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Abstract

Let X be a smooth connected algebraic curve over an algebraically closed field, let S be a
finite closed subset in X, and let F0 be a lisse `-torsion sheaf on X−S. We study the deformation
of F0. The universal deformation space is a formal scheme. Its generic fiber has a rigid analytic
space structure. By studying this rigid analytic space, we prove a conjecture of Katz which says
that if a lisse Q`-sheaf F is irreducible and physically rigid, then it is cohomologically rigid, under
the extra condition that F mod ` is absolutely irreducible or that F has finite monodromy.
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Introduction

In this paper, we work over an algebraically closed field k of characteristic p even though our results

can be extended to non-algebraically closed fields. Let X be a smooth connected projective curve over

k, let S be a finite closed subset of X, and let ` be a prime number distinct from p. For any s ∈ S,

let ηs be the generic point of the strict henselization of X at s. A lisse Q`-sheaf F on X − S is called

physically rigid if for any lisse Q`-sheaf G on X−S with the property F|ηs ∼= G|ηs for any closed point

s in S, we have F ∼= G. The lisse Q`-sheaf F on X − S corresponds to a Galois representation

ρ : Gal(K(X)/K(X))→ GL(Qr`)

of the function field K(X) unramified everywhere on X − S. F is physically rigid if and only if

for any Galois representation ρ′ of Gal(K(X)/K(X)) such that ρ′ and ρ induce isomorphic Galois

representations of local fields obtained by taking completions of K(X) at places of K(X), we have

ρ ∼= ρ′. To get a good notion of rigidity, we have to assume X = P1. Indeed, the abelian-pro-` quotient

of the étale fundamental group π1(X) of X is isomorphic to Z2g
` , where g is the genus of X. If g ≥ 1,

then there exists a character χ : π1(X) → Q∗` such that χn are nontrivial for all n. So there exists

a lisse Q`-sheaf L of rank 1 on X such that L⊗n are nontrivial. For any lisse Q`-sheaf F on X − S,

the lisse sheaf G = F ⊗ L is not isomorphic to F since they have non-isomorphic determinant, but
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F|ηs ∼= G|ηs for all s ∈ X since χ|Gal(η̄s/ηs) is unramfied and hence trivial. Thus F is not physically

rigid. A lisse irreducible Q`-sheaf F on X − S is called cohomologically rigid if we have

χ(X, j∗End(F)) = 2,

where j : X−S ↪→ X is the canonical open immersion and χ(−,−) is the Euler characteristic. In [13,

5.0.2 and 1.1.2], Katz shows that for an irreducible lisse sheaf, cohomological rigidity implies physical

rigidity, and conjectures that the converse is true. He proves the conjecture for complex local systems

on X in the case where k is the complex field. In this paper, we prove the conjecture for any k of

characteristic p under the extra condition that F mod ` is absolutely irreducible or that F has finite

monodromy.

Katz’s proof for the complex field case ([13, 1.1.2]) can be interpreted as a study of the moduli space

of representations of the topological fundamental group of X − S. In [4, Theorem 4.10], Bloch and

Esnault study deformations of locally free OX−S-modules provided with connections while keeping

local (formal) data undeformed, and prove that the universal deformation space is algebraizable. Using

this fact, they prove that physical rigidity and cohomological rigidity are equivalent for irreducible

locally free OX−S-modules provided with connections. Our method is similar. We study deformations

of lisse `-torsion sheaves. The universal deformation space is a formal scheme, and its generic fiber is a

rigid analytic space which can be used to produce families of Q`-sheaves. By a counting argument on

dimensions of rigid analytic spaces, we prove Katz’s conjecture under the extra condition mentioned

above.

Suppose k is an algebraic closure of the finite field Fq, and X is obtained from an algebraic curve

X0 over Fq by base change. In [9], Deligne studied the counting of fixed points of the Frobenius map

on the set of isomorphic classes of lisse Q`-sheaves on X, a problem which is studied by Drinfeld for

the case where the sheaves have rank 2. In [9, 1.3-1.6], Deligne makes some speculation on the moduli

space of Q`-sheaves, which is not algebraizable. The construction in this paper suggests that a piece

of the moduli space might have a rigid analytic space structure.

In the following, we take Λ to be either a finite extension E of Q`, or the integer ring O of such

E, or the residue field of O. Let m be the maximal ideal of Λ, and let κ = Λ/m be the residue

field of Λ. Denote by CΛ the category of Artinian local Λ-algebras with same residue field κ as

Λ. Morphisms in CΛ are homomorphisms of Λ-algebras. Using the fact that the maximal ideal of

an Artinian local ring coincides with its nilpotent radical, one can check that morphisms in CΛ are

necessarily local homomorphisms, and they induce the identity homomorphism on the residue field.

If A is an object in CΛ, we denote by mA the maximal ideal of A. Let η be the generic point of X, and

let π1(X −S, η̄) be the étale fundamental group of X −S. Fix an embedding Gal(η̄s/ηs) ↪→ Gal(η̄/η)

for each s ∈ S and let Gal(η̄s/ηs) → π1(X − S, η̄) be its composite with the canonical surjection

Gal(η̄/η) → π1(X − S, η̄). A homomorphism ρ : π1(X − S, η̄) → GL(Ar) is called a representation

if it is continuous. Here, if Λ = O, then A is finite and we put the discrete topology on GL(Ar). If

Λ = E, then A is a finite dimensional vector space over E, and we put the topology induced from the

`-adic topology on GL(Ar).

Suppose we are given a representation ρΛ : π1(X−S, η̄)→ GL(Λr). Let ρ0 : π1(X−S, η̄)→ GL(κr)

be the representation obtained from ρΛ by passing to residue field. We study deformations of ρ0. Our

2



treatment is similar to Mazur’s theory of deformations of Galois representations ([15]) and Kisin’s

theory of framed deformations of Galois representations ([14]).

Throughout this paper, we assume that S is nonempty. Suppose we are given P0,s ∈ GL(κr) for

each s ∈ S. In application, we often take P0,s to be the identity matrix I for all s ∈ S. In this case,

we denote the data (ρ0, (P0,s)s∈S) by (ρ0, (I)s∈S). For any A ∈ ob CΛ, denote the composite

π1(X − S, η̄)
ρΛ→ GL(Λr)→ GL(Ar)

also by ρΛ. Define F (A) to be the set of deformations (ρ, (Ps)s∈S) of the data (ρ0, (P0,s)s∈S) with the

prescribed local monodromy ρΛ|Gal(η̄s/ηs). More precisely, we define

F (A) = {(ρ, (Ps)s∈S) | ρ : π1(X − S, η̄)→ GL(Ar) is a representation, Ps ∈ GL(Ar),

ρ mod mA = ρ0, Ps mod mA = P0,s,

P−1
s ρ|Gal(η̄s/ηs)Ps = ρΛ|Gal(η̄s/ηs) for all s ∈ S}/ ∼,

where two tuples (ρ(i), (P
(i)
s )s∈S) (i = 1, 2) are equivalent if there exists P ∈ GL(Ar) such that

(ρ(1), (P (1)
s )s∈S) = (P−1ρ(2)P, (P−1P (2)

s )s∈S).

Note that the equation P
(1)
s = P−1P

(2)
s implies that P ≡ I mod mA since we assume S is nonempty

and P
(1)
s ≡ P

(2)
s mod mA = P0,s. The column vectors of P0,s can be regarded as a basis, that is,

a frame for κr, and Ps can be regarded as a lifting of this frame to a frame of Ar. Two tuples

(ρ(i), (P
(i)
s )s∈S) (i = 1, 2) are equivalent if any only if there exists an isomorphism of representations

P : Ar → Ar from ρ(1) to ρ(2) which transforms the frame P
(1)
s to the frame P

(2)
s for each s ∈ S. For

any morphism A′ → A in CΛ, define F (A′) → F (A) to be the map induced by GL(A′r) → GL(Ar).

We thus get a covariant functor F : CΛ → (Sets).

Let A′ → A and A′′ → A be morphisms in CΛ. Consider the map

F (A′ ×A A′′)→ F (A′)×F (A) F (A′′).

Using the fact that S is nonempty, it is straightforward to verify that this map is bijective if A′′ → A

is surjective. Proposition 0.1 below shows that F (κ[ε]) is a finite dimensional vector space. So by the

Schlessinger criteria [17, Theorem 2.11], the functor F is pro-representable.

Proposition 0.1. Let κ[ε] be the ring of dual numbers. The κ-vector space F (κ[ε]) is finite dimen-

sional. Suppose furthermore that X = P1 and all elements in the set Endπ1(X−S,η̄)(κ
r) are scalar

multiplications, where κr is considered as a π1(X −S, η̄)-module through the representation ρ0. (This

condition holds if ρ0 is absolutely irreducible by Schur’s lemma). Then the functor F is smooth, and

we have

dimF (κ[ε]) = −χ(X, j∗End(0)(F0)) +
∑
s∈S

dimH0(Gal(η̄s/ηs),Ad(ρ0))− 1,

where Ad(ρ0) is the κ-vector space of r × r matrices with entries in κ on which π1(X − S, η̄) and

Gal(η̄s/ηs) act by the composition of ρ0 with the adjoint representation of GL(κr), F0 is the lisse
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κ-sheaf on X − S corresponding to the representation ρ0 : π1(X − S, η̄) → GL(κr), End(0)(F0) is

the subsheaf of End(F0) formed by sections of trace 0, and j : X − S ↪→ X is the canonical open

immersion.

