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Integrable deformations of local analytic
fibrations with singularities

Dominique Cerveau and Bruno Scárdua

Abstract. We study analytic integrable deformations of the germ of a holomorphic fo-
liation given by df=0 at the origin 0∈Cn, n≥3. We consider the case where f is a germ of an
irreducible and reduced holomorphic function. Our central hypotheses is that, outside of a dimen-
sion ≤n−3 analytic subset Y ⊂X, the analytic hypersurface Xf :(f=0) has only normal crossings
singularities. We then prove that, as germs, such deformations also exhibit a holomorphic first
integral, depending analytically on the parameter of the deformation. This applies to the study of
integrable germs writing as ω=df+fη where f is quasi-homogeneous. Under the same hypotheses
for Xf :(f=0) we prove that ω also admits a holomorphic first integral. Finally, we conclude that
an integrable germ ω=adf+fη admits a holomorphic first integral provided that: (i) Xf :(f=0)
is irreducible with an isolated singularity at the origin 0∈Cn, n≥3; (ii) the algebraic multiplicities
of ω and f at the origin satisfy ν(ω)=ν(df). In the case of an isolated singularity for (f=0) the
writing ω=adf+fη is always assured so that we conclude the existence of a holomorphic first
integral. Some questions related to Relative Cohomology are naturally considered and not all of
them answered.

1. Introduction and main results

The problem of integrability of differential equations in the real context goes
back to H. Poincaré and Dulac. In the analytic case it is natural to consider the
complexification of the equation and then we are just one step away from the holo-
morphic foliations framework. These are objects that can be described by integrable
systems of (holomorphic) one-forms. Under this viewpoint probably the most im-
portant result is Malgrange’s work ([12] and [13]), relating the dimension of the
singular set of the system with the existence of a holomorphic first integral for it.
This is one of the motivations for this work.
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1.1. Main results

We consider f : Cn, 0→C, 0 a germ of a holomorphic function at the origin
0∈Cn, n≥3. The corresponding germ of an analytic hypersurface (f=0) is denoted
by Xf . The singular set of the hypersurface Xf will be denoted by sing(Xf ). We
will denote by X∗

f =Xf−sing(Xf ) the smooth part of X. Next, we give a pleonastic
definition of our main hypothesis:

Definition 1.1. We shall say that Xf has only ordinary singularities off a codi-
mension ≥3 subset if there exists an analytic subset (Y, 0)⊂(Xf , 0) of dimension
at most n−3, such that outside of Y the only singularities of (Xf , 0) are normal
crossings.

We will assume that f is reduced (if g∈On is such that g|Xf
≡0 then f |g in On).

In this case the singular set of Xf is given by sing(Xf )=sing(f)={p∈(Cn, 0):df(p)=
0}. Indeed, it is well-known ([15]) that the singular points of f , i.e., the zeroes of df ,
are contained in the fiber f−1(0). We consider the germ of an integrable one-form
ω∈Ω1(Cn, 0). Then ω=0 defines a codimension-one holomorphic foliation F(ω)
germ at 0∈Cn. The hypersurface Xf is F(ω)-invariant if, and only if, ω∧df/f is
holomorphic ([1] and [16]). This is the case of integrable one-forms that write as

ω= adf+fη

with a∈On and η∈Ω1(Cn, 0).
In a certain sense this is the most natural writing for a one-form ω that leaves

Xf invariant (see Section 4 and Section 5).
For η small enough (in the sense of Krull topology [8] and [9]) and a∈O∗

n

unit, we may see F(ω) as an integrable deformation of the holomorphic “fibration”
F(df), given by f=const. If, for instance, f has an isolated singularity at 0∈Cn,

n≥3, then any ω that leaves Xf :(f=0) invariant must write as above, ω=adf+fη.
In particular, ω may come from an analytic deformation of ω0=df , under some
geometrical condition (e.g., if ν(ω)=ν(df) as explained in the text itself).

We will consider the following situation: {ωt, t∈(C, 0)} is an analytic deforma-
tion of ω0=df such that each one-form ωt∈Ω1(Cn, 0) is integrable, ωt∧dωt=0.

We then prove in Section 2:

Theorem 1.2. Assume that the germ f∈On, n≥3 is reduced, Xf is irreducible

and has only normal crossings singularities off a codimension ≥3 subset. Let

{ωt}t∈C,0 be an analytic deformation of ω0=df at 0∈Cn. Then for any t∈(C, 0)
close enough to 0, the one-form ωt admits a holomorphic first integral. Indeed,

there is a germ of a holomorphic function F : (Cn×C, 0)→(C, 0), (x, t) �→F (x, t)
such that:
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(1) F (x, 0)=f(x)
(2) Ft : x �→F (x, t) is a first integral for ωt.

