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On equivalent analytic functions 

B y  BY.NeT Ar~DV.RSSOrr 

W i t h  1 figure in the  t e x t  

1. We denote by ~ the class of functions ] (z) that  are analytic in a circle 
I z[--~ R. Two functions [(z) and g(z) of ~ are called equivalent if [ ( z ) i s  
transformed into g (z) by 

(i) multiplication with a constant of modulus 1, 
(if) a transformation z ' :  ze i~ (a real), 

(iii) replacing of all coefficients in the power series o f  /(z) by their conjugate 
values. 

Thus 
g(z)~-e i f l / ( ze  i~) or g ( z ) : e i ~ / ( 2 e ~ ) .  

We also call two harmonic functions u(z) and ul (z) or two curves c and cl 
equivalent if one is transformed into the other by 

(i) rotating the z-plane an angle a about z ~-0,  
(if) reflection in a straight line through z = 0. 

Thus 
u l ( z ) - - -u (ze  i~) or u l(z)~-~u(2e ia). 

�9 We obtain immediately that  if [ (z) and g (z) of ~ are equivalent, then the 
harmonic functions log I/I and log lgl Ere equivalent. 

Let [(z) belong to ~ .  Given r < R ,  we put  z~--re ~ and define e1(r,a) as 
the set of % 0 < ~ --< 2zr, such that  1/(rei~)l < a in el. Denoting by ~bt(r,a) 
the measure of el we will call ~!  the M-function of /(z). 

According to the definition, ~!  is a non-decreasing function of a. If M (r) 
and m (r) denote as usual the maximum and minimum of I/(z) l for I z l -~  r, 
then r  for a ~ m ( r )  and ~ ! - ~ 2 z r  for a > M ( r ) .  I t  is easily seen that  
if ](z) and g(z) are equivalent, then r  and ~g are identical for all r--< R. 

In the following we always exclude the case that  ](z) is a power of z, 
] (z) ~ a z% In this case the obtained results are trivial. Therefore we assume 
that  m (r) < M (r), t and that  ~! (r, a) is increasing in the  interval m (r) <--a <--M(r). 

1 T h e r e  i s  a t  m o s t  o n e  v a l u e  of r for  w h i c h  m ( r ) =  M ( r ) .  T h i s  s p e c i a l  v a l u e  i s  of no  
i n t e r e s t  here .  See  BLUMENTHA]5 (1), VALIRON (2). 
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The function ~l ( r ,  0) is defined in the interval 0 ~< 0 < 2 ~ as the measure 
of the set E(q)l(r , a ) <  0), a > 0. Then q~ (a) and T(0)  are inverse functions, 
and from the definition it follows that  

m E (~-c/(r, O) < a) : ~)/(r, a) : r e e l ( r ,  a). 

This equality gives the following lemma, which in this case, according to 
the simple character of the function [j(rei'P)l, nearly seems to be trivial. 1 

i e n l n l a  lo G (or) is a Junction, deJined /qr m (r) <-- a < M (r). Then we have 

2 z  2~  

f G [~i (r, 0)] dO = f G []/(re~'P)I1 d~ 
0 0 

whenever one o/ the integrals exists. 

Hence 

Cot. I] J (z) and q (z) have identical M-Junctions ]or ] z I = r, ~] (r, a) = q5 a (r, a), t h e n  

2rt 2,-t 

f G [I/(re~'p)I1 dq~ = f a Jig(re ~') l] dqJ. 
0 0 

I t  is now convenient to s tudy the distribution of values of an analytic func- 
tion in connexion with the functions �9 and ~ .  

We have the following theorem: 

Theorem 1. Let J(z) and g(z) be /uncti~ns oj o~ and have identical M-June- 
tions in an interval 0 < r < r 1. Then the Junctions are equivalent. 

Before we give the proof, we require some preliminary studies and remarks. 
Put  

oo 

j (z)  = kzq ~_jA,,z '~, A o = 1 
n = 0  

a (z) = 21 zq, ~ B~ z ". Bo = 1 
n = 0  

We apply lemma 1 for G((~)= ~2. Then for aii r--< r l ,  

ao 

Ikl2r2q ~ ,  IA~12r~ = Ik~12 r~q,~, IB~l~r ~.. 
n ~ 0  n = 0  

Hence 

(1) [ k l = l ~ l l ,  q = q l ,  I A ~ I = I ~ I ,  n - - - - 0 , 1 , 2  . . . .  

