be a countable set of elements in K∞ and N be a positive
valued function on Γ. we call (Γ, N) a regular system if for any closed ball J , there is a
positive number k(J) such that, for all k ≥ k(J), there exist γ1, · · · , γt ∈ Γ

⋂
J satisfying

N(γi) ≤ k, |γi − γj| ≥ 1/k, t ≥ c1µ(J)k,

where c1 is a constant depending only on Γ and N .

Remark 3.4. The same property can be obtained for any finite union J of closed balls.

Definition 3.5.
1. For any regular system (Γ, N) and any positive valued function f(x) defined for x > 0,
we signify by (Γ, N ; f) the set of all elements ζ in K∞ for which there exist infinitely many
γ of Γ such that

|ζ − γ| < f(N(γ)).

2. For any subset S of K∞ and any positive valued function g(x) defined for x > 0, we write
S ≺ g if for every λ > 0, δ > 0, S is covered by a countable set closed balls I1, I2, · · · with
|Ii| ≤ λ and

∞∑
i=1

g(|Ii|) < δ.

12



Remark 3.6. We list some properties which we will use in Proposition 3.10 and 3.11.
(a) S1 ≺ g, S2 ≺ g ⇒ S1

⋃
S2 ≺ g.

(b) S ≺ g for every countable set S provided that g(x) tends to 0 with x.
(c) If dimH(S) = d, then S ≺ xρ for ρ > d and S ⊀ xρ for ρ < d.

3.3. On the distribution of algebraic elements. Let J be a finite union of closed balls.
For each positive integer n, let RJ(n,H) denote the set of all ζ in J for which there exists a
real algebraic element α with degree at most n and height at most H such that

|ζ − α| < (logH)3n(n+1)

Hn+1
.

We prove

Proposition 3.7. µ(RJ(n,H))→ µ(J) as H →∞.

Proof. Let D = max{|γ| | γ ∈ J}. For H > 1 with Hn+1 > Dn(n−1)+1, let ζ be a tran-
scendental element in J but not in RJ(n,H). For any c1, c2, c3 > 0 with c1c2c

n−1
3 > 1, by

Minkowski’s linear form Theorem over function fields , there exists a polynomial

P (x) = a0 + a1x+ · · ·+ anx
n

with integral coefficients and degP (x) ≤ n such that

0 < |P (ζ)| < c1
(logH)3n(n−1)

Hn
,

0 < |P ′(ζ)| < c2H,

|aj| < c3
H

(logH)3n
.

Furthermore, since

min{Hn+1 Hn+1

Dn(n−1)+1
} > 1,

if we choose ci to be such that

c1 ≤
Hn+1

(logH)3n(n−1)
,

c2 ≤ min{1, 1

D
},

c3 ≤ min{(logH)3n

Dn
, (logH)3n},

we can ensure that H(P ) ≤ H. Note that the numbers ci can be chosen so that they only
depend on n and J .

We now distinguish P into three cases:
1. H(P ) < logH. If α is the zero of P nearest to ζ, then

|α− ζ| ≤ C|P (ζ)|
1
n < C ′

(logH)3n

H
,

where C and C ′ are constants. Since the number of polynomials P with H(P ) < logH is
less than (q logH)n+1, it follows that

ζ ∈
⋃

B(α,C ′
(logH)3n

H
),
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whose measure is less than qn+2C ′
(logH)4n+1

H
, which tends to 0 as H tends to infinity.

