ARKIV FÖR MATEMATIK Band 1 nr 2

On a class of orthogonal series

By H. Bohman

1. Let $\left\{\varphi_{n}(x)\right\}$ denote a normalized orthogonal system, defined in the interval (a, b) and belonging to the class L^{2}. The famous theorem of RademacherMenchoff [I: 162] tells us that

$$
\sum_{n=1}^{\infty} a_{n} \varphi_{n}(x)
$$

is convergent almost everywhere in (a, b) if

$$
\sum_{n=1}^{\infty} a_{n}^{2}(\log n)^{2}<\infty
$$

Conversely, if $\Sigma a_{n}^{\prime \prime}(\log n)^{2}=\infty$ then it is possible to find a system $\left\{\varphi_{n}\right\}$ for which $\sum a_{n} \varphi_{n}$ is divergent almost everywhere.

In order that

$$
\sum_{n=1}^{\infty} a_{n}^{g}<\infty
$$

should be a sufficient condition for the convergence aimost everywhere of the series it will thus be necessary to specialize the orthogonal system. Kolmogoroff has found that if $\left\{\varphi_{n}\right\}$ is a system of independent random variables, then $\Sigma a_{n}^{2}<\infty$ is a necessary and sufficient condition for the convergence almost everywhere of the series. The object of the following paper is to generalize slightly this result of Koimogoroff.
2. In dealing with questions of this kind, the theory of the torus space seems to be very useful. Following Jessen, who made the first systematic study of this space, we denote it by Q_{ω}.
Q_{ω} is an ω-dimensional vector space, consisting of all infinite sequences of real numbers $\xi=\left(x_{1}, x_{2}, \ldots, x_{n}, \ldots\right)$ where $0 \leq x_{n}<1$ for $n=1,2, \ldots$ The subspace Q_{n} consists of the points $\xi_{n}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. In the same way $Q_{n, \omega}$ consists of the points $\xi_{n, \omega}=\left(x_{n+1}, x_{n+2}, \ldots.\right)$. We may then consider Q_{ω} as the product space $Q_{\omega}=\left(Q_{n}, Q_{n}, \ldots\right)$. In accordance with this notation we may write $\xi=\left(\xi_{n}, \xi_{n, \omega}\right)$.

The following two theorems of Jessen are fundamental for the theory.

H. BOHmaN, On a class of orthogonal series

If $f(\xi)$ is an integrable function in Q_{ω} then

$$
\begin{equation*}
\int_{Q_{\omega}} f(\xi) d \xi=\lim _{n \rightarrow \infty} \int_{Q_{n}} f(\xi) d \xi_{n}=\lim _{n \rightarrow \infty} \int_{0}^{1} d x_{n} \int_{0}^{1} d x_{n-1} \ldots \int_{0}^{1} f(\xi) d x_{1} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{Q_{n, \omega}} f(\xi) d \xi_{n, \omega}=f(\xi) \text { almost everywhere. } \tag{2.2}
\end{equation*}
$$

3. It is easily seen that an enumerable set of independent random variables may be represented in Q_{ω} as a system of real functions with the following property.

If $f_{n}(\xi)$ for $n=1,2, \ldots$ denotes a random variable then $f_{n}(\xi)=f_{n}\left(x_{n}\right)$, i. e. for each $n f_{n}(\xi)$ depends only on x_{n}.

Having noticed this fact we can state Kolmogoroff's theorem in the following form.

Let $\left\{\varphi_{n}(\xi)\right\}$ denote a normalized orthogonal system in Q_{c}, and suppose that $\varphi_{n}(\xi)=\varphi_{n}\left(x_{n}\right)$ for each n [III: 141]. Then the series

$$
\sum_{n=1}^{\infty} a_{n} \varphi_{n}\left(x_{n}\right)
$$

converges almost everywhere in Q_{ω} if $\Sigma a_{n}^{2}<\infty$ but diverges almost everywhere if $\Sigma a_{n}^{\mathscr{v}}=\infty$.

The first part of this theorem may be proved as follows.
By the Riesz-Fischer theorem the partial sums

$$
\sum_{n=1}^{N} a_{n} \varphi_{n}\left(x_{n}\right)
$$

converge in mean to a function $\varphi(\xi)$.
By theorem (2.1) [II: 286]

$$
\int_{Q_{N, \omega}} \varphi(\xi) d \xi_{N, \omega}=\sum_{n=1}^{N} a_{n} \varphi_{n}\left(x_{n}\right)
$$

and hence by theorem (2.2)

$$
\lim _{N \rightarrow \infty} \sum_{n=1}^{N} a_{n} \varphi_{n}\left(x_{n}\right)=\varphi(\xi) \text { almost everywhere. }
$$

Well-known examples of orthogonal systems of this type are
a) Rademacher's system $\left\{r_{n}(\xi)\right\}$; [I: 42], where $r_{n}(\xi)=\left\{\begin{aligned}+1 & \text { if } 0<x_{n}<\frac{1}{2} \\ 0 & \text { if } x_{n}=0 \text { or } \frac{1}{2} \\ -1 & \text { if } \frac{1}{2}<x_{n}<\frac{1}{1}\end{aligned}\right.$
b) The system $\left\{\theta_{n}(\xi)\right\}$, [I: 134], where $\theta_{n}(\xi)=e^{2 \pi i x_{n}}$.
4. Let $\left\{\varphi_{n}\left(x_{n}\right)\right\}$ be a normalized orthogonal system of the type just mentioned.

