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Toeplitz operators with piecewise continuous
symbols on the Hardy space H1

Santeri Miihkinen and Jani A. Virtanen

Abstract. The geometric descriptions of the (essential) spectra of Toeplitz operators with
piecewise continuous symbols are among the most beautiful results about Toeplitz operators on
Hardy spaces Hp with 1<p<∞. In the Hardy space H1, the essential spectra of Toeplitz operators
are known for continuous symbols and symbols in the Douglas algebra C+H∞. It is natural to
ask whether the theory for piecewise continuous symbols can also be extended to H1. We answer
this question in the negative and show in particular that the Toeplitz operator is never bounded
on H1 if its symbol has a jump discontinuity.

1. Introduction

For 1≤p≤∞, the Hardy space Hp of the unit circle T is defined by

(1) Hp = {f ∈Lp : fk =0 for k < 0},

where fk stands for the kth Fourier coefficient of f , and the orthogonal (Riesz)
projection of L2 onto H2 is denoted by P . The Riesz projection P can be expressed
as a singular integral operator as follows:

(2) P = 1
2(I+S),

where S is the Cauchy singular integral operator defined by

(3) Sf(t)= 1
πi

∫
T

f(τ)
τ−t

(t∈T),
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which is understood in the Cauchy principal value sense. It is well known that the
Cauchy singular integral operator is bounded on Lp for 1<p<∞ (see, e.g., [1] or [2])
and hence P is a bounded linear operator of Lp onto Hp for 1<p<∞. When p=1
or p=∞, both operators S and P are unbounded.

For a∈L∞, we define the Toeplitz operator Ta on Hp with symbol a by

(4) Taf =P (af).

It is clear that Ta is bounded on Hp if 1<p<∞. It is also known that there are
no unbounded symbols that generate bounded Toeplitz operators on Hp, and that
nontrivial Toeplitz operators cannot be compact. The question of boundedness in
H1 is much more interesting. Indeed, the Toeplitz operator Ta is bounded on H1

if and only if a∈L∞ and Qa is of logarithmic bounded mean oscillation (where
Q=I−P is the complementary projection). This result has been proved by several
authors—most recently in [7].

Much less is known about their spectral properties when p=1, and in particu-
lar, the Fredholm properties of Toeplitz operators are only understood for certain
continuous symbols and symbols in the Douglas algebra.

In the next section, we recall some basic theory on (logarithmic) mean oscil-
lation and then present a well-known geometric description of the essential spectra
of Toeplitz operators Ta :Hp→Hp with piecewise continuous symbols a, which can
be obtained as the union of the limit values of a and certain p-circular arcs joining
the jumps of the symbol a. In the last section, we consider the same problem for
Toeplitz operators on the Hardy space H1. It may be tempting to ask what should
replace the p-circular arcs in this case. Yet, perhaps surprisingly, we show that Ta

is never bounded on H1 if a possesses a jump and therefore the question has no
meaning in the world of bounded linear operators. We do this by combining a little
known result of Lindelöf on limit values of functions in H∞ and a decomposition of
the symbol class that generate bounded Toeplitz operators on H1.

2. Logarithmically weighted bounded mean oscillation

We say that a function f∈L1 is of bounded mean oscillation and write f∈BMO

if

(5) sup
I

1
|I|

∫
I

|f−fI |<∞

over all subarcs I of T, where fI=|I|−1 ∫
I
f . If, in addition,

(6) lim
δ→0

sup
|I|<δ

1
|I|

∫
I

|f−fI |=0,
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we say that f is of vanishing mean oscillation and write f∈VMO. Note that

(7) L∞ ⊂BMO⊂
⋂

1≤p<∞
Lp, C ⊂VMO⊂BMO,

where C is the space of all continuous functions on T (see, e.g., 1.48 of [2]). These
spaces can be used to characterize bounded and compact Hankel operators Ha on
Hp; that is, Ha is bounded if and only if Pa∈BMO; while Ha is compact if and
only if Pa∈VMO.

