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Stiefel-Whitney classes of curve covers

Björn Selander

Abstract. Let D be a Dedekind scheme with the characteristic of all residue fields not

equal to 2. To every tame cover C→D with only odd ramification we associate a second Stiefel-

Whitney class in the second cohomology with mod 2 coefficients of a certain tame orbicurve [D]

associated to D. This class is then related to the pull-back of the second Stiefel-Whitney class of

the push-forward of the line bundle of half of the ramification divisor. This shows (indirectly) that

our Stiefel-Whitney class is the pull-back of a sum of cohomology classes considered by Esnault,

Kahn and Viehweg in ‘Coverings with odd ramification and Stiefel-Whitney classes’. Perhaps more

importantly, in the case of a proper and smooth curve over an algebraically closed field, our Stiefel-

Whitney class is shown to be the pull-back of an invariant considered by Serre in ‘Revêtements à

ramification impaire et thêta-caractéristiques’, and in this case our arguments give a new proof of

the main result of that article.

1. Introduction

Let C→Spec k be a smooth and proper curve over an algebraically closed field

with char k �=2. Mumford proved in [7] that if L is a theta characteristic, i.e., a line

bundle such that L⊗L�ΩC/k, then h0(C,L⊗E) is constant mod 2 when E varies in

an algebraic family of orthogonal bundles. In [10], Serre found the following more

precise version of this result:

(1) h0(C,L⊗E)≡ (m+1) h0(C,L)+h0(C,L⊗det E)+w2(E) mod 2,

where the last term is the second Stiefel-Whitney class (or rather its image under the

canonical isomorphism H2(C, μ2)→F2) of the m-dimensional orthogonal bundle E .
(Serre only stated this result for Riemann surfaces, but the first of his arguments

which uses the classification of orthogonal bundles generalises.)

One way in which orthogonal bundles on curves appear naturally is the fol-

lowing: let f : C→D be an oddly and tamely branched cover of degree n of a

smooth k-curve, let R be the ramification divisor and let E be the divisor such
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that 2E=R. Then duality theory for finite morphisms gives f∗O(E) an orthogonal

bundle structure (this will be explained in Section 2). The Hurwitz formula shows

that if L is a theta characteristic on D, then f∗L⊗O(E) is a theta characteristic

on C. Applying (1) to f∗O(E) gives

(2)

h0
(
C,L⊗O(E)

)
≡ (n+1) h0(D,L)+h0

(
D,L⊗det f∗O(E)

)
+w2

(
f∗O(E)

)
mod 2

This second formula grows considerably more interesting in light of the following:

Serre defines a second invariant wS
2 (f)∈F2 of such covers, and shows

(3) wS
2 (f)=w2

(
f∗O(E)

)
+ω(C/D) in F2

where ω(C/D) is the evaluation of a residue class character mod 8 on the sum of

the branching indices. The point is that wS
2 (f) can be combinatorially defined,

which means that the last term in (2) actually is easy to compute, which often is

extremely useful.

Included in [loc. cit.] is an informal wish list, which slightly paraphrased reads

as follows:

1. The given definition of wS
2 (f) is an element of F2, not a cohomology class.

Remove this ad hoc-ness.

2. In an earlier paper [9], Serre had found a Stiefel-Whitney class w2(j)∈
H2(K,μ2) for any separable field extension j : K→L, and a formula which relates

this class to the Stiefel-Whitney class of w2(L/K), where L/K denotes L considered

as an orthogonal K-vector space by means of the trace pairing. Is there a common

generalisation of this formula and Equation (3)?

3. The proof given in [10] for (3) uses (2), and then works by reduction to a

special case. Is there a more direct proof of this result?

The second item on this list was picked up in [1] by Esnault, Kahn and Viehweg.