Denote by R(ρΛ) the universal deformation ring for the functor F . It is a complete noetherian

local Λ-algebra with residue field κ. We have a homomorphism

ρuniv : π1(X − S, η̄)→ GL(r,R(ρΛ))

with the property

ρuniv mod mR(ρΛ) = ρ0,

and we have matrices Puniv,s ∈ GL(r,R(ρΛ)) with the property

Puniv,s mod mR(ρΛ) = P0,s, P−1
univ,sρuniv|Gal(η̄s/ηs)Puniv,s = ρΛ|Gal(η̄s/ηs)

such that the homomorphism π1(X−S, η̄)→ GL(r,R(ρΛ)/miR(ρΛ)) induced by ρuniv are continuous for

all positive integers i, and for any element (ρ, (Ps)s∈S) in F (A), there exists a unique local Λ-algebra

homomorphism R(ρΛ) → A which brings (ρuniv, (Puniv,s)s∈S) to the equivalent class of (ρ, (Ps)s∈S).

More generally, we have the following.

Proposition 0.2. Let A′ be a local Artinian Λ-algebra so that its residue field κ′ = A′/mA′ is a finite

extension of κ = Λ/m. Let (ρ′, (P ′s)s∈S) be an equivalent class of tuples, where ρ′ : π1(X − S, η̄) →
GL(A′

r
) is a representation and P ′s ∈ GL(A′r) such that

ρ′ mod mA′ = ρ0, P ′s mod mA′ = P0,s, P−1
s ρ|Gal(η̄s/ηs)Ps = ρΛ|Gal(η̄s/ηs) for all s ∈ S},

and the equivalence relation is defined as before. Then there exists a unique local Λ-algebra homomor-

phism R(ρΛ)→ A′ which brings (ρuniv, (Puniv,s)s∈S) to the equivalent class of (ρ′, (P ′s)s∈S).

Proof. Let A be the inverse image of κ under the projection A′ → A′/mA′ = κ′. Then A is a local

ring with maximal ideal mA′ and its residue field is isomorphic to κ. Moreover, A is complete since

mA′ is nilpotent. The vector space mA′/m2
A′ is finite dimensional over κ′ = A′/mA′ and hence finite

dimensional over κ ∼= A/mA. Choose a basis {x1, . . . , xn} of mA′/m2
A′ over κ. Then we have an

epimorphism

κ[t1, . . . , tn]→ ⊕i≥0m
i
A′/mi+1

A′ , ti 7→ xi.

It follows that ⊕i≥0m
i
A′/m

i+1
A′ is Noetherian. By [1, Corollary 2.5], A is Noetherian. Since its maximal

idea is nilpotent, A is Artinian. It follows that A is an object in CΛ. Since ρ′ mod mA′ = ρ0,

the image of ρ′ lands in GL(A) and hence ρ′ defines a representation ρ : π1(X − S, η̄) → GL(Ar).

Since P ′s mod mA′ = P0,s, P
′
s defines an element Ps ∈ GL(Ar). The tuple (ρ, (Ps)s∈S) then defines

an element in F (A). So there exists a unique Λ-algebra homomorphism R(ρΛ) → A which brings

(ρuniv, (Puniv,s)s∈S) to the equivalent class of (ρ, (Ps)s∈S). The composite

R(ρΛ)→ A ↪→ A′

brings (ρuniv, (Puniv,s)s∈S) to the equivalent class of (ρ′, (P ′s)s∈S). Since the residue field of R(ρΛ) is

isomorphic to κ, any local Λ-algebra homomorphism R(ρΛ)→ A′ factors through the subring A of A′.
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So any local Λ-algebra homomorphism R(ρΛ)→ A′ which brings (ρuniv, (Puniv,s)s∈S) to the equivalent

class of (ρ′, (P ′s)s∈S) gives rise to a homomorphism R(ρΛ) → A which brings (ρuniv, (Puniv,s)s∈S) to

the equivalent class of (ρ, (Ps)s∈S), and hence is unique.

Let E be a finite extension of Q`, let O be its integer ring, and let κ be its residue field. Suppose FE
is a lisse E-sheaf on X−S of rank r. Choose a torsion free lisse O-sheaf FO such that FE ∼= FO⊗OE.

Let F0 = FO ⊗O κ, let ρO : π1(X − S, η̄)→ GL(Or) be the representation corresponding to the sheaf

FO, and let ρE : π1(X − S, η̄) → GL(Er) and ρ0 : π1(X − S, η̄) → GL(κr) be the representations

obtained from ρO by passing to the fraction field and the residue field of O, respectively. Note that ρE

and ρ0 are also the representations corresponding to the E-sheaf FE and the κ-sheaf F0, respectively.

Take Λ = O. Consider the universal deformation ring R(ρO) of the functor F : CO → (Sets) for the

data (ρ0, (I)s∈S), where P0,s = I for all s ∈ S. As a local O-algebra, it is isomorphic to a quotient of

O[[y1, . . . , yn]] for some n.

Let’s recall a construction of Berthelot which associates a rigid analytic space to any noetherian

adic formal scheme X over Spf O whose reduction Xred is a scheme of finite type over κ. First consider

the case where X = Spf R is affine, where R is a complete adic noetherian O-algebra such that the

largest ideal of definition J of R contains mOR, and R/J is a finitely generated κ-algebra. One

can show ([2, Lemma 1.2]) that R is a quotient of the ring O{x1, . . . , xn}[[y1, . . . , ym]]. Recall that

O{x1, . . . , xn} is the ring of power series
∑
i1,...,in

ai1...inx
i1
1 · · ·xinn with the property ai1...in ∈ O and

ai1...in → 0 as i1 + · · · + in → ∞. We define the rigid analytic space Xrig to be E(0, 1)n ×D(0, 1)m

for R = O{x1, . . . , xn}[[y1, . . . , ym]], where E(0, 1) = SpE{x} is the closed unit disc over E, and

D(0, 1) =
⋃∞
i=1 SpE{r−1

i x} is the open unit disc. Here E{x} = E ⊗O O{x}, {ri} is an increasing

sequence of positive real numbers with limit 1 such that for each ri, an integral power of ri is equal

to the norm of an element in E, and E{r−1x} is the ring of power series
∑
i≥0 aix

i with the property

ai ∈ E and air
i → 0 as i → ∞. In general, if R is the quotient of O{x1, . . . , xn}[[y1, . . . , ym]] by an

ideal generated by g1, . . . , gk, we define Xrig to be the closed analytic subvariety g1 = . . . = gk = 0 of

E(0, 1)n ×D(0, 1)m. One extends this construction to a formal scheme X over O by gluing the rigid

analytic spaces constructed from an affine open covering of X. The rigid analytic space Xrig can be

thought as the generic fiber of the formal scheme X over Spf O. The construction X→ Xrig defines a

functor from the category of noetherian adic formal schemes X over Spf O whose reduction Xred are

schemes locally of finite type over Specκ to the category of rigid analytic spaces over E. This functor

commutes with fiber products. We refer the reader to [2, §1] and [12, §7] for details of Berthelot’s

construction.

Let F = Spf R(ρO) be the formal scheme associated to the universal deformation ring R(ρO) of

the functor F : CO → (Sets) for the data (ρ0, (I)s∈S), and let Frig be the associated rigid analytic

space. By [12, 7.1.10], there is a one-to-one correspondence between the set of point in Frig and the

set of equivalent classes of local homomorphisms R(ρO) → O′ of O-algebras, where O′ is the integer

ring of a finite extension E′ of E, and two such homomorphisms R(ρO) → O′ and R(ρO) → O′′ are

equivalent if there exists a commutative diagram

R(ρO) → O′
↓ ↓
O′′ → O′′′
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such that O′′′ is the integer ring of a finite extension E′′′ of E containing both the fraction fields E′

and E′′ of O′ and O′′ respectively. Applying the universal property of R(ρO) to the tuples (ρO, (I)s∈S)

mod miO for all i, we get a unique O-algebra homomorphism

ϕ0 : R(ρO)→ O

which brings the universal representation ρuniv : π1(X − S, η̄) → GL(r,R(ρO)) to ρO, and brings

Puniv,s to I for all s ∈ S. The homomorphism ϕ0 defines a point t0 in Frig. Let t be a point in Frig

corresponding to a local homomorphism

ϕt : R(ρO)→ O′

of O-algebras. Let (ρt, (Pt,s)s∈S) be the tuple obtained by pushing forward the universal tuple

(ρuniv, (Puniv,s)s∈S) through the homomorphism ϕt. Note that ρt : π1(X − S, η̄) → GL(O′r) is a

representation, Pt,s ∈ GL(O′r), and

ρt0 = ρO, Pt0,s mod mO = I,

ρt mod mO′ = ρ0, Pt,s mod mO′ = I,

P−1
t,s ρt|Gal(η̄s/ηs)Pt,s = ρO|Gal(η̄s/ηs),

Suppose ρE is physically rigid. Then the third line in the above equations implies that ρt is isomorphic

to ρE as Q`-representations, that is, after enlarging the field E′, there exists P ∈ GL(E′r) such that

P−1ρtP = ρE . We conjecture that for those t close to t0, we can choose P so that P ∈ GL(OrQ`
) and

P ≡ I mod mOQ`
, where OQ`

is the integer ring of Q`. More precisely, we should have the following

conjecture.

Conjecture 0.3. Notation as above. Suppose that X = P1, that End(FE) consists of scalar mul-

tiplications, and that FE is physically rigid. Then there exists an admissible neighborhood V of the

point t0 in Frig such that for any t ∈ V , there exists P ∈ GL(OrQ`
) such that P ≡ I mod mOQ`

and

P−1ρtP = ρO.

Remark 0.4. Note that under the assumption of Conjecture 0.3, P is uniquely determined up to scalar.

