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Stochastic processes and statistical inference 

B y  ULF GRENANDER 

Introduction 

The purpose of this thesis is, par t ly  to sho~ the possibility of applying 
statistical concepts and methods of inference to stochastic processes, and part ly 
to obtain practically working methods of this kind by  studying special cases 
of inference. 

Time-series have been subjected to statistical t rea tment  in a more or less 
systematical way for a very long time, but  unlike the case of finite dimen- 
sional samples, there exists no unified theory. The extensive literature on 
stochastic processes has but  rarely touched upon questions of inference. On 
the other hand, the a t tempts  to t reat  time-series data do not seem to have 
been much influenced by  the theory of stochastic processes. This is specially 
the case when considering a continuous t ime-parameter,  which will be our main 
interest in the following chapters. The t reatment  of the problem" in the present 
dissertation is based on the general idea outlined in CRAMI~I~: Mathematical 
methods of statistics - -  to base statistical methods on the mathematical  theory 
of probability. 

In  the first two chapters we shall give a short survey of some fundamental 
facts about  stochastic processes and statistical inference. The third and fourth 
.chapters will deal with the problem of testing hypotheses and the fifth with 
estimation. Finally in the sixth chapter we shall show very shortly tha t  prog- 
nosis and filtering of time-series are questions similar to testing and estimation 
and  can be treated on analogous lines. 

Some topics in the theory of  stochastic processes 

1.1. Measure of probability. Let us consider an abstract  space ~Q with the 
~ollowing properties. The points in ~2 are denoted by co. In  ~Q is defined a 
Borelfield of sets containing also /2. On this Borelfield there is defined a 
completely additive, non-negative setfunction P for which P ( D ) ~  1. Then P 
is said to be a probability-measure on f2. I t  is sometimes convenient to close 
the measure by  defining every set, which can be enclosed by  a set (belonging 
to the Borelfield) of measure zero, as measurable with measure zero. 
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If  /(o~) is a real function defined on ~9 and measurable with respect to 
P, / (@ is called a stochastic variable. The mean value operator E is defined as 

E 1 = f / d P (w) 
:2 

if /((o) is integrable with respect to P. The modifications necessary in order 
to treat complex valued stochastic variables are evident. 

Let /1(co), ]2 (o~) , . . . /~ (w)  be n stochastic variables defined on ~.  If  it is 
true for every choice of n Borelsets El, E2 . . . .  E~ on the real axis that  

P {/i(w) e E i ;  i = 1, 2 . . . .  n}r ---- ~ [ P  {/i (w) e Ei}(., 
i = 1  

the variables are said to be independent. 
Let A be an arbitrary measurable set and xl (@, x2 (09) . . . .  x,~ (~o) n stochastic 

variables. If  M is a "cylinderset" with an arbitrary measurable set in the n-di- 
mensional Euclidean space Rn(x~, x 2 , . . ,  xn) as basis, there exists one, and 
but for equivalence, only one function P ( A  Ix1, x 2 , . . ,  x,) that  satisfies 

P (A M) = f P (A I x .  z2 . . . .  x~) d P (x .  x2 . . . .  x.,) 
M 

for every M with the said properties (see KOL~OCOROrF 1, p. 42). P (A Ix1, x2 . . . .  x,~) 
is called the conditional (with regard to xl, x 2 , . . ,  x~) probability of A. The 
conditional expectation is defined in an analogous way (see KOLMOGOROFF 1, p. 
47). I t  has been shown that the conditional probability has usually the same 
properties as the absolute probabilities. Let A be a fixed set. Then we have 

0 <~ P ( A  Ix1, �9 �9 �9 Xn) --  1 

for almost all x 1 . . . .  xn and other similar analogies. More generally it can be 
shown under some conditions that  P ( A ] x l , . . .  x,,) can be defined so that it 
is almost certainly a probability distribution. 

1.2. Stochastic processes. Let T be the whole or a part of the real axis. In 
the set of time-points T we observe a quantity depending upon time and in 
some way or other containing a random component. By repeating this ex- 
periment a large number of times we get a population of functions defined on 
T. The idealization of such a population together with a measure of proba- 
bility, which we shall define more precisely later on in this section, is called 
a stochastic process. The elements in the population are called the realizations 
or the sample-functions. 

When we want to define in a more rigorous way what is meant by a 
stochastic process, we find at least three different ways of doing so. Consider 
the quantity under observation at a fixed time-point to. The result of a large 
number of such experiments can in the usual way be described by a stochastic 
variable, which we denote by x (to), leaving out the co as is usually done in 
this connection. Later we shall see that it is convenient to consider the stochastic 
variable as a point in an abstract space, which of course is different from the 
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sample-space tg, on which the stochastic variable is defined. When t o takes on 
every value in T, we get a one-parameter family of stochastic variables. This 
curve in the abstract  space is defined as the stochastic process under con- 
sideration. 