They consider an arbitrary tame and oddly ramified cover f : C→D of Dedekind

schemes over SpecZ[1/2], define an invariant w2(f) which is w2(j) when C=SpecL

and D=SpecK, and which satisfies the formula

w2

(
f∗O(E)

)
+ω(X/Y )=w2(f)+(2)∪w1

(
f∗O(E)

)
,

in general, where (2) denotes the image of 2∈H0(D,Gm) under the connecting

homomorphism H0(D,Gm)→H1(D,μ2) of the Kummer sequence. Since (2)=0 for

a curve over a separably closed field k, it follows from Serre’s proof of (3) that

w2(f)=wS
2 (f) in the case of an oddly branched cover of a proper and smooth k-

curve, and hence [loc. cit.] also gives an answer to the first item on the wish list,

albeit an indirect one.
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In the present paper we will consider a tamely ramified cover f : C→D of

Dedekind Z[ 12 ]-schemes. Let [D] be the tame orbicurve associated to C→D; we will

define a Stiefel-Whitney class w2(C/D)∈H2([D], μ2). In Section 7 it will be directly

shown that in case D is a complete and smooth k-curve, then w2(C/D) agrees

with wS
2 (f) under the canonical isomorphisms H2(D,μ2)→H2([D], μ2) respectively

H2([D], μ2)→F2, thereby ticking off the first item on the list. Finally, in Section 5

we will give a straight-forward proof of (3) with wS
2 (f) replaced by w2(C/D) in the

more general setting of an oddly ramified cover of Dedekind schemes. Specialised

to the curve case, this is the third item on the wish list.

A major reason behind the present work is our interest in whether there exists

a generalisation of (3) to the case of wildly ramified covers of proper and smooth

k-curves, where the tame part of the ramification is still assumed odd. Our defini-

tions seem to be appropriate for such an investigation.

1.1. Terminology

All schemes and orbifolds are by definition Z[ 12 ]-schemes or orbifolds.

2. Stiefel-Whitney classes of orthogonal vector bundles

Let p : [D]→SpecZ[ 12 ] be a tame Dedekind orbifold as defined in Appendix A.

All sheaves on [D] will be taken with respect to the étale topology. An orthogonal

vector bundle of rank m is a locally free sheaf E of rank m which is equipped

with a non-degenerate and symmetric pairing E⊗E→OX . If E , F are orthogonal

vector bundles, letOrthoO[D]
(E ,F) be the sheaf where the sections are isomorphisms

compatible with the pairings. Equip Z[ 12 ]
m with the non-degenerate and symmetric

pairing

(4) 〈·, ·〉 : Z
[
1

2

]m
⊗Z

[
1

2

]m
→Z

[
1

2

]

which in the standard basis is given by the identity matrix. Let Om be the algebraic

group defined by the functor from Z[ 12 ]-algebras to groups

R 
−→
{
M ∈EndR

(
Rm

)
: ∀(x, y)∈Rm×Rm 〈Mx,My〉= 〈x, y〉

}

Then

E 
−→OrthoO[D]

(
p∗Z

[
1

2

]m
, E

)
=:O(E)

defines a category equivalence from the category of rank m orthogonal vector bun-

dles to the category of Om-torsors, with quasi-inverse given by P 
→P×Om p∗Z[ 12 ]
m.
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There are exact sequences of sheaves of groups on [D]

1→SOm →Om
det
−−→μ2 → 1,(5)

1→μ2 →Pinm →Om → 1.(6)

Using the interpretation of H1([D],Om) as equivalence classes of Om-torsors, define

the first Stiefel-Whitney class w1(E)∈H1([D], μ2) as the class represented by the

μ2-torsor O(E)×Omμ2. Similarly, define the second Stiefel-Whitney class w2(E)∈
H2([D], μ2) to be the image of the class of O(E) under the connecting map associated

to the second sequence. For our purposes the formal properties of the connecting

map will suffice. Nevertheless, it might be useful to bear in mind that if we interpret

H2([D], μ2) as equivalence classes of μ2-banded gerbes, then w2(E) is the class

represented by the μ2-banded gerbe of local Pinm-structures of E .
For a more thorough discussion of Stiefel-Whitney classes in algebraic geometry,

cf., e.g., [1, §1].

3. Basic setup

Let D be a Dedekind scheme, and let f : C→D be a connected tamely ramified

cover of degree n with only odd ramification. For every c∈C, there is an inertia

degree i:=[k(c) : k(f(c))] (i.e., the degree of the residue field extension), and a

ramification index e defined to be the positive integer such that mD,f(c)OC,c=

me
C,c. Tamely ramified with only odd ramification then means that e is coprime

to 2 char(k(c)).