Remark 1.3. Regarding the hypotheses in Theorem 1.2, we observe that:
(1) It is enough to assume that they hold for the restriction of ω to a three-

dimensional plane, in general position with respect to ω, in the same sense of [14].
Indeed, according to [14] if such a restriction admits a holomorphic first inte-

gral, then the same holds for the form ω. Actually, it is proved that the first integral
for the 3-dimensional plane section admits an extension to a first integral for the
form ω in a neighborhood of the origin 0∈Cn.

(2) In particular, if there is a three-dimension plane section of X which has an
isolated singularity at the origin, then the conclusion of Theorem 1.2 is valid.

As a corollary we have (see Section 4):

Theorem 1.4. Let f∈On, n≥3 be a strictly quasi-homogeneous reduced func-

tion. Assume that Xf :(f=0) is irreducible and has only normal crossings singular-

ities off a codimension ≥3 subset. Then, any holomorphic integrable one-form germ

ω∈Ω1(Cn, 0) of the form ω=df+fη, with η∈Ω1(Cn, 0), admits a holomorphic first

integral.

Remark 1.5. A function f(x1, ..., xn) is quasi-homogeneous if there exist d, d1,

..., dn all non-negative such that f(td1x1, ..., t
dnxn)=tdf(x1, ..., xn). It is strictly

quasi-homogeneous if d>0 and dj>0,∀j.

Then, as a consequence of our approach and some relative cohomology results
based on [1] and [16] we obtain, for the case of an isolated singularity (cf. Section 4):

Theorem 1.6. Let f∈On be reduced and irreducible, with an isolated singu-

larity at the origin. Let ω∈Ω1(Cn, 0), n≥3 be an integrable one-form having (f=0)
as the only invariant hypersurface. Then ω admits a (germ of a) holomorphic first

integral if, and only if, ν(ω)=ν(df) at 0.

In the above statement, ν(.) stands for the algebraic multiplicity at the origin.

2. Germs of hypersurfaces with normal crossings

We consider (Xf , 0)⊂(Cn, 0) a germ of reduced analytic surface in (Cn, 0),
defined by f=0 where f∈OCn,0 is a germ of analytic function in 0∈Cn. If n=3
and (Xf , 0) only has normal crossings singularities off the origin 0∈C3, then the
local fundamental group of the complement of (Xf , 0) in (Cn, 0) is abelian. This is
a particular case of the more general statement below:
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Theorem 2.1. (Lê-Saito, [10] Main Theorem page 1) Let n≥3. Assume that

outside of an analytic subset (Y, 0)⊂(Xf , 0) of dimension at most n−3, the only

singularities of (Xf , 0) are normal crossings. Then the local fundamental group

of the complement of (Xf , 0) in (Cn, 0) is abelian. The Milnor fiber of f has a

fundamental group which is free abelian of rank the number of analytic components

of Xf at 0, minus one. Finally, if Xf is irreducible, then the fiber f−1(c), c 	=0 is

simply-connected.

Throughout this section, we will consider the case where X=Xf0 is irreducible,
given by f0=0 as above with normal crossings singularities off a codimension ≥3
subset. We study analytic integrable deformations of the one-form ω0=df0. Such a
deformation writes as

ωt =ω0+tω1+...+tkωk+...

where t∈C, 0 and the ωj are holomorphic in some small neighborhood U of 0∈
C

n, n≥3,∀j≥0. The integrability condition ωt∧dωt=0 gives:

ω0∧dω0 =0

ω0∧dω1+ω1∧dω0 =0

ω2∧dω0+ω1∧dω1+ω0∧dω2 =0
...

In our case ω0=df0, i.e., we have dω0=0 and then

df0∧dω1 =0

and
ω1∧dω1+df0∧dω2 =0

Now, ω1 is not necessarily integrable, but we have the following Relative Co-
homology lemma:

Lemma 2.2. Under the above hypotheses we have:

dω1∧df0 =0 ==⇒ ω1 = df1+a1df0

for some holomorphic functions f1, a1 in U .

The proof of Lemma 2.2 is given in Section 5 as a consequence of Theorem 2.1
and some relative cohomology techniques adapted from [1].