Indeed, provided Er and E′r with the π1(X − S, η̄)-module structure via the representation ρE . By

[11, Lemma 1.1], we have

Endπ1(X−S,η̄)(E
′r) ∼= Endπ1(X−S,η̄)(E

r)⊗E E′.

As Endπ1(X−S,η̄)(E
r) ∼= End(FE) consists of scalar multiplications, the same is true for Endπ1(X−S,η̄)(E

′r).

If P and P ′ are two matrices in GL(E′r) such that P−1ρtP = P ′−1ρtP
′ = ρE , then we have

ρEP
−1P ′ = P−1P ′ρE .

So P−1P ′ lies in Endπ1(X−S,η̄)(E
′r), and hence is a scalar matrix.

In §3, we prove the following proposition:
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Proposition 0.5. Conjecture 0.3 holds under either one of the following conditions:

(i) End(F0) consists of scalar multiplications.

(ii) FE has finite monodromy, that is, im(ρE) is finite.

Let G : CO → (Sets) be the functor defined by

G(A) = {(Ps)s∈S |Ps ∈ AutGal(η̄s/ηs)(A
r), Ps ≡ I mod mA}/ ∼,

where Ar is provided with the Gal(η̄s/ηs)-action via ρO, and two tuples (P
(i)
s )s∈S (i = 1, 2) are

equivalent if there exists an invertible scalar (r × r)-matrix P = uI for some unit u in A such

that P
(1)
s = P−1P

(2)
s for all s ∈ S. Using Schlessinger’s criteria, one can verify that functor G is

pro-representable. One can describe the universal deformation ring of G as follows: Let Hs be the

wild inertia subgroup of Gal(η̄s/ηs). Then the (tame) quotient group Gal(η̄s/ηs)/Hs is topologically

generated by one element, say by the image of gs ∈ Gal(η̄s/ηs). Since Hs is a pro-p-group, its image

under ρO is finite. Choose hs,1, . . . , hs,ns
∈ Hs so that

im ρO = {ρO(hs,1), . . . , ρO(hs,ns)}.

Set

As = ρO(gs), As,k = ρO(hs,k) (k = 1, . . . , ns).

Then we have Ps ∈ AutGal(η̄s/ηs)(A
r) if and only if

PsAs = AsPs, PsAs,k = As,kPs.

Let I be the homogeneous ideal of O[ts,ij ]s∈S,1≤i,j≤r generated by the entries of the matrices

(ts,ij)As −As(ts,ij), (ts,ij)As,k −As,k(ts,ij) (s ∈ S, 1 ≤ k ≤ ns).

It defines a closed subscheme X of the projective space P|S|r2−1 = ProjO[ts,ij ]s∈S,1≤i,j≤r. Let p be

the kernel of the homomorphism

T = (O[ts,ij ]s∈S,1≤i,j≤r)/I → κ[t], ts,ij 7→ δijt.

Then p is a homogeneous prime ideal of T (resp. a Zariski closed point x of X = ProjT ). The universal

deformation ring R(G) for the functor G is isomorphic to the completion T∧(p) (resp. ÔX,x) of the

homogeneous localization T(p) (resp. OX,x). Note that for any local O-algebra A and any equivalent

class of tuples (P ′s)s∈S , where P ′s ∈ AutGal(η̄s/ηs)(A
′r) and Ps ≡ I mod mA′ and the equivalence

relation is defined as before, there exists a unique local Λ-algebra homomorphism R(G) → A′ which

brings the universal tuple ((ts,ij)s∈S) to (P ′s).

The rigid analytic space Grig associated to the formal scheme Spf R(G) is a group object, and its

points can be identified with the set

{(Ps)s∈S |Ps ∈ AutGal(η̄s/ηs)(OrQ`
), Ps ≡ I mod mOQ`

}/ ∼,

where OrQ`
is provided with the Gal(η̄s/ηs)-action via ρO, and two tuples (P

(i)
s )s∈S (i = 1, 2) are

equivalent if P
(1)
s = u−1P

(2)
s for all s ∈ S for some units u in OQ`

. Note that

dimGrig =
∑
s∈S

dim EndGal(η̄s/ηs)(E
r)− 1,
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where Er is provided with the Gal(η̄s/ηs)-action via ρE .

Let F : CO → (Sets) be the functor introduced before for the data (ρO, (I)s∈S). We have a

morphism of functors G→ F defined by

G(A)→ F (A), (Ps)s∈S 7→ (ρO, (Ps)s∈S).

Lemma 0.6. Let F (resp. G) be the formal scheme associated to the universal deformation ring for the

functor F (resp. G), let Frig (resp. Grig) be the associated rigid analytic space, and let f : Grig → Frig

be the morphism on rigid analytic spaces induced by the morphism of functors G → F . Suppose that

X = P1, that End(FE) consists of scalar multiplications, and that FE is physically rigid. If Conjecture

0.3 is true, then f : f−1(V ) → V is surjective in the sense that every point in V is the image of a

point in Grig.

Proof. Let t be a point in V , and let ϕt : R(ρO) → O′ be the corresponding local homomorphism of

O-algebras ([12, 7.1.10]), where O′ is the integer ring of a finite extension E′ of E. Let (ρt, (Pt,s)s∈S)

be the tuple obtained by pushing forward the universal tuple (ρuniv, (Puniv,s)s∈S) through the ho-

momorphism ϕt. By our assumption, there exists P ∈ GL(OrQ`
) such that P ≡ I mod mOQ`

and P−1ρtP = ρO. By enlarging E′, we may assume P ∈ GL(O′r). Then for each i, the tuple

(ρt, (Pt,s)s∈S) mod miO′ is equivalent to the tuple (ρO, (P
−1Pt,s)s∈S) mod miO′ . The family of tu-

ples (P−1Pt,s)s∈S mod miO′ defines a family of local O-algebra homomorphisms R(G) → O′/miO′ ,

where R(G) is the universal deformation ring for G. This family is compatible and defines a local

homomorphism R(G) → O′ of O-algebras. It corresponds to a point in Grig that is mapped to the

point t of Frig.

Lemma 0.7. Let f : X → Y be a separated morphism of rigid analytic spaces over a nonarchimedean

field k with non-trivial valuation. Suppose X can be covered by countably many k-affinoid subspaces

Xn (n = 1, 2, ...). If f is surjective on the underlying sets of points, then dimY ≤ dimX.

Proof. The following proof is due to Junyi Xie. Making a base change to the completion of the

algebraic closure of k, we may assume k is a complete algebraically closed field. We may reduced to

the case where Y = SpA for a strictly k-affinoid algebra A (in the language of Berkovich [3]). Then

by definition, dimY is the Krull dimension of A. By the Noether normalization theory ([5, Corollary

6.1.2/2]), there exists a finite monomorphism Td → A for some Tate algebra Td = k{t1, . . . , td} with

d = dimY . Note that the induced morphism Y → SpTd is surjective on the underlying set of points.

So we can reduce to the case where A = Td and Y = E(0, 1)d is the unit polydisc of dimension d.

Let X (resp. Xn, resp. Y) be the Berkovich space associated to X(resp. Xn, resp. Y ). Denote the

morphism X → Y corresponding to f : X → Y also by f . For any real multiple r = (r1, . . . , rd) with

0 < ri < 1 and ri ∈ |k∗|, and any rigid point a = (a1, . . . , ad) in E(0, 1)d, where ai ∈ k and |ai| ≤ 1,

consider the polydisc

E(a, r) = {(x1, . . . , xd) ∈ kd : |xi − ai| ≤ ri}.

We have E(a, r) ⊂ E(0, 1)d. We define the associated Gauss norm | · |E(a,r) on Td by

|f |E(a,r) = max{|f(x)| : x ∈ E(a, r)}
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for any f ∈ Td. If

f =
∑

i1,...,id

ai1...id(t1 − a1)i1 · · · (td − ad)id

is the Taylor expansion of f at a, then we have

|f |E(a,r) = maxi1,...,id |ai1...id |r
i1
1 · · · r

id
d .

The Gauss norms | · |E(a,r) are points in Y. Let S be the subset of Y consisting of all Gauss norms

associated to all polydiscs E(a, r). Note that S is dense in Y . Indeed, as the radius r = (r1, . . . , rd)

approaches to 0, the Gauss norm |·|E(a,r) approaches to the rigid point a, and it is known that the set of

all rigid points is dense in Y ([3, 2.1.15]). Moreover, for any y ∈ S, we have s(H(y)/k) = d, where H(y)

is the field defined in [3, 1.2.2 (i)], and s(H(y)/k) = tr.deg(H̃(y)/k̃) is defined in [3, 9.1]. We claim

that f(X ) ∩ S in nonempty. Otherwise, f(Xn) is disjoint from S for each n, that is, S ⊂ Y − f(Xn).

Hence Y − f(Xn) is dense in Y. Since Xn is affiniod, it is compact ([3, 1.2.1]). So f(Xn) is a compact

subset in the Hausdorff space Y, and hence it is a closed subset. It follows that Y − f(Xn) is a dense

open subset of Y. By [3, 2.1.15], the subset of rigid points (Y−f(Xn))∩Y is open dense in Y . Here we

provide Y with the topology induced from the Berkovich space Y. But this topology on Y is induced

by a complete metric. In fact, it is unit polydisc in kn provided with the metric given by the valuation

of k. By the Baire category theorem ([16, 9.1]), the set ∩∞n=1(Y − f(Xn)) ∩ Y = (Y − f(X )) ∩ Y is

dense in Y . In particular, it is nonempty. This contradicts to the assumption that f : X → Y is

surjective. So f(X ) ∩ S is nonemtpy. Take x ∈ X such that f(x) ∈ S. Then by [3, 9.1.3], we have

dimX ≥ d(H(x)/k) ≥ s(H(x)/k) ≥ s(H(f(x))/k) = dimY.

