ARKIV FÖR MATEMATIK Band 1 nr 9

Integration of Fokker-Planck's equation in a compact Riemannian space

By Kôsaku Yosida

1. The result. Let R be an n-dimensional compact Riemannian space with the metric $d s^{2}=g_{i j}(x) d x^{i} d x^{i}$, and consider a temporally homogeneous Markoff process on R for which $P(t, x, y), t>0$, is the transition probability that the point x be transferred to y after the elapse of t units of time. We assume that $P(t, x, y)$ is continuous in (t, x, y) and hence satisfies Smoluchovskr's equation

$$
\begin{equation*}
P(t+s, x, y)=\int_{R} P(t, x, z) P(s, z, y) d z \quad(t, s>0), \tag{1.1}
\end{equation*}
$$

where the volume measure

$$
d z=\sqrt{g(z)} d z^{1} \ldots d z^{n}, \quad g(z)=\operatorname{det}\left[g_{i j}(z)\right],
$$

and the probability hypothesis

$$
\begin{equation*}
P(t, x, y) \geqq 0, \quad \int_{R} P(t, x, y) d y=1 \tag{1.2}
\end{equation*}
$$

The "continuity" of the transition process $P(t, x, y)$ may be defined as follows. ${ }^{1}$ Let $L^{1}(R)$ be the Banach space of functions $f(x)$ integrable with respect to $d x$ over R. There exist functions $f(x)$ dense in $L^{1}(R)$ for which the so called Fоккеr-Рlanck equation holds:
(1.3) $\frac{\partial}{\partial t} f(t, x)=A \cdot f(t, x)(t \geqq 0)$,

$$
\begin{aligned}
& f(t, x)=\int_{R} f(y) P(t, y, x) d y(t>0), \\
& f(0, x)=f(x),
\end{aligned}
$$

where the operator A is defined by

[^0]\[

$$
\begin{align*}
&(A f)(x)=\frac{1}{\sqrt{g(x)}} \frac{\partial}{\partial x^{i}}\left[-\sqrt{g(x)} a^{i}(x) f(x)\right]+ \tag{1.4}\\
&+\frac{1}{\sqrt{g(x)}} \frac{\partial^{2}}{\partial x^{i} \partial x^{j}}\left[\sqrt{g(x)} b^{i j}(x) f(x)\right]
\end{align*}
$$
\]

with a positive definite quadratic form $b^{i j}(x) \xi_{i} \xi_{j}$.
The purpose of the present note is to show that, under certain continuity assumptions on $a(x)$ and $b(x)$, we may integrate (1.3) in the following manner: there exists one and only one one-parameter semi-group $\left\{U_{t}\right\}, 0 \leqq t<\infty$, of linear operators on $L^{1}(R)$ to $L^{1}(R)$ such that:
$U_{t} U_{s}=U_{t+s} \quad(t, s \geqq 0), U_{0}=I=$ the identity;
(1.6) $\underset{t \rightarrow t_{j}}{\text { strong }} \lim U_{t} f=U_{t_{s}} f$ for $f \in L^{1}(R)$;
$\underset{\delta \rightarrow 0}{\text { strong } \lim } \frac{1}{\delta}\left[U_{t+\delta}-U_{t}\right] f=\tilde{A} U_{t} f$ for f in a dense set in $L^{1}(R), \tilde{A}$ denoting the closed extension of the operator A;
if $f(x) \in L^{1}(R)$ is non-negative, then $f(t, x)=\left(U_{t} f\right)(x)$ is also non-negative and $\left\|U_{t} f\right\|_{1}=\int_{R}|f(t, x)| d x=\int_{R}|f(x)| d x=\|f\|_{1}$ (U_{t} may be called a transition operator on $L^{1}(R)$ to $L^{1}(R)$.