The second alternative is obtained By fixing a realization, and regarding 
this as a function of t. Let  us denote the realization by o~ and the function 
space consisting of all real functions defined on T by  $2. I t  is then possible 
to define the process as the family x~,~ (t) of real functions, where o) plays the 
rSle of a parameter.  

This dualism depends evidently on the fact tha t  the value of the process is 
a function of two variables: the time t and the realizaticn (~. We get the 
third alternative definition by defining the process as a randcm function [(t, o)), 
where f (t, (o) for fixed t shall be a measurable function of o), i .e .  a stochastic 
variable. 

1.3 .  S t o c h a s t i c  p r o c e s s e s  as  f a m i l i e s  o f  s t o c h a s t i c  var iab les .  Processes 
regarded from the first point of view have usually been described with the aid 
of the first two moments. Suppose tha t  E x (t) 2 < oo for all t E T, and introduce 
the quantities 

i (t) = E (t) 
I r (s, t) ~- E [x (s) - -  m. (s)] [x (t) - -  m (t)]. 

m (t) is called the mean value function, and r (s, t) the covariance function. 
By considering the process x ( t ) -  m (t) instead we can suppose that  m ( t ) ~  O. 

Form all finite linear combinations 

n 

i = 1  

with real coefficients c~ and ti E T, and close this set by convergence in the 
mean. We then obtain a Hilbert  space L2(X), if we define the inner product as 

(/, g) = E / g .  

The first systematic t reatment  of stochastic processes with the aid of Hilbert 
space methods is due to KARUUNEX. In  some connections it is convenient 
to introduce complex-valued processes and the inner product is then defined as 

(f, g) = E I p .  

If, for every z E L2 (X), it is true that  the real function E z x  (t) is Lebesgue 
measurable, the process is said to be measurable (K). I f  further, for every 
z E L~ (X), E z x (t) is Lebesgue integrable over T and the expression 

sup [~z[i f Ezx(t)dt 
z E L~ (X) 

T 

is finite, there exists a unique element X E L~ (X) satisfying the equation 
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E z X  = f Ezx( t )  dt. 
T 

Then the  process is sa id  to be integrable (K) over  T with the integral  X (see 
KARHUNEN 3, Satz 5). 

I f  I I x ( t ) -  X(to)II is a continuous function of t a t  t-----to, the process is said 
to be continuous in the mean  a t  t = t 0. I f  the corresponding holds for every 
to 6 T, the  process is said to be continuous in the mean  on T. 

Suppose t h a t  x (t) is continuous in the mean  on the  finite in terval  (a, b). I f  
n a = t~ < t~ < . - .  < tn n = b and  Max (t n -  t _ l )  -~ 0 when n tends  to infinity, i t  

can be shown t h a t  the expression 

n 

s .  = ~ ,  x (r ( r  - r  

converges in the mean  to a stochastic var iable  I when n tends to infinity,  
i rrespective of the choice of the points  t~. I is said to be the integral  (C) of 
x( t)  over  (a, b) 

b 

I = f x ( t ) d t .  
a 

(See CRAM~R 2, l emma 3.) 
I f  x (t) is cont inuous in the mean  on (a, b), it is ev ident ly  measurable  (K), 

and using Schwarz '  inequal i ty  it is seen t ha t  

sup E z x 
z6L~(X) I]Z]] . 

T 

is finite. Thus the  process is integrable (K) over  (a, b) with a uniquely deter- 
mined integral.  Bu t  S~ and the l imit  element I belong to L 2 (X) and,  as con- 
vergence in the mean  implies weak convergence, we get  

E z I = l im ~ E z x (t~) (t n - -  t~_l). 
n~r ~ 1  

As E zx (t) is continuous it is R iemann  integrable and thus  

b 

E z I  = f  Ezx( t )  dt 
a 

so t h a t  in this case the  two definitions of integrat ion coincide. 
Suppose t h a t  the process Z (X), - -  c~ < ~ < c~, has mean  value zero and 

finite variance.  I f  for every  pair  of disjoint intervals (~1, X2) and  (X3, X4) it is 
t rue  t h a t  

~E [Z  (~2) - -  Z (~1)] [Z  (~4) - -  Z (~3)] = 0 
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Z(2)  is said to be an orthogonal process. 

is a non-decreasing 
c o  

f / (~)~ d F (Z) < oo. 

Then 

r (~, ~) = g Z (~)~ = F (;0 

function of 2. Suppose tha t  /(2) is a real function with 

Then it is possible to define f / ( 2 )  d Z(2) by the aid of 

the Riemann-Stieltjes partial sums. (See KARttUNEN 3.) The analogous holds 
for complex-valued orthogonal processes. 