1 j .  v. N~.UM~NN (3) s ta tes  a similar ]emma for more  general real functions.  
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We denote by ~ the class of functions of ~ with power series of the form 

oO 

2 + ~_~anZ n " 

and satisfying the following conditions, 

1 
(i) as = -  

8 

(ii) the highest common divisor of the indices n for which a~ ~ 0 is 1. 

Then ](z) and g(z) can be expressed 

I (Z)  = ~Z  q 11 (C zm), ~ (Z) = k I Z q' gl (el Zml) 

where 11 (z) e cJ~s, gl (z) e c~/~s,. (2) gives immediately 

~ = ~ 1 ,  I ~ l = l ~ l l ,  ~ = ~ 1 .  

Further  it is easily seen tha t  ]l(z) and 91 (z) have' identical M-functions for 
0 < r ~ @, @ = I c{r, ~. I t  is therefore sufficient to prove the theorem for func- 
tions of the same class r 

2. Consider the harmonic function 

u (~) = log I1 (~)1 

where ](z)e ~ .  u(z) is regular in the circle I zl R, where l ( z ) i s  holo- 
morphic, with the exception only of the finite number of zeros of ] (z). On 
the circle I z I - - r ,  I/(rei'r)] is a continuous function of ~v and attains its extreme 

Ou 
values in those points on the circle where ~ = 0. When r varies, the loci of 

Ou 
these points are the level curves 0-~ = 0, and they are in the following called 

extreme value curves (e. c.). These curves and the values of ]]1 attained on 
them have been examined by  BLUMENTHAL (2),  who shows their simple ana- 
lytic character. 

Let  us write 
u + iv  = log ] 

u and v are harmonic functions, regular in the neighbourhood of z = 0. Con- 
sider the function 

 (ou ou) 
(2) w =  i ~ + ~  . . . .  - ~; ,: ~ + i , ~ - ; -  =~t() 
o r  

w = ~s ~ ( ~ ) ,  1 J ' ( 0 )  = 2 

1 We denote  by  ~ (z) a general  power series of z wi th  posi t ive radius of convergence.  
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w (z) is meromorphic  in I~ I -< R, and the e . c . ' s  of / (z)  are determined bY 

(3) au_ r = 0 .  
0 ~  

I t  is possible to 
regions / ' , ,  

divide the  circle l z [ - -  ~ R in a finite number  of annular  

r , < l z l ~ r , , + l ,  r 0 : O  , r n + l : R  

so t h a t  in each annular  / ' ,  we have  an even number  2 n~ of connected e. c. 's 
and each of t h e m  can be expressed in polar  coordinates ~v = ~ v  (r), where ~v (r) 
is analyt ic  i n  the in terval  r ,  ~ r ~ r,.+l. On a circle [ z [ =  r in F ,  the  mo- 
dulus ]/(z)] a t ta ins  its m a x i m u m  and min imum values in the points  where the 
circle intersects the  e .c . ' s .  The value of ]](z)[ on an e .c . ,  expressed as a 
function of r, is called an ex t reme value function (e. f.). This function is 
analyt ic  in r. 

Consider an e .c .  ~v=~v 0(r); the e . f .  obta ined on ~o 0(r) is /z(r). Then we 
have  on the e .c .  

O U o  ' d u _ •  d l o g # ( r )  
OqJ dr  Or 0~  dr  dr  

d Ou 02u 

dr  O~v OrOq~ 
02u dq~o 

+ - - 0  
0992 dr 

d2u O2u 02u d qJo _ d ~ log_~(r).  
d r ' - - O r  ~ + O r O~ dr -- ~ d  r ~ 

Further ,  u is harmonic  

02u 1 0 u  1 02u 
A u : g~r, + - + - -  r O r  r 2 0 ~2 O. 

From these conditions we obta in  the following equatiu~ for the e.c. :  

(4) ~O~2],ro(,)(~drr! + 7  ------r dr~  d l o g r  ]"  

I f  I/(z)] a t ta ins  a m a x i m u m  on t h e  e .c . ,  then  \Ocp2],r~ O. 

d log 
dr t d~o~7 ! > 0. 