Let E be the divisor
∑

c∈C
ec−1
2 c, and let R:=2E. For every open subset U⊂D,

a 
→trK(C)/K(D)(a) defines an OD(U)-linear map trf (U) : f∗O(R)(U)→OD(U), and

the pair (O(R), trf ) is a dualising sheaf for f , cf., e.g., [4, §6.4]. This means in

particular that the pairing

f∗ HomOC

(
O(E),O(R)

)
×f∗O(E)→ f∗OR

trf
−−→OD

is non-degenerate, and since f∗O(E)=f∗ HomOC
(O(E),O(R)) it follows that we

have defined an orthogonal vector bundle.

Recall that there exists an essentially unique pair (C̃→D,ψ) where C̃→D is

a tame cover, ψ : C̃×DSn→C̃ is an action of the symmetric group, and

C̃×Sn {1, 2, ..., n}→ C̃/Sn
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is isomorphic to C→D. Using [ ] to denote the stack quotient, there is a commu-

tative diagram

U :=f−1V [C]:=[C̃×Sn {1, 2, ..., n}]

[f ]

C

f

V [D]:=[C̃/Sn]
ι

D

(7)

of tame Dedekind orbifolds, where V ↪→D is the complement of the branch points of

f , and [f ] is étale. Hence the trace defines a non-degenerate and symmetric pairing

[f ]∗O[C]⊗[f ]∗O[C] →O[D],

i.e., [f ]∗O[C] is an orthogonal rank n vector bundle on [D].

Now we are prepared to introduce the Stiefel-Whitney classes which the present

paper is all about. Namely, for i=1, 2, let

wi(E) :=wi

(
f∗O(E)

)
∈Hi(D,μ2) and wi(C/D) :=wi

(
[f ]∗O[C]

)
∈Hi

(
[D], μ2

)
.

We intend to compare ι∗ wi(E) with wi(C/D). The next section will provide the

computational tool for doing so.

4. The second Stiefel-Whitney class

Once again [D] is a tame Dedekind orbifold. Let d̄ be a closed geometric point

of [D], and let U ↪→[D] be the open substack complement of the residual gerbe σ of

the point of [D] determined by d̄. If E is a bundle on [D], we will write EU for its

restriction to U .

Proposition 1. Let E , F be orthogonal vector bundles of rank m≥2 on [D],

and let γ : FU→EU be an isomorphism. Choose an étale neighbourhood v : V →[D]

of d̄, and isomorphisms α : v∗E→Om
V respectively β : v∗F→Om

V . Let K{d̄} be the

fraction field of O[D],d̄, and A∈Om(K{d̄}) the matrix obtained from αγβ−1. Then

w2(E)=
{
w2(F) if A lifts to an element of Pinm(K{d̄})

w2(F)+δ(O(σ)) else

where δ : H1([D],Gm)→H2([D], μ2) is the connecting homomorphism of the Kum-

mer sequence.
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Proof. Let V =SpecR be sufficiently small and note that F is determined (up

to isomorphism) by E and αγβ−1. Every element of Om(R) is a product of finitely

many reflections. Moreover, all reflections are conjugate, and we may take (since

we are working étale locally) Om to be the group which preserves the bilinear form

which in the standard basis on Rm is given by block diagonal matrix

⎛

⎜
⎝

H
...

H

⎞

⎟
⎠ respectively

⎛

⎜
⎜
⎜
⎜
⎝

1

H
...

H

⎞

⎟
⎟
⎟
⎟
⎠

when m is even respectively odd, and where H :=

(
0 1

1 0

)
.

By induction on the number of reflections, and exploiting Proposition 11, it is

enough to prove that if αγβ−1=ρeB where ρe is the reflection

ρe :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
...

1

0 fe

f−e 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈Om(R),

then

• The induced matrix lifts to Pinm(K{d̄}) if and only if e is even.

