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Directional Poincaré inequalities
along mixing flows

Stefan Steinerberger

Abstract. We provide a refinement of the Poincaré inequality on the torus Td: there exists

a set B⊂T
d of directions such that for every α∈B there is a cα>0 with

‖∇f‖d−1
L2(Td)

‖〈∇f, α〉‖L2(Td) ≥ cα‖f‖dL2(Td)
for all f ∈H1

`

T
d
´

with mean 0.

The derivative 〈∇f, α〉 does not detect any oscillation in directions orthogonal to α, however, for

certain α the geodesic flow in direction α is sufficiently mixing to compensate for that defect.

On the two-dimensional torus T
2 the inequality holds for α=(1,

√
2) but is not true for α=(1, e).

Similar results should hold at a great level of generality on very general domains.

1. Introduction and main result

1.1. Introduction

The classical Poincaré inequality on the torus Td states

‖∇f‖L2(Td) ≥‖f‖L2(Td)

for functions f∈H1(Td) with vanishing mean. A natural interpretation is that a

function with small derivatives cannot substantially deviate from its mean on a set

of large measure. The purpose of this paper is to derive a substantial improvement;

we first state the main result.

Theorem 1. (Directional Poincare inequality) There exists a set B⊂T
d such

that for every α∈B there is a cα>0 so that

‖∇f‖d−1
L2(Td)

∥
∥〈∇f, α〉

∥
∥
L2(Td)

≥ cα‖f‖dL2(Td)

for all f∈H1(Td) with mean 0. If d≥2, then B is uncountable but Lebesgue-null.
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Figure 1. A well-mixing flow transports (dashed) every point relatively quickly to a
neighborhood of every other point.

The exponents are optimal. The proof is simple and based on elementary

properties of Fourier series—we believe it to be of great interest to understand under

which conditions comparable inequalities exist on a general Riemannian manifold

(M, g) equipped with a suitable vector field.

On the torus, the inequality has strong ties with number theory and can be

easily derived at the cost of invoking highly nontrivial results (Schmidt’s result on

badly approximable numbers, the Khintchine theorem). One remarkable feature is

that the inequality holds for α∈B, where B is a set of Lebesgue measure 0 which

shows the inequality to be very delicate (however, as is explained below, slightly

weaker statements are very robust). A natural interpretation of the inequality seems

to be the following: given two nearby points x, y∈Td for which f(x)	f(y), the

classical Poincaré inequality will detect a large gradient between them. The term

|〈∇f, α〉| might not detect the large gradient but following the ergodic vector field

will relatively quickly lead to a neighborhood of y (see Fig. 1). A priori being in a

neighborhood might not imply much because there could be still local oscillations on

the scale of the neighborhood, however, since we also invoke a power of ‖∇f‖L2(Td),

this controls the measure of the set on which local oscillations have a strong effect.

This heuristic suggests strongly that similar inequalities should hold at a much

greater level of generality. We discuss and prove some natural variants in the last

section.

1.2. Open problems

It would be of great interest to understand to which extent such inequalities can

be true in a more general setup. It is also not clear whether comparable inequalities

hold in Lp(Td) (our proof heavily uses that p=2 but some of the methods might

generalize to even p). Generally, for suitable vector fields Y on suitable Riemannian
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manifolds (M, g) it seems natural to ask whether there exists an inequality of the

type

‖∇f‖1−δ
Lp(M)

∥
∥〈∇f, Y 〉

∥
∥
δ

Lp(M)
≥ c‖f‖Lp(M)

for some δ>0 and all f∈W 1,p(M) with mean 0. The parameter δ can be expected

to be related to the mixing properties of the flow—it is difficult to predict what the

generic behavior on a fixed manifold might be (say, for a smooth perturbation of

the flat metric on the torus). On T
2 we can rephrase the Khintchine theorem [9] as

a statement about generic behavior for the flat metric.

Theorem. (Khintchine, equivalent) For every δ<1/2, the set of α∈T2 for

which there exists a cα>0 such that

∀f ∈H1
(

T
2
)

∫

T2

f(x)dx=0 ==⇒ ‖∇f‖1−δ
L2(T2)

∥
∥〈∇f, α〉

∥
∥
δ

L2(T2)
≥ cα‖f‖L2(T2)

has full measure.