Remark 2.3. The writing ω1=df1+a1df0 is not unique but if ω1=df̃1+ã1df0
then f̃1=f1+ϕ(f0) and a1=ã1+ϕ′(f0) for some one-variable holomorphic germ
ϕ(z).
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Returning to the deformations we obtain

ωt =ω0+tω1+t2ω2+...= df0+t(df1+a1df0)+t2ω2+...=(1+ta1)df0+tdf1+t2ω2+...

Therefore
1

1+ta1
ωt = df0+ t

1+ta1
df1+ t2

1+ta1
ω2+...= d(f0+tf1)+t2ω̃2+...

We put
ω̃t = 1

1+ta1
ωt

recalling that 1+ta1 is a unit and ω̃t is also integrable holomorphic. Then we write

ω̃t = df0+tdf1+t2ω̃2+ω̃3+...,

dω̃t = t2dω̃2+t3dω̃3+...

From the integrability condition we then obtain df0∧dω̃2=0. As above we obtain

ω̃2 = df2+a2df0

for some holomorphic a2, f2 : U→C. Then

ω̃t = df0+tdf1+t2(df2+a2df0)+t3ω̃3+...=(1+t2a2)df0+tdf1+t2df2+t3ω̃3+...

Hence, as above, we can define holomorphic integrable

˜̃ωt := 1
1+t2a2

ω̃t = df0+tdf1+t2df2t
3 ˜̃ω3+...

Inductively proceeding like this we obtain a formal unit Ĝ such that

1
Ĝ
ωt = df0+

∞∑
j=1

tjdfj

for some holomorphic functions fj : U→C, j≥1.
Thus we can write ωt=Ĝ(x, t).dxF̂ (x, t) in the obvious sense for formal function

F̂ (x, t) (indeed, F̂ is what is referred to as “transversely formal” in the sense of
Mattei-Moussu).

Remark that there is a formal series ĥ(x, t) such that ωt+ĥdt=Ĝd(x,t)F̂ .
Now we consider the pair {Ω, dt} where Ω(x, t)=ωt(x), defined in (U×C, 0)⊂

(Cn+1, 0). We claim that this is an integrable system: Indeed, d(x,t)Ω=dxωt+ ∂ωt

∂t dt

so that
Ω∧dΩ∧dt=ωt∧dxωt∧dt+ωt∧

∂ωt

∂t
dt∧dt=0

because we have ωt∧dxωt=0.
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We also claim that {ω, dt}={dF̂ , dt} at the level of formal modules. This is
immediate from the expression Ω=ĜdF̂−ĥdt and from the fact that Ĝ is a unit.
Now we recall the following result of Malgrange:

Theorem 2.4. (Malgrange, [13]) Let be given p germs of holomorphic one-

forms ω1, ..., ωp∈Ω1(Cn, 0) at the origin 0∈Cn with 1≤p≤n. Denote by S the germ

of analytic set given by the zeros of ω1∧...∧ωp. Assume that one of the conditions

below is verified:

(i) codS≥3 and dωj∧ω1...∧ωp=0,∀j.
(ii) codS≥2 and {ω1, ..., ωp} is formally integrable (i.e., there exist f̂i, ĝij∈Ôn

such that ωi=
∑

j ĝijdf̂j ,∀i and det(ĝij)(0) 	=0).
Then {ω1, ..., ωp} is integrable meaning that there exist fi, gij∈On (convergent) such
that ωi=

∑
j gijdfj ,∀i and det(gij(0)) 	=0.

We shall apply this result to the system {Ω, dt}. Recall that Ô{Ω, dt}=
{dF̂ , dt}, that is, {Ω, dt} is formally integrable. Notice that Ω∧dt=dxf0∧dt+∑

j≥1 t
jωj∧dt. Since cod sing(df0)≥2 we conclude that cod sing(Ω∧dt)≥2.

Thus, by (ii) in Malgrange’s theorem above we have that {dF̂ , dt} admits a
holomorphic (convergent) pair {dF, dt}. i.e., there is a holomorphic function F (x, t)
in a neighborhood of 0∈Cn such that Ω=a.dxF ( · , t)+bdt for some holomorphic
functions a, b where a is a unit. Therefore ωt=a.dxF (x, t). This completes the
proof of Theorem 1.2.

3. Necessity of hypothesis, proof of Theorem 1.4

We shall now discuss the necessity of our central hypothesis, about the normal
crossings for the singularities of the hypersurface X :(f=0).

Example 3.1. We consider f0=x3+y2 and the corresponding cusp (f0=0) in
(C2, 0).