2. H(P ) ≥ logH and |P ′(ζ)| ≤ C ′′
H

(logH)3n
for some constant C ′′. Then H(P ) ≤

C̃
H

(logH)3n
for some constant C̃, which implies

0 < |P (ζ)| < c1
(logH)3n(n−1)

Hn
≤ ĈH(P )−n(logH(P ))−3n,

where Ĉ is a constant obtained from C̃ and c1. Let φ(H) be a positive decreasing function
defined by φ(H) = H−1(logH)−2. Now we let

SJ(n,H) = {ζ ∈ J | ∃ a polynomial P (x) ∈ Fq[T ][x] such that degP ≤ n

and H(P ) ≤ H and 0 < |P (ζ)| < (φ(H))n}.
Thus for H large enough, we have ζ ∈ SJ(n,H(P )). It follows that ζ lies also in⋃

M≥logH

SJ(n,M),

a set whose measure tends to zero as H tends to infinity by Main Theorem 2.

3. |P ′(ζ)| ≥ C ′′
H

(logH)3n
for some constant C ′′. Suppose that α1, · · · , αn are zeros of P and

α1 is nearest to ζ. It follows that

|ζ − α1| ≤
|P (ζ)|
|P ′(ζ)|

� |P (ζ)|H−1(logH)3n � H−(n+1)(logH)3n
2

.

Hence if H is large, ζ lies in RJ(n,H), which contradicts the assumption made at the
beginning.

�

Corollary 3.8. The set Γ of all real algebraic elements α with degα ≤ n, together with the

function N(α) =
H(α)n+1

(logH(α))3n(n+1)
is a regular system.

Proof. Let ϕ(x) be the function defined by ϕ(H) = (logH)3n

H
. Proposition 3.7 implies

µ(RJ(n,H)) ≥ 1

2
µ(J)

for sufficiently large H. For k = ϕ(H)−(n+1) with sufficiently large H, let {γ1, · · · , γt} be a
maximal subset of elements of Γ with H(γi) ≤ H and |γi − γj| ≥ 1

k
for all i 6= j, so that for

any γ ∈ Γ with H(γ) ≤ H, there exists γi satisfying |γ − γi| ≤ 1
k
. This implies⋃

γ

B(γ, k−1) ⊂
t⋃
i=1

B(γi, k
−1).

Since RJ(n,H) ⊂
⋃
γ

B(γ, k−1) and µ(
⋃
γ

B(γ, k−1)) ≤ qtk−1, we have t ≥ c1kµ(J), where

c1 =
1

2q
. �
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Lemma 3.9. Let (Γ, N) be a regular system and f(x) be a positive valued function defined
on x > 0 such that f(x) decreases and N(γ) goes to infinity as |γ| grows. Then

(Γ, N ; f)∪Γ = {ζ ∈ K∞ | ∃ arbitrary large k and γ with N(γ) ≤ k such that |ζ−γ| < f(k)}.

Proof. Let S denote the the set on the right hand side. Since f(x) decreases, it is clear that
S is contained in (Γ, N ; f) ∪ Γ. On the other hand, Let {γi} denote the set of all elements
in Γ such that

|ζ − γi| < f(N(γi)).

Since N(γi)→∞ as |γi| → ∞, by taking ki = N(ri) we see that

(Γ, N ; f) ∪ Γ ⊂ S.

�

Proposition 3.10. Let f(x), g(x) be positive functions defined for x > 0 such that

(a) f(x) decreases and f(x) ≤ 1

qx
for large x

(b) g(x) and
x

g(x)
both increase and tend to zero with x

(c) xg(f(x)) tends to infinity as x.
Then for any regular system (Γ, N), we have (Γ, N ; f) ⊀ g. In fact, for any regular systems
(Γi, Ni) (i = 1, 2, · · · ), we have

∞⋂
i=1

(Γi, Ni; f) ⊀ g.

Proof. Since Γ is countable, by Remark 3.6 it suffices to prove that

(Γ, N ; f)
⋃

Γ ⊀ g.

Choose a number k0 sufficiently large so that

f(x) ≤ 1

qx

for all x ≥ k0 and

q3λ0/g(λ0) < c1 = c1(Γ, N),

where λ0 = f(k0). This choice is possible since f(x) → 0 as x → ∞ and x/g(x) → 0 as
x→ 0. Now let I(λ, g) = {B(ai, ri)} be any system of closed balls such that

ri ≤ λ < λ0 and
∞∑
i=1

g(ri) < δ := 1.