The method of proof is based upon the theory of semi-groups of linear operators due to E. HILle ${ }^{1}$ and the author ${ }^{2}$ according to which the operator U_{t} satisfying (1.5)-(1.7) is unique and may be given by

$$
\begin{align*}
&\left.\left.U_{t} t=\underset{n \rightarrow \infty}{\operatorname{strong} \lim \exp [t \tilde{A}(I}-n^{-1} \tilde{A}\right)^{-1}\right] t= \tag{1.9}\\
&=\underset{n \rightarrow \infty}{\operatorname{strong}} \lim \exp \left[\operatorname{tn}\left(I-n^{-1} \tilde{A}\right)^{-1}-I\right] t
\end{align*}
$$

if $I_{n}=\left(I-n^{-1} \tilde{A}\right)^{-1}$ exists and is of norm $\left.\leqq 1(n=1,2, \ldots)\right)^{3}$ The condition (1.8) is implied by the fact that the I_{n} are transition operators since

$$
\exp \left(t A I_{n}\right) f=\exp \left[n t\left(I_{n}-I\right)\right] f=\exp (-n t) \exp \left(n t I_{n}\right) f
$$

These results may be considered as an extension of the case in which R is the surface of the three-sphere. ${ }^{4}$

[^1]2. Hypotheses and proof. The operator A may be written as
\[

$$
\begin{equation*}
(A f)(x)=\frac{1}{\sqrt{g(x)}} \frac{\partial}{\partial x^{i}}\left[\sqrt{g(x)} b^{i j}(x) \frac{\partial f}{\partial x^{j}}\right]+c^{i}(x) \frac{\partial f}{\partial x^{i}}+e(x) f(x) \tag{2.1}
\end{equation*}
$$

\]

We assume that
(2.2) $g(x), b(x)$ and their first derivatives, $c(x)$ and $e(x)$ are all continuous in R;
(2.3) $\quad b^{i j}(x) \xi_{i} \xi_{j} \geqq \alpha^{-1} \sum_{i} \xi_{i}^{2}$ with a positive constant α.

Then the formally self-adjoint operator

$$
\begin{equation*}
H=\frac{1}{\sqrt{g(x)}} \frac{\partial}{\partial x^{i}}\left[\sqrt{g(x)} b^{i j}(x) \frac{\partial}{\partial x^{j}}\right] \tag{2.4}
\end{equation*}
$$

has a hypermaximal extension \tilde{H} and, since R is without boundary,

$$
\begin{equation*}
(H f, f)=-\int_{\boldsymbol{R}} b^{i j}(x) \frac{\partial f}{\partial x^{i}} \frac{\partial f}{\partial x^{j}} d x \leqq 0 \tag{2.5}
\end{equation*}
$$

Our process of integration may be carried out in two steps.
The first step: I_{n} exists as an operator on $L^{2}(R)$ to $L^{2}(R)$ for large n. Proof. Since H satisfies (2.5), $\left(I-n^{-1} \tilde{H}\right)^{-1}$ exists with the norm

$$
\left\|\left(I-n^{-1} \tilde{H}\right)^{-1}\right\|_{2} \leqq 1
$$

as operator on $L^{2}(R)$ to $L^{2}(R)(n=1,2,3, \ldots)$. Hence the range

$$
\left\{h ; h=\left(I-n^{-1} H\right) f, f \in \text { domain } D(H) \text { of } H\right\}
$$

is dense in $L^{2}(R)$. When $h=\left(I-n^{-1} H\right) t$, we have, by (2.4) since

