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The asymptotic zero-counting measure of
iterated derivaties of a class of meromorphic

functions

Christian Hägg

Abstract. We give an explicit formula for the logarithmic potential of the asymptotic
zero-counting measure of the sequence {(dn/dzn) (R(z) expT (z))}∞n=1 . Here, R(z) is a rational
function with at least two poles, all of which are distinct, and T (z) is a polynomial. This is an
extension of a recent measure-theoretic refinement of Pólya’s Shire theorem for rational functions.

1. Introduction

Consider a meromorphic function f , and let S denote its set of poles. Pólya
proved in 1922 that the zeros of the iterated derivatives f ′, f ′′, f ′′′, . . . of such a
function asymptotically accumulate along the boundaries of the Voronoi diagram
associated with S. This classical result is called Pólya’s Shire theorem (see [3] and
[4]). In a recent paper by Rikard Bögvad and this author (see [2]), a measure-
theoretic refinement of Pólya’s Shire theorem was given for the special case that
f=P/Q, where P and Q are polynomials with gcd(P,Q)=1, and P �≡0.

In this paper, we generalize the main result of the aforementioned paper (see
Theorem 1 of [2]) to the situation when f=(P/Q)eT , where P and Q are defined as
previously, and T is a nonconstant polynomial. Furthermore, we assume that Q is
monic and has at least two zeros, all of which are distinct. Under these conditions,
it follows from Hadamard’s factorization theorem (see [5]) that the class of such
functions is equivalent to the class of meromorphic functions that are quotients
of two entire functions of finite order, each with a finite number of zeros. For
convenience, we denote p:=degP, q :=degQ and t:=deg T throughout this paper,
and additionally set P=

∑p
k=0 bkz

k, Q=
∑q

k=0 ckz
k and T=

∑t
k=0 dkz

k.
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Before we state the main result of this paper in Theorem 1.1 below, we remind
the reader that if P̃ (z) is a polynomial of degree d≥1, then its zero-counting measure
μ is a probability measure that assigns mass 1/d to each zero of P̃ (z), accounting
for multiplicity (see [1]).

Theorem 1.1. Let f :=(P/Q)eT , where P, Q and T are polynomials with

gcd(P,Q)=1, P �≡0, degQ≥2 and deg T≥1. Furthermore, assume that Q is monic,

and that all of its zeros z1, . . . , zq are distinct. Then

(i) the zero-counting measures μn of the sequence
{
f (n)}∞

n=1 converge to a measure

μ
S
with mass (q−1)/(q−1+t).

(ii) The logarithmic potentials Lμn(z) of μn diverge as n→∞.

(iii) The shifted logarithmic potentials L̃μn(z):=Lμn(z)−(log n!)/(n(q+t−1)+p) of
μn converge in L1

loc to the distribution Ψ(z), where

(1) Ψ(z)= 1
q+t−1

(
max

i=1,...,q

{
log |z−zi|−1

}
+log |Q|−log (|dt| t)

)
.

(iv) The measure μ
S
is given by (2π)−1ΔΨ(z).

In the terminology of Theorem 1.1, it is intuitive to refer to Ψ(z) as the shifted
logarithmic potential of μ

S
. Additionally, note that the formula used to reconstruct

the measure μ
S

in (iv) is identical to the formula used in the reconstruction of
a measure from its associated logarithmic potential (see [1]). Furthermore, note
that if t=0, it follows from Theorem 1 of [2] that the logarithmic potential of the
asymptotic zero-counting measure μ of the sequence

{
(P/Q)(n)}∞

n=1 is given by

Lμ(z)= 1
q−1

(
max

i=1,...,q

{
log |z−zi|−1

}
+log |Q|

)
.

Thus, there are strong similarities with Theorem 1.1 above. An illustration of
Theorem 1.1 is given in Figure 1.

The connection between the probability measures μn and the measure μS with
mass (q−1)/(q+t−1)<1 (which we will detail later in Proposition 4.2) may seem
surprising, as it implies that a mass of t/(q+t−1) disappears as n→∞. This mass
discrepancy appears to arise due to the “bubbles” in Figure 1, whose structure does
not appear to converge on the Voronoi diagram of Z(Q) (compare this to Figure 1
in [2], where t=0, and no such structures seem to arise). Numerical experiments
indicate that these “bubbles” expand toward ∞ asymptotically.