KARttUNEN (3, Satz 10 which is more generally formulated) has given the 
following important  theorem on representation of a stochastic process. Let 
x(t) be a process tha t  can take complex values and with mean value zero and 

o ~  

(s, t) = . ( / ( ~ ,  ~) / (t, ~) d ~ (~) 

where a is a measure on the real axis. This measure shall have the property 
that  the whole axis is the denumerable sum of sets of finite a-measure. 
/(s,  2) shall be quadratically integrable with respect to a for every s. Then 
there exists an orthogonal process Z(2) so tha t  

o:> 

x (t) = f / ( t ,  2) a z (~). 

Consider a process which is continuous in the mean and has mean value 
zero. If  the covarianee function r (s, t) depends only upon the difference s - -  t, 
the process is said to be stationary in the wide sense. According to a well- 
known theorem of KmNTCmS~ 1 there exists a bounded non-decreasing func- 
tion F(~) so tha t  

oO 

r(s, t) = r(s -- t) = f d~ F (2). 
- - o o  

Then the process itself has an analogous representation 

-~' (0 = f e "~ d Z 90  

L ' l z  (~)I ~ = F 9.), 

(see CI~AM~a 3), where Z(2)  ~s an orthogonal process. According to the mean 

T 

ergodic theorem (see Hops  1 ) t h e  expression ~ t ' z ( t ) d t  converges in the 

- -T  

mean to a stochastic variable :;c when T tends to infinity. 

E I . ~ I ~ = F ( §  
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so that  for ~ to be identically zero with probabili ty one it is necessary and 
sufficient tha t  there is no discrete spectral mass at  2 = 0. 

Suppose tha t  x (t) is real and continuous in the mean on the finite interval 
(a, b) with mean value zero and covariance function r(s, t). The covariance 
function is positive semi-definite, and by  considering the integral equation 

one gets the representation 

b 

(t) = 2 f r (t, s) q~ (s) d s 
a 

(,~) %. (t) 
r (s, t) ~-- 

with uniform convergence according to Mercer's theorem. Here %,(t) are the 
eigen-functions of the integral equation, and 2~ the corresponding eigen-values. 
From Karhunen 's  general theorem on representation of stochastic processes it 
then follows that  

x ( t ) =  ~ z~Cf"(t~ 

with convergence in the mean for every t E(a, b). (See KARHUNEN 1.) The 
z's are stochastic variables with 

~Ezv ~ 0  
~Ez,  z,, =~ , , .  

If  the contrary is not stated we will always in the following suppose tha t  the 
kernel r (s, t) is non-degenerate, i .e .  2,, < c~ for all v. 

Another type of representation is obtained in the following way. If  Z(2) 
is an orthogonal process of bounded variance 

EIZ(2) 12 < k, --  oo < 2 < o0, 

(a bounded orthogonal process), we define the measure a corresponding to the 
non-decreasing function E]  Z(2)]2 in the usual way. The set of all functions 
which are quadratically integrable over ( - - c ~ ,  c~) with respect to a is a Hil- 
bert  space if the usual quadratic metric is used. In  this space we choose a 
CON system of functions {Fv (2); v = 1, 2 . . . .  }. Let  s~.o(2 ) denote the function 
which is one for 2 ~ 20 and zero for 2 > 20. Then we obtain using the com- 
pleteness of the system and Parseval 's  relation 

and hence 

1 

1 - - t ~ r  - - ~  - - a r  
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But E [ Z ( m i n  20, 21)12 is the covariance function r(A0, A1)of the orthogonai 
process, so that  by Karhunen'~s theorem there exists a sequence of stochastic 
variables {z,.} for which 

[ E z v = O  

Take as a special ease ~ as the Lebesgue measure in (0, 1) and vanishing out- 
side this interval. On (0, 1) the system { e 2 ~ - ;  v = O ,  _+ 1 , . . . }  is a CON 
system and we get the representation 

~ '  0 < 2 < 1; 
e2~iv).  1. 

Z(2) = z 0 ~  + z,. 2 ~ v i  ' - -  - -  

where the ' in the summation symbol indicates tha t  the te rm corresponding 
to v = 0 is left out at  the summation. In  the case of a normal process this 
is the Wiener random function (see PALEY-WIENER 1). 

The derivative of a stochastic process can be defined either as the strong 

or as the weak limit of x(t  + h) - - x ( t )  when h tends to zero. The latter wil[ 
h 

in general be convenient when dealing with linear differential equations. In  
this way one can show e.g.  that  the equation of Langevin 

d x (t) d B (t) 
- d ~  - + f i x ( t ) - -  dt  

where fl is a constant and B (t) is the process of Einstein-Smoluchovsky has 
the solution 

t 

X (t) ~- e-~ ~t x (0) + e -[3t . f  e ,~ d B ('v). 
0 

The same solution has been given by  DOOB 4 using another interpretation of 
the differential equation. As is known, one obtains in this way the stationary, 
normal Markoff process. 