• If F ′ is the orthogonal vector bundle on [D] determined by E and B, then

w2(F)=

{
w2(F ′) if e is even

w2(F ′)+δ(O(σ)) if e is odd

The first of these statements is proved as in the proof of Lemma 4 below. To prove

the second, consider the diagram

H1([D],Om) H 2([D], μ2)

H 1([D],O(F ′)×OmPinm) H 1([D],O(F ′)×OmOm)

P�→P×O(F′)×OmOmO(F ′)

H2([D], μ2)

H 1([D],Gm) H 1([D],Gm)
δ

H2([D], μ2)



Stiefel-Whitney classes of curve covers

where the rows are parts of the cohomology sequences, and the vertical maps in the

lower part of the diagram come from functoriality of cohomology with respect to

the group homomorphism

Gm →Om t 
−→

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
...

1

t

t−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

Since the orthogonal vector bundle determined by the matrix

(
0 fe

f−e 0

)
is the same

as the one determined by the matrix

(
fe 0

0 f−e

)
, it follows that Om(F) is isomorphic

to image of IsomO[D]
(O[D],O(σ)) under the composition of the maps in the middle

vertical column of the Diagram. Hence it follows from [3, Chapter 4, Proposition

4.3.4] that w2(F)=w2(F ′)+δ(O(σ)). �

Apply the exact sequence (6) to SpecK{d̄}. Since H1(SpecK{d̄}, μ2)�Z/2, we

find that a matrix A∈Om(K{d̄}) lifts to an element of Pinm(K{d̄}) if and only if the

image of A under the group homomorphism ˇm : Om(K{d̄})→H1(SpecK{d̄}, μ2) is

trivial.

Corollary 2. Suppose that A=A1×A2×...×As with Ai∈Omi(K{d̄}). Then

w2(E)=

⎧
⎪⎨

⎪⎩

w2(F) if the number of Ai which do not lift to

an element of Pinm(K{d̄}) is even

w2(F)+δ(O(σ)) else

Proof. There is a commutative diagram of sheaves of groups with exact rows

1
∏

μ2

∏
Pinmi

∏
Omi 1

1 μ2 Pinm Om 1
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This gives a commutative diagram of groups with exact rows

∏
H0(SpecK{c̄},Pinmi)

∏
H0(SpecK{d̄},Omi)

(ˇ1,...,ˇs)

H1(SpecK{d̄}, μ2)

H0(SpecK{d̄},Pinm) H0(SpecK{d̄},Om)
ˇm

H1(SpecK{d̄}, μ2)

Hence ˇm(A)=
∑

ˇmi(Ai), which gives the result. �

5. A local computation

We reuse the notation of Diagram (7). Also, let ω̃ : (Z/8)×→{±1} be the

(primitive) residue class character which is given by ω̃(a)=1 if and only if a≡±1

mod 8 (incidentally, this is the character which cuts out Q(
√
2) from the cyclotomic

field of 8-th roots of unity), and let ω : Z→{±1} be the corresponding extended

residue class character. Define the D-divisor

ω(C/D)=
∑

d∈D

ndd

where

nd =

{
1 if ω(

∏
{c∈C:f(c)=d} e

ic
c )=

∏
ω(ec)

ic=−1

0 else.

Finally, let δω(C/D) be the image of ω(C/D) under

DivD→PicD→H2(D,μ2)

where the second homomorphism comes from the Kummer sequence. Our main

result is:

Theorem 3. ι∗(w2(E)+δω(C/D))=w2(C/D)

Proof. There are natural sheaf morphisms

ι∗f∗OC ι∗f∗O(E)

[f ]∗O[C]

(8)
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which restrict to isomorphisms of orthogonal bundles on V . Note that we can

construct a finite sequence of orthogonal bundles on [D]

[f ]∗O[C] =: E0, E1, ..., Ea := ι∗f∗O(E)

such that Ei differs from Ei+1 only at a single residual gerbe. Hence it is enough

to consider the case when [f ]∗O[C] differs from ι∗f∗O(E) only at a single residual

gerbe. We are going to use Corollary 2, i.e., show that the matrix which results

from comparing [f ]∗O[C] with ι∗f∗O(E) by the procedure of Proposition 1, lifts to

an element of Pinn(K{d̄}) if and only if nd=0.