We will prove that I(λ, g) is not a covering of (Γ, N ; f)
⋃

Γ, which implies (Γ, N ; f)
⋃

Γ ⊀
g. We shall construct a sequence of increasing numbers k1, k2, · · · and a sequence of sets
J0, J1, · · · each a finite union of closed balls, such that

kj > 2kj−1 and Jj ⊂ Jj−1,

which satisfies
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(i) Jj ∩ I = Φ for any I ∈ I(λ, g) with |I| > λj := f(kj),

(ii) for every ζ ∈ Jj there exists γ ∈ Γ such that |ζ − γ| < f(kj) and N(γ) ≤ kj,

(iii) µ(Jj) >
1

q2
c1λjkjµ(Jj−1),

(iv) kjg(λj) > q5c−21 µ(Jj−1)
−1.

Since {Jj} are closed bounded sets in K∞, we have
⋂∞
j=0 Jj is non-empty. Moreover, by

the construction and Lemma 3.9, it follows that
⋂∞
j=0 Jj is contained in (Γ, N ; f)

⋃
Γ but

disjoint from I(λ, g). Thus I(λ, g) cannot cover (Γ, N ; f)
⋃

Γ and this completes the proof.
Note that the only condition above that will be also required in the case j = 0 is (i) and

this is plainly satisfied since λ < λ0. So for J0 we take the unit ball B(a, 1). We assume that
k0, · · · , kj−1 and J0, · · · , Jj−1 have already been defined and we proceed to construct kj and
Jj. We take kj sufficiently large so that

kj ≥ k(Jj−1), kj > 2kj−1, (iv) holds and c1kjµ(Jj−1) ≥ qν(Jj−1),

where ν(S) denotes the number of closed balls in S and k(Jj−1) is referred to in the definition
of (Γ, N) with J = Jj−1. Such kj exists because xg(f(x))→∞ as x→∞.

Now let γ1, · · · , γt be the elements of Γ satisfying the conditions in the definition of (Γ, N)
with k = kj and J = Jj−1, and let F be the set of balls B(γi, λj) such that ri 6= rj lie in a
single closed ball of Jj−1. Since t ≥ c1kjµ(Jj−1), we have

ν(F ) ≥ t− ν(Jj−1) ≥ c1kjµ(Jj−1)− ν(Jj−1) ≥
q − 1

q
c1kjµ(Jj−1).

The fact that closed balls in F are disjoint follows from the fact that λj = f(kj) ≤
1

qkj
, and

|ri − rs| ≥
1

kj
. Furthermore, they are all contained in Jj−1 and so, by (i), they are disjoint

from any I ∈ I(λ, g) with |I| > λj−1.
We write F = F ′ + F ′′, where F ′ consists of those closed balls in F that are contained in

a closed ball of I(λ, g) and F ′′ consists of all other closed balls in F . Let I be a closed ball
in I(λ, g). If I contains n closed balls in F , then at least |I| ≥ λj. If n > 1, it follows that

n ≤ qkj|I|.

Thus, if |I| ≥ λj, we have

n ≤ qkj|I|+ 1.

Since g(x) increases, one can show that

n ≤ qkj|I|+
g(|I|)
g(λj)

.

This implies ν(F ′) ≤
⊕1 +

⊕2, where⊕1 =
∑
I

qkj|I|,
⊕2 =

∑
I

g(|I|)
g(λj)

,
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and the summations are taken over all closed balls I in I(λ, g) with |I| ≤ λj−1. Now, since
x/g(x) increases and

∑
I g(|I|) ≤ 1, we have⊕1 = qkj

∑
I

|I|
g(|I|)

g(|I|)

≤ qkj
λj−1
g(λj−1)

∑
I

g(|I|)

≤ qkj
λj−1
g(λj−1)

.