We have hitherto supposed tha t  the variance is finite. If  we only suppose 
that  E I x ( t  )]p < c~, p ~ 1 we can still use similar methods. We form all 
finite linear combinations just as before and close this set with respect to 
strong convergence according to the metric 

P 

II~,-~/ll = V E I x - y l  ~. 

We get a Banach space X. X is evidently situated in Lv( .O) .  To define the 
integral of a stochastic process we use the theory of integration in Banach 
space developed by  PETTIS 1. The process is said to be measurable if for 
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every linear functional F E 2~ (where X is the adjoined space to X) F [x(t)] is 
a Lebesgue measurable function of t. If  there is a unique element I E X so tha t  

F (I) = f F (t)] d t 
T 

for every F E X the process is said to be integrable with the integral I .  Using 
the general form for the said functionals (see e.g.  BANACH 1) we get a method 
of integration which for p ~ 2 evidently gives us the (K) integration. 

As most processes met  with in practical applications have finite variance 
and as it is possible to develop most of the theory in X in a manner which 
is analogous to that  used in Hilbert  space we now leave this subject. 

1.4. Stochastic processes as families of  real functions. In  the above 
method the process is considered as a curve in an abstract  space. In  the in- 
vestigation of the process only the metric properties of this curve have usually 
been used, disregarding the concrete meaning of the points of the curve. The 
method has been applied with great success to many  problems, especially to 
linear ones, but  in certain cases they are not sufficient. This is part icularly 
the case when considering properties of the individual realizations, e .g.  conti- 
nuity and measurability. When we are going to make statements of inferential 
nature, we clearly want to use all available knowledge about  the process and 
not only its linear properties. This is why we shall in most, cases interpret 
the concept of a stochastic process in the sense used by Doob in a series of 
papers (see DOOB 1, 3, 4). 

Let  t l ,  t2 . . . .  t n  be a finite number of time-points in T and a l ,  a 2 ,  �9 �9 �9 a,~, 

bl . . . .  bn real numbers. Then the set 

{ a i ~ < x ( h ) < b i ;  i = l ,  2 , . . . n } ~  

is called a finite dimensional interval in 2 ' .  ~2' is the space of all real func- 
tions defined on T. Suppose now tha t  the probabilities of all finite dimensional 
intervals are given in a consistent way. Then it is possible according to a 
theorem of KOLMOGOROrF 1 to extend the probabili ty-measure to the Borel 
field constructed from all finite dimensional intervals. The measure is closed 
in the way mentioned in 1.1 and the measure thus obtained is denoted by P ' .  

In  order to be able to consider the probability of sets depending essentially 
upon the values of the process in a non-denumerable set of time-points, e .g.  
all continuous or bounded realizations, Doob proceeds in the following way. 
Let  2 be a subset of 2 '  with P ' ( 2 ) = l .  I f  A = A ' 2  where A '  is measur- 
able with respect to P ' ,  we define P ( A ) =  P '  (A'). I t  can be shown tha t  this 
definition leads to a unique determination of the measure. This means tha t  
we have to confine ourselves to a smaller sample-space, consisting of appropriate 
functions. 

I f  there is a subset 2(2 < 2 '  with P '  (2)  ~ 1 such tha t  the function x (t, (o), 
where o~ E 2 ,  is measurable with respect to the product-measure introduced on 
t)  X T in the usual way, the process is said to be measurable (D). In  all the 
eases we are going to consider, the processes are continuous in the mean. If  T 
is a finite interval (a, b), we obtain using Sehwarz' inequality 
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.f f ix ( t ,o~) ldPdt<oo 
T (2 

so that  according to Fubini 's theorem x (t) is Lebesgue measurable and inte- 
grable with probabili ty one. Further  f x (t)dt is a measurable function on Q, 

T 

i.e. a stochastic variable. This variable is defined as the integral (D) of the 
process over (a, b). I f  z (co) is an arbi t rary quadratically integrable function 
on /2 it can be shown by  applying Fubini 's  theorem tha t  

E{= f x(t)dt} = f Ezx( , )d t  
T T 

which implies tha t  the (D) integral coincides with the (C) and (K) integral 
in the case when the process is continuous in the mean. This identity can be 
shown under considerably more general conditions. 

Some criteria for deciding whether a process is (D) measurable or not have 
been given. The following one is due to KOLMOGOROFF (see AMBROSE l). In  
order tha t  a process x (t) shall be measurable (D) it is necessary and sufficient 
tha t  for every e > 0 and almost every t 

P {lx(t + h)--x(t) l  > e} -+ 0 

when h tends to zero in a set tha t  may  depend upon t but  not upon e, and 
of metric density 1 in h ~ 0. This condition is satisfied e.g. when the process 
is continuous in the mean. 