Thus  

log # ( r )  is therefore a convex funct ion of log r. In  the same w a y  we obta in  
t h a t  if # ( r )  is a m in imum e. f . ,  then  log # ( r )  is a concave funct ion of log r. 
According to  their  analyt ic  properties,  two e . f . ' s  are equal only for a finite 
number  of values of r if t hey  are not  identical in an interval .  Fur ther ,  a 
m i n i m u m  funct ion cannot  be identical  wi th  a m a x i m u m  function. 
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In  the proof of theorem 1 we use the following lemma: 

L e m m a  2. Suppose that the ]unction /(z)  attains on an e.c. q~ = q%(r) an 
e. ]. #(r) ,  identical with an e. /. o/ g(z), attained on an e. c. q~ = q~l (r). Further, 
putting 

u - -  log I/ l ,  ul  = log ]g] 
i] we have 

~ ] ' r o ( ' )  = ~ ] , r l ( r )  

then /(z)  and g(z) are equivalent. 

From (4) we see tha t  in an interval  r ' <  r < r" we have 

d ~o d ~1 d ~Vo d ~1 
- -  o r  - - - -  = - -  �9 

dr  dr  dr  d r  

In  bo th  cases the e . c . ' s  are equivalent. Then there is a function gl(z) equi- 
valent  to g(z) tha t  a t ta ins  the e.f .  # ( r )  on the e .c .  ~ = ~0(r)- Pu t  

r = log I/1 - -  log [gl [. 

Hence for ~o = ~o (r) we have 

7 _ / : 0 ,  0 7 1  0. r ' < r  -- ~ r" 
O~ 

Then, f rom the well-known properties of harmonic functions it follows immediately  
tha t  ~ ' ~ - 0 .  Thus / ( z ) : e i ; J g l ( z  ) and /(z) is therefore equivalent to g(z). 

3. We now pass to a detailed s tudy of the function ~b] (r, a). Here we shall 
suppose, for the sake of simplicity, t ha t  /(z)  belongs to a class O)t~,, and tha t  
0 < r ~ r l ,  where r 1 can be chosen sufficiently small for every circle I z ] : r _< rl 
to  intersect only the e .c . ' s  ending at  z : 0, and for each e. e. to be ifltersected 
only once. Two e . f . ' s  are equal for such a value of r only if they  are identical 
in the whole interval. Fur ther ,  / ( z ) #  0 in the circle I zl--< q .  

Studying the function w(z) defined above, we see tha t  there are 2s  e . c . ' s  
abut t ing  at z : 0, s e. c. 's where I/(z) l at tains a relative maximum, and s e. c. 's 
where the extreme value is a relative minimum. 

On a circle [z] : r, u ~ log [/(re~'r)[ is an analyt ic  function of ~ at  every 
point  z o = r ei'ro. Thus, for small values of IT--~Vo[ 

(5) 

Fur ther  

(6) 

Z 0 is not  a point  on an e.c. ,  we have ,--Ji0~u)~ ~ I f  

we obtain 

1 [6"u 1 u ( ~ e " p ) -  u ( ~ e i ' r o ) -  - .~ ~. \b~/~. (~-  ~o) ~. 

I! (~e"P) I - I / ( r  e~~ I = I /(~e"ro) l [e ~<"~-~< '~ ' r~  - 11. 

0. Then from (5) and (6) 
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(7) ~ - -  ~0 - -  

where 

a - -  a o l 
3 ~  (a - 

a o [ O u )  

\OCfl~o 

ao), 

a = I/(~ei~r)l, a 0 = I1(~,~~ I. 

3~(o)  = 1 

I f  z o is a point  on an e .c . ,  t h e n ( O 0 ~ ) ~ o - - 0 '  and i f r x i s s u f f i c i e n t l y s m a l l ,  we 

can  a s s u m e  t h a t  \ 0  cf2]z. ~ O. P u t  I] (%) [ = # (r), where /~  (r) is the corresponding 

e . f .  Then, in the neighbourhood of q = To we obtain  the  inverse funct ion 

(8) 

q~>~v0; ~ _ _ ~ o ~ _ ~ 1  / / 2  a - - / ~ ( r )  ~ ) ( V i a _ # ( r ) D  

V 

V 
, ~ ( 0 )  = 1 

where the root  is positive. 
We have  ~ 1 ( r , a ) = O  for a < m ( r ) .  I f  ao is not  an ex t reme value on 

]z] = r, r e ( r ) <  ao < M ( r ) ,  then  ]](z)l  at ta ins  the value ao in a finite number  
of points  on the circle. I f  a -  ao is posi t ive and sufficiently small, then  