Proposition 0.8. Let ϕt : R(ρO) → O be an O-algebra homomorphism, let pt = kerϕt, and let

(ρt, (Pt,s)s∈S) be the tuple obtained by pushing forward the universal tuple (ρuniv, (Puniv,s)s∈S) through

the homomorphism ϕt.

(i) The completion R(ρO)∧pt
of the local ring R(ρO)pt is canonically isomorphic to the universal

deformation ring R(ρt ⊗O E) for the functor F : CE → (Sets) defined by

F (A) = {(ρ, (Ps)s∈S) | ρ : π1(X − S, η̄)→ GL(Ar) is a representation, Ps ∈ GL(Ar),

ρ mod mA = ρt, Ps mod mA = Pt,s,

P−1
s ρ|Gal(η̄s/ηs)Ps = ρt|Gal(η̄s/ηs) for all s ∈ S}/ ∼,

for any local Artinian E algebra A ∈ ob CE with residue field E.

(ii) Let t be the point in Frig corresponding to ϕt. We have ÔFrig,t
∼= R(ρO)∧pt

.

We will prove this proposition in §4. We are now ready to prove the main result of this paper:

Theorem 0.9. Suppose that X = P1, that FE is physically rigid, and that one of the following

condition holds:

(i) End(F0) consists of scalar multiplications.

(ii) End(FE) consists of scalar multiplications and FE has finite monodromy.

Then χ(X, j∗End(FE)) = 2.
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Proof. To prove this theorem, we may assume S is nonempty. Indeed, replacing S by S ∪ {x} for any

closed point x in X−S has no effect on the theorem. Let ϕ0 : R(ρO)→ O be the local homomorphism

of O-algebras corresponding to the point t0 in Frig, and let p0 = kerϕ0. By Proposition 0.8, we have

R(ρO)∧p0
∼= ÔFrig,t0 .

The condition that End(F0) consists of scalar multiplications implies that End(FE) consist of scalar

multiplications. For a proof of this fact, see Lemma 3.1 (iii). By Proposition 0.1 applied to the case

Λ = E and Proposition 0.8, R(ρO)∧p0
∼= R(ρE) is a formally smooth E-algebra, and we have

dimR(ρO)∧p0
= −χ(X, j∗End(0)(FE)) +

∑
s∈S

dimH0(Gal(η̄s/ηs),Ad(ρE))− 1.

So we have

dim ÔFrig,t0 = −χ(X, j∗End(0)(FE)) +
∑
s∈S

dimH0(Gal(η̄s/ηs),Ad(ρE))− 1.

On the other hand, by Proposition 0.5, Conjecture 0.3 holds under the assumption (i) or (ii). So by

Lemmas 0.6 and 0.7, we have

dim ÔFrig,t0 ≤ dimV ≤ dim f−1(V ) ≤ dimGrig =
∑
s∈S

dimH0(Gal(η̄s/ηs),Ad(ρE))− 1.

Comparing the above expressions for dim ÔFrig,t0 , we get

χ(X, j∗End(0)(FE)) ≥ 0.

As End(FE) ∼= End(0)(FE)⊕ E, we have

χ(X, j∗End(FE)) = χ(X, j∗End(0)(FE)) + χ(X,E) ≥ 2,

Here we use the fact that χ(X,E) = 2 sinceX = P1. By our assumption, the spaceH0(X, j∗End(FE)) ∼=
End(FE) consists of scalar multiplications and hence has dimension 1. The pairing

End(FE)× End(FE)→ E, (φ, ψ) 7→ Tr(ψ ◦ φ)

defines a self-duality on End(FE). By the Poincaré duality ([8, 1.3 and 2.2]), we have a perfect pairing

H2(X, j∗End(FE))×H0(X, j∗End(FE)(1))→ E.

It follows that H2(X, j∗End(FE)) also has dimension 1. So

χ(X, j∗End(FE)) =

2∑
i=0

(−1)idimHi(X, j∗End(FE))

= 2− dimH1(X, j∗End(FE))

≤ 2.

Compared with the previous opposite inequality, we get χ(X, j∗End(FE)) = 2. This proves that FE
is cohomologically rigid.
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In Lemma 3.1 (iii), we prove that the condition that End(F0) consists of scalar multiplications

implies that End(FE) consist of scalar multiplications. If Conjecture 0.3 is true, then Theorem 0.9

holds under the weaker condition that End(FE) consists of scalar multiplications.

The paper is organized as follows. In §1, we introduced a family of functors of framed deforma-

tions of representations of π1(X − S, η̄). These functors are pro-representable and we calculate the

dimensions of their Zariski tangent spaces. In §2, we study the obstruction to lifting a deformation.

Using results in §1 and §2, we prove Proposition 0.1 at the end of §2. We prove Proposition 0.5 in §3,

and Lemma 0.8 in §4.

1 Calculation of dimensions of tangent spaces

In this section, we suppose that S is nonempty and that we are given a representation ρΛ : π1(X −
S, η̄) → GL(Λr) and a frame P0,s ∈ GL(κr) for each s ∈ S. Let λ : π1(X − S, η̄) → Λ∗ be the

determinant of ρΛ and let ρ0 : π1(X − S, η̄) → GL(κr) be ρΛ mod mΛ. For any A ∈ ob CΛ, denote

the composite

π1(X − S, η̄)
λ→ Λ∗ → A∗

also by λ. Define

D�
S (A) = {(ρ, (Ps)s∈S) | ρ : π1(X − S, η̄)→ GL(Ar) is a representation, Ps ∈ GL(Ar),

ρ mod mA = ρ0, Ps mod mA = Ps,0}/ ∼,

D�,λ
S (A) = {(ρ, (Ps)s∈S) ∈ D�

S (A) |det(ρ) = λ},

where two tuples (ρ(i), (P
(i)
s )s∈S) (i = 1, 2) are equivalent if there exists P ∈ GL(Ar) such that

(ρ(1), (P (1)
s )s∈S) = (P−1ρ(2)P, (P−1P (2)

s )s∈S).

For any s ∈ S, define

D�
s (A) = {ρ | ρ : Gal(η̄s/ηs)→ GL(Ar) is a representation, ρ mod mA = ρ0|Gal(η̄s/ηs)},

D�,λ
s (A) = {ρ ∈ D�

s (A) |det(ρ) = λ|Gal(η̄s/ηs)}.

For any morphism A′ → A in CΛ, define D(A′)→ D(A) to be the map induced by GL(A′r)→ GL(Ar)

for D = D�
S , D

�,λ
S , D�

s , D
�,λ
s . Then D�

S , D
�,λ
S , D�

s , D
�,λ
s are functors from the category CΛ to the

category of sets. We have canonical morphisms of functors

D�
S →

∏
s∈S

D�
s , D�,λ

S →
∏
s∈S

D�,λ
s

given by

(ρ, (Ps)s∈S)→ (P−1
s ρ|Gal(η̄s/ηs)Ps)s∈S .

Finally, let F (resp. Fλ) be the subfunctor of D�
S (resp. D�,λ

S ) defined by

F (A) = {(ρ, (Ps)s∈S) ∈ D�
S (A)|P−1

s ρ|Gal(η̄s/ηs)Ps = ρΛ|Gal(η̄s/ηs)},

(resp. Fλ(A) = {(ρ, (Ps)s∈S) ∈ D�,λ
S (A)|P−1

s ρ|Gal(η̄s/ηs)Ps = ρΛ|Gal(η̄s/ηs)}).
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Note that F (resp. Fλ) can be thought as the fiber of the morphism of functors

D�
S →

∏
s∈S

D�
s (resp. D�,λ

S →
∏
s∈S

D�,λ
s )

over (ρΛ|Gal(η̄s/ηs))s∈S . For any morphism A′ → A and A′′ → A in CΛ, one can verify that the

canonical map

D(A′ ×A A′′)→ D(A′)×D(A) D(A′′)

is bijective if A′′ → A is surjective for each of the functors D = D�
S , D

�,λ
S , D�

s , D
�,λ
s , F, Fλ. Propo-

sition 1.1 below shows that D(κ[ε]) is finite dimensional. So the functors D�
S , D

�,λ
S , D�

s , D
�,λ
s , F, Fλ

are pro-representable by Schlessinger’s criteria [17, Theorem 2.11].

Proposition 1.1. Let κ[ε] be the ring of dual numbers. We have

dimD�
S (κ[ε]) = −χ(π1(X − S, η̄),Ad(ρ0)) + |S|r2

= −χ(X − S, End(F0)) + |S|r2,

dimD�,λ
S (κ[ε]) = −χ(π1(X − S, η̄),Ad(0)(ρ0)) + |S|r2 − 1

= −χ(X − S, End(0)(F0)) + |S|r2 − 1,

dimD�
s (κ[ε]) = −χ(Gal(η̄s/ηs),Ad(ρ0)) + r2,

dimD�,λ
s (κ[ε]) = −χ(Gal(η̄s/ηs),Ad(0)(ρ0)) + r2 − 1,

where Ad(ρ0) is the κ-vector space of r × r matrices with entries in κ on which π1(X − S, η̄) and

Gal(η̄s/ηs) act by the composition of ρ0 with the adjoint representation of GL(κr), Ad(0)(ρ0) is the

subspace of Ad(ρ0) consisting of matrices of trace 0, F0 is the lisse κ-sheaf on X − S corresponding

to the representation ρ0 : π1(X − S, η̄)→ GL(κr), and End(0)(F0) is the subsheaf of End(F0) formed

by sections of trace 0.