Another result in this direction is the following which we shall use later on. 
On ~Q' is defined a measure P '  belonging to a time-homogeneous process with 

P ' { a < x ( t +  6) - -  x (t) < b} - -  

b 

] / 2 ~ 5 .  e - ~ d x ;  (~ > O. 

Let ~ be the set of all continuous functions. Then-P'(~2c) = 1 and ~ ,  is 
the sample-space of a measurable process (see Doo;~ 1). 

If  x (t) is a normal process with mean value zero and covariance function 
a ~e -,~lt-Sj (fl > 0) (i.e. the process considered in connection with the equation 
of LANGEVIN in 1.3) we make the transformation (see DOOB 4) 

./ i ] ) 
y (t) - t x l o g  t ; t > 0 .  

This process is of the type described above, and thus x (t) itself is a meas- 
urable process with zgc as its sample-space. 

We introduce the translation operator Th operating on the individual func- 
tions x(t) in the sample-space 

T~, x (t) = x (t + h) .  
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If for every set S it is true that  P ( S )  = P ( T h S )  for all h, the process is said 
to be stationary in the strict sense. Let further x(t)  be (D) measurable. If 
/(co) is integrable on g2, Birkhoff's ergodic theorem states that the limit 

T 

lifo ~ 1T t"/(cot)dr ~i(CO) 
--T 

exists almost certainly. /(co) is measurable and integrable on f2 (see e.g. HoPF 1). 

If, for every integrable /(co) it is true that /(co) is identically constant 
with probability one, the process is said to be ergodic. 

A measurable set A satisfying T h A  = A for all h is called invariant with 
respect to the translation operator. If the process has the property that  every 
invariant set h~ts probability one or zero, the process is said to be metrically 
transitive. I t  can be shown that ergodicity and metric transitivity are equi- 
valent concepts because of the finite measure of the sample-space (see HoPr 1). 

In the third approach the process is considered as a function of two vari- 
ables z (t, co), co E D, t E T, with a given measure of probability on a reference 
space X2. DooB and AMBROSE have shown that  this is substantially equivalent 
to Doob's method. In particular problems one of these may be more suitable 
than the other, but it, has to be decided in each case according to convenience 
which to use. 

Elementary notions in the theory of  statistical inference 

2.1. Power properties of a test. In this chapter we shall give some basic 
facts about statistical inference in the case of finite dimensional samples. Let 
us regard the observed values xa, x2 . . . .  zn as representative of a population X, 
whose probability distribution Po is completely specified by the hypothesis H 0. 
Such a hypothesis which completely specifies the probability distribution, is 
called simple. 

Having observed xl, x 2 , . . ,  x,, we want to make a statement about the 
truth or falsehood of Ho. The methods used for this purpose shall have the 
property of giving correct results in the majority of eases in the Tong run. 
Let us form a measurable region W with Po ( W ) =  e. If (Zl, z2 . . . .  z~) E W 
we reject the hypothesis, otherwise accept it. W is called a critical region of 
size e. I t  is evident that  when H 0 is true we shall reject it with the prob- 
ability s. 

In this way we can form an infinity of tests corresponding to the different 
critical regions of size s. To be able to choose between them Neyman and 
Pearson take an alternative hypothesis H1 into consideration. The s introduced 
above is called the error of the first kind. Another way of committing an 
error is to accept H 0 when H1 is true. The probability of this is called the 
error of the second kind and is PI(W*). Having fixed e we now want to find 
the region W of size s and of minimum PI(W*). This clearly gives us a test 
of optimum character. 

The ease usually dealt with is when the probability distributions Po and P1 
are given by frequency functions /o (Xl, �9 �9 �9 xn) and [1 (ml . . . .  Xn) respectively. 
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The  likelihood ratio is defined as 

/1 (xl, x~, . . . x~) 
l (Xl, x~ . . . .  x,)  = 

/ o  ( z ~ ,  x 2 ,  �9 . .  x , , )  

The set where both numera tor  and denominator  are zero have probabil i ty zero 
according to both hypotheses,  so tha t  we can define the likelihood ratio as 
e.g. one in this set. I t  can now be proved tha t  the best critical region in the 
sense explained above is given by  

W =  {l (x~ . . . .  x , )  >- c ~  . . . . .  x~ 

where the constant  c is chosen to satisfy P0 ( W ) - - s .  For  the trivial difficulty 
when this equation has no solution we refer to CRAM~R 4. The case when 
the probabil i ty distributions are of the discrete type  is dealt  with in the 
same way. 

Usual ly the al ternative hypothesis  is not  simple but  m a y  depend upon a real 
parameter  a, H o itself corresponding to the value a ---- a0. Then to every fixed 
a we get a best critical region for H o against H,.  If  a l l  these critical regions 
coincide, the corresponding test  is called uniformly most  powerful. Unfor tunate ly  
this is a lmost  never the case when a-ao takes both positive and negative 
values (see KENDALL 1). 