Let c∈C map to d, and let c̄ be a geometric point of C which maps to c. Let e

(respectively i) be the ramification index (respectively the inertia degree) at c, let t

be the least common multiple of the ramification indices at the preimages of f(c),

and put u=t/e. After strictly localising in the lower row and replacing [C̃/G] with

a suitable étale cover, the lower right corner of Diagram (7) becomes

∏i
j=1 R[Y ]/(Y e−π)

R[Z]/(Zt−π) R

where R:=OD,d̄ and π is a uniformiser of R. The relevant part of Diagram (8)

becomes

R[Z]/(Zt−π)⊗RR[Y ]/(Y e−π) R[Z]/(Zt−π)⊗RW

∏e
j=1 R[Z]/(Zt−π)

(9)

where W is the free R-submodule of R[Y, Y −1]/(Y e−π) generated by
(
1, Y, Y −1, ..., Y (e−1)/2, Y −(e−1)/2

)
.

The trace pairing for W in terms of the indicated basis is the standard split pairing.

Hence for the rest of this section we find it convenient to use the same convention as

in the proof of Proposition 1, i.e., let Om (respectively Pinm) denote the orthogonal

group (respectively Pin group) with respect to the standard split pairing, which

once again is permissible since we are working étale locally.

Next, choose (
1, Y, Y e−1, ..., Y (e−1)/2, Y (e+1)/2

)
.
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as R[Z]/(Zt−π)-basis for the upper left corner of Diagram (9). The restriction of

the horizontal map of this diagram is given by the diagonal matrix

N =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

1

Zt

...

1

Zt

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and the restriction of the vertical map is given by

K :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 ρZ ρe−1Ze−1 ... ρ(e+1)/2Z(e+1)/2

1 ρ2Z ρ2(e−1)Ze−1 ... ρ(e+1)/2Z(e+1)/2

...
...

...
...

1 ρeZ ρe(e−1)Ze−1 ... ρe(e+1)/2Z(e+1)/2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where ρ is a primitive e-th root of unity. Finally note that the transposed matrix

K(1)T gives an orthogonal isomorphism from (R[Z]/(Zt−π))e equipped with the

trace pairing, to (R[Z]/(Zt−π))e equipped with the standard split pairing in terms

of its standard basis.

Composing, we get the block diagonal matrix

Pe :=K(1)TKN−1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

0 Z−u

Zu 0
...

0 Z− e−1
2 u

Z
e−1
2 u 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

with coefficients in the fraction field of R[Z]/(Zt−π). Hence the matrix A as in

Proposition 1 which results from the comparison of [f ]∗O[C] with ι∗f∗O(E) is
∏

{c∈C:f(c)=d}
P ic
ec .

The result then follows from Corollary 2 and Corollary 5 below. �

It only remains to state and prove the Corollary referred to in the proof of the

Theorem. First a lemma:
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Lemma 4. Let L be the fraction field of a strictly henselian ring with ρ as

uniformiser. Equip L2 with the standard split pairing. Then the orthogonal trans-

formation given by the matrix

(
0 ρ−a

ρa 0

)
(a∈Z) lifts to an element of Pin2(L) if

and only if a is even.

Proof. Note that the matrix describes the reflection in the hyperplane orthog-

onal to −e1+ρae2, and that the quadratic form takes −e1+ρae2 to −2ρa. Since a

vector of L2 on which the quadratic form is −1, when considered as an element of the

Clifford algebra, belongs to Pin2(L
2) and maps to the reflection in the hyperplane

orthogonal to the vector (cf., e.g., [2, Proposition 20.28]), the result follows. �

Now let L be the fraction field of R[Z]/(Zt−π) and note that u is an odd number.

Then:

Corollary 5. Pe is in the image of Pine(L)→Os(L) if and only if e≡1,−1

mod 8.

6. Mod 2 cohomology of orbicurves

In order to connect with Serre’s invariant, we will from now on consider the

geometric case when [D] is a smooth k-orbicurve, where k is an algebraically closed

field with p:=char k �=2. We begin by deducing the mod 2 cohomology of [D] from

the computation of the cohomology with Gm-coefficients in [8].