Proof. Let’s calculate the dimensions of D�,λ
S (κ[ε]). Fix s0 ∈ S. Any element in D�,λ

S (κ[ε]) is

equivalent to an element (ρ, (Ps)s∈S) with the property Ps0 = P0,s0 . Two elements (ρ(i), (P
(i)
s )s∈S)

(i = 1, 2) in D�,λ
S (F [ε]) with the property P

(i)
s0 = P0,s0 are equivalent if any only if (ρ(1), (P

(1)
s )s∈S) =

(ρ(2), (P
(2)
s )s∈S). Let (ρ, (Ps)s∈S) be an element in D�,λ

S (F [ε]) with Ps0 = P0,s0 . We can write

ρ(g) = ρ0(g) + εM(g)ρ0(g), Ps = P0,s + εQsP0,s

for some (r× r)-matrices M(g) and Qs with entries in κ. That ρ is a homomorphism is equivalent to

saying the map

π1(X − S, η̄)→ End(0)(κr), g 7→M(g)

is a 1-cocycle for Ad(ρ0). That det(ρ) = λ is equivalent to saying Tr(M(g)) = 0 for all g ∈ π1(X−S, η̄).

We have Qs0 = 0, and there is no restriction for Qs if s ∈ S − {s0}. So

dimD�,λ
S (F [ε]) = dimZ1(π1(X − S, η̄),Ad(0)(ρ0)) + (|S| − 1)r2,

where Z1(π1(X − S, η̄),Ad(0)(ρ0)) is the group of 1-cocycles. Let B1(π1(X − S, η̄),Ad(0)(ρ0)) be the

group of 1-coboundaries. Its elements are of the form

π1(X − S, η̄)→ End(0)(κr), g 7→ ρ0(g)Aρ0(g)−1 −A
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for some (r × r)-matrix A of trace 0 with entries in κ. A 1-coboundary of the above form is 0 if any

only if ρ0(g)Aρ0(g)−1 −A = 0 for all g ∈ π1(X − S, η̄), that is,

A ∈ End
(0)
π1(X−S,η̄)(κ

r) ∼= H0(π1(X − S, η̄),Ad(0)(ρ0)).

So we have exact sequences

0→ H0(π1(X − S, η̄),Ad(0)(ρ0))→ End(0)(κr)→ B1(π1(X − S, η̄),Ad(0)(ρ0))→ 0,

0→ B1(π1(X − S, η̄),Ad(0)(ρ0))→ Z1(π1(X − S, η̄),Ad(0)(ρ0))→ H1(π1(X − S, η̄),Ad(0)(ρ0))→ 0.

It follows that

dimD�,λ
S (κ[ε])

= dimZ1(π1(X − S, η̄),Ad(0)(ρ0)) + (|S| − 1)r2

= dimH1(π1(X − S, η̄),Ad(0)(ρ0)) + dimB1(π1(X − S, η̄),Ad(0)(ρ0)) + (|S| − 1)r2

= dimH1(π1(X − S, η̄),Ad(0)(ρ0)) + dim End(0)(κr)− dimH0(π1(X − S, η̄),Ad(0)(ρ0)) + (|S| − 1)r2

= −χ(π1(X − S, η̄),Ad(0)(ρ0)) + |S|r2 − 1,

where for the last equality, we use the fact that H2(π1(X − S, η),Ad(0)(ρ0)) = 0 ([11, Lemma 2.1]).

On the other hand, we have H2(X − S, End(0)(F0)) = 0 since X − S is an affine curve. We have

H1(π1(X−S, η),Ad(0)(ρ0)) ∼= H1(X−S, End(0)(F0)) by [11, Lemma 1.6]. It follows from the definition

that H0(π1(X − S, η),Ad(0)(ρ0)) ∼= H0(X − S, End(0)(F0)). So we have

χ(π1(X − S, η̄),Ad(0)(ρ0)) = χ(X − S, End(0)(F0)).

We leave it to the read to calculate dimD�
S (κ[ε]), dimD�

s (κ[ε]), dimD�,λ
s (κ[ε]).

2 Obstruction theory

Let A′ → A be an epimorphism in the category CΛ such that its kernel a has the property mA′a = 0.

We can regard a as a vector space over κ ∼= A′/mA′ . Let ρ : π1(X−S, η̄)→ GL(Ar) be a representation

such that ρ mod mA = ρ0. Fix a set theoretic continuous lifting γ : π1(X − S, η̄) → GL(A′r) of ρ.

Consider the map

c : π1(X − S, η̄)× π1(X − S, η̄) → End(κr)⊗κ a ∼= Ad(ρ0)⊗κ a,

c(g1, g2) = γ(g1g2)γ(g2)−1γ(g1)−1 − I.

One can show that c is a 2-cocycle. By [11, Lemma 2.1], c must be a 2-coboundary. Choose a

continuous map

δ : π1(X − S, η̄)→ Ad(ρ0)⊗κ a

such that c = d(δγ−1). Then ρ′ = γ + δ : π1(X − S, η̄) → GL(A′r) is a representation lifting ρ. We

conclude that ρ can always be lifted to a representation ρ′ : π1(X−S, η̄)→ GL(A′r). Similarly, for any

s ∈ S, one can prove that any representation Gal(η̄s/ηs)→ GL(Ar) can be lifted to a representation

Gal(η̄s/ηs)→ GL(A′r). This proves the functor D�
s is smooth.
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Let (ρ, (Ps)s∈S) be an element in D�
S (A), let ρs = P−1

s ρ|Gal(η̄s/ηs)Ps, and let ρ′s : Gal(η̄s/η) →
GL(A′r) be a representation so that

ρ′s mod a = ρs

for all s ∈ S. Choose a lifting P ′s ∈ GL(A′r) for Ps. Then P ′sρ
′
sP
′−1
s is a lifting of PsρsP

−1
s =

ρ|Gal(η̄s/ηs). Now ρ′|Gal(η̄s/ηs) is also a lifting of ρ|Gal(η̄s/ηs). As in the proof of [11, Lemma 1.7], the

continuous map δs : Gal(η̄s/ηs)→ Ad(ρ0)⊗κ a defined by

ρ′(g) = P ′sρ
′
s(g)P ′−1

s + δs(g)P ′sρ
′
s(g)P ′−1

s (g ∈ Gal(η̄s/ηs))

is a 1-cocycle. Let [δs] be the cohomology class of δs in H1(Gal(η̄s/ηs),Ad(ρ0)⊗κ a) and let c be the

image of ([δs])s∈S in the cokernel of the canonical homomorphism

H1(π1(X − S, η̄),Ad(ρ0)⊗κ a)→
⊕
s∈S

H1(Gal(η̄s/ηs),Ad(ρ0)⊗κ a).

By [11, Lemmas 1.6, 1.8], this cokernel can be considered as a subspace of H2(X, j∗End(F0)) ⊗κ a,

where F0 is the lisse κ-sheaf on X − S corresponding to the representation ρ0. So we can also regard

c as an element of in H2(X, j∗End(F0)) ⊗κ a. We call c the obstruction class to lifting (ρ, (Ps)s∈S)

with the prescribed local data (ρ′s)s∈S . For simplicity, in the sequel we call c the obstruction class to

lifting ρ. In Lemma 2.1 below, we will show that c is independent of the choice of ρ′ and P ′s. Note

that we have

det(ρ′(g)) = det
(

(I + δs(g))P ′sρ
′
s(g)P ′−1

s

)
=

(
1 + Tr(δs(g))

)
det(ρ′s(g))

= det(ρ′s(g)) + Tr(δs(g))det(ρ′s(g)).

It follows that the obstruction class to lifting det(ρ) is the image of the obstruction class to lifting ρ

under the homomorphism

H2(X, j∗End(F0))⊗κ a→ H2(X,κ)⊗κ a

induced by

Tr : End(F0)→ κ.

Lemma 2.1. Suppose S is nonempty. Let A′ → A be an epimorphism in the category CΛ such

that its kernel a has the property mA′a = 0. Let (ρ, (Ps)s∈S) be an element in D�
S (A), let ρs =

P−1
s ρ|Gal(η̄s/ηs)Ps, and let ρ′s : Gal(η̄s/η)→ GL(A′r) be a representation such that

ρ′s mod a = ρs.

Choose a representation ρ′ : π1(X − S, η̄)→ GL(A′r) and matrices P ′s ∈ GL(A′r) such that

ρ′ mod a = ρ, P ′s mod a = Ps

for all s ∈ S. Define the obstruction class c to lifting (ρ, (Ps)s∈S) with the prescribed local data (ρ′s)s∈S

as above.

14



(i) c is independent of the choices of ρ′ and P ′s, and c vanishes if and only if (ρ, (Ps)s∈S) can be

lifted to a tuple (ρ′′, (P ′′s )s∈S) such that ρ′′ : π1(X − S, η̄) → GL(A′r) is a representation lifting ρ,

P ′′s ∈ GL(A′r) lift Ps and P ′′−1
s ρ′′|Gal(η̄s/ηs)P

′′
s = ρ′s for all s ∈ S.

(ii) The obstruction class to lifting det(ρ) is the image of c under the homomorphism

H2(X, j∗End(F0))⊗F a→ H2(X,κ)⊗κ a

induced by Tr : End(F0)→ κ.