This suggests δ<1/2 as a natural threshold that might be achievable by other

two-dimensional examples—however, since the inequality is extremely delicate on

T
2, the manifolds on which the inequality holds with δ=1/2 might actually be very

rare. One would expect new topological effects to appear when considering the

sphere S
d equipped with a nontrivial vector field: the hairy ball theorem dictates

that for even d any smooth vector field vanishes somewhere and this will necessitate

a change of scaling in the inequality since a function f could be concentrated around

the point in which the vector field vanishes. Furthermore, while not every nonvan-

ishing vector field on S
3 has to have a closed orbit (i.e. Seifert’s conjecture is false),

many of them do—this puts topological restrictions on what directional Poincaré

inequalities are possible (since one could set a function to be constant along a pe-

riodic orbit and have it decay quickly away from it). However, there should be a

variety of admissible inequalities on the flat infinite cylinder (M, g)=(R×T
d−1, can)

and this could be a natural starting point for future investigations.

2. Proof of the statements

2.1. Outline of the argument

The proof of the classical Poincaré inequality on the torus is a one-line argument

if one expands in Fourier series and uses f̂(0)=
∫

Td f=0 since

‖∇f‖2L2(Td) =(2π)d
∑

k∈Zd

k �=0

|k|2|ak|2 ≥ (2π)d
∑

k∈Zd

k �=0

|ak|2 = ‖f‖2L2(Td).
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The argument also highlights the underlying convexity of the quadratic form. Our

proof will be a direct variation of that result and uses the observation that

∥
∥〈∇f, α〉

∥
∥
2

L2(Td)
=

∥
∥
∥
∥

〈
∑

k∈Zd

akke
ik·x, α

〉∥
∥
∥
∥

2

L2(Td)

=

∥
∥
∥
∥

∑

k∈Zd

ak〈k, α〉eik·x
∥
∥
∥
∥

2

L2(Td)

=(2π)d
∑

k∈Zd

|ak|2
∣
∣〈k, α〉

∣
∣
2
.

This Fourier multiplier is not uniformly bounded away from 0 and will even vanish

for certain k∈Zd if the entries of α are not linearly independent over Q. If the

entries of α are linearly independent over Q, then the Fourier multiplier is always

nonnegative but we have no quantitative control on its decay (see below for an ex-

ample). However, if we denote the Littlewood–Paley projection onto the frequencies

satisfying {k∈Zd :|k|≤N} by P≤N , then trivially

∥
∥〈∇P≤Nf, α〉

∥
∥
2

L2(Td)
≥

(

inf
k∈Zd

|k|≤N

∣
∣〈k, α〉

∣
∣
2
)

‖P≤Nf‖2L2(Td).

The term in the bracket clearly has great significance in the study of geometry of

numbers and has been studied for a long time. It suffices for us to apply the results

and use the additional ‖∇f‖L2(Td) expression to ensure that a fixed proportion of

the L2-mass is contained within a suitable ball of frequency space on which to apply

the argument.

2.2. Number theoretical properties

We now discuss subtleties of the inequality in greater detail: it is merely the

classical Poincaré inequality for d=1. Letting d=2 with α=(1, 0) yields

‖∇f‖L2(T2)‖∂xf‖L2(T2) ≥ c‖f‖2L2(T2) which is obviously false,

because f might be constant along the x-direction and vary along the y-direction.

More generally, the inequality fails for any α with entries linearly dependent over

Q and the functions sin (k1x+k2y) for any k1, k2∈Z2 with 〈(k1, k2), α〉=0 serve as

counterexamples. The next natural example is α=(
√
2, 1). Suppose f∈C∞(T) and

∥
∥
〈

∇f, (
√
2, 1)

〉∥
∥
L2(T2)

=0.
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f is constant along the flow of the vector field (
√
2, 1) but every orbit is dense and

thus f≡0. This is true for any vector with entries that are linearly independent

over Q, however, it is not enough to prove the inequality itself: it fails for (1, e) on

T
2 despite linear independence. A simple construction for d=2 shows that linear

independence of the entries of α is not enough: let

α=

(

1,
∞∑

n=1

1

10n!

)

∼ (1, 0.110001...)

where the arising number, Liouville’s constant, is irrational. If we set

fN (x, y)= sin

(

10N !

(
N∑

n=1

x

10n!
−y

))

,

then

‖fN‖2L2(T2) =2π2 and ‖∇fN‖L2(T2) ≤ 6·10N !

while

∥
∥〈∇fN , α〉

∥
∥
L2(T2)

=
√
2π2

( ∞∑

n=N+1

10N !