The author is indebted to Rikard Bögvad for discussions, ideas, corrections and
comments, and to Boris Shapiro for additional corrections and suggestions.
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Figure 1. The Voronoi diagram generated by the zeros of the polynomial Q=z(z+2)(z−4−3i)(z−
3+5i)(z+3+9i) (left), and the 75 zeros of

(
(1/Q)eT

)(15) (small dots), where T=z+1 (right).
Note that 56/75≈4/5=(q−1)/(q+t−1) of the zeros approximately appear to be supported on the
Voronoi diagram, in accordance with Theorem 1.1.

2. Voronoi diagrams

Consider a set of q distinct points S={z1, . . . , zq}⊂C. The Voronoi diagram
associated with S, denoted by VorS , is a partitioning of C into q distinct cells
V1, . . . , Vq, where any interior point αi in Vi is closest to zi of all points in S. The
boundary between two adjacent cells Vi and Vj consists of a segment of the line
|z−zi|=|z−zj |.

Based on the aforementioned definition of Voronoi diagrams, it is natural to
stratify the complex plane using the function

Φ(z) := min
i=1,...,q

{|z−zi|}.
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Thus, the (closed) cell Vi that contains the point zi∈S is equal to the set

Vi = {z : Φ(z)= |z−zi|}.

Similarly, the boundary Vij between two cells Vi and Vj is given by

Vij = {z : Φ(z)= |z−zi|= |z−zj |}.

Together, these boundaries form the 1−skeleton of VorS , which we denote by VorB
S

(where B means boundary). Finally, the vertices of VorS are points z such that at
least three distances |z−zi|, i=1, . . . , q, coincide with Φ(z).

3. Uniform convergence of the shifted logarithmic potentials

We return to the function f=(P/Q)eT , defined as in Theorem 1.1. By Pólya’s
Shire theorem, the zeros of the iterated derivatives f ′, f ′′, f ′′′, . . . of f tend to
accumulate along VorB

S
, where S={z1, . . . , zq} is the set of zeros of Q. Simple

computations show that

(2) f (n) = Pn

Qn+1 e
T ,

where Pn is a polynomial such that Pn and Q are relatively prime. Clearly, the
zeros of f (n) are the zeros of the polynomial Pn, so it is of interest to investigate
the structure of Pn. It follows trivially from (2) that

(3) Pn =(QT ′−nQ′)Pn−1+QP ′
n−1, n≥ 1,

where P0 :=P .

Example 3.1. If f=ez/(z(z−1)), it follows that P0=1, P1=z2−3z+1, P2=
z4−6z3+13z2−8z+2, and P3=z6−9z5+36z4−73z3+63z2−30z+6.

To proceed, we make use of the assumptions that t=deg T≥1 and P �≡0 in
Theorem 1.1. In this situation, we see from equation (3) that the QT ′Pn−1 term
dominates the degree of Pn. Thus, it follows that

(4) degPn =deg (QT ′Pn−1)=n(q+t−1)+p.

In addition to the degree of Pn, we will soon make use of the coefficient An

of the highest-power term of Pn. To determine it explicitly, let α1, . . . , αdeg Pn
be

the zeros of Pn, and let Pn=An

∏degPn

k=1 (z−αk). Now note that A0=bp=(dt t)0 bp.
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Since An depends only on the QT ′Pn−1 term in (3) when t≥1, An=dt tAn−1, for
all n≥1, and thus,

(5) An =(dt t)n ·bp, n≥ 0, t≥ 1.

According to Pólya’s Shire theorem,
∣∣f (n)/n!

∣∣1/n converges pointwise a.e. in
any open Voronoi cell to max

{
|z−zi|−1, i=1, . . . , q

}
. To make use of this, we see

from equation (2) that

log
(∣∣∣∣f (n)

n!

∣∣∣∣
1
n

)
= log |An|

n
+ degPn

n
·
log

∣∣∣∏degPn

k=1 (z−αk)
∣∣∣

degPn
+

+
log

∣∣eT ∣∣
n

− log |n!|
n

− (n+1) log |Q|
n

.