The cylinder generated by this cusp in (C3, 0) is a hypersurface X with singular
set irreducible of codimension two. We consider deformations of the form

ωt = d(y2+x3)+tx(2xdy−3ydx)

From [3] and [11] it is known that there are no holomorphic first integrals
for such a generic deformation. Embedding this on C

3, 0 we conclude that the
hypothesis of normal crossings for the hypersurface singularities cannot be dropped.

Proof of Theorem 1.4. We prove Theorem 1.4 as an application of Theorem 1.2
for the case of quasi-homogeneous hypersurface Xf . We start with a holomorphic
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integrable germ of one-form at 0∈Cn, n≥3 of the following type

ω= df+fη

where f is a strictly quasi-homogeneous function with normal crossings. This means
that:

(1) there exist d, d1, ..., dn>0, such that f(td1x1, ..., t
dnxn)=tdf(x1, ..., xn);

(2) Xf is an analytic irreducible hypersurface with ordinary (normal) crossings
singularities off a codimension ≥3 analytic subset.

Let us see how to consider (embed) ω as (into) a deformation of ω0=df .
Take the map σt : Cn, 0→C

n, 0 defined for t 	=0 by σt(x)=(td1x1, ..., t
dnxn).

Then we have σ∗
t f=f ¨σt=tdf and

σ∗
t ω=σ∗

t (df+fη)= tddf+tdfσ∗
t (η).

We then define ωt := 1
td
σ∗
t ω=df+fσ∗

t (η).
Notice that, because dj>0,∀j we have σ∗

t (η)=tη̃ for some holomorphic one-
form η̃(x, t).Therefore ωt= 1

td
σ∗
t ω=df+tf η̃. Thanks to this form, ωt is an analytic

deformation of ω0=df , such that ω1=ω. Theorem 1.4 then follows from the fact
that σt defines an analytic diffeomorphism taking F(ω1) onto F(ωt) for all t 	=0,
and that from Theorem 1.2 the foliation F(ωt) admits a holomorphic first integral
for t close enough to 0. �

4. The case of an isolated singularity

We consider an integrable germ of holomorphic one-form ω∈Ω1(Cn, 0) with an
invariant hypersurface Xf :(f=0) such that

(Is.1) cod sing(ω)≥2
(Is.2) Xf has an isolated singularity at 0∈Cn, n≥3.
Since (f=0) is ω-invariant we have that f |(ω∧df)in Ω2(Cn, 0), i.e., 1

f ω∧df is
holomorphic. Because of the above hypotheses (i) and (ii) we can indeed write ω=
adf+fη for some holomorphic function germ a and holomorphic one-form germ η.
This is the content of the following lemma:

Lemma 4.1. If X :(f=0) is irreducible, reduced and has an isolated singu-

larity (at the origin 0∈Cn, n≥3) then ω can be written (∗) ω=adf+fη for some

holomorphic a, η.

Proof. This is related to the Dolbeault Cohomology of C
n\0 and the cor-

responding vanishing theorem of Cartan: H1(Cn\{0},O)=0 if n≥3. Locally at
any point off the origin we may write ω as in (*). This gives an open cover
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⋃
j∈N

Uj of a punctured neighborhood U∗=U \0 of 0∈Cn. We may assume that
U is a polydisc centered at the origin. For each open set Uj⊂U , the restric-
tion ω|Uj writes ω=ajdf+fηj for some holomorphic aj , ηj in Uj . We can assume
that each intersection Ui∩Uj 	=∅ is connected. If Ui∩Uj 	=∅ then on Ui∩Uj we
have aidf+fηi=aj+fηj . Thus we have (ai−aj)df=f(ηj−ηi). So, because df

does not vanish on Ui∩Uj⊂U \0 we have f |(ai−aj) in O(Ui∩Uj). We write then
ai−aj=fhij for some hij∈O(Ui∩Uj). The data {hij , Ui} defines an additive cocy-
cle in U∗, so that by Cartan’s theorem this cocycle has a solution ([6] and [8]). This
means that there exist hj∈O(Uj) such that on each non-empty intersection Ui∩Uj

we have hij=hi−hj . Therefore ai−fhi=aj−fhj . Thus we may define a∈O(U∗)
by a|Uj =aj−fhj . From the above equations we have that hidf+ηi=hjdf+ηj .
We then define η in U∗ by setting η|Uj =hjdf+ηj . Then on each Uj we have
ω=ajdf+fηj=adf+η. By classical Hartogs’ extension theorem ([6] and [7]) the
function a and the form η extend to U and we write ω=adf+fη in U . �

Remark 4.2. The above lemma may also follow from the following argumenta-
tion, based on Saito-De Rham division lemma ([16]): From the invariance of (f=0),
where f is reduced, we have ω∧df=fθ for some holomorphic θ∈Ω2(Cn, 0). This
means that ω∧df=0 in the quotient ring On/(f). Then, because sing(f)={0}⊂C

n

and n≥3, we have from [16] (page 166) that ω=adf in On/(f). In other words,
ω=adf+fη for some holomorphic η∈Ω1(Cn, 0).