Proof. We have already shown (ii). Let us prove (i). Let ρ′′ : π1(X − S, η̄) → GL(A′r) be another

lifting of ρ, and define 1-cocycles

δs, θs : Gal(η̄s/ηs)→ Ad(ρ0)⊗κ a

by

ρ′(g) = P ′sρ
′
s(g)P ′−1

s + δs(g)P ′sρ
′
s(g)P ′−1

s ,

ρ′′(g) = P ′sρ
′
s(g)P ′−1

s + θs(g)P ′sρ
′
s(g)P ′−1

s

for all g ∈ Gal(η̄s/ηs). Since ρ′ and ρ′′ are liftings of ρ, the continuous map

ψ : π1(X − S, η̄)→ Ad(ρ0)⊗F a

defined by

ρ′′(g) = ρ′(g) + ψ(g)ρ′(g) (g ∈ π1(X − S, η̄))

is a 1-cocycle for the group π1(X − S, η̄) as shown in the proof of [11, Lemma 1.7]. For any g ∈
Gal(η̄s/ηs), we have

(θs(g)− δs(g))P ′sρ
′
s(g)P ′−1

s = ρ′′(g)− ρ′(g)

= ψ(g)ρ′(g)

= ψ(g)(P ′sρ
′
s(g)P ′−1

s + δs(g)P ′sρ
′
s(g)P ′−1

s )

= ψ(g)P ′sρ
′
s(g)P ′−1

s ,

where the last equality follows from the fact that a2 = 0. It follows that

θs(g)− δs(g) = ψ(g)

for all g ∈ Gal(η̄s/ηs). Hence the cohomology class [θs]− [δs] is the image of the cohomology class [ψ]

under the canonical homomorphism

H1(π1(X − S, η̄),Ad(ρ0)⊗κ a)→ H1(Gal(η̄s/ηs),Ad(ρ0)⊗κ a).

It follows that ([θs])s∈S and ([δs])s∈S define the same element in the cokernel of the canonical homo-

morphism

H1(π1(X − S, η̄),Ad(ρ0)⊗κ a)→
⊕
s∈S

H1(Gal(η̄s/ηs),Ad(ρ0)⊗κ a).
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So the obstruction class to lifting ρ is independent of the choice of the lifting ρ′ of ρ.

Choose another lifting P̃ ′s ∈ GL(A′r) of Ps for each s ∈ S. As representations of Gal(η̄s/ηs),

P̃ ′sρ
′
sP̃
′−1
s and P ′sρ

′
sP
′−1
s are strictly equivalent relative to A′ → A. (Let G be a group. Recall that

two representations ρ(1), ρ(2) : G → GL(A′r) are called strictly equivalent relative to A′ → A if there

exists P ∈ GL(A′r) with the property P ≡ I mod a such that P−1ρ(1)(g)P = ρ(2)(g) for all g ∈ G.)

Define

δ′′s : Gal(η̄s/ηs)→ Ad(ρ0)⊗κ a

by

P̃ ′sρ
′
s(g)P̃ ′−1

s = P ′sρ
′
s(g)P ′−1

s + δ′′s (g)P ′sρ
′
s(g)P ′−1

s

for all g ∈ Gal(η̄s/ηs). Then δ′′s is a 1-coboundary by the proof [11, Lemma 1.7]. Define 1-cocycles

δs, δ̃s : Gal(η̄s/ηs)→ Ad(ρ0)⊗κ a

by

ρ′(g) = P ′sρ
′
s(g)P ′−1

s + δs(g)P ′sρ
′
s(g)P ′−1

s ,

ρ′(g) = P̃ ′sρ
′
s(g)P̃ ′−1

s + δ̃s(g)P̃ ′sρ
′
s(g)P̃ ′−1

s

for all g ∈ Gal(η̄s/ηs). Then we have

ρ′(g) = P̃ ′sρ
′
s(g)P̃ ′−1

s + δ̃s(g)P̃ ′sρ
′
s(g)P̃ ′−1

s

= (P ′sρ
′
s(g)P ′−1

s + δ′′s (g)P ′sρ
′
s(g)P ′−1

s ) + δ̃s(g)(P ′sρ
′
s(g)P ′−1

s + δ′′s (g)P ′sρ
′
s(g)P ′−1

s )

= P ′sρ
′
s(g)P ′−1

s + (δ′′s (g) + δ̃s(g))P ′sρ
′
s(g)P ′−1

s .

It follows that

δs = δ′′s + δ̃s

and hence δs and δ̃s differ by a 1-coboundary. So the obstruction class to lifting ρ is independent of

the choice of liftings P ′s of Ps.

Suppose the tuple (ρ, (Ps)s∈S) can be lifted to a tuple (ρ′′, (P ′′s )s∈S) ∈ D�
S (A′) such that ρ′′ :

π1(X − S, η̄)→ GL(A′r) is a representation and

P ′′−1
s ρ′′|Gal(η̄s/ηs)P

′′
s = ρ′s.

By the above discussion, to define the obstruction class to lifting ρ, we can use ρ′′ instead of ρ′, and

use P ′′s instead of P ′s. The 1-cocyle δs defined at the beginning then vanishes.

Conversely, suppose the obstruction class to lifting ρ vanishes. Then we can find a 1-cocycle

ψ : π1(X − S, η̄)→ Ad(ρ0)⊗κ a such that ψ|Gal(η̄s/ηs) + δs are 1-coboundaries for all s ∈ S. Set

ρ′′ = ρ′ + ψρ′.

Then ρ′′ is a representation and a lifting of ρ. Moreover, for any g ∈ Gal(η̄s/ηs), we have

ρ′′(g) = ρ′(g) + ψ(g)ρ′(g)

= P ′sρ
′
s(g)P ′−1

s + δs(g)P ′sρ
′
s(g)P ′−1

s + ψ(g)(P ′sρ
′
s(g)P ′−1

s + δs(g)P ′sρ
′
s(g)P ′−1

s )

= P ′sρ
′
s(g)P ′−1

s + (ψ(g) + δs(g))P ′sρ
′
s(g)P ′−1

s .
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Since ψ|Gal(η̄s/ηs) + δs is a 1-coboundary for each s ∈ S, ρ′′|Gal(η̄s/ηs) must be strictly equivalent to

P ′sρ
′
s(g)P ′−1

s relative to A′ → A by [11, Lemma 1.7]. Choose Q′s ∈ GL(A′r) such that Q′s ≡ I mod a

and that ρ′′|Gal(η̄s/ηs) = Q′sP
′
sρ
′
s(g)P ′−1

s Q′−1
s . Then (ρ′′, (Q′sP

′
s)s∈S) is a lifting of (ρ, (Ps)s∈S).

Lemma 2.2. Let A′ → A be an epimorphism in CΛ such that its kernel a has the property mA′a = 0.

Let (ρ, (Ps)s∈S) be an element in D�
S (A), let ρs = P−1

s ρs|Gal(η̄s/ηs)Ps, and let ρ′s : Gal(η̄s/η) →
GL(A′r) be representations such that

ρ′s mod a = ρs

for all s ∈ S. Suppose all elements in Endπ1(X−S,η̄)(κ
r) are scalar multiplications and suppose det(ρ)

can be lifted to a representation λ′ : π1(X − S, η̄) → GL(A′r) with the property λ′|Gal(η̄s/ηs) = det ρ′s.

Then there exists a tuple (ρ′, (P ′s)s∈S) in D�
S (A′) lifting (ρ, (Ps)s∈S) such that P ′−1

s ρ′|Gal(η̄s/ηs)P
′
s = ρ′s

for all s ∈ S.

Proof. As in the proof of Theorem 0.9, the pairing

End(F0)× End(F0)→ F, (φ, ψ) 7→ Tr(ψ ◦ φ)

induces a perfect pairing

H2(X, j∗End(F0))×H0(X, j∗End(F0)(1))→ κ.

If all elements in Endπ1(X−S,η̄)(κ
r) are scalar multiplications, then we have

κ ∼= End(F0) ∼= H0(X, j∗End(F0)).

So the morphism

κ→ End(F0), a 7→ aId

induces an isomorphism

H0(X,κ) ∼= H0(X, j∗End(F0)).

This implies that Tr : End(F0)→ κ induces an isomorphism

H2(X, j∗End(F0))
∼=→ H2(X,κ).

By Lemma 2.1 (ii), this last isomorphism maps the obstruction class to lifting ρ to the obstruction class

to lifting det(ρ). By our assumption, there is no obstruction to lifting det(ρ). It follows from Lemma

2.1 (i) that there is no obstruction to lifting (ρ, (Ps)s∈S) with the prescribed local data (ρ′s).

Theorem 2.3. Suppose X = P1 and all elements in the set Endπ1(X−S,η̄)(κ
r) are scalar multiplica-

tions. Then the morphism of functors

D�,λ
S →

∏
s∈S

D�,λ
s , (ρ, (Ps)s∈S) 7→ (P−1

s ρ|Gal(η̄s/ηs)Ps)s∈S

is smooth.
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Proof. Keep the notation in Lemma 2.2, and suppose furthermore that X = P1, det(ρ) = λ and

det(ρ′s) = λ|Gal(η̄s/ηs) so that (ρ, (Ps)s∈S) is an element of D�,λ
S (A) and (ρ′s)s∈S is an element in∏

s∈S D
�,λ
s (A′). There is no obstruction to lifting λ. By Lemma 2.2, we can lift (ρ, (Ps)s∈S) to

(ρ′, (P ′s)s∈S) such that P ′−1
s ρ′|Gal(η̄s/ηs)P

′
s = ρ′s. We have

det(ρ′)|Gal(η̄s/ηs) = det(ρ′s) = λ|Gal(η̄s/ηs).

In particular, λ−1det(ρ′) is unramified at s ∈ S. It is also unramified outside S. As P1 is simply

connected, we must have λ−1det(ρ′) = 1. Hence (ρ′, (P ′s)s∈S) is an element in D�,λ
S (A′). This proves

the morphism D�,λ
S →

∏
s∈S D

�,λ
s is smooth.

We are now ready to prove Proposition 0.1.

Proof of Proposition 0.1. First note that in the case X = P1, the functors F and Fλ coincide.