Proposition 6. Let [D] be a smooth k-orbicurve where all inertia groups are

prime to 2p, and let γ : [D]→D be the morphism from [D] to its moduli curve.

Then γ∗ :=Hi(γ) : Hi(D,μ2)→Hi([D], μ2) is an isomorphism of groups if i=0, 1, 2.

In particular, if [D] is proper, then H2([D], μ2)={±1}.

Proof. Case i=0. The result follows from [8, Corollary 4.15], since H0([D], μ2)=

2Γ([D],Gm) and H0(D,μ2)=2Γ(D,Gm), where 2A for an abelian group A means

its kernel under multiplication by 2.

Case i=1. The Kummer sequences for D and [D] give a commutative diagram

0 Γ(D,Gm)/2Γ(D,Gm) H1(D,μ2) 2 PicD 0

0 Γ([D],Gm)/2Γ([D],Gm) H1([D], μ2) 2 Pic[D] 0
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with exact rows. Now [8, Corollary 4.15] means that the left and right vertical ho-

momorphisms are bijective (the latter since taking 2-torsion is a left exact functor).

Hence the result.

Case i=2. The Kummer sequences on D and [D], combined with [8, Corol-

lary 4.15] yield a commutative diagram

0 0

PicD PicD H2(D,μ2) 0

Pic [D] Pic[D] H2([D], μ2) 0

0 ⊕lZ/dlZ ⊕lZ/dlZ 0

0 0

where the rows and the two first columns are exact. (Here dl is the order of an

inertia group, and the sum runs over the points of [D] with non-trivial inertia.)

The snake lemma then shows that H2(D,μ2)→H2([D], μ2) is an isomorphism. �

This, in the notation of Section 3, immediately gives the following result:

Corollary 7. w1(C/D)=ι∗ w1(E)

Proof. The Proposition says that there is an unramified double cover D̃→D

such that

[D]×D D̃�O
(
[f ]∗O[C]

)
×Onμ2.

It is then enough to see that D̃→D represents w1(E). But this follows since the

morphism of sheaves OC→O(E) gives rise to an isomorphism of μ2,V -torsors

O
(
[f ]∗O[C]

)V ×Onμ2 →O
(
f∗O(E)

)V ×Onμ2,

where V is as in Diagram (7), and V as an upper index means restriction. �
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7. Combinatorial nature of w2(C/D)

Identify [f ] : [C]→[D] with the sheaf it represents on [D]. Then

Isom[D]

(
[C], {1, 2, ..., n}[D]

)

is a right Sn-torsor if we equip it with the action (α, β) 
→β−1α. Note that

Isom[D]

(
[C], {1, 2, ..., n}[D]

)
→OrthoO[D]

(
On

[D], [f ]∗O[C]

)
, α 
−→α�

gives a morphism of sheaves which is compatible with the homomorphism Sn→On

which comes from the standard embedding of Sn in On. Let S̃n be the inverse

image of Sn under the homomorphism Pinn→On. It follows that w2(C/D) is the

image of the Sn-torsor Isom[D]([C], {1, 2, ..., n}[D]) under the second coboundary

associated to the exact sequence of sheaves of groups

1→μ2 → S̃n →Sn → 1.

Now, in the notation of Section 3, Isom[D]([C], {1, 2, ..., n}[D]) is represented by

[D]×D C̃. Hence:

Proposition 8. w2(C/D) is trivial if and only if there exists an S̃n-cover
“C→D such that “C→ “C×eSnSn is unramified, and “C×eSnSn→D is D-equivalent as

Sn-cover to C̃→D.