$$
\begin{gathered}
\left\|\left(I-n^{-1} \tilde{H}\right)^{-1}\right\|_{2} \leqq 1 \\
\left\|n^{-1} c^{i}(x) \frac{\partial f}{\partial x^{i}}\right\|_{2} \leqq\left\{n^{-2} \int_{R} \sum_{i}\left[c^{i}(x)\right]^{2} d x \cdot \int_{R} \sum_{i}\left(\frac{\partial f}{\partial} \frac{f}{x^{i}}\right)^{2} d x\right\}^{\frac{1}{2}} \\
\leqq\left\{\alpha n^{-2} \int_{\dot{R}} \sum_{i}\left[c^{i}(x)\right]^{2} d x \cdot \int_{\dot{R}} b^{i j}(x) \frac{\partial f}{\partial} \frac{f}{x^{i}} \frac{\partial f}{\partial x^{j}} d x\right\}^{\frac{1}{2}} \\
=\left\{\alpha n^{-1} \int_{\dot{R}} \sum_{i}\left[c^{i}(x)\right]^{2} d x\right\}^{\frac{1}{2}} \cdot\left[-n^{-1}(H f, f)\right]^{\frac{1}{2}},
\end{gathered}
$$

where
K. Yosida, Integration of Fokker-Planck's Equation

$$
\begin{aligned}
0 \leqq-n^{-1}(H f, f)=-(f, f)+ & \left.(h, f) \leqq \| I-n^{-1} \tilde{H}\right)^{-1} h \|_{2}^{2} \\
& +\|h\|_{2}\left\|\left(I-n^{-1} \tilde{H}\right)^{-1} h\right\|_{2} \leqq 2\|h\|_{2}^{2}
\end{aligned}
$$

so that

$$
\left\|n^{-1} c^{i}(x) \frac{\partial}{\partial x^{i}}\left(I-n^{-1} \tilde{H}\right)^{-1} h\right\|_{2} \leqq\left[2 \alpha n^{-1} \int_{R} \sum_{i}\left[c^{i}(x)\right]^{2} d x\right]^{\frac{1}{b}}\|h\|_{2}
$$

We have also

$$
\left\|n^{-1} e\left(I-n^{-1} \tilde{H}\right)^{-1} h\right\|_{2} \leqq n^{-1} \sup |e(x)| \cdot\|h\|_{2}
$$

Therefore, since $\left\{h ; h=\left(I-n^{-1} H\right) f, f \in D(H)\right\}$ is dense in $L^{2}(R)$,

$$
\begin{align*}
&\left\|n^{-1} \tilde{K}\right\|_{2} \leqq 1,(K h)(x)=c^{i}(x) \frac{\partial}{\partial x^{i}}\left(I-n^{-1} \tilde{H}\right)^{-1} h(x)+ \tag{2.6}\\
&+e(x)\left(I-n^{-1} \tilde{H}\right)^{-1} h(x)
\end{align*}
$$

provided

$$
\begin{equation*}
\left\{2 \alpha n^{-1} \int_{R} \sum_{i}\left[c^{i}(x)\right]^{2} d x\right\}^{\frac{1}{2}}+n^{-1} \sup |e(x)|<1 \tag{2.7}
\end{equation*}
$$

Hence $\left(I-n^{-1} \tilde{K}\right)^{-1}$ exists and the range $\left\{g ; g=\left(I-n^{-1} K\right) h, h \in D(K)\right\}$ is dense in $L^{2}(R)$ if (2.7) is satisfied. Therefore

$$
\begin{aligned}
&\left\{g ; g=\left(I-n^{-1} H\right) f-n^{-1} c^{i} \frac{\partial f}{\partial x^{i}}-n^{-1} e f, f \in D(H)\right\} \\
&=\left\{g ; g=\left(I-n^{-1} A\right) f, f \in D(H)\right\}
\end{aligned}
$$

is dense in $L^{2}(R)$. Since $\left\|n^{-1} \tilde{K}\right\|_{2} \leqq 1$ and $\left\|\left(I-n^{-1} \tilde{H}\right)^{-1}\right\|_{2} \leqq 1$, the solution f of

$$
g=\left(I-n^{-1} A\right) f \text { with }\left(I-n^{-1} H\right) f=h,\left(I-n^{-1} K\right) h=g
$$

satisfies

$$
\begin{aligned}
&\|f\|_{2} \leqq\left\|\left(I-n^{-1} \tilde{H}\right)^{-1} h\right\|_{2} \leqq\|h\|_{2} \leqq\left\|\left(I-n^{-1} \tilde{K}\right)^{-1} g\right\|_{2} \leqq \\
& \leqq\left\|\left(I-n^{-1} \tilde{K}\right)^{-1}\right\|_{2} \cdot\|g\|_{2}
\end{aligned}
$$