(I)! (r, a) - -  (7I) I (r, ao) = m e, v (a o < ]] (r e i'v) [ ~ a) 

is the  sum of a finite number  of intervals  of the form (7). Thus 

qb] (r, a) ~-- qb! (r, ao) + (a --- ao) ~)1  (a - -  ao) 
(9) 

~ (0) > 0 

Now a and ao can be pe rmuta t ed ,  and we have  the same expansion for a < a0. 
B y  power series of this form ~5! (r, a) can be continued f rom ao to the nearest  
ex t reme values. The m i n i m u m  e. f . 's  a t ta ined  on I z[ - -  r are mj (r), the  m a x i m u m  
e . f . ' s  are Mj(r ) .  Then, b y  the choice of r i t  follows t h a t  

0 < m ( , )  = m l  (*) - m2 (r) -< . - .  -< m ,  (*) 

Ms (r) --< Ms-1  (r) --< . . .  --< M1 ( r ) =  M (r). 

There are hi e . f . ' s  identical  wi th  mj(r)  and h~- e . f . ' s  identical  wi th  M i ( r  ). 
Put t ing  ao = mj(r)  we have  for a < mj(r)  an expansion of the  form (9). To 

this expansion (regular in a0), we mus t  add, b y  analyt ic  cont inuat ion (for 
a > mj(r)), the contr ibut ion f rom the intervals  containing the hj points  z, = re  ~'p~ 
where ]](re~'p~)]~ mj(r) .  The lengths of these intervals  are calculated f rom (8). 
We obta in  for a > mj(r)  
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(/) (r, a) 

2~ 

m(r) M(r) 
~a  

M (r~ 

T(r, O) 

~(r) 

0 

Fig.  1. T he  func t ions  qS(r,a) a n d  ~P(r, 0). 

2g~ 
,0~ 

0 2 U <lO) qS<r'a':qS<r'mj(r)>-t-Vmi~r)r) V ( ~ ) z J  

3~1 (0) = 1. 

Similarly we obtain the behaviour of ~b (r, a) at a maximum value Mj(r).  
For a ~ Mj(r)  we have a regular expression of the form (9) and for a ~ Mj(r) 
we have 

(11) qS(r,a) = qS(r, Mj(r)) 

~ 1  (0) = 1 

the sum being taken for the h~ points z~ = rei~r~ where I](rei~r)l = Mj(r).  
I t  is clear that  the function q~ (r, a) has this simple analytic character in 

the whole interval 0 ~ r --< R. The expansions in the neighbourhood of extreme 
values may be somewhat altered, however, on a finite number of circles. 

4, Consider the function 

/ ' (z)  zS3)(z) .  J)(O) -:  1 (12) w = ~ / ~  = , 

Then for small r we obtain for the e .c . ' s  

OU 
0~o g{w}  = - - r  s sin s~0 (1 + O;r)) 

0 2 u 
--  - -  sr 8 cos s~  (1 + O(r)). 
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Denote the e.c. 's  ending at  z ~ - 0  by c,, ( v = 0 ,  1 . . . . .  2 s - - l ) ,  where the 
index s is subiected to the condition that  the angle between the positive real 

axis and the tangent of c~. at z ~ 0 is ~ - .  
8 

Then for c~ we have 

f~ = ~,s (1 + O(r)) 

\oq~2/~= ( -  1),+~r~ (1 + O(r)) 

Suppose /(z) and g(z) of ~ have identical M-functions for small r, thus 
fulfilling the co.ndition in theorem 1. Then ~I (r; a) and r (r, a) have the 
same singularities in their analytic character. Each e.f .  # (r) of /(z) in the 
neighbourhood of z ~--0 is therefore an e.f .  of g (z). Suppose /~ (r) is a h-tiple 
e.f.  of /(z) and a h'-tiple e.f .  of g(z). Then h ~ h ' .  

For if # (r) is a minimum function (or a maximum function) the coefficient 
of V a - - # ( r )  (respectively ] / # ( r ) - - a )  in the developments of r a ) a n d  
~bg (r, a) to the right (left) of # (r) are identical. Then if Ul ---- log I g l we obtain 
from (10) and (11) 

(14) Z 
the sums being taken for the h e.c. 's  cv respectively the h' e.c. 's  c~., where 
](z) and g(z) attain the e.f .  ~(r) .  By (13) we write this condition for small r:  

8 $ 

hr 2(1 + O(r)) = h'r 2(1 +O(r) )  

and the result h == h' follows immediately. 
The proof of theorem 1 now follows from the following lemma. 