It follows that our w2(C/D) agrees with Serre’s w2(G, π) defined in [10, §3] (and
which we denoted wS

2 (f) in the Introduction). As Serre observed, it means that

we may calculate w2(C/D) in the following combinatorial fashion: order a fibre

of f : C→D such that the monodromy action on this fibre is given by ϕ : π1(V )→
G⊂Sn. Lift ϕ to a group homomorphism ϕ̃ : π1(V )→G̃, where G̃ is the inverse

image of G under S̃n→Sn. (This is always possible if V is non-proper, since then

π1(V ) is free.) If d belongs to the complement of V , let Id⊂π1(V ) be the inertia

group at d, as usual well-defined up to conjugation. Let εd(ϕ̃)=0 if ϕ̃(Id) is of odd

order, and εd(ϕ̃)=1 if not. Then (if D is complete and under the identification

H2(D,μ2)=Z/2)

w2(C/D)=
∑

d∈D\V
εd(ϕ̃),

which is what we referred to as the combinatorial nature of w2(C/D) in the Intro-

duction.

Acknowledgements. The author wishes to thank Ryszard Rubinsztein for help-

ful discussions, and the referee for useful pointers to the literature.
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Appendix A. Cohomology of tame Dedekind orbifolds

The present appendix intends to generalise a few well-known facts from the

étale cohomology theory of Dedekind schemes (cf., e.g., [5]), to tame Dedekind

orbifolds. Throughout we take a completely utilitarian approach: the results are

only proved in the generality needed, some arguments which translate word-for-word

from the scheme case are omitted. No new ideas are necessary; the only purpose is

to make it easier for the reader to check that everything works as expected.

Define a tame Dedekind orbifold [D] to be a Deligne-Mumford stack which is

isomorphic to a stack quotient [C/G], where G is a finite group, and C is a Dedekind

scheme with an action G×C→C such that the inertia group of the generic point is

trivial, and the wild ramification groups of each closed point is trivial as well. Note

that [D]→C/G=:D is the coarse moduli space.

Let [D] be a tame Dedekind orbifold, let i : Z↪→[D] be a closed substack, and

j : U ↪→[D] its open complement. Then there is a category equivalence

Ab
(
[D]

)
→T

(
[D]

)
, F 
−→

(
i∗F , j∗F , i∗η(j∗,j∗)(F)

)
,

where Ab([D]) is the category of abelian sheaves on the (small) étale site of [D],

T([D]) is the mapping cylinder category of the triple (Ab(Z),Ab(U), i∗j∗) (i.e., the

category where the objects are diagrams ϕ : F1→i∗j∗F2 where F1 is an object of

Ab(Z), F2 is an object of Ab(U)), and η(j∗,j∗) : idAb([D])→j∗j∗ is the counit.

From this we may deduce the existence of a right adjoint i! of i∗, a left adjoint

j! of j∗, their usual descriptions in terms of objects of T([D]), and their usual

properties (cf., e.g., [6, Chapter 2, §3]). In particular, i! is left exact and preserves

injectives.

For a point σ∈[D], let i : σ̃→[D] be its corresponding residual gerbe, and

let j : U→[D] be the open complement of the residual gerbe. Define the relative

cohomology groups as Hm
σ ([D],F):=Extm[D](i∗Z,F). There is a short exact sequence

0→ j!j
∗F →F → i∗i

∗F → 0

of abelian sheaves on [D], which gives a long exact sequence of abelian groups

...→Hi
σ

(
[D],F

)
→Hi

(
[D],F

)
→Hi(U,F)→Hi+1

σ

(
[D],F

)
→ ...

Write d for the image of σ in D, let [D]{σ} :=ÕD,d⊗D [D] where ÕD,d is the

henselisation of OD,d with respect to d, and let p be the projection to the sec-

ond factor. The usual excision result for Dedekind schemes (cf., e.g., [5, p. 535])

generalises to the following excision result for tame Dedekind orbifolds:
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Proposition 9. For any abelian sheaf F on [D], the natural homomorphism

Hm
σ

(
[D]{σ}, p

∗F
)
→Hm

σ

(
[D],F

)

is an isomorphism.

Excision will be useful, because we can compute the first three cohomology

groups of the multiplicative group on [D]{σ}:

Proposition 10.