(6)

Note that the term
(
log

∣∣∣∏degPn

k=1 (z−αk)
∣∣∣) /degPn is the logarithmic potential

Lμn(z) of the zero-counting measure μn of Pn/An. Passing to the limit in n in
equation (6) and making use of (4) and (5), we see that

(7) lim
n→∞

log |An|
n

= log (|dt| t),

(8) lim
n→∞

degPn

n
= q+t−1,

(9) lim
n→∞

log
∣∣eT ∣∣
n

=0,

(10) lim
n→∞

− log n!
n

=−∞,

and

(11) lim
n→∞

− (n+1) log |Q|
n

=− log |Q|.

Thus, since the left-hand side of (6) converges to

(12) log
(

max
i=1,...,q

{
1

|z−zi|

})
= max

i=1,...,q

{
log |z−zi|−1

}
inside open Voronoi cells, which is finite outside of S, it follows from (7)-(12) that
limn→∞ Lμn(z)=∞. This proves part (ii) of Theorem 1.1.
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Although the logarithmic potential of the asymptotic zero-counting measure
μ

S
diverges as n→∞, the shifted logarithmic potential L̃μn(z) of μn (defined as in

part (iii) of Theorem 1.1) can be used to rewrite equation (6) as

L̃μn(z)= n

n(q+t−1)+p

(
log

(∣∣∣∣f (n)

n!

∣∣∣∣
1
n

)
+ (n+1) log |Q|

n
− log |An|

n
− log |eT |

n

)
,

(13)

or, as we will find use for later, by using the expression for f (n) in (2),

(14) L̃μn(z)= 1
n(q+t−1)+p

(
log

∣∣∣∣Pn

An

∣∣∣∣−logn!
)
.

By letting n→∞ in (13), we obtain the equation (1), where the right-hand side
has converged pointwise (in any open Voronoi cell V o

i ) to a continuous subharmonic
function defined in the whole complex plane, as we will see in Lemma 4.1 in the
next section. More generally, we have the following proposition, the proof of which
is analogous to that of Proposition 4.5 in [2], and is omitted for brevity.

Proposition 3.2. Let Lμn(z)=(log |Pn|−log |An|) /degPn be the logarithmic

potential of the zero-counting measure μn of Pn/An. Furthermore, let L̃μn(z)=
Lμn(z)−(log n!)/(n(q+t−1)+p). Then for any z in the interior of the Voronoi cell

V o
i , we have pointwise convergence

(15)

lim
n→∞

L̃μn(z)= 1
q+t−1

(
max

i=1,...,q

{
log |z−zi|−1

}
+log |Q|−log (|dt| t)

)
=: Ψ(z).

The convergence is uniform on compact subsets of V o
i .

4. The subharmonic function Ψ(z)

The two results in this section describe properties of the asymptotic zero-
counting measure of Pn/An. Their proofs are analogous to those of Lemma 2.1 and
Proposition 2.2 in [2], respectively.

Lemma 4.1. The function Ψ(z), defined in C, is a continuous subharmonic

function, and is harmonic in the interior of any cell Vi.

Since Ψ(z) is subharmonic, ΔΨ(z)=4(∂2Ψ(z)/∂z̄∂z) is a positive measure with
support on VorB

S
.

The following proposition provides the definition and some properties of what
will turn out to be the asymptotic zero-counting measure.
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Proposition 4.2. For each pair i, j, define a measure with support on the line

lij : |z−zi|=|z−zj | as

δij = 1
4(q+t−1)

|zi−zj |
|(z−zi)(z−zj)|

ds,

where ds is the Euclidean length measure in the complex plane. Then

1. (∂2Ψ/∂z̄∂z) is the sum of all δij , each restricted to Vij .

2. μ
S
:=2π−1(∂2Ψ/∂z̄∂z) has mass (q−1)/(q+t−1).

5. Proof of the main theorem

Uniform convergence a.e. as in Proposition 3.2 does not by itself imply conver-
gence of the logarithmic potentials in L1

loc, though it tells us that there is only one
possible limit, since a function in L1

loc is determined by its behavior a.e. We will
prove the L1

loc-convergence directly, with the main difficulty being the unbounded-
ness of the zeros of Pn as n→∞. To deal with this problem, we give rough bounds
of the growth of the zeros of Pn in Lemma 5.2 below.