10n!

)

� 10−2·N ! for N ≥ 3.

2.3. An explicit example

The inequalities are not only sharp with respect to exponents, they are actually

sharp on all frequency scales. This is in stark contrast to classical Poincaré-type

inequalities which tend to be sharp for one function (the ground state of the under-

lying physical system): here, we can exclude all functions having Fourier support

in the set {ξ :|ξ|≤N} for arbitrarily large N and still find functions for which the

inequality is sharp (up to a constant). We explain this in greater detail for d=2

with the admissible direction given by the golden ratio

α=

(

1,
1+

√
5

2

)

∈B.

Consider the sequence of functions given by

fn(x, y)= sin (Fn+1x−Fny),

where Fn is the n-th Fibonacci number. An explicit computation shows that

‖∇fn‖L2(T2)

∥
∥
∥
∥
∂xfn+

1+
√
5

2
∂yfn

∥
∥
∥
∥
L2(T2)

=

√

F 2
n+1

F 2
n

+1

∣
∣
∣
∣

Fn+1

Fn
− 1+

√
5

2

∣
∣
∣
∣
F 2
n‖fn‖2L2(T2)
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A standard identity for Fibonacci numbers gives that

lim
n→∞

∣
∣
∣
∣

Fn+1

Fn
− 1+

√
5

2

∣
∣
∣
∣
F 2
n =

1√
5
,

which implies that

lim
n→∞

‖∇fn‖L2(T2)

∥
∥
∥
∥
∂xfn+

1+
√
5

2
∂yfn

∥
∥
∥
∥
L2(T2)

‖fn‖−2
L2(T2) =

√

5+
√
5

10
=

|α|√
5
.

Since these functions fn have their Fourier transform supported on 4 points in Z
2

and since Fn+1/Fn→(1+
√
5)/2<2, we can conclude that every dyadic annulus in

Fourier space contains an example for which the inequality is sharp (up to a con-

stant). Put differently, our inequality is close to being attained on every frequency

scale. This sequence of fn has the advantage of simultaneously showing that the

following statement is sharp. The proof uses a classical result of Hurwitz.

Proposition. Let d=2 and α∈T2 be any vector for which

‖∇f‖L2(T2)‖〈∇f, α〉‖L2(T2) ≥ cα‖f‖2L2(T2)

holds for all f∈H1(T2) with mean 0. Then the constant satisfies

cα ≤ |α|√
5
.

Up to certain transformation, the example above is essentially the only example

for which the inequality is tight: normalizing α=(1, β), the example shows that the

inequality is sharp for β=(1+
√
5)/2 and there are only countably many other β

for which it is sharp (these can be explicity given). For all other numbers the

upper bound could be improved to cα≤|α|/
√
8. Removing yet another countable

set of exceptional directions, we could replace
√
8 by

√
221/5 and the process could

be continued (this follows from classical results about the structure of the Markov

spectrum, see [2]).

2.4. Badly approximable systems of linear forms

We now introduce the relevant results from number theory. Let L1, ..., L� :Z
d→

R be defined as

L1(x)=α11x1+...α1dxd = 〈α1,x〉

...
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L�(x)=α�1x1+...α�dxd = 〈α�,x〉

The relevant question is whether it is possible for all � expressions to be simultane-

ously close to an integer. Using ‖·‖:R→[0, 1/2] to denote the distance to the closest

integer, the pigeonhole principle implies the existence of infinitely many x∈Zd with

max
(

‖L1(x)‖, ..., ‖L�(x)‖
)

≤
(

max(|x1|, ..., |xd|)
)− d

� .

Dirichlet’s theorem cannot be improved in the sense that there actually exist badly

approximable vectors α1, ..., α� such that for some c>0 and all x∈Zd

max
(

‖L1(x)‖, ..., ‖L�(x)‖
)

≥ c
(

max(|x1|, ..., |xd|)
)− d

� .

The existence of such elements was first shown by Perron [11]. Khintchine [9] has

shown that the �d-dimensional Lebesgue measure of such tuples (α1, ..., α�) is 0 and

Schmidt [13] has proven that their Hausdorff dimension is �d.