Thus $\left(I-n^{-1} \tilde{A}\right)^{-1}$ exists as a bounded operator on $L^{2}(R)$ to $L^{2}(R)$.
The second step: Let $f(x)$ have continuous second order derivatives and put $f(x)-n^{-1}(A f)(x)=g(x)$, then, if $n>\sup |e(x)|$, we have

$$
f\left(x_{0}\right) \geqq\left[1-n^{-1} e\left(x_{0}\right)\right]^{-1} g\left(x_{0}\right) \text { for some } x_{0}
$$

Proof. Let $f(x)$ reach its minimum at $x=x_{0}$. Since $\frac{\partial f}{\partial x^{i}}\left(x_{0}\right)=0$, we have

$$
f\left(x_{0}\right)-n^{-1} b^{i j}\left(x_{0}\right) \frac{\partial^{2} f}{\partial x^{i} \partial x^{j}}\left(x_{0}\right)-n^{-1} e\left(x_{0}\right) f\left(x_{0}\right)=g\left(x_{0}\right),
$$

that is,

$$
f\left(x_{0}\right)\left[1-\dot{n}^{-1} e\left(x_{0}\right)\right] \geqq g\left(x_{0}\right)
$$

Moreover we have

$$
\int_{R} f(x) d x=\int_{R} f(x) d x-n^{-1} \int_{R}(A f)(x) d x=\int_{R} g(x) d x
$$

since R is without boundary. Thus if the sequence $\left\{g_{n}(x)\right\}$ tends L^{2}-strongly to a non-negative function $g_{\infty}(x) \in L^{2}(R) \subset L^{1}(R)$, the corresponding functions $f_{n}(x)$ must tend to an almost everywhere non-negative function

$$
f_{\infty}(x) \in L^{2}(R)<L^{1}(R) \text { and }\left\|f_{\infty}\right\|_{1}=\left\|g_{\infty}\right\|_{1} .
$$

Since $L^{2}(R)$ is L^{1}-dense in $L^{1}(R) . I_{n}$ exists as a transition operator on $L^{1}(R)$ to $L^{1}(R)$ if n is sufficiently large. By formula (1.9), U_{t} exists as a transition operator satisfying (1.5)-(1.8). Thus the integration process has been carried through.

Mathematical Institute, Nagoya University. January 19, 1949.

[^0]: ${ }^{1}$ A. Kolmogoroff: Zur Theorie der stetigen zufälligen Prozesee, Math. Ann. 108 (1933). W. Feller: Zur Theorie der stochastischen Prozesse, Math. Ann., 113 (1937).

[^1]: ${ }^{1}$ Functional analysis and semi-groups, New York (1948) Chap. 12.
 ${ }^{2}$ On the differentiability and the representation of one-parameter semi-groups of linear operators, Journ. Math. Soc. Japan, Vol. 1, No. 1 (1948), 15-21.
 ${ }^{3}$ Cf. E. Hilxe, loc. cit., pp. 403-407, where the case of the n-dimensional euclidean space R and of constant $a(x), b(x)$ is treated. Cf. also K. Yosida: An operator theoretical treatment of temporally homogeneous Markoff process, to appear in the Journ. Math. Soc. Japan, where the case of one-dimensional euclidean space R and non-constant $a(x), b(x)$ is treated.
 ${ }^{4} \mathrm{~K}$. Yosida: Brownian motion on the surface of the 3 -sphere, to appear in the Ann. of Math.