We will now define a new system of functions $\left\{\psi_{n}(\xi)\right\}$ in the following way. Let

$$
n=\varepsilon_{1}+\varepsilon_{2} 2+\varepsilon_{3} 2^{2}+\cdots
$$

be the expression for n in the dyad scale. If ε_{v} is 1 for $\nu=\nu_{1}, \nu_{2}, \ldots \nu_{k}$ and 0 otherwise, we denote by $\psi_{n}(\xi)$ the product

$$
\varphi_{v_{1}} \cdot \varphi_{r_{2}} \cdot \varphi_{v_{3}} \cdots \varphi_{\tau_{k}}
$$

By virtue of Fubini's theorem

$$
\int_{Q_{0}} \psi_{n}^{2}(\xi) d \xi=\int_{0}^{1} \varphi_{v_{1}}^{\frac{2}{2}} d x_{v_{1}} \int_{0}^{1} \varphi_{r_{2}}^{\psi} d x_{r_{2}} \cdots \int_{0}^{1} \varphi_{r_{k}}^{2} d x_{r_{k}}=1
$$

and hence $\left\{\psi_{n}(\xi)\right\}$ is normalized. It is also orthogonal. For

$$
\int_{Q_{\omega}} \psi_{n}(\xi) \cdot \psi_{m}(\xi) d \xi
$$

may be expressed similarly as a product of integrals, one of which, at least, is of the form

$$
\int_{0}^{1} \varphi_{k} d x_{k}=0
$$

Starting for example with Rademacher's system $\left\{r_{n}\right\}$, [I: 132], we obtain a system $\left\{\psi_{n}\right\}$, which is easily identified with Wacsu's system.
5. In this and the following sections we will deduce some theorems concerning real orthogonal systems of the type $\left\{\psi_{n}\right\}$.
5.1. We define the distribution function for a measurable function $\varphi(x)$ as

$$
\boldsymbol{F}(t)=m E(p(x) \leq t)
$$

Suppose that the distribution function of each φ_{n} is continuous. Then $\Sigma a_{n} \psi_{n}$ is either convergent almost everywhere or divergent almost everywhere.

To prove this theorem, we make the following purely formal decomposition of the series

$$
\begin{aligned}
S=\sum_{n=1}^{\infty} a_{n} \psi_{n}=\sum_{n=0}^{\infty} a_{2 n+1} \psi_{2 n+1} & +\sum_{n=1}^{\infty} a_{2 n} \psi_{2 n}= \\
= & \varphi_{1}\left(x_{1}\right) \sum_{n=0}^{\infty} a_{2 n+1} \psi_{2 n}+\sum_{n=1}^{\infty} a_{2 n} \psi_{2 n}=\varphi_{1} \cdot S_{1}+S_{2}
\end{aligned}
$$

where S_{1} and S_{2} are independent of x_{1}.

н. bohman, On a class of orthogonal series

If S and S_{2} are convergent, then S_{1} is convergent. If S is convergent but S_{2} divergent, then S_{1} is divergent. If α and β were two different values of φ_{1} for which the latter case would occur, then $(\alpha-\beta) S_{1}$ would be convergent, contrary to the hypothesis. Consequently, for each $\xi_{1, \omega}$ there is at most one such value α. According to our assumption the distribution function of φ_{1} is continuous; hence $m E\left(\varphi_{1}=a\right)=0$.

We can therefore state: If S is convergent in a set E, both S_{1} and S_{2} are convergent almost everywhere in E. This may also be expressed in the following way: The measure of E is independent of $x_{1} . S_{1}$ and S_{2} are, however, orthogonal series of the same type as S. The argument may be applied once again; $m E$ is independent of x_{2}. We proceed in that way and obtain:

For each $n, m E$ is independent of $x_{1}, x_{2}, \ldots x_{n}$. By an important lemma of Jessen $m E$ is then either 0 or 1 [II: 270].
5.2. Consider again a system of the type $\left\{\varphi_{n}\right\}$.