In the context of H1, we equip the two spaces with logarithmic weights as
follows. We say that a function f∈L1 is of logarithmic bounded mean oscillation
and write f∈BMOlog if

(8) sup
I

log 4π
|I|

|I|

∫
T

|f−fI |<∞.

If, in addition,

(9) lim
δ→0

sup
|I|<δ

log 4π
|I|

|I|

∫
I

|f−fI |=0,

we say that f is of logarithmic vanishing mean oscillation and write f∈VMOlog.
Characterizations of bounded and compact Hankel operators on H1 can be given
in terms of these spaces analogously to the case 1<p<∞ (see [7]). For bounded
Toeplitz operators on H1, we have the following characterization (see [7] and the
references therein):

Theorem 1. A Toeplitz operator Ta is bounded on H1 if and only if a∈L∞

and Qa∈BMOlog.

When dealing with Toeplitz operators on H1 with piecewise continuous sym-
bols, we need the following description of BMOlog due to Janson [5]:

(10) BMOlog = {f+Pg : f, g ∈Liplog},
where Liplog is the logarithmic Lipschitz space defined by

(11) Liplog =
{
f ∈C : sup

w,z∈T

log(4|w−z|−1)|f(w)−f(z)|<∞
}
.

A simple consequence of this result is the following decomposition:

(12) {f ∈L∞ :Qf ∈BMOlog}=Liplog +H∞.

Indeed, if a=l+h∈Liplog +H∞, then clearly a∈L∞ and Qa=Ql∈BMOlog accord-
ing to (10). Conversely, if a∈L∞ and Qa∈BMOlog, then Qa=f+Pg for some
f, g∈Liplog, and so Qa=Qf . Thus, a−f∈H∞ and so we have a=f+(a−f)∈
Liplog +H∞.
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3. Piecewise continuous symbols

One of most beautiful results about Toeplitz operators is the geometric de-
scription of their (essential) spectra for piecewise continuous symbols; see [1], [4],
which includes the most general case of Hardy spaces Hp(μ,Γ) with Muckenhoupt
weights μ, Carleson curves Γ and 1<p<∞. Here we recall the result for unweighted
Hardy spaces of the unit circle.

We say that a bounded linear operator T on a Banach space X is a Fredholm
operator of index ˇ if both dim kerT and dimX/T (X) are finite, and ˇ=indT=
dim kerT−dimX/T (X). The essential spectrum σess(T ) of T is defined by

σess(T )= {λ∈C :T−λ is not Fredholm}.

For a∈L∞ and 1<p<∞, it is well known that Ta is invertible on Hp if and only if
Ta is Fredholm of index zero. If a is piecewise continuous, then

(13) σess(Ta)=
(⋃

t∈T

{a(t±0)}
)⋃⎛

⎝ ⋃
a(t−0) �=a(t+0)

Arcp(a; t)

⎞
⎠ ,

where
Arcp(a; t) :=

{
ζ ∈C : arg a(t−0)−ζ

a(t+0)−ζ
= 2π

p

}
is the p-circular arc consisting of the points from which the chord [a(t+0), a(t−0)],
a(t−0) �=a(t+0) is seen at the angle 2π/p; see Figure 1.

We now turn our attention to the Fredholm properties of Toeplitz operators
on H1. The following result of [8] deals with continuous symbols.

Theorem 2. Let a∈C∩VMOlog. Then Ta is Fredholm if and only if a is

nowhere zero, in which case indTa=−wind a.

The above theorem readily implies the following characterization of the essen-
tial spectrum of Ta.

Corollary 3. If a∈C∩VMOlog, then σess(Ta)=a(T).

This, however, is not the largest set of continuous symbols that generate
bounded Toeplitz operators on H1. Indeed, if a∈C and Qa∈BMOlog, then the
Fredholm properties of Ta are not known. We conjecture that still σess(Ta)=a(T)
and the index formula remains the same. It is worth noting that the approach of
Theorem 2 is not applicable because it relies on the compactness of Hankel opera-
tors, which requires that Pa∈VMOlog.