Given ω=adf+fη we investigate under which conditions a is a unit.

Claim 4.3. Assume that ω=adf+fη and that:

(Is.3) the algebraic multiplicities of ω and f at the origin satisfy ν(ω)=ν(df).
Then the function a is a unit.

Proof. We have ω=adf+fη. From this equation we conclude that a is a unit,
simply by comparing the orders of f and df at the origin, plus using the fact that
ω and df have the same order at the origin. �

From now on we assume that ω=adf+fη where the function a is a unit.
Next we show that sing(ω)={0}. We can suppose that a=1; note that f is a
submersion outside {0}. This implies that sing(ω)∩f−1(0)⊂{0}. Suppose that
sing(ω) contains a curve parametrized by t �→γ(t), t∈(C, 0). Then f ¨γ(t) 	≡0 and
up to reparametrization we can suppose that f(γ(t))=tp for some 0<p∈N. Then
0=γ∗(ω)=ptp−1dt+tpγ∗(η). This implies 0=pdt+tγ∗(η), a contradiction.

Remark 4.4. Now we examine another condition:
(Is.3’) For a generic plane section E : (C2, 0)↪→(Cn, 0), the restriction E∗(ω)∈

Ω1(C2, 0) defines a foliation which is non-dicritical with a singularity of generalized
curve type ([2]) at the origin 0∈E2.
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Then, from [2] we have that (Is.3’) =⇒ (Is.3). Indeed, it is possible to give
some further conditions on F(ω) in order to conclude that conditions (Is.3) and
(Is.3’) are equivalent (see the paragraph preceding Theorem 1.6 below).

4.1. Conclusions

Let us collect our conclusions from the previous discussion:

4.1.1. Isolated singularity

We know from the above discussion that for the case of an irreducible hyper-
surface X :(f=0) at (Cn, 0), n≥3; with an isolated singularity at the origin, there
always is a holomorphic first integral provided that some condition on the coeffi-
cients is satisfied. Indeed:

Proposition 4.5. Let X :(f=0)⊂(Cn, 0), n≥3 be irreducible with an isolated

singularity at the origin. Given a holomorphic integrable one-form ω∈Ω1(Cn, 0)
with cod sing(ω)≥2 leaving Xf invariant, we can write ω=adf+fη. If a is a unity

then we have sing(ω)⊂{0} and we have a germ of a non-constant holomorphic first

integral for ω.

As an application, let be given a holomorphic integrable germ of a one-form
ω=adf+fη with a∈On, for instance if Xf has an isolated singularity at the origin
(Lemma 4.1). Assume that Xf is the only invariant hypersurface and that for a
generic plane section E : (C2, 0)↪→(Cn, 0), the induced foliation E∗F(ω) is a non-
dicritical generalized curve in the sense of [2]. Then the algebraic multiplicities of ω
and f at the origin satisfy ν(ω)=ν(df) (cf. [2]). Therefore a is a unit (Claim 4.3).
From the above, sing(ω)={0}. By Malgrange’s theorem (for n≥3) we conclude that
F(ω) admits a holomorphic first integral. In short we have:

Proposition 4.6. Given a holomorphic integrable one-form ω at 0∈Cn, n≥3,
assume that:

(1) Xf :(f=0) is irreducible and invariant, where f has an isolated singularity

at the origin.

(2) The algebraic multiplicities of ω and f at the origin satisfy ν(ω)=ν(df), for
instance, if Xf is the only invariant hypersurface and for a generic plane section

E : (C2, 0)↪→(Cn, 0), the induced foliation E∗F(ω) is a non-dicritical generalized

curve.

Then there exists a germ of a holomorphic first integral for ω.
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Remark 4.7. In dimension n≥3 the fact that f has an isolated singularity at
the origin already implies that Xf is irreducible. Condition (2) above is satisfied
if Xf is the only invariant hypersurface and if generic plane sections of F(ω) are
non-dicritical generalized curves.