Indeed, for any (ρ, (Ps)s∈S) in F (A), we have P−1
s ρ|Gal(η̄s/ηs)Ps = ρΛ|Gal(η̄s/ηs). It follows that

det(ρ)|Gal(η̄s/ηs) = λ|Gal(η̄s/ηs). As in the proof of Theorem 2.3, this implies that det(ρ) = λ by the

fact that P1 is simply connected. So (ρ, (Ps)s∈S) ∈ Fλ(A). By Theorem 2.3, the canonical morphism

D�,λ
S →

∏
s∈S D

�,λ
s is smooth. As a fiber of this morphism, the functor F is smooth. Combined with

Proposition 1.1, we have

dimF (κ[ε])

= dimD�,λ
S (κ[ε])−

∑
s∈S

dimD�,λ
s (κ[ε])

= −χ(X − S, End(0)(F0)) + |S|r2 − 1−
∑
s∈S

(
− χ(Gal(η̄s/ηs),Ad(0)(ρ0)) + r2 − 1

)
= −χ(X − S, End(0)(F0)) +

∑
s∈S

χ(Gal(η̄s/ηs),Ad(0)(ρ0)) + |S| − 1.

Let ∆ be the mapping cone of the canonical morphism j∗End(0)(F0) → Rj∗End(0)(F0). Note that

Hi(∆) = 0 for i 6= 1, H1(∆) is a skyscraper sheaf supported on S, and

H1(X,∆) =
⊕
s∈S

H1(Gal(η̄s/ηs),Ad(0)(ρ0)).

We thus have

χ(X − S, End(0)(F0))

= χ(X,Rj∗End(0)(F0))

= χ(X, j∗End(0)(F0)) + χ(X,∆)

= χ(X, j∗End(0)(F0))−
∑
s∈S

dimH1(Gal(η̄s/ηs),Ad(0)(ρ0))

= χ(X, j∗End(0)(F0)) +
∑
s∈S

(
χ(Gal(η̄s/ηs),Ad(0)(ρ0))− dimH0(Gal(η̄s/ηs),Ad(0)(ρ0))

)
.
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Here we use the fact that Hi(Gal(η̄s/ηs),−) = 0 for i ≥ 2. So we have

−χ(X − S, End(0)(F0)) +
∑
s∈S

χ(Gal(η̄s/ηs),Ad(0)(ρ0))

= −χ(X, j∗End(0)(F0)) +
∑
s∈S

dimH0(Gal(η̄s/ηs),Ad(0)(ρ0))

Therefore

dimF (κ[ε]) = −χ(X, j∗End(0)(F0)) +
∑
s∈S

dimH0(Gal(η̄s/ηs),Ad(0)(ρ0)) + |S| − 1.

As Ad(ρ0) ∼= Ad(0)(ρ0)⊕ κ, we have

dimH0(Gal(η̄s/ηs),Ad(ρ0)) = dimH0(Gal(η̄s/ηs),Ad(0)(ρ0)) + 1.

It follows that

dimF (κ[ε]) = −χ(X, j∗End(0)(F0)) +
∑
s∈S

dimH0(Gal(η̄s/ηs),Ad(ρ0))− 1.

3 Proof of Proposition 0.5

Lemma 3.1. Let F (resp. F ′) be a lisse torsion free O-sheaf on X−S, let Fi = F ⊗OO/mi+1
O (resp.

F ′i = F ′ ⊗O O/mi+1
O ) be the locally free lisse sheaf of O/mi+1

O -modules on X − S corresponding to F
(resp. F ′), and let FE = F ⊗O E (resp. F ′E = F ′ ⊗O E) be the lisse E-sheaf corresponding to F
(resp. F ′). Fix a uniformizer π of O.

(i) We have a canonical exact sequence

0→ Hom(F ,F ′)⊗O O/mO → Hom(F0,F ′0)→ Ext1(F ,F ′)π → 0,

where Ext1(F ,F ′)π is the kernel of the endomorphism on Ext1(F ,F ′) defined by multiplication by π.

(ii) Suppose End(F0) consists of scalar multiplications, and suppose FE ∼= F ′E and F0
∼= F ′0. Then

we have an isomorphism

Hom(F ,F ′)⊗O O/mO ∼= Hom(F0,F ′0).

(iii) Suppose End(F0) consists of scalar multiplications. Then End(FE) consists of scalar multi-

plications.

Proof.

(i) Let G be a lisse torsion free O-sheaf on X − S, and let Gi = G ⊗O O/mi+1
O . Then we have an

exact sequence

0→ Gi−1
[π]→ Gi → G0 → 0

for each i ≥ 1, where [π] : Gi−1 → Gi is induced by the morphism π : Gi → Gi defined by multiplication

by π and note that Gi/kerπ ∼= Gi−1 since Gi is a locally free lisse sheaf of O/mi+1
O -modules. This gives

rise to an exact sequence

H0(X − S,Gi−1)
[π]→ H0(X − S,Gi)→ H0(X − S,G0)→ H1(X − S,Gi−1)

[π]→ H1(X − S,Gi).
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Taking lim←−i, we get an exact sequence

H0(X − S,G)
π→ H0(X − S,G)→ H0(X − S,G0)→ H1(X − S,G)

π→ H1(X − S,G).

It induces an exact sequence

0→ H0(X − S,G)/πH0(X − S,G)→ H0(X − S,G0)→ H1(X − S,G)π → 0,

where H1(X − S,G)π is the kernel of multiplication by π on H1(X − S,G).

Let’s apply the above result to G = Hom(F ,F ′). We have Extq(F ,F ′) = 0 for q ≥ 1 since F and

F ′ are lisse. So the spectral sequence

Hp(X − S, Extq(F ,F ′))⇒ Extp+q(F ,F ′)

degenerates. This gives

H0(X − S,G) ∼= Hom(F ,F ′), H1(X − S,G) ∼= Ext1(F ,F ′).

Our assertion follows.

(ii) Note that Hom(F ,F ′) is a finitely generated torsion free O-module. So we have

dimE(Hom(F ,F ′)⊗O E) = dimO/mO (Hom(F ,F ′)⊗O O/mO).

We have

Hom(FE ,F ′E) ∼= Hom(F ,F ′)⊗O E,

and by (i), we have

dimO/mO (Hom(F ,F ′)⊗O O/mO) ≤ dimO/mOHom(F0,F ′0).

So we have

dimEHom(FE ,F ′E) ≤ dimO/mOHom(F0,F ′0).

If End(F0) consists of scalar multiplications, then since F0
∼= F ′0, we have dimO/mOHom(F0,F ′0) = 1.

So dimEHom(FE ,F ′E) ≤ 1. Note that dimEEnd(FE) ≥ 1 since scalar multiplications form a one

dimensional subspace of End(FE). As FE ∼= F ′E , we must have dimEHom(FE ,F ′E) ≥ 1. We thus get

dimEHom(FE ,F ′E) = 1. Then monomorphism Hom(F ,F ′)⊗O O/mO → Hom(F0,F ′0) in (i) between

one dimensional vector spaces is necessarily an isomorphism.

(iii) We have seen in the proof of (ii) that dimEEnd(FE) = 1. So End(FE) coincides with the one

dimensional subspace consisting of scalar multiplications.

Proof of Proposition 0.5 (i). Let’s prove that we can take V = F rig. By [12, 7.1.10], a point in F rig

corresponds to a local O-algebra homomorphism R(ρO)→ O′, where O′ is the integer ring of a finite

extension E′ of E. Let (ρ′, (P ′s)s∈S) be the tuple obtained by pushing-forward the universal tuple

(ρuniv, (Puniv,s)s∈S) through this homomorphism. Then ρ′ : π1(X − S, η̄) → GL(O′r) is a continuous

homomorphism, P ′s ∈ GL(O′r), and

ρ′ mod mO′ = ρ0, P ′−1
s ρ′|Gal(η̄s/ηs)P

′
s = ρO|Gal(η̄s/ηs)
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for all s ∈ S. In particular, we have ρ′|Gal(η̄s/ηs)
∼= ρE |Gal(η̄s/ηs). Since ρE is physically rigid, by taking

E′ sufficiently large, we have ρ′ ∼= ρE as E′-representations of π1(X − S, η̄). Let F ′ (resp. F) be the

lisse O′-sheaf on X − S associated to the representation ρ′ (resp. ρO). Then we have F ′E′
∼= FE′ and

F ′0 ∼= F0. Applying Lemma 3.1 (ii) (with O replaced by O′), we see that the canonical map

Hom(F ,F ′)→ Hom(F0,F ′0)

is surjective. So the isomorphism F ′0 ∼= F0 in Hom(F0,F ′0) can be lifted Hom(F ,F ′), which is

necessarily an isomorphism. (A homomorphism F ′ → F is an isomorphism if and only if it induces an

isomorphism F ′0
∼=→ F0.) Hence there exists P ∈ GL(O′r) such that P ≡ I mod mO′ and P−1ρ′P =

ρO.

The following is a theorem of Maranda ([7, Theorem 30.14]). We give a proof for completeness.

Lemma 3.2. Let H be finite group and let OQ`
be the integer ring of Q`. There exists an integer

n such that for any free OQ`
-modules M and N of finite ranks with H-action, and any isomorphism

f0 : M/`n+1M → N/`n+1N of OQ`
[H]-modules, there exists an isomorphism f : M → N of OQ`

[H]-

modules such that f and f0 induce the same isomorphism M/`M → N/`N .

Proof. Write |H| = m`n, where m is relatively prime to `. We can lift f0 : M/`n+1M → N/`n+1N

to a homomorphism f : M → N of OQ`
-modules since M is a free OQ`

-module. For any g ∈ H and

x ∈M , we have (gfg−1 − f)(x) ∈ `n+1N . Define Fg ∈ HomOQ`
(M,N) by

gfg−1 − f = `n+1Fg.