Then it is cus tomary  to consider only a subset of all possible tests. I t  is 
fairly evident tha t  P ( W ;  a ) > - P ( W ;  ao)----e is a desideratum for a good test. 
Such a test  is called unbiased. I n  the class of all unbiased tests we t ry  to 
find a region of size e for which P ( W * ,  a) is min imum for a fixed a. Under  some 
regulari ty conditions it can be shown tha t  the test 

W = { / ( X l , . . .  x,,; ~) > - c / ( x l  . . . .  x , ;  ao) + c ~ h ( X l , . . ,  xn;  a0)} . . . . . .  ~,,, 

O/(x l  . . . .  x~; a) has the desired property.  I t  can where ]1 (xl, �9 �9 . x~, ; a) = c) a ' 

happen tha t  for every a we get the same region W. Then the corresponding 
test  is called the uniformly most  powerful unbiased test. 

For  more complicated situations, e.g. when it is required to test  one composite 
hypothesis  against another,  we refer to KENDALL 1, where also a list of the 
original papers m a y  be i.~und. I n  the following chapters we shall show the 
possibility of using the abc, ve methods on stochastic processes. The principal 
difficulty of transferring these concepts to the infinite dimensional case thus 
being solved, it seems easy, at  least in principle, to extend the results to 
composi te  hypotheses in the same way  as in the finite dimensional sample case. 

2.2. Some desiderata  for  a n  e s t i m a t e .  Suppose now t h a t  the hypotheses H~ 
are completely specified by  their probabil i ty distributions P,~, when a is known. 
a is a real parameter  in some interval A. We want  to form a sample-function 
a* (x~ . . . .  Xn) which can be used as an  estimate of a. One has several possible 
ways  of describing desirable properties of a*. 

Let  the sample-number n tend to infinity. Then our information about  the 
popula t ion  is increased, and if the sequence a* (Xl . . . .  xn) converges to a in 
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probabili ty with regard to P ,  for every a E A, we say tha t  the estimate (or 
more correctly the sequence of estimates) is consistent. 

Irrespective of this asymptotic  behaviour we can describe the goodness of 
an estimate a * ( x ~ , . . ,  x,) for a fixed n, by studying its two first moments. 
If  for every a E A  it is true tha t  

E, a* ~- a 

we say tha t  a* is an unbiased estimate of a. This is certainly a desirable 
property. 

The fluctuation of an estimate about its true value can be measured by the 
expression E ,  (a* - -  a) 2. Put  

E ~ a * = a +  b(a), 

where b(a) is called the bias of a*. Then it can 
regularity conditions that  (see CRAM~R 4) 

(1 
+ da! 

E~: (a  * - -  a)  ~ >- / log/t 
E ~  Oa } 

If  a* is unbiased, we define the efficiency e(a*) of a* as 

1 
e (~* )  = - -  

{ 0  log/~' 
D~(a*)E~\ Oa ] 

and thus have 

be shown under some 

0 ~ e (a*) -< l .  

In  the case e ( a * ) ~ - 1 ,  we say tha t  the estimate is efficient. I t  can be shown 
that  if two estimates a~ and a~ are both efficient, then a~ z a,~ almost 
certainly. 

When we are considering a sequence of estimates a~ it may happen that  i t  
has desirable properties although the two first moments do not exist. The 
following definition (WALD 1) takes this possibility into account. The estimate 
is said to be asymptotically efficient if there is a sequence of  stochastic vari- 
ables u,~ with 

lira E .  u,~ = 0; lira E .  u2,~ = 1 

so tha t  

E.~  Oa ] (a~2- -a ) - -u , , , ->O,  n - + c ~  
F 

in probabili ty with regard to P ,  for every a EA. 
The most important  method of estimation is the method of max imum 

likelihood. If  Xl, x 2 , . . ,  x,, are independent stochastic variables, each of them 
having the frequency function /(x; a), we form the simultaneous frequency 
function 
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1 (x~ . . . .  ~ ;  - )  = f (x~ ; ~) t (x~ ; , )  . . .  1 (x~ ; ~) .  

As an estimate of a we take a non-identically constant solution a* ( X l , . . .  x~) 
of the equation 

0 log / (xi . . . .  x~ ; a) = O. 
Oa 

Under some regularity conditions it can be shown that  this equation has a 
solution, which converges in probability, with regard to P,~, to a for every 
a E A when n tends to infinity. This estimate is asymptotically normal and 
asymptotically efficient. The analogous result holds for the discrete type of 
distribution. 