As coefficients for the series we choose a system of functions $\left\{f_{n}\right\}$, belonging to L^{2} and with the property

$$
f_{n}=f_{n}\left(x_{1}, x_{2}, \ldots, x_{n-1}\right) \text { for every } n
$$

Let S_{v} for $\nu=1,2, \ldots$ denote the partial sums

$$
f_{1} \varphi_{1}+f_{2} \varphi_{2} \div \cdots+f_{v} \varphi_{v}
$$

and E_{N} the set where

$$
\text { bound }\left\{\left|S_{1}\right|,\left|S_{2}\right|, \ldots,\left|S_{N}\right|\right\}>\varepsilon
$$

then

$$
m E_{N}<\frac{\sum_{r=1}^{N} \int_{Q_{10}} f_{i}^{\prime} d \xi}{\varepsilon^{2}} .
$$

To prove this, let B_{n} be the set where $\left|S_{n}\right|>\varepsilon$ and B_{n}^{*} the complementary set of B_{n}. We may evidently write [II: 275 , III: 141]
$E_{N}=B_{1}+B_{2} B_{1}^{*}+B_{3} B_{2}^{*} B_{1}^{*}+\cdots+B_{N} B_{N-1}^{*} B_{N-2}^{*} \cdots B_{1}^{*}=A_{1}+A_{2}+A_{3}+\cdots+A_{N}$.
According to our hypothesis A_{n} is for every n a cylinderset in Q_{ω} with its base in Q_{n}.

$$
\varepsilon^{2} \cdot m A_{n}<\int_{A_{n}} S_{n}^{2} d \xi \leq \int_{A_{n}} S_{n}^{v} d \xi+\int_{A_{n}}\left(S_{N}-S_{n}\right)^{2} d \xi=\int_{A_{n}} S_{N}^{v} d \xi .
$$

Adding these relations for $n=1,2, \ldots, N$, we get

$$
\varepsilon^{2} \cdot m E_{N}<\int_{E_{N}} S_{N}^{*} d \xi \leq \int_{Q_{\omega}} S_{N}^{w_{N}} d \xi=\sum_{v=1}^{N} \int_{Q_{W},} f_{1}^{2} d \xi
$$

The inequality is thus proved. The method of proof also gives the following extension.

Let g be a function of the variables

$$
x_{N+1}, x_{N+2}, \ldots \text { only, i. e. } g=g\left(x_{N+1}, x_{N+2}, \ldots\right)
$$

and let E_{N} be the set where
then

$$
\text { bound }\left\{\left|g S_{1}\right|,\left|g S_{2}\right|, \ldots,\left|g S_{N}\right|\right\}>\varepsilon
$$

$$
m E_{N}<\int_{Q_{\omega}} g^{2} d \xi \frac{\sum_{v=1}^{V} \int_{Q_{0}} f_{v}^{2} d \xi}{\varepsilon^{2}}
$$

5.3. We return to series of the type $\Sigma a_{n} \psi_{n}$ and denote their partial sums by σ_{N}, i. e.

$$
\sigma_{N}=\sum_{v=0}^{N} a_{v} \psi_{v}
$$

It is easily seen that the subsequence $\sigma_{2^{n}}$ is convergent almost everywhere, if $\sum a_{v}^{2}<\infty$.

Since σ_{N} converges in mean to a function σ and

$$
\int_{Q_{N, \omega}} \sigma d \xi=\sigma_{2^{N}}
$$

we have by Jessen's theorem (2.2)

$$
\lim \sigma_{2^{N}}=\sigma \text { almost everywhere. }
$$

6. We will now denote a function ψ by $\psi^{(b)}$ if it has k factors. We then divide the system $\left\{\psi_{n}\right\}$ into partial systems

$$
\left\{\psi_{n}^{(k)}\right\} \quad k=1,2,3, \ldots
$$

In each partial system the indices of the functions are changed, while the mutual order is kept unaltered.

We can now deduce the following theorem.
If $\Sigma a_{n}^{2}<\infty$, then the series

$$
\sum_{n=1}^{\infty} a_{n} \psi_{n}^{(k)}
$$

is convergent almost everywhere for every k.
This can be proved by induction. For $k=1$ the theorem holds true, and moreover we have the following inequality (cf. 5.2)

H. bohman, On a class of orthogonal series

Suppose that the theorem holds for k and that

$$
m E\left\{\underset{\substack{\operatorname{bound}}}{1 \leq v \leq N}\left|\left|S_{v}^{(k)}\right|\right\}>k \varepsilon\right\}<\frac{k}{\varepsilon^{2}} \sum_{v=1}^{N} a_{v}^{2} .
$$

Under these assumptions we can prove the theorem for $k+1$.
By using the same method of proof as in 5.3 it is easily seen that the sequence $S_{(k+1+v}^{(k+1)}$ is convergent almost everywhere, when v runs through $0,1,2, \ldots$ and $\binom{k+1+\nu}{v}=\frac{(k+1+\nu)!}{(k+1)!\nu!}$.