5.1. Growth of zeros

Consider a fixed meromorphic function f(z):=(P/Q)eT as in Theorem 1.1.
Lemma 5.1 below shows that if the statement of the theorem holds for f(z), it
also holds for f̂(z):=f(τz+a), τ∈R+, a∈C, i.e. the statement of the theorem is
invariant under scaling and translation. For convenience, let μ̂n be the zero-counting
measure of f̂ (n) (or, technically, of the polynomial

∏
k(z−α̂k), where the product

is taken over all zeros α̂1, α̂2, . . . of f̂ (n)), and let L̃μ̂n(z) be its shifted logarithmic
potential.

Lemma 5.1. Assume that L̃μn(z)→Ψ(z) in L1
loc, where Ψ(z) is the shifted log-

arithmic potential given by (15) of the asymptotic zero-counting measure limn→∞ μn.

Then L̃μ̂n(z)→Ψ̂(z) in L1
loc, where Ψ̂(z) is the shifted logarithmic potential of

limn→∞ μ̂n.

Proof. First note that Theorem 1.1, and, in particular, the L1
loc-convergence

to Ψ(z) in part (iii) of the theorem, are not actually dependent on the fact that the
polynomial Q(z) is monic. For general Q(z), equation (1) needs to be adjusted to

(16) Ψ(z)= 1
q+t−1

(
max

i=1,...,q

{
log |z−zi|−1

}
+log |Q|−log (|cq| |dt| t)

)
.
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We see from (2) that

(17) f̂ (n)(z)= P̂n(z)
(Q(τz+a))n+1 e

T (τz+a),

for some polynomial P̂n(z):=Ân

∏n(q+t−1)+p
k=1 (z−α̂k). Similarly,

f̂ (n)(z) = (f(τz+a))(n) = τnf (n)(τz+a)

= τn
(

Pn(τz+a)
(Q(τz+a))n+1 e

T (τz+a)
)
.

(18)

By comparing equations (17) and (18), we see that

(19) P̂n(z)= τnPn(τz+a).

Consequently, by using the definitions of P̂n(z) and Pn(z) in (19), it follows that

Ân

n(q+t−1)+p∏
k=1

(z−α̂k)= τn(q+t)+pAn

n(q+t−1)+p∏
k=1

(
z−αk−a

τ

)
,

and thus,

(20) Ân = τn(q+t)+pAn.

As a result, by using (19) and (20) in (14),

(21) L̃μ̂n(z)= 1
n(q+t−1)+p

(
log

∣∣∣∣∣ P̂n(z)
Ân

∣∣∣∣∣−logn!
)

= L̃μn(τz+a)−log τ.

As a result of (21) and the assumption of the lemma, L̃μ̂n(z)→Ψ(τz+a)−log τ in
L1
loc.

To see that Ψ̂(z):=Ψ(τz+a)−log τ is the correct shifted logarithmic potential
of limn→∞ μ̂n (rather than some other L1

loc-function), we also need to prove that
it satisfies equation (16). To do this, define ĉk and d̂k as the coefficients of zk in
Q(τz+a) and T (τz+a), respectively. Then, by using the definition of Q(z), we see
that

Q(τz+a)=
q∑

k=0

ĉkz
k =

q∑
k=0

ck(τz+a)k,

so ĉq=τ q, and similarly, d̂t=τ tdt.
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Furthermore, for each zero zi of Q(z), ẑi :=(zi−a)/τ is a zero of Q(τz+a).
Consequently, by using this bijective correspondence between zi and ẑi, we get

max
i=1,...,q

{
log |z−ẑi|−1

}
= max

i=1,...,q

{
log

∣∣∣∣z+ a−zi
τ

∣∣∣∣−1
}

= max
i=1,...,q

{
log |τz+a−zi|−1

}
+log τ.