Lemma 3. Every /unction /(z) o/ ~ has in the neighbourhood o/ z-~ 0 at 
least one e./., non-identical with any other e./. 

Suppose the lemma holds. Then /(z) and g (z) have an e.f .  # (r) with the 
multiplicity h ~ h'----1. The corresponding e.c.  of /(z) is ~--~ ~ 0 ( r ) a n d  of 
g(z), qD ~ q~l (r). Then from (14) 

Then from lemma 2 we 
proves theorem 1. 

Proof o/ lemma 3. Consider the function w (z) defined by (12). 
on the e.c.  c, be #~(r). Then 

(15) d log/~ , ( r )  ( Ou) =o~{w}~ .  
d( log r )  - -  r~ - r  c, 

(O2ui =l  uil 

obtain that  /(z) and g(z) are equivalent, and this 

Let  the e. f. 
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I n  the neighbourhood of z----0, w = 0 the inverse function z (w)has  an expan- 
sion of the form 

z = t ~ 1  (t) ~ 1  (0) : 1 

w = t  ~ 

Hence 

(16) 
where 

(17) 

log z ---- log r + i ? = l o g t +  Q( t )  

o r  

Q ( t )  = Z C n t  n 
n = l  

0 - -< q~<2~r ,  0 < a r g t < 2 ~ .  

The e . c . ' s  c,,, (v - -  0, 1 . . . . .  2 s - -  1) correspond to the real axis in the w-plane, 
and by  the suitable choice of the index v (cf. p. 84) we obtain tha t  the e .c .  
c, is represented by  the s traight  line in the t-plane 

2~ 
a r g t = v -  ( v = 0 ,  1 . . . . .  2 s - - l )  

S 

0-<-It l<~.  

Put t ing  t -=Qe s we obtain  the following equat ion for c, [from (15), (16), (17)] 

log r = log e + ~ { O ( ~ ' e ) }  

(18) f , = v -  + J{Q(o)'0)} 
S 

( _  1) ~ Os _ d log tt~ (r) 
d (log r) 

*s where to==e  . I f  v is even, # , ( r )  is a max imum function;  if v is odd, the  
e . f .  is a min imum function. 

The function O (t) in (1.6) is regular at  t = 0. We write 

where 

k 

Q (t) = ~ t"J'+"r Qj (t') 
.i=1 

0 < a l < a s - - .  < a t  ~--s, nj~>O, Qj (0) ~ o. 

Therefore in the power series of Q( t )  we have cnj.,+,j ~ 0 and all coefficients 

c,  ~ 0 have indices of the form n = N s  + (rj. Now the highest common divisor 
(~1, cry., . . -, a t ,  s) ~ 1. 

Let  us assume tha t  this divisor is m > 1. Then O (t) is a regular funct ion 
of t m and we obtain 
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zm = t m  ~ 2  (tin), ~ 2  (0) = 1 

t m = ~m 3)~ (~m) 

mS 

Here m Is and w is a regular function of z% Then it is easily seen tha t  ] (z) 
is a regular function of z m, m > 1, which is impossible if ] (z) belongs to a 
class ~ .  

If  s > 1, two e . f . ' s  in the neighbourhood of z =  0 may  be identical. As 
maximum functions are increasing, and the minimum functions decreasing func- 
tions of r, the identical e . f . ' s  must  be of the same kind. Suppose 

Then we can write 

(19) vl ~ v + 2 m (mod 2 s) 

0 < r e < s - - 1 .  

From the equations (18) follows tha t  on c, and c+~, Q is the same function of 
r and conversely log r must be the same function of Q. Hence 

o r  

Cn+ } 

z + fiN, +~-) = COS ~J Pl S 

Therefore at  least one of the following two conditions holds. 

(_A) a~ m ~ 0 (mod s) 

8 
(B) e~ (v + m) + ~ fiN. +'7 ~ 0. (mod s) 

We express s in a standard form of primes 

�9 . ~ - - q  

where pi are distinct primes > 1, ai--> 1. 
they appear in the following calculation. 