Another class of symbols for which the Fredholm properties are understood in
H1 is a certain Douglas-type algebra (see [7]):
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Figure 1. Examples of Arcp(a; t) for values p=3 (left) and p= 3
2 (right).

Theorem 4. Let a∈C∩VMOlog+H∞∩BMOlog. Then Ta is Fredholm on

H1 if and only if there are ε>0 and δ>0 such that |a(z)|≥ε whenever 1−δ<|z|<1,
in which case indTa=−wind ar, where ar(t)=a(rt) with 1−δ<r<1 and a(z) is

the harmonic extension of a for z∈D. In particular, we get the following easy

consequence:

σess(Ta)=
⋂

0<r<1
a(D\rD).

In connection with the previous theorem, it is worth noting the following result
of [7]:

C∩VMOlog+H∞∩BMOlog = {f ∈L∞∩BMOlog :Hf is compact on H1},

which “almost” implies that in order to deal with other classes of discontinuous
symbols, we need to make do without compact Hankel operators. This leads us to
piecewise continuous symbols.

We first recall the following little known result of Lindelöf [6], which shows
that functions in H∞ cannot have discontinuities of the first kind; see also Exercise
7 of Chapter II of [3].

Theorem 5. Functions in H∞ cannot have jumps, that is, if f∈H∞ and the

one-sided limits f(t±0) exist at some t∈T, then f(t+0)=f(t−0).

We use Lindelöf’s result to prove the following theorem.

Theorem 6. If a is the symbol of a bounded Toeplitz operator on H1, then a

cannot have jump discontinuities.
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Proof. Suppose that Ta is bounded on H1. By Theorem 1, the symbol a is in
L∞ and Qa is in BMOlog, and so a=f+g for some f∈Liplog and g∈H∞ according
to (12). If a(t−0) �=a(t+0) for some t∈T, then

g(t−0)= a(t−0)−f(t) �= a(t+0)−f(t)= g(t+0),

which contradicts the fact that g cannot have jump discontinuities. �

Remark 7. We can prove the preceding theorem without the consequence of
Janson’s result and instead use the following Sarason’s decomposition

VMO= {u+Pv :u, v ∈C}

and the fact that the Riesz projection P is bounded from C onto VMO (see, e.g.,
1.48 of [2]). Now if f∈C+H∞, then clearly f∈L∞ and Qf∈VMO; and conversely,
if f∈L∞ with Qf∈VMO, then Qf=u+Pv for u, v∈C, and Qf=Qu, which implies
f−u∈H∞, which gives the desired decomposition f=u+(f−u)∈C+H∞. Thus,

{f ∈L∞ :Qf ∈VMO}=C+H∞.

It remains to observe that if f∈BMOlog and

‖f‖BMOlog =sup
I

log 4π
|I|

|I|

(∫
I

|f−fI |
)

is the BMOlog-seminorm of f , then

1
|I|

∫
I

|f−fI |=
log 4π

|I|
|I|

(∫
I

|f−fI |
)

1
log 4π

|I|
≤

‖f‖BMOlog

log 4π
|I|

−→ 0

as |I|→0, and so BMOlog⊂VMO. Therefore, in the proof of Theorem 6, we get
a=f+g for some f∈C and g∈H∞ without Janson’s result.

We write BMOA=BMO∩H1={f∈BMO:fk=0 for k<0}. Fefferman’s dual-
ity result (H1)∗=BMOA implies the following consequence of the previous theorem.

Corollary 8. If a is the symbol of a bounded Toeplitz operator on BMOA,

then a cannot have jump discontinuities.

Our conclusion is that Fredholm theory for Toeplitz operators with piecewise
continuous symbols cannot unfortunately be extended to the Hardy space H1 (or to
BMOA) within the context of the Banach algebra of bounded linear operators. It
may be possible to consider this question in the framework of unbounded Fredholm
operators.
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