2.3. Confidence regions. The preceding section deals with point-estimation. 
In many cases we do not want to assign a single value to the unknown para- 
meter but an interval or some more general region, which, for a given s, con- 
tains the true value of the parameter with the probability 1 -  s, for all a E A. 
I t  is possible to do so in the following way (see CRAM~n 4). 

For every fixed value of a we choose a set S (a) E X, such that  P~ [S (a)] --~ 1 - -  e. 
For every (xl . . . .  x~)EX we denote by E ( x l  . . . .  X n ) ~ A  the set of all a 
such that  for the element (a; xi . . . .  x,~) in the product space A X X the 
relation 

( (2  ; X 1 . . . .  Xn) E D 

holds, where D ~ A X X is determined as the set of all (a; xl  . . . .  x,~) such 
that  (xi . . . .  Xn) ES(a ) .  Then we have for every a 

{x~ . . . .  Xn) eS(~)} = {~eX (x~ , . . .  ~,~)} 
so that  

P ~  [a  ~ X (x~, . . . x , ) ]  = 1 - -  ~. 

E (x~ . . . .  x~) is called a confidence region for a with the confidence coefficient 
1 -  s. If, in particular, E ( x l  . . . .  Xn) is an interval in A, we call it a con- 
fidence interval for the parameter. 

Observab le  c o o r d i n a t e s  o f  a s t o c h a s t i c  proces s  

3.1. In the following we shall try to transfer the classical methods of 
statistical inference to stochastic processes. Let us consider specially the case 
when it is required to estimate a single parameter a. From the preceding 
chapters it is evident that  the natural way of doing this is to form a function 
of the observed realization, and choose this function in order to make it a 
good estimate of a in some sense. As a function of a function the estimate 
is a functional defined on the sample-space. Now the theory of functionals 
has mainly been developed for linear functionals or some special types. Usually 
(but with some exception to be studied later) there is nothing in our problem 
that  gives us reason to confine ourselves to these special types of functionals. 

+ 
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Therefore we shall consider quite general types of functionals, restricted only 
by some natural  regularity conditions. 

We get the information obtained by observing a stochastic process in the  
form of one or more real functions. For our purpose it will be more con- 
venient to translate this information into the form of a sequence of real 
numbers (Cl, ce . . . .  ), if possible, which implies that  we have to use a sample- 
space of smaller power than the space .(2' consisting of all real functions. This 
will be the case in the problems we are going to study. How to choose this 
sequence is only par t ly  a mathematical  question. One has to take into account 
what properties of the realizations that  really can be observed in the practical 
application under consideration. The o's are called the observable coordinates 
of the process. We shall see tha t  it is very important  to choose these coor- 
dinates in a way tha t  facilitates the construction of estimates, test  functions 
and so on. 

Consider the following important case. x (t) is a normal process that is ob- 
served in the finite time interval T ~ (a, b). The process is continuous in the 
mean with mean value function m (t) and covariance function r (s, t). As shown 
in 1.3, we have 

\ ,  % (t) 
x (t) = re(t) + ~ z,. ]/).,. 

with convergence in the mean for every t E T. 2,. and g, ( t )are  the eigen-values 
and the corresponding eigen-functions of the integral equation 

and 

b 

(s) = ,~ f r (s, t) ~v (t) d t 
t l  

I E z , ,  = o. 

[Ez~z.,,~ ~- ~v , .  

In  this case the stochastic variables z, will obviously be normally distributed, 
being limits of finite linear combinations of the values of x (t) at  time-points 
in T. 

INow we represent the process by  the following random function 

a e  

x ( t ,  0)) = X( t ,  Zl, Z 2 . . . .  ) -~ re(t)  + ~ z, 7~"(t), 
1 'V~..  

where the quantities in the right hand member have the same properties as 
before. KAc and SIEGERT 1 have shown that  the sum converges for almost 
all (t, w) in T X Y2. Further, they have shown that  the expression converges 
in the mean with regard to Lebesgue measure on T almost certainly. Taking 
a quadratically integrable function / ( t ) e L 2  (T) it is now possible to form the 
integral f [ (t) x (t) d t which is a measurable function on Y2, because of the 

T 
random function being measurable on T X Y2. 
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We now want to represent the information contained in a certain realization 
in a convenient way. One rather natural way of doing this is to form the 
Fourier-coefficients (Cl, c2 . . . .  ) of the realization with regard to a CON system. 
I t  is particularly convenient to take {%(t)} as this system if it is com- 
plete, otherwise we make it complete by adding another orthonormal system 
to it in the usual way. The probabili ty distribution of these c's is easily ob- 
tained when we only consider a finite number of them. Then the usual pro- 
cedure is used to extend the measure to the Borel field. When (ci, c2 . . . .  ) is 
given we know the realization completely if we consider two functions differing 
at most in a set of points of measure zero as identical. From the practical 
point of view this seems quite enough. 