I f  c,~ = ICN.+or ei~N"+"J ~ 0 we have 

�9 or from (19) 

The primes may  be arranged as 
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Since (al, a2 . . . . .  a , ,  s ) =  1 there is at least one aj not divisible by 
pl (i = 1, 2 . . . .  , h). We denote by 0(p~, pb, . . . ,  ph) the subsequence of {ajl 
with the property that  each aj E 0 (pa . . . . .  ph) is not divisible by at least one of 
the primes ~Pa . . . . .  ~Ph. 

Suppose that  ] (z) has two identical e.f . 's  corresponding to the couple (v, vl) 
or (v, m0) by (19). We write 

( m o ,  s )  = �9 �9 �9 . . .  

0 ~ 7~<  a~, l g h < - q .  

For no as e 0 @1 . . . .  , ph) the condition (A) can hold. Thus 

aj (v + *no) + s fllv~ +~ --  0 (mod s) 
7~ 

aj e 0 (p~ . . . . .  ph). 

Now suppose that  ~u,, (r), v' ~ v + m 0 (rood s), is identical with another e.f.  
and that  the corresponding number m determined by (19) is ml. The tangent 
of e,, at the origin is a bisectrise to the tangents of e, and C~l. We now study 
the conditions (A) and (B) for the couple (v', ml). (]~) can be written 

( B ) '  aj. (v A- m 0 -t- m l )  ~- s / ~ V s  +a  I ~ 0 .  (mod s) 

If a i E 0 ( p l , - - - ,  pa), the conditions (A) and (B) for ml are identical and we 
obtain p~,lm~ . . . .  , p~h[mx and thus p~,p~ . . .  p~hlm~. If h = q, we should 
have s Ira1, which is impossible, since 0 < m 1 ~< s -  1. Then #,, (r) could not 
be identical with any other e.f. ,  and lemma 3 holds. 

If h < q  we put  

( m l ,  s )  = :p~l  ~P2~ " " " ~"hq~~ -'h+l~]'h4-1 . . . .  ~07h, :pht,++ll . . " :pqaq 

0 <_ ~i < a~, h < h' --< q. 

If a j e 0 ( p l ,  p ~ , . . . ,  ph') the condition (B)' holds. Now repeating the argu- 
ment, suppose that  #r (r), v" ~- v + m o  + ml (mod s), is identical with another 

tz h , e.f . ,  corresponding to the number m2. Then we must  have p ~ p ~ . . .  Ph' Ira2, 
and this is possible only if h ' <  q. Then we go on studying the e.f .  /~,,, (r), 
v"' ~ v + m o  + ml + m2 (rood s). The corresponding number m3 must be divis- 
ible by p~, p ~ . . .  p~", h" > h'. After a finite number of such steps, we obtain 
an e.f.  #~ (r) which is identical with another e.f . ,  only if the corresponding 
number m is divisible by s, which is impossible. This proves lemma 3 and the 
proof of theorem 1 is now complete. 

5. We denote as usual the mean values of I] (z) l on circles [z I = r for real p # 0. 

2~ 

M , ( / , r ) =  ~ .  II(re~") dqD] �9 
0 

We shall State the following theorem. 
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Theorem 2. Let /(z) and g (z) be /unctions o/ ~ and let the mean values 
Mp (/, r) and Mv (g, r) on a circle ]z ] : r <-- R be equal/or an in/inite number o /p ,  
P = Pl, P2 . . . .  P . . . . .  lim {p~ [ = co. 

Then, /or this r, the M-/unctions ~! (r, a) and qSa (r, a) are identical, and all 
mean values are there]ore equal. 

I t  is sufficient to prove tha t  the functions T!  (r, 0) and Ta (r, 0) are identical 
for this r. 

By lemma 1 we have 

2 z  2 z  

( 2 0 )  f [.Ill(r, O) pn dO - -  f ~tJg(r, O) pn dO - -  0 
o o 

n = l ,  2 . . . .  

From the simple analytic character of the functions q~ and ~ we see that  the 
values of 0 for which the functions Tl ( r ,  0) and Tg(r,  0 ) m a y  be distinct, 
form a finite number  of intervals. Suppose 0 x < 0 < 02 is the last of these 
intervals and suppose tha t  the sequence {Pn} has the limit point + c~. 