(22)

Finally, by using (22) in the right-hand side of (16) for f̂(z), we see that

1
q+t−1

(
max

i=1,...,q

{
log |z−ẑi|−1

}
+log |Q(τz+a)|−log

(
|ĉq||d̂t|t

))
= 1

q+t−1

(
max

i=1,...,q

{
log |τz+a−zi|−1

}
+log τ+log |Q(τz+a)|−log

(
τ q+t|dt|t

))
=Ψ(τz+a)−log τ =Ψ̂(z). �

Next, let Dρ(b) denote the open disk with center b and of radius ρ. By choosing
b as one of the poles of f(z), and by letting ρ be sufficiently small, it follows from
Pólya’s Shire theorem that Dρ(b) contains no zeros of f (n)(z) for all large enough
n. More precisely, after scaling and translation, we may assume that the following
holds due to Lemma 5.1:

(*) The closed disk D2(0) contains exactly one pole zi=0 (so that Q(0)=0).

It follows from (*), by Proposition 3.2, that there is a positive number N such
that z∈D1(0)⊂V o

i =⇒Pn(z) �=0, if n≥N . Equivalently, if n≥N and Pn(z)=0, then
|z|>1.

Before we give bounds for the growth of the zeros of Pn, we define some addi-
tional notation for convenience. For K⊂C, let

|zK,n| :=
∏

z∈K:Pn(z)=0

|z|,

where zeros are taken with multiplicities; note that if there are no zeros of Pn(z)
in K, then |zK,n|=1. Furthermore, let Dρ :=Dρ(0)={z :|z|<ρ}, for ρ>0, and set
mn :=degPn=n(q+t−1)+p.

Lemma 5.2. Assume (*). Then there are real numbers C1, C2, and N such

that C1≤(1/mn) log (|zDc
ρ,n|/n!)≤C2 for all n≥N .

Proof. Since Q(0)=0 by (*), it follows from the assumptions in Theorem 1.1
that P (0) �=0, and Q′(0) �=0. Consequently, the recurrence relation (3) yields that

(23) Pn(0)=−nQ′(0)Pn−1(0), for all n≥ 1.
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Because P0(0)=P (0), the solution of (23) is

(24) Pn(0)=n!(−Q′(0))nP (0), for all n≥ 0.

Thus, it follows from (24) that

(25) lim
n→∞

1
mn

log
∣∣∣∣Pn(0)

n!

∣∣∣∣= lim
n→∞

(
n log |Q′(0)|
n(q+t−1)+p

+ log |P (0)|
n(q+t−1)+p

)
= log |Q′(0)|

q+t−1 .

Next, we consider the situation in which 0<ρ≤1. Since |Pn(0)|=|An||zDρ,n||zDc
ρ,n

|,
we obtain the equation

(26) 1
mn

log
∣∣∣∣Pn(0)

n!

∣∣∣∣= 1
mn

(
log |An|+log |zDρ,n|+log |zDc

ρ,n
|−logn!

)
.

Because limn→∞(1/mn) log |An|=(log |dt|t)/(q+t−1) by (7), (1/mn) log |zDρ,n|
=0 for all n≥N due to Proposition 3.2, and the fact that the left-hand side (and
thus also the right-hand side) of equation (26) converges due to the limit in (25), it
follows that

lim
n→∞

1
mn

log
(
|zDc

ρ,n
|

n!

)
= log |Q′(0)|−log (|dt|t)

q+t−1 =:C.

Hence, for any fixed ε>0, we can choose C1=C−ε and C2=C+ε. Consequently,
there exists a number N=N(ε) such that the lemma follows in this case.

We proceed with the case ρ>1. In this situation, we see from (26) that

(27) lim
n→∞

1
mn

(
log |zDρ,n|+log |zDc

ρ,n
|−logn!

)
=C.

Assume that limn→∞(1/mn) log (|zDc
ρ,n|/n!)=∞, for some subsequence of n. In

order for (27) to be valid, we must have that limn→∞(1/mn) log |zDρ,n|=−∞ over
the same subsequence. Furthermore, note that there exists a number N ′ such that
all the zeros of Rn in Dρ are contained in the annulus {z :1≤|z|<ρ} for all n≥N ′.
Hence, ρ>1=⇒|zDρ,n|≥1=⇒(1/mn) log |zDρ,n|≥0 for all large enough n, resulting
in a contradiction. Thus, there exists a number C2 such that

(28) 1
mn

log
(
|zDc

ρ,n|
n!