For $\binom{k+1+\nu}{\nu}<n \leq\binom{ k+2+\nu}{v+1}$ the functions $S_{n}^{(k+1)}-S_{\binom{k+1+v}{v+1)}}$ are of the form

$$
\varphi_{k+2+v} \sum_{k=1}^{n-\binom{k+1+v}{v}} a_{(\underset{v}{k+1+v})+\mu} \cdot \psi_{\mu}^{(k)}
$$

The upper bound for these $\binom{k+1+\nu}{\nu+1}$ functions is greater than $k \varepsilon$ in a set E_{v}. The characteristic function of E_{v} is denoted by $f\left(E_{v}\right)$

$$
m E_{v}=\int_{Q_{\omega}} f\left(E_{v}\right) d \xi=\int_{0}^{1} d x_{k+2+v} \int_{\left(Q_{k+1+v},\right)} f\left(E_{k+2+v, v)}\right) d x_{1} d x_{2} \cdots d x_{k+1+v} d x_{k+3+v} \cdots .
$$

According to our assumptions the second integral is less than
and hence

$$
\varphi_{k+v+2}^{2} \frac{k}{\varepsilon^{2}} \sum_{\mu=1}^{\binom{k+1+v}{v+1}} a_{(\underset{v}{k+1+v})+\mu}^{2}
$$

$$
\left.m E_{v}<\frac{k}{\varepsilon^{2}} \sum_{\mu=1}^{\substack{k+1+v \\ v+1}} a_{\binom{k+1+v}{\nu}+\mu}^{1} \varphi_{0}^{2} \varphi_{\bar{k}+2+v} d x_{k+2+v}=\frac{k}{\varepsilon^{2}} \sum_{l=1}^{\binom{k+1+v}{v+1}} a_{(k+1+v}^{v}\right)+\mu
$$

$\sum_{v} m E_{v}$ is thus convergent; hence $m \bar{E}=m \lim \sup E_{v}=0$.
Choosing $\nu(n)$ so that

$$
\binom{k+1+\nu(n)}{\nu(n)}<n \leq\binom{ k+2+\nu(n)}{v(n)+1}
$$

we get

$$
\limsup _{n \rightarrow \infty}\left|S_{n}^{(k+1)}-S_{\left.\binom{(k+1+v i n)}{v i n)} \right\rvert\,<k \varepsilon \text { almost everywhere. } . ~ . ~}^{(k+1)}\right|
$$

ε is arbitrarily small, and hence

$$
\lim _{n \rightarrow \infty} S_{n}^{(k+1)}=\lim _{v \rightarrow \infty} S_{\binom{k+1+v}{(k+1)} \text { almost everywhere } . ~}^{\text {. }}
$$

To prove the inequality for $k+1$, observe that the above proof gives the following relation.

Let E_{1} be the set where

$$
\overline{\mathrm{bound}}\left\{\left|S_{n}^{(k+1)}-S_{\left(\begin{array}{c}
k+1+(n) \\
v(n)
\end{array}\right.}^{(k+1)}\right|\right\}>\varepsilon
$$

then

$$
m E_{1}<\frac{k}{\varepsilon^{2}} \sum_{v=1}^{N} a_{v}^{2}
$$

Next we have
i. e. the sequence

$$
S_{\binom{k+1+v}{v}}^{(k+1)}, \quad \nu=0,1,2, \ldots
$$

is of the same type as the sequence S_{v}, studied in 5.2.
Let ν_{0} be the smallest integer for which

$$
\binom{k+2+v_{0}}{v_{0}+1}>N
$$

and E_{2} the set where

$$
\overline{\operatorname{bound}}\left\{\left|S_{\substack{(k+1) \\ k+1+v \\ v}}^{(k+1)}\right|\right\}>\varepsilon
$$

then, using theorem 5.2 , we get

$$
m E_{2}<\frac{1}{\varepsilon^{2}} \sum_{\sum_{i=1}}^{\substack{k+1+\nu_{0} \\ v_{0}}} a_{v}^{2} \leq \frac{1}{\varepsilon^{2}} \sum_{v=1}^{N} a_{v}^{2}
$$

From these relations we obtain the desired result

$$
m E\left\{\overline{\mathrm{bound}}\left\{\left|\leq S_{n}^{(k+1)}\right|\right\}>(k+1) \varepsilon\right\}<\frac{k+1}{\varepsilon^{2}} \sum_{v=1}^{N} a_{v}^{2}
$$

REFERENCES. [I] Kaczmarz \& Steinhaus: Theorie der Orthogonalreihen. Warszawa 1935. - [II] Jessen: The theory of integration in a space of an infinite number of dimensions. Acta mathematica 63 (1934). - [III] Lévy: Théorie de l'addition des variables aléatoires. Paris 1937.