When j = 1, it follows from the definitions of k0 and J0 that⊕1 ≤ qk1
λ0
g(λ0)

<
1

q2
c1k1 =

1

q3
c1k1µ(J0)

When j > 1, by

(iii) µ(Jj−1) >
1

q2
c1λj−1kj−1µ(Jj−2)

and
(iv) kj−1g(λj−1) > q5c−21 µ(Jj−2)

−1,

we have ⊕1 ≤ 1

q3
c1kjµ(Jj−1).

On the other hand, since we can choose c1 = c1(Γ, N) under the restriction of c1 ≤ 1, we
obtain from (iv) that ⊕2 ≤ 1

g(λj)
≤ 1

q5
c21kjµ(Jj−1) ≤

1

q5
c1kjµ(Jj−1).

Hence we have

ν(F ′) ≤
⊕1 +

⊕2 ≤ q2 + 1

q5
c1kjµ(Jj−1) ≤

q2 + 1

q4(q − 1)
ν(F );

whence

ν(F ′′) ≥ q4(q − 1)− q2 − 1

q4(q − 1)
ν(F ).

Now let Jj be the set of all closed balls in F ′′ if λj 6∈ qZ and let Jj be the set

{B(γi,
λj
q

) | B(γi, λj) ∈ F ′′}

if λj ∈ qZ. It is clear that Jj is disjoint from any I ∈ I(λ, g) with |I| > λj, and so (i)

holds. Because closed balls in Jj are of the forms either B(γi, λj) or B(γi,
λj
q

) (depending on

whether or not λj belongs to qZ,) (ii) also holds. Since

µ(Jj) ≥ λjν(F ′′) ≥ q4(q − 1)− q2 − 1

q4(q − 1)
ν(F )λj

≥ q4(q − 1)− q2 − 1

q5
c1λjkjµ(Jj−1)

>
1

q2
c1λjkjµ(Jj−1)

,
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we see that (iii) is satisfied.
For the last part of the proposition we choose a sequence {l(n)}, n = 1, 2, · · · of positive

integers such that for each positive integer i, l(j) = i has infinitely many solutions j and we
replace the condition (ii) by the condition that for each ζ ∈ Jj there is a γ ∈ Γl(j) such that

|ζ − γ| < f(kj) and Nl(j)(γ) ≤ kj.

�

3.4. Lower bounds.

Proposition 3.11. If λ > 1, then

dimH(Kn(λ)) ≥ dimH(K′n(λ)) ≥ 1

λ
.

Proof. From Proposition 3.3 we have dimH(Kn(τ)) ≤ 1

τ
<

1

λ
for any τ > λ. It follows that

Kn(λ)\K′n(λ) ≺ x
1
λ .

Therefore by Remark 3.6 it suffices to show that Kn(λ) ⊀ x
1
λ . Let

Γ = the set of all real algebraic elements α with degα ≤ n,

N(α) =
H(α)n+1

(logH(α))3n(n+1)
,

f(x) =
log x

xλ
,

g(x) = x
1
λ .

Then (Γ, N) is a regular system and (Γ, N ; f) ⊀ g by Corollary 3.8 and Proposition 3.10.
This implies that

dimH(Γ, N ; f) ≥ 1

λ
.

On the other hand,

f(N(α)) = H(α)−(n+1)λ(logH(α))3n(n+1)λ(log
H(α)n+1

(logH(α))3n(n+1)
)

≤ CH(α)−(n+1)λ(logH(α))3n(n+1)λ+1

for some constant C. Note that for any λ′ < λ, we have

CH(α)−(n+1)(λ−λ′)(logH(α))3n(n+1)λ+1 → 0 as H(α)→∞.

It follows that f(N(α)) < H(α)−(n+1)λ′ for H(α) sufficiently large and hence

(Γ, N ; f) ⊂ Kn(λ).

This concludes the proof that dimH(Kn(λ)) ≥ 1
λ
. �
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