Then we have

Fg1g2
= g1Fg2

g−1
1 + Fg1

.

So F : H → HomOQ`
(M,N) is a 1-cocyle, where HomOQ`

(M,N) is provided with the H-action

H ×HomOQ`
(M,N)→ HomOQ`

(M,N), (g, φ) 7→ gφg−1.

By [18, Corollary 1 in VIII §2], H1(H,HomOQ`
(M,N)) is annihilated by |H| = m`n. Since m is a

unit in OQ`
, `nF must be a 1-coboundary. Choose δ ∈ HomOQ`

(M,N) such that

`nFg = gδg−1 − δ

for all g ∈ G. We then have

g(f − `δ)g−1 = f − `δ

for all g ∈ H. So f − `δ : M → N is homomorphism of OQ`
[H]-modules. Modulo `, it coincides with

the isomorphism f0. So f − `δ : M → N is an isomorphism.

Proof of Proposition 0.5 (ii). Let H = im(ρE), and let n be the integer satisfying the conclusion of

Lemma 3.2. It is known that R(ρO) ∼= O[[t1, . . . , td]]/I for some d and some ideal I of O[[t1, . . . , td]],

and Frig is defined to be the zero set of the ideal I in the open unit polydisc D(0, 1)d. Consider the

analytic subdomain V of Frig defined by

|ti| ≤ |`n+1| (i = 1, . . . , n+ 1).
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For any t ∈ V , let ϕt : R(ρO) → OQ`
be the corresponding local homomorphism of O-algebras. We

then have ϕt ≡ ϕ0 mod `n+1OQ`
, where ϕ0 : R(ρO) → O is the homomorphism corresponding to

the point t0 in Frig. Let (ρt, (Pt,s)t∈S) be the tuple obtained by pushing-forward the universal tuple

(ρuniv, (Puniv,s)s∈S) through ϕt. Then we have

ρt ≡ ρO mod `n+1OQ`
.

Moreover, we have P−1
t,s ρt|Gal(η̄s/ηs)Pt,s = ρO|Gal(η̄s/ηs) for all s ∈ S. So ρt|Gal(η̄s)

∼= ρO|Gal(η̄s/ηs).

Since ρE is physically rigid, we have ρt ∼= ρE . In particular, the representation ρt : π1(X − S, η̄) →
GL(OQ`

) factors through the quotient H = im(ρE) of π1(X − S, η̄), and ρt is also a representation of

H. By Lemma 3.2, the identity endomorphism of

ρt ≡ ρO mod mOQ`
= ρ0

can be lifted to an isomorphism ρt ∼= ρO ofOQ`
-representations of H, that is, there exists P ∈ GL(OQ`

)

such that P−1ρtP = ρO.

4 Proof of Proposition 0.8

The second statement follows from [12, Lemma 7.1.9]. Let’s prove the first statement. The argument

is the same as B. Conrad’s lecture note [6, §7], and we include it for completeness. Since R(ρO) is

a noetherian ring, so is R(ρO)∧pt
. Since ϕt : R(ρO) → O is an O-algebra homomorphism, the prime

ideal pt = kerϕt lies in the generic fiber of SpecR(ρO) → SpecO. Let mt be the kernel of the

homomorphism

ϕt ⊗ idE : R(ρO)⊗O E → E.

Then mt is a maximal ideal of R(ρO)⊗OE with residue field E. Since Spec(R(ρO)⊗OE)→ SpecR(ρO)

is an open immersion, we have

R(ρO)pt
∼= (R(ρO)⊗O E)mt

.

It follows that R(ρO)∧pt
is a complete local noetherian E-algebra with residue field E.

Let A be an Artinian local E-algebra with residue field E and let (ρ, (Ps)s∈S) be a tuple such that

ρ : π1(X − S, η̄)→ GL(Ar) is a representation, Ps ∈ GL(Ar) and

ρ mod mA = ρt, Ps mod mA = Pt,s, P−1
s ρ|Gal(η̄s/ηs)Ps = ρt|Gal(η̄s/ηs).

Note that the maximal ideal mA of A consists of nilpotent elements of A and we have A = E ⊕ mA.

For any finite family of element x1, . . . , xn in mA, the subring O[x1, . . . , xn] of A is finitely generated

as an O-module. Note that mA is finite dimensional as a E-vector space. Choose a basis {e1, . . . , em}
of mA over E. The set of matrices in GL(Ar) with entries lying in O[e1, . . . , em] is open. So there

exists an open subgroup G of π1(X −S, η̄) such that the entries of ρ(g) ∈ GL(Ar) lie in O[e1, . . . , em]

for all g ∈ G. The family of left cosets π1(X − S, η̄)/G is finite. Choose finitely many elements

g1, . . . , gk in π1(X−S, η̄) so that any left coset is of the form giG for some i. We have ρt(g) ∈ GL(Or)
for any g ∈ π1(X − S, η̄). Since ρ mod mA = ρt, the entries of the matrices ρ(g1), . . . , ρ(gk) lie in

the subset O ⊕ mA of A. Since Ps mod mA = Pt,s and Pt,s ∈ GL(Or) for all s ∈ S, the entries of
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Ps also lie in this subset. We can choose a finite subset {x1, . . . , xn} of mA containing e1, . . . , em so

that the entries of the finite family of matrices ρ(g1), . . . , ρ(gk), Ps(s ∈ S) all lie in O[x1, . . . , xn]. Set

AO = O[x1, . . . , xn]. Then ρ induces a continuous homomorphism π1(X − S, η̄)→ GL(ArO) which we

still denote by ρ.

Let m be the maximal ideal of O. Note that AO is a complete noetherian local ring and its

maximal ideal consists of elements of the form
∑
i1,...,in

ai1...inx
i1
1 · · ·xinn with a0...0 ∈ m and ai1...in ∈

O. The O-algebra AO is finitely generated as an O-module, and its topology coincides with the

m-adic topology. For each i, AO/m
iAO is an Artinian local O-algebra with residue field κ, and

modulo miAO, the tuple (ρ, (Ps)s∈S) is an object in F (AO/m
iAO). So there exists a unique O-

algebra homomorphism R(ρO) → AO/m
i
OAO which brings the universal data (ρuniv, (Puniv,s)s∈S) to

(ρ, (Ps)s∈S) mod miAO. These homomorphisms form a compatible family for various i. So we have

a local O-algebra homomorphism ψ : R(ρO) → AO which brings (ρuniv, (Puniv,s)s∈S) to (ρ, (Ps)s∈S).

Moreover, such a local O-algebra homomorphism is unique. Since (ρ, (Ps)s∈S) lies over (ρt, (Pt,s)s∈S),

the following diagram commutes:

R(ρO)
ψ→ AO

ϕt ↓ ↙
O

where the oblique arrow is the local homomorphism

AO = O[x1, . . . , xn]→ O, f(x1, . . . , xn) 7→ f(0, . . . , 0).

It induces a commutative diagram

R(ρO)⊗O E
ψ⊗idE→ A = E ⊕mA

ϕt⊗idE ↓ ↙
E.

It follows that the maximal idea of A lies above mt = ker(ϕt ⊗ idE). Passing to localization and

completion, the homomorphism ψ ⊗ idE induces a local E-algebra homomorphism

R(ρO)∧pt
∼= (R(ρO)⊗O E)∧mt

→ A

which brings the universal data (ρuniv, (Puniv,s)s∈S) to (ρ, (Ps)s∈S).

Suppose we enlarge the set {x1, . . . , xn} to {x1, . . . , xn, xn+1, ...xn+m}, and let ÃO = O[x1, . . . , xn+m].

Repeating the above argument, we get a unique local O-algebra homomorphism ψ̃ : R(ρO) → ÃO

which brings (ρuniv, (Puniv,s)s∈S) to (ρ, (Ps)s∈S). By the uniqueness, the following diagram commutes:

R(ρO)
ψ ↓ ↘ ψ̃

AO ↪→ ÃO.

This shows that the homomorphism R(ρO)∧pt
→ A constructed above does not change if we enlarge

the set {x1, . . . , xn}.
Suppose we have a local E-algebra homomorphism

R(ρO)∧pt
→ A
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which brings (ρuniv, (Puniv,s)s∈S) to (ρ, (Ps)s∈S), and let’s prove it must coincide with the one con-

structed above. It induces an O-algebra homomorphism

θ : R(ρO)→ A = E ⊕mA

which brings (ρuniv, (Puniv,s)s∈S) to (ρ, (Ps)s∈S) such that the maximal ideal mA lies above the ideal

pt. Let a1, . . . , an ∈ pt be a family of generators for the prime ideal pt. We have θ(ai) ∈ mA. Choose

a large N such that θ(ai)
N = 0 for all i. Since the O-algebra structure homomorphism O → R(ρO)

is a section of the homomorphism ϕt : R(ρO)→ O, we have a decomposition

R(ρO) = O ⊕ pt.

Using this decomposition, we can write any element a ∈ R in the form

a =
∑

0≤i1,...,in≤N−1

ci1...ima
i1
1 · · · ainn +

n∑
i=1

δia
N
i

with ci1...in ∈ O and δi ∈ R(ρO). We then have

θ(a) =
∑

0≤i1,...,in≤N−1

ci1...inθ(a1)i1 · · · θ(an)in .

Let xi = θ(ai). Then R(ρO) → A factors through an O-algebra homomorphism R(ρO) → AO =

O[x1, . . . , xn] which which brings (ρuniv, (Puniv,s)s∈S) to (ρ, (Ps)s∈S). By our previous discussion, this

homomorphism must coincide with ψ. Our assertion follows.
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