We can assume tha t  T t  (r, 0) > Wa (r, 0) for 01 < 0 < 02. I t  is evident that~ 
if (20) holds for one p n # 0 ,  then 0 1 > 0 .  Put  for 0 1 < 0 < 0 2  

~ !  (r, 0) = a (1 -~ 9 (0)), ~P'a (r, 0) = a (1 + ~v (0)) 

a = ~rsf ( r ,  01 )  = ~o'g ( r ,  01) .  a > 0  

We have 9 ( 0 ) - - ~ v ( 0 ) > 0  for 0 1 < 0 < 0 2  and 

,92 

f (9 (0) - -  ~ (0)) d 0 
,91 

where o > 0. 
Now from (20) we have for pn > 0: 

= ( 1 0  

0 < aV'~f {[1 + 9(0)1 p n -  [1 + ~(O)]Vn}dO = 
b' 1 

,91 

= f (r, o)  - 
0 

Hence for p~ > 0: 

~[r (r, O) pn] d 0 < a pn 01 . 

(21) 0 < f [1 + ~o (0)] vn 1 + 
'91 

1}do 
1 + ~o (0) ] < 01 . 

For x > 0, p > 1 we have the inequality 

(1 + x )  p - 1  > p x .  

Using this inequality for x =  9 ( 0 ) - - Y  J(0! we obtain from (21) for p~ ~ 1, 
1 + w (o) 
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Hence 

02 

0 < P n  f [1 + ~ (0)]  p n - 1  [~9 (0) - -  ~/) (0)]  d 0 < 0 1. 
01 

o~ 01 
o < f [~  (o) - ~ (o)1 d 0  = o, < - .  

~I Pn 

For p~-~ co we obtain ~ = O, which shows the impossibility of the existence 
of the in terval  (0i, 02) , and the functions ~l (r ,  0) and ~g( r ,  0) mus t  be 
identical. 

I f  + c~ is not  a l imit  point  of {p.}, then l im p~ = -  co. For  this case we 
prove similarly t ha t  there cannot  be any  first interval  (nearest to 0 = 0 )whe re  
~ / ( r ,  0) ~ Tg (r, 0). This proves  the theorem. 

T h e o r e m  3. Let / (z)  and g (z) be /unctions o/ J~, and let the M-/unctions 
Or(r, a) and qSg(r, a) be identical /or an in/inite number o/ r, r : ~ ,  ri ~-- R 
(i = 1, 2 . . . .  ). Then the /unctions ](z) and g(z) are equivalent. 

The functions (/(z))", (g (z)) m, (m : 1, 2, 3 . . . .  ) are all analyt ic  in ]z I --< R. Pu t  

(/(z))m = ~ A ( m )  ./n (q ($))m = ~ ,  B(m)  zn.  
X--J n ~ ~ z_~ n 
n=0 n=0  

Then for r = r 1 , r 2 , . . . ,  rn ~ . . . 

(22) M TM (], r) : 2m 2m M2~ (g, r) 

o r  

2 (23) I A~ m) I ~ r ~  = ~ I n(,~)I~ r ~ ~ / I  I ~ n  I 
n~0  n : 0  

These power series are convergent  for r < R + ~ if (~ is a sufficiently sma!l 
posit ive number ,  and we obtain  immedia te ly  t ha t  A(,~ ) = I B(n m) ] for all m and n. 
The equal i ty  (22) therefore holds for all r in the in terval  (0, R). By  theorem 2 
/ (z)  and g(z) have identical  M-funct ions  in the  in terval  (0, R). Then by  
theorem 1 the  functions are equivalent.  

6. The following l emma gives another  proof of theorem 1 for functions t ha t  
can be referred to the class r 

L e m m a  4. Let /(z) and g (z) o/ ~:~ have power series o/ the /orm 

where a o a 1 ~ O. 

/ ( z ) =  Z a ,  z', g ( z ) :  b,z" 

Put  

2 (1 (z)) p : ~ a (p), ~', (g (z)) p = b~ ) z" 
~=0 ~,=0 

a(1) ' a , ,  b(1) = b,.  
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S u p p o s e  that 
b!y) ] ~-  a (p) 

/or ~ ~ O, 1, . . . ,  n a n d  p ~- P l ,  P2 . . . .  , p~,  where  pk are real a n d  unequal .  
T h e n  

b~ ~ a,,er ~), r ~- O, 1, . . . ,  n 
or 

b~ ~ ~ e  i("+~,~), v ~-- 0, 1, . . . ,  n 

where  a and  fl are real.  

b~ z equ iva len t  to a (z), The lemma says  t h a t  there  is a funct ion gl ( Z ) =  Z ' v 

such t h a t  b~, ~ a~, ~ ~- O, 1, . . . ,  n. Therefore in the  proof  we can subs t i t u t e  
g (z) b y  a convenien t  equ iva len t  function.  