Proof of Theorem 1.6. In view of Proposition 4.6 (see also Remark 4.4) it re-
mains to show the “only if” part. Assume that ω has a holomorphic first integral
and (f=0) is the only invariant hypersurface. Let us prove that ν(ω)=ν(df). In-
deed, if F is a holomorphic first integral for ω then we can assume that F=g.f

for some holomorphic g. Since F is a first integral and cod sing(dF )≥2, we can
write ([16]) ω=b.dF for some unit b. Taking derivatives we obtain ω=b.gdf+fb.dg.
Notice that b.g is also a unit. Therefore, we must have ν(ω)=ν(df). �

5. Some relative cohomology

Let us give now in details the proof of Lemma 2.2. We consider f∈On, n≥3
with f(0)=0 and put Xf :(f=0)⊂(Cn, 0). We consider ω∈Ω1(Cn, 0) an integrable
germ of holomorphic one-form. We assume that Xf is irreducible.

Lemma 5.1. Assume that cod sing(df)≥2. The following conditions are equiv-
alent:

(1) dω∧df=0.
(2) ω is closed on each fiber of f .

Proof. It is sufficient to prove the lemma at a generic point (for ad-hoc repre-
sentatives of our germs). By Poincaré lemma, Lemma 5.1 is true for a submersion.
In particular, it is true at a generic point for f . �

We recall that if f is reduced then cod sing(df)≥2.

Proposition 5.2. Assume that cod sing(f)≥2. Then the following conditions

are equivalent for ω∈Ω1(Cn, 0):
(i) dω∧df=0 and

∮
γ
ω=0 for each cycle γ contained in a non-singular fiber

f−1(c), c 	=0.
(ii) ω=adf+dh for some a, h∈On.

Proof. Since the sense (ii) =⇒ (i) is trivial, we shall assume that dω∧df=0 and∮
γ
ω=0 for all cycle γ contained in the non-singular fibers of f . By the preceding

lemma we have that the restriction of ω to these fibers is closed.

Claim 5.3. There exist holomorphic functions a, h : Cn\Xf , 0→C such that

ω=adf+dh.
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Proof. We will follow an integration argument like in the proof of Theorem II
in [1] (see pages 405, 406 and 412–414). Nevertheless, because of the extension
problem to the hypersurface Xf , let us give details about the construction of the
function h.

We take any point p∈X∗
f =f−1(0)\sing(Xf ) and a small disk Σ, centered at p,

transverse to Xf (and therefore to ω).
Because Xf is irreducible, Xf \sing(f) is connected and we conclude that,

for Σ small enough, the union
⋃

z∈Σ\{p} f
−1(f(z)) is a neighborhood of the origin

minus Xf , and
⋃

z∈Σ f−1(f(z)) is a neighborhood of the origin. Now we start by
defining h in Σ as h(p)=0 and h(z)=f(z),∀z∈Σ. We then extend h to each fiber
f−1(f(z)), z 	=p by integration, i.e.,

h(w)=h(z)+
∫ w

z

ω
∣∣
f−1(f(z)) = f(z)+

∫ w

z

ω
∣∣
f−1(f(z)), ∀w∈ f−1(f(z)).

This line integral is well-defined due to the condition
∮
γ
ω=0 in (i) in the

statement. Thus we have defined h in U \Xf for some neighborhood U of Xf in
C

n, 0.
Notice that by definition we have h holomorphic in the fibers f−1(z), z 	=0

and in the transverse disc Σ. So it is not difficult to conclude that (by a theorem
of Hartogs) the function h is holomorphic in U \Xf . Now we observe that by
construction dh and ω coincide along the fibers f−1(z), z 	=0. Therefore we can write
ω=dh+adf for some holomorphic function a : U \Xf→C (notice that df is non-
singular in U \Xf ). Since ω∧df=dh∧df and Xf is ω-invariant, we conclude that
(dh∧df)(z)→0 as z→Xf . In other words h(z)→0=h(p) as z→Xf . In particular
h : U \Xf→C is bounded and by Riemann extension theorem h admits an unique
holomorphic extension to Xf . This extension satisfies h(Xf )={0}.

Once we have ω=adf+dh with ω and f, h holomorphic in U , the same holds
for a because adf=ω−dh. �

This completes the proof of Proposition 5.2. �

Proof of Lemma 2.2. Lemma 2.2 is now a straightforward consequence of Prop-
osition 5.2 and Lê-Saito Theorem (Theorem 2.1). �
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