2.5. Proof of Theorem 1

Proof. We will prove the statement explicitly for the following set B: for any

(d−1)-dimensional badly approximable vector αd−1, consider the linear form L:

Z
d−1→R given by

L(x) := 〈αd−1,x〉

and the concatenation

α=(1, αd−1).

Recall that ‖·‖:R→[0, 1/2] denotes the distance to the closest integer and is trivially

1-periodic. Let now k∈Zd with k �=0. If k vanishes on all but the first component,

then

∣
∣〈α, k〉

∣
∣= |k1| ≥ 1.

If k does not vanish on all but the first component, then

∣
∣〈α, k〉

∣
∣ =

∣
∣k1+L

(

(k2, ..., kd)
)∣
∣≥

∥
∥L

(

(k2, ..., kd)
)∥
∥

≥ c

max(|k2|, ..., |kd−1|)d−1
≥ c

|k|d−1
,
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where c>0 is some constant which exists because αd−1 is badly approximable. Let

now

f =
∑

k∈Zd

ake
ik·x ∈H1

(

T
d
)

and note that a0=0 because f has mean value 0. We have

∥
∥〈∇f, α〉

∥
∥
2

L2(Td)
=(2π)d

∑

k∈Zd

|ak|2
∣
∣〈k, α〉

∣
∣
2 ≥ c2(2π)d

∑

k∈Zd

|ak|2
|k|2d−2

.

It is easy to see that

∑

|k|≥2
‖∇f‖

L2(Td)
‖f‖

L2(Td)

|ak|2 ≤
‖f‖2L2(Td)

2

because the opposite inequality would imply that

‖∇f‖2L2(Td) =
∑

k∈Zd

|k|2|ak|2 ≥
∑

|k|≥2
‖∇f‖

L2(Td)
‖f‖

L2(Td)

|k|2|ak|2

≥ 4
‖∇f‖2L2(Td)

‖f‖2
L2(Td)

∑

|k|≥2
‖∇f‖

L2(Td)
‖f‖

L2(Td)

|ak|2 ≥ 2‖∇f‖2L2(Td),

which is absurd. Altogether, we now have

∥
∥〈∇f, α〉

∥
∥
2

L2(Td)
≥ c2(2π)d

∑

k∈Zd

|ak|2
|k|2d−2

≥ c2(2π)d
∑

k∈Zd

|k|≤2
‖∇f‖

L2(Td)
‖f‖

L2(Td)

|ak|2
|k|2d−2

≥ c2(2π)d

22d−2

‖f‖2d−2
L2(Td)

‖∇f‖2d−2
L2(Td)

∑

|k|≤2
‖∇f‖

L2(Td)
‖f‖

L2(Td)

|ak|2

≥ c2(2π)d

22d−2

‖f‖2d−2
L2(Td)

‖∇f‖2d−2
L2(Td)

‖f‖2L2(Td)

2
.

Rearranging gives the result. �

We remark that a classical insight of Liouville allows to give a completely self-

contained proof in the most elementary case. If we pick α=(
√
2, 1), then the only
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information required to make the above argument work is the existence of a c>0

such that

∣
∣〈k, α〉

∣
∣= |k1

√
2+k2| ≥

c

|k| for all k=(k1, k2)∈Z
2.

However, this follows at once with c=1/3 from

1≤
∣
∣2k21−k22

∣
∣=

∣
∣(
√
2k1−k2)(

√
2k1+k2)

∣
∣≤ 3|k|

∣
∣(
√
2k1+k2)

∣
∣.

A similar argument works for any (1, α) with α algebraic over Q (Liouville’s theo-

rem). More generally, a classical characterization of badly approximable numbers

in one dimension as those numbers with a bounded continued fraction expansion

implies that our proof works for

α=(1, β)∈R
2

if β has a bounded continued fraction expansion. A theorem of Lagrange (see e.g.

[8]) implies that this is always the case if β is a quadratic irrational. Moreover,

this characterization is sharp on T
2: if β has an unbounded continued fraction

expansion, then the inequality is not true for (1, β) and the sequence

fn(x)= e2πikn·x

with kn= (numerator, – denominator) of rational approximations of β coming from

the continued fraction expansion will serve as a counterexample. A very interesting

special case is Euler’s continued fraction formula for e (see, e.g. [7]), which implies

that e has an unbounded continued fraction expansion and that the inequality with

α=(1, e) fails on T
2.