)
≤C2,

for all n≥N ′.
Next, assume that limn→∞(1/mn) log (|zDc

ρ,n
|/n!)=−∞ for some subsequence

of n. Then by (27), it follows that limn→∞(1/mn) log |zDρ,n|=∞ over the same
subsequence. Since the number of zeros of Pn in Dρ is at most mn=n(q+t−1)+p
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for any fixed n, it follows that |zDρ,n|<ρmn , or equivalently, (1/mn) log |zDρ,n|<
(1/mn) log (ρmn)=log ρ, for all n≥1. This is another contradiction. Consequently,
there exist numbers C1 and N ′′ such that

(29) C1 ≤
1
mn

log
(
|zDc

ρ,n
|

n!

)
,

for all n≥N ′′. Thus, by choosing N=max{N ′, N ′′}, the lemma follows from (28)
and (29) in this case. �

5.2. L1
loc-convergence of the logarithmic potentials

Recall that we have previously proven (ii) of Theorem 1.1 in Section 2. Note
that if we prove (iii) of the theorem, then the whole theorem follows, since parts (i)
and (iv) are immediate consequences of (iii).

To proceed, fix a number 0<ε<1. Recall that Dρ is the disk of fixed radius
ρ>0 centered at the origin, and let U⊂Dρ be the set of points on Dρ that are at
least a distance ε away from VorB

S
. To prove that the convergence of L̃μn(z) to Ψ(z)

is L1
loc, we must show that, for arbitrary ρ,

I1 :=
∫
Dρ

∣∣L̃μn(z)−Ψ(z)
∣∣ dλ=O(ε),

(that is, an ε can be chosen so that I1 is arbitrarily close to 0) where λ is Lebesgue
measure on C. It is appropriate to split the integral I1 into two integrals and deal
with each one separately:

I1 =
∫
U

∣∣L̃μn(z)−Ψ(z)
∣∣ dλ+

∫
Dρ\U

∣∣L̃μn(z)−Ψ(z)
∣∣ dλ=: I2+I3.

Since U is the union of q compact subsets of Dρ\VorB
S
, it follows from the uniform

convergence in Proposition 3.2 that there exists a number N such that n≥N implies
that

∣∣L̃μn(z)−Ψ(z)
∣∣≤ε if z∈U . Hence

(30) I2 =
∫
U

∣∣L̃μn(z)−Ψ(z)
∣∣ dλ≤πρ2ε=O(ε).

The integral I3 is appropriately bounded by the triangle inequality:

I3 =
∫
Dρ\U

∣∣L̃μn(z)−Ψ(z)
∣∣ dλ≤

∫
Dρ\U

∣∣L̃μn(z)
∣∣ dλ+

∫
Dρ\U

|Ψ(z)| dλ=: I5+I4.

If M1 :=max{Ψ(z), z∈Dρ}, the last integral satisfies

(31) I4 ≤M1λ(Dρ\U)≤ 2
εM1,
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where 
 denotes the length of VorB
S
∩Dρ. Thus, I4=O(ε).

To deal with the last integral I5, we write

L̃μn(z)= 1
mn

(
mn∑
k=1

log |z−αk|−logn!
)

= L̃o
μn(z)+L̃i

μn(z),

where

L̃o
μn(z) := (1/mn)

⎛⎝ ∑
|αk|≥ρ+1

log |z−αk|−logn!

⎞⎠
and

L̃i
μn(z) := (1/mn)

⎛⎝ ∑
|αk|<ρ+1

log |z−αk|

⎞⎠ .

Thus, by using the triangle inequality again,

I5 ≤
∫
Dρ\U

∣∣L̃o
μn(z)

∣∣ dλ+
∫
Dρ\U

∣∣L̃i
μn(z)

∣∣ dλ=: I6+I7.

Consequently, for such ρ,

0≤ log |z−αk| ≤ log (ρ+|αk|)≤ log (ρ+1)+log |αk|, if |z|<ρ, |αk| ≥ ρ+1,

so it follows that

I6 =
∫
Dρ\U

∣∣L̃o
μn(z)

∣∣ dλ
≤ 1

mn

∫
Dρ\U

∣∣∣∣∣∣
∑

|αk|≥ρ+1

(log (ρ+1)+log |αk|)−logn!