Hm
σ

(
[D]{σ},Gm

)
=Hm−1(σ,Z)=

⎧
⎪⎨

⎪⎩

0 if m=0

Z if m=1

0 if m=2

Proof. Let K{d} be the fraction field of ÕD,d, and let j̃ : SpecK{d}→[D]{σ}
be the generic point. There is a Weil divisor exact sequence of abelian sheaves on

[D]{σ}

(10) 0→Gm → j̃∗Gm → i∗Z→ 0,

where i : σ̃→[D]{σ}. From the spectral sequence

Rpi!Rq j̃∗Gm =⇒Rp+q
(
i!j̃∗

)
Gm

and the fact that i!j̃=0, we conclude that Rqi!(j̃∗Gm)=0 for every q. Also,

Rpi!(i∗Z)=Rp
(
i!i∗

)
Z=Rp(id)Z=

{
Z if p=0

0 else

where the first equality holds since i∗ is exact and preserves injectives. From the

exact sequence (10), we get

(11) Rpi!Gm =

{
Z if p=1

0 else

Since the functor F 
→Hom[D](i∗Z,F) is equal to the composition of functors

F 
→i!F 
→Homσ(Z, i
!F) and the first of these functors preserves injectives, there is

a spectral sequence

Hp
(
σ̃, Rqi!Gm

)
=⇒Hp+q

σ

(
[D]{σ},Gm

)
.
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From (11), we see that the spectral sequence collapses, which gives the first equality

in the Proposition.

It remains to compute Hm(σ̃,Z), which is the part of the argument which

differs from the Dedekind scheme case. There exists a finite group Gd, and a local

artinian k(d)-algebra (B,m) such that σ̃=[SpecB/Gd]. From the Lyndon-Serre

spectral sequence

Hp
(
Gd,H

q(SpecB,Z)
)
=⇒Hp+q(σ̃,Z)

we get

H0(σ̃,Z)=H0
(
Gd,H

0(SpecB,Z)
)
=H0(Gd,Z)=Z

and an exact sequence

H1
(
Gd,H

0(SpecB,Z)
)
→H1(σ̃,Z)→H0

(
Gd,H

1(SpecB,Z)
)
.

Since H1(Gd,Z)=0 and H1(SpecB,Z)=H1(B/m,Z)=H1(Gal(B/m),Z)=0 (since

Gal(B/m) is a profinite group), we get the result. �

Let us return to the cohomology of [D]. The Kummer sequence gives the

exact rows, and the relative cohomology sequence yields the exact columns of the

commutative diagram

H1
σ([D],Gm) H1

σ([D],Gm) H2
σ([D], μ2) H2

σ([D],Gm)

H1([D],Gm)
δ

H2([D], μ2)

H2(U, μ2)

(12)

Excision (i.e., Proposition 9) gives that Hi
σ([D],F)=Hi

σ([D]{σ},F) for any sheaf of

abelian groups F on [D], and hence Proposition 10 shows that

(13) H1
σ

(
[D],Gm

)
=Z and H2

σ

(
[D],Gm

)
=0.

We are now able to prove the result we want:

Proposition 11. The kernel of H2([D], μ2)→H2(U, μ2) is generated by

δ(O(σ̃)), and is either trivial or of order two.
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Proof. According to (13), the upper row of Diagram (12) is

Z
×2
−−→Z→Z/2Z→ 0.

Hence the kernel of H2([D], μ2)→H2(V, μ2) is either trivial or of order two.

It then suffices to prove that the left vertical map of Diagram (12) maps the

positive generator of H1
σ([D],Gm) to O(σ). Let K be the function field of D, and

let g : SpecK→[D] be the generic point. There is a Weil divisor exact sequence

on [D]

0→Gm → g∗Gm →⊕d∈D0 i(d)∗Z→ 0,

where i(d) : σ(d)→[D] are the closed immersions of the residual gerbes. Since (10)

is the pull-back of this sequence to [D]{σ}, we get a commutative diagram

H0
σ([D]{σ}, i∗Z) H1

σ([D]{σ},Gm)

H0([D],⊕i(d)∗Z) H1([D],Gm).

Since Hk
σ([D]{σ}, j̃∗Gm)=0 for all k (argue as in the proof of Proposition 10), the

upper horizontal morphism must be an isomorphism. This gives the desired con-

clusion. �
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