2.6. Proof of the Proposition

Proof. The direction α has to have both entries different from 0. We use a

classical result of Hurwitz [4] which guarantees the existence of infinitely many

k=(k1, k2)∈Z2 with

∣
∣
∣
∣

α1

α2
− k1
k2

∣
∣
∣
∣
≤ 1√

5k22
.

For any such (k1, k2), this can be rewritten as

|α1k2−α2k1| ≤
|α2|√
5|k2|

.
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We now consider f(x)=e2πik·x. Simple computation yields

‖∇f‖L2(T2)

∥
∥〈∇f, α〉

∥
∥
L2(T2)

≤ 1√
5

|α2||k|
|k2|

‖f‖2L2(T2).

However, as |k|→∞, we have that k1/k2→α1/α2 and thus

|α2||k|
|k2|

= |α2|

√

k21
k22

+1−→ |α2|

√

α2
1

α2
2

+1= |α|. �

The constant in the result of Hurwitz is sharp for the golden ratio α=α1/α2=

(1+
√
5)/2=φ. Moreover, it is known (see e.g. [1]) that for every

α∈R\Q which is not of the form
aφ+b

cφ+d
a, b, c, d∈Z |ad−bc|=1,

the constant
√
5 could be replaced by

√
8. Our example showing the sharpness of

the Proposition using Fibonacci numbers was therefore, in some sense, best possible.

2.7. Fractional derivatives

As is obvious from the proof, fine properties of the derivative did not play a

prominent role, indeed, the proof really only requires an understanding of how fast

the induced Fourier multiplier grows. This allows for various immediate generaliza-

tions. We introduce pseudodifferential operators P (D) on Hs(Td) via

P (D)
∑

k∈Zd

ake
ik·x :=

∑

k∈Zd

akP (k)eik·x.

Our proof can always be applied if |P (k)|→∞ if |k|→∞. One example on T
2 would

be that for α∈B and all s>0

∥
∥∇sf

∥
∥

1
s

L2(T2)

∥
∥〈∇f, αi〉

∥
∥
L2(T2)

≥ cα‖f‖
1+ 1

s

L2(T2)

which is again sharp by the same reasoning as above. The following variant was

proposed by Raphy Coifman: if we define

Ds
∑

k∈Zd

ake
ik·x :=

∑

k∈Zd

akk|k|s−1eik·x,

then the d-th derivative along the flow is large

∥
∥
〈

Ddf, α
〉∥
∥
L2(Td)

≥ cα‖f‖L2(Td).
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2.8. Several ergodic directions

We can also derive a statement for more than one ergodic direction. The same

heuristics as above still apply: the main difference is that incorporating a control

in more than one ergodic direction poses additional restrictions and requires less

global control in the sense that a proportionately smaller power of ‖∇f‖L2(Td) is

necessary.

Theorem 2. Let 1≤�≤d−1. Then there exists a set B�∈(Td)� such that for

every (α1, α2, ..., α�)∈B� there is a cα>0 with

‖∇f‖d−1
L2(Td)

(
�∑

i=1

∥
∥〈∇f, αi〉

∥
∥
L2(Td)

)�

≥ cα‖f‖d−1+�
L2(Td)

for all f∈H1(Td) with mean 0.

Proof. We consider �≤d−1 vectors β1, β2, ..., β� from T
d−1 with � associated

linear forms Li :Z
d−1→R via Li=〈βi,x〉 such that they form a system of badly

approximable linear forms and set

α1 =(1, β1)

...

α� =(1, β�)

The same reasoning as before (distinguishing between k vanishing outside of the

first component or not) implies again for every single 1≤i≤�

∣
∣〈αi, k〉

∣
∣=

∣
∣k1+Li

(

(k2, ..., kd)
)∣
∣≥

∥
∥Li

(

(k2, ..., kd)
)∥
∥

from which we derive that whenever k is not concentrated on the first component

�∑

i=1

∣
∣〈αi, k〉

∣
∣≥max

(∥
∥L1(k)

∥
∥, ...,

∥
∥L�(k)

∥
∥
)

≥ c
(

max(|k2|, ..., |kd|)
)− d−1

� .