∣∣∣∣∣∣ dλ
≤
∫
Dρ\U

∣∣∣∣∣log (ρ+1)+ 1
mn

log
(
|zDc

ρ+1,n
|

n!

)∣∣∣∣∣ dλ
≤ (log (ρ+1)+max{|C1|, |C2|})λ(Dρ\U)=O(ε),

(32)

where the last inequality holds for all sufficiently large n due to Lemma 5.2. (Also
note that the inequality log (ρ+|αk|)≤log (ρ+1)+log |αk| corrects a minor mis-
take in [2], where the corresponding, incorrect inequality was log (ρ+|αk|)≤log ρ+
log |αk|.)
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Finally, if in addition to |z|<ρ and |αk|<ρ+1, we also have |z−αk|>ε, then
| log |z−αk||<max{− log ε, log (2ρ+1)}. This leads to the inequalities∫

Dρ\U
|log |z−αk|| dλ

<

∫
|z−αk|≤ε

|log |z−αk|| dλ+max{− log ε, log (2ρ+1)}λ(Dρ\U)

≤ 2π(1/2−log ε)(ε2/2)+max{− log ε, log (2ρ+1)}ε= o(1).

(33)

Consequently, from (33),

I7 =
∫
Dρ\U

∣∣L̃i
μn(z)

∣∣ dλ
≤ 1

mn

∑
|αk|<ρ+1

(∫
Dρ\U

|log |z−αk|| dλ
)

= o(1),
(34)

where the inequality in (34) follows because the sum has at most mn terms.
As a result, part (iii) of Theorem 1.1 (except for the statement of Proposition

5.3 below, which needs to be dealt with separately) follows from the fact that the
upper bounds in (30), (31), (32), and (34) go to 0 when ε goes to 0.

Proposition 5.3. Ψ(z)=L(z)−D, where L(z):=
∫
C

log |z−ζ| dμ
S
(ζ) is the log-

arithmic potential of μS and D:=(log (|dt|t))/(q+t−1).

Proof. We will first prove that L(z):=
∫
C

log |z−ζ| dμ
S
(ζ) is well-defined as a

L1
loc−function. Let lij={z : |z−zi|=|z−zj |}, and use the notation of Proposition

4.2. Then, for a compact set K⊂C,∫
K

|L(z)|dλ(z)≤
∑
i,j

∫
lij

(∫
K

| log |z−ζ||dλ(z)
)
dδij(ζ).

Now fix a line lij . An affine change of coordinates transforms lij into the real axis,
and then δij is given by (π(1+t2))−1 dt. Hence it suffices to prove that∫

R

(∫
K

| log |z−t||
1+t2

dλ(z)
)
dt

is finite. This is clear, since for large |t|, the integrand is approximately λ(K) log |t|/
t2.

Secondly, we will prove that L(z) has the property that

(35) lim
|z|→∞

(
L(z)− q−1

q+t−1 log |z|
)

=0.
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Since Ψ(z), by inspection from (15), has the property that

lim
|z|→∞

(
Ψ(z)− q−1

q+t−1 log |z|
)

= log (|dt|t)
q+t−1 =D,

it will follow that Ψ(z)−L(z) is bounded. However, Ψ(z) and L(z) have by
definition the same Laplacian, and hence Ψ(z)−L(z) is harmonic. By Harnack’s
theorem, this implies that Ψ(z)−L(z) is constant, and hence by taking the limit as
|z|→∞, this difference is equal to −D.

Now to prove (35) as above, using that the total mass of μs is (q−1)/(q+t−1),
we observe that∣∣∣∣L(z)− q−1

q+t−1 log |z|
∣∣∣∣≤∑

i,j

∫
lij

∣∣∣∣log
∣∣∣∣1− ζ

z

∣∣∣∣∣∣∣∣ dδij(ζ).
Thus, after another affine transformation, it is enough to consider∫

R

∣∣log
∣∣1− t

z

∣∣∣∣
1+t2

dt,

which is easily seen to have the limit 0 as |z|→∞. �
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