I t  is easily seen t h a t  the  l emma is t rue  for n - ~  1. We m a y  suppose  
a0 = b0--~ 1 and a l  real  and  posi t ive.  We wri te  

( / / ~ P  ~-- + ~ ,  a (p) z ~ a (1) = a~ 

(g (z;)V = 1 + ~ b (v)~ z' ,  b (1)~ = b, 

P u t t i n g  
I 

A~n~, 
~'~[/'1 1 / ' 2 . . .  l/~ . . . . .  -1 a ,  a 2 . . . . .  ~-~,+1 

the  summat ion  being over  

we ob ta in  

S imi la r ly  we wri te  

[ /zi ~ O, /zl + / z 2  4 . . . .  + # m - ~ + l  = u 

( ~t i 4- 2 #2  + "'" -b ( m  -- ~ + ])  ~ t m - l , + l  ~ m 

We prove the  l emma b y  induct ion.  The lemma is t rue  for n - - - -1 ,  let  i t  be  
t rue  for n - - 1 .  Then we m a y  suppose 

Then 

The equal i t ies  

bl  ~ a l ,  b2 ~ a 2, . . . ,  5 n - I  ----- a n - 1 .  

B n ,  ~- A n ~ ,  # ~ -  2,  3,  . . . ,  n 

I b ( : ) I  = = P , ,  �9 �9 - ,  P =  
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can be wri t ten 

o r  

(1)(la.l  

ARKIV FOR M&TEMATIK. B d  1 n r  1 0  

P 

h i = 2  ~ = 2  

P ~ P l ,  P 2  . . . .  , P n  

+ ~ (~ ) { (anAn ,~§  bnAn,)} 

P : Pl, P2 . . . .  , Pn. 

Since Pk are unequal,  the determinant  

does not  vanish. 

and 

D = 

Pl , ~1 Pl 

l ~ 1 ]  ~ 2 1  " ' "  ~,n] I 

= 0  

~P2 �9 �9 �9 jOn 

- In I I  
i > k  

Therefore 

Ib.l=la.l 

a~An~ + 5~An,, -- bnfln~ + [~nAn~ 

I f  A , ,  r 0 these conditions give 

(24) arg (an ~in,) = _+ arg (bn An,)  

/ ~ - - 2 ,  3 , . . . , n .  

91 

_ _  n - m  a m  An;n-m+l = (n m + 1) a i 

+ (a polynomial  of al, a2 . . . . .  am-l) 

cannot  be real. Pu t t i ng  in (24) # = n  and then / x = n - - m +  1 we obtain 
b,  = a , .  This proves the lemma. 

Now we shall prove:  I f  all the coefficients aa, a 2 , . . . ,  an-1 are real, then we 
must  have b n - - a n  or bn ~--gn. I f  at  least one of the coefficients a2, . . . ,  a~.,~ 
is complex, then we mus t  have bn ~--an. I f  an ~ 0 there is nothing to prove. 
As Ann = a~a ~ is real and positive the condit ion (24) gives tha t  either bn := ,%~ 
or b~ ~ 5n. Then the lemma is proved in the first case. I f  a,~, m < n, is the 
first complex coefficient, we see tha t  

, u : 2 ,  3 , . . . , n .  
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Now suppose the  condi t ions of theorem 1 are fullfi l led and ] ( 0 ) ] ' ( 0 ) ~  O. 
Then from the  corol lary  of l emma 1 follows t h a t  

M2v (], r) = M2p (g, r), p ---- 1, 2 . . . .  , n . . . .  

in an in te rva l  0 ~ r ~ r l .  Then we have  (compare the  proof  of theorem 3) 
5(2)]= ]a~)] for all integers p and  n. Then from l emma 4 the  funct ions ] (z) 

and  g(z) are equivalent .  

R E F E R E N C E S .  1. B l u m e n t h a l ,  Sur le mode  de croissance des fonct ions enti~res. Bull .  
Soc. m a t h .  1907. 2. V a l i r o n ,  I n t e g r a l  funct ions.  3. N e u m a n n ,  J .  v . ,  ~ b c r  F u n k t i o n e n  
yon  Funk t iona lope ra to ren .  Ann.  of Math.  I I  32 (1932) p. 191. 
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