If k is concentrated on the first component, we get a bound of �, which is much

larger. For

f =
∑

k∈Zd

k �=0

ake
ik·x
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a simple computation shows that

�∑

i=1

∥
∥〈∇f, αi〉

∥
∥
2

L2(Td)
=(2π)d

∑

k∈Zd

|ak|2
(

�∑

i=1

∣
∣〈k, αi〉

∣
∣
2

)

≥ c2
∑

k∈Zd

|ak|2
(

max(|k1|, ..., |kd|)
)− 2(d−1)

�

≥ c2
∑

k∈Zd

|ak|2|k|−
2(d−1)

� .

The rest of the argument proceeds as before; finally, we recall that any two norms

in finite-dimensional vector spaces are equivalent and thus, up to some absolute

constants depending only on �,

(
�∑

i=1

∥
∥〈∇f, αi〉

∥
∥
L2(Td)

)�

∼�

(
�∑

i=1

∥
∥〈∇f, αi〉

∥
∥
2

L2(Td)

) �
2

and the result follows. �

2.9. The Hausdorff dimension

As is obvious from the proof, we are not so much interest in the distance to the

lattice but care more about the distance to the origin. It seems that there is ongoing

research in that direction [3], [5] and [6], which is concerned with establishing bounds

on the dimension of the set

max
(∣
∣L1(x)

∣
∣, ...,

∣
∣L�(x)

∣
∣
)

≥ c
(

max(|x1|, ..., |xd|)
)− d

� +1
,

where |·| is the absolute value on R. For any such system of linear forms given by

α1, ..., α� satisfying that inequality, we can improve Theorem 2 with the same proof

to

‖∇f‖d−�
L2(Td)

(
�∑

i=1

∥
∥〈∇f, αi〉

∥
∥
L2(Td)

)�

≥ cα‖f‖dL2(Td)

for all f∈H1(Td) with mean 0. We also remark the following simple proposition

(the essence of which is contained in [5]).
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Proposition. Let d≥2. α∈Rd is admissible in Theorem 1 if and only if there

exists λ∈R such that

α=(λ, λβ)

and β is badly approximable linear form in R
d−1.

Using the result of Schmidt [13], we see that the Hausdorff dimension of the

set of badly approximable vectors in R
d−1 is d−1 and the construction increases

the dimension by 1. The Hausdorff dimension of the set of admissible vectors in

Theorem 1 is therefore d. The argument is indirectly contained in the earlier proofs.

2.10. Variants

This subsection is concerned with inequalities of the type

‖∇f‖1−δ
L2(T2)

∥
∥〈∇f, α〉

∥
∥
δ

L2(T2)
≥ c‖f‖L2(T2)

for some 0<δ≤1/2. The case δ=1/2 was discussed above and following the same

arguments immediately imply that δ>1/2 is impossible. However, the threshold

δ=1/2 is also sharp.

Theorem. (Khintchine) For every δ<1/2, the set of α∈T2 for which there

exists a cα>0 such that

‖∇f‖1−δ
L2(T2)

∥
∥〈∇f, α〉

∥
∥
δ

L2(T2)
≥ c‖f‖L2(T2)

holds for all f∈L2(T2) with mean 0 has full measure.

Another celebrated result in Diophantine approximation is the Thue–Siegel–

Roth theorem stating that for every irrational algebraic number α and every ε>0

we have
∣
∣
∣
∣
α− p

q

∣
∣
∣
∣
≥ cα

q2+ε

for some cα>0. This immediately implies, along the same lines as above, that for

every vector of the form α=(1, β) with β being an irrational algebraic number and

every ε>0

‖∇f‖1/2+ε
L2(T2)

∥
∥〈∇f, α〉

∥
∥
1/2−ε

L2(T2)
≥ cα,ε‖f‖L2(T2).
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Recall that the inequality does probably not hold for α=(1, π) because π is probably

not badly approximable. However, there are weaker positive results. A result of

Salikhov [12] implies the existence of a c>0 such that
∣
∣
∣
∣
π− p

q

∣
∣
∣
∣
≥ c

q8
.

Repeating again the same argument as above, we can use this to derive

‖∇f‖7/8L2(T2)

∥
∥
〈

∇f, (1, π)
〉∥
∥
1/8

L2(T2)
≥ c‖f‖L2(T2).

Similarly, a result of Marcovecchio [10] shows

‖∇f‖13/18L2(T2)

∥
∥
〈

∇f, (1, log 2)
〉∥
∥
5/18

L2(T2)
≥ c‖f‖L2(T2)

and similar results are available for other numbers (i.e. π2, log 3, ζ(3), ...).
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