In cases when the covarianee function is of some simple form it may  be 
bet ter  to use another system of coordinates. Let  us consider the normal sta- 
t ionary Markoff process. We have seen in 1.4 tha t  it is possible to choose the 
set of all continuous real functions on T as the sample-space of the process. 
Let {t,l be a denumerable set of points everywhere dense in T. Then, with 
probability one, the realization is completely specified when the values x(A) = c,, 
are known for all n. We shall see tha t  the choice of this systenl of observable 
coordinates will prove advantageous in the t reatment  of the process. 

An important  type of processes is the class of pointproeesses with adjoined 
stochastic variables. As the natural  sample-space of these processes consists of 
step-functions, the following system of coordinates seems appropriate. If a 
realization has the form 

I x ( t ) = w  o for a ~ t ~ t i  

[ ; ( t ) = x ~ ;  for t , < t - < - t ~ + i ,  

( t ) = x ~  for t n < t ~ b  

i = 1 , 2  . . . .  n - - l ,  

where ,~, t l , . . ,  t,,, Xo . . . .  x,~ are stochastic variables, we use as coordinates 
the sequence {n; Xo, tl, xl . . . .  tn, x~,}. To get the coordinates in a form sym- 
metrical to the above, we add an infinite sequence of real numbers. To these 
we assign some simple probability distribution, e.g'. such tha t  they are inde- 
pendent of each others ~md of the preceding coordinates (except of n of course), 
each having a normal distribution (0, 1). This means just a formal simplifica- 
tion. We shall only deal with the case when P (n < c o ) =  1. 

When considering other types of processes it can of course happen tha t  we 
have to introduce a different, type of coordinates. In the following we shall 
always suppose tha t  the information given by a realization can be expressed 
with the aid of a denumerabte sequence of real numbers. We shall sometimes 
denote the coordinates (x~, x2 . . . .  ) =  (oE f2, using the letter o) to symbolize 
the information observed in a realization. D is then called the coordinate-space. 

The  p r o b l e m  o f  t e s t i n g  s ta t i s t i ca l  h y p o t h e s e s  

4.1. Existence of a most powerful test. We shall now begin to study the 
problem of testing statistical hypotheses in the case of a stochastic process. 
In this chapter it will be shown tha t  it is possible to transfer the fundamental 
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ideas and methods of the Neyman-.Pearson theory to this case. By a simple 
hypothesis wilt be understood a completely specified measure of probability on 
the coordinate-space Q. 

Let us test a simple hypothesis H 0 corresponding to the measure of prob- 
ability P0 against a simple alternative Hx corresponding to P~. In the same 
way as in the classical theory we want to form a critical region W of size 
such that  the error of the second kind P1 (W*) is as small as possible. In the 
case of a finite dimensional sample this was done by choosing the region where 
the likelihood function was as large as possible. In our case we have no fre- 
quency functions in .(2 at our disposal, but we shall get an analogous concept 
serving the same purpose. Usually in the classical case one considers only the 
situation when the probability distributions are either of the continuous or 
the discrete type. These restrictions are not essential as will be seen in the 
following. 

The analytical tools we are going to use for our purpose are the Lebesgue 
decomposition of an additive set-function and the Radon-Nikodym theorem (see 
SAKS 1). Applying these to our problem we get the following: there is a set 
H of P0-measure zero and a non-negative function [ (w) integrable over .(2 with 
respect to P0 such that  for every measurable set E < ~2 

Pl(E)=f/(w)dPo(o) + PI(EH) 
E 

I t  is evident that  /(~o) plays the same r61e here as the likelihood ratio in the 
classical case. We form the set 

S k = { / ( w ) > k } r  

and determine k so that  P0 (Sk) = e, One can deal with the trivial difficulty of 
this equation having no solution in k in the same way as in the classical case 
(see CI~AM~R 4) but we suppose that  such a solution exists. Then we have 
the following 

Theorem: The test correspondinq to the critical region Sk is the most power/ul 
test o/ H o against H 1 on the level ~. 

To prove this, let E be another set with Po(E) ---- e, and introduce 

Then 
E H * : A ,  E H = B ,  H * { / ( w ) > k } : F .  

PI (F )  = P I ( F  - -  F A )  + P I ( F A )  > kPo(F)  - -  k P o ( F A )  + 

+ P I ( F A )  ~ k P o ( A )  - -  k P o ( F A )  + P I ( F A )  >-- P I ( A - - A F )  +PI (FA) - -~  PI(A) 

and 
Pi  (S~.)~ P~(F) + PI(H)--~ PI (A)  + PI(B)~= PI (E)  

which proves the theorem. 

4.2. Construction of  a most powerful test. The above theorem has the 
character of a proof of existence. We shall now proceed to show how to con- 
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struct H and /(o)). In  order not to complicate the proof we suppose tha t  the 
probabili ty distributions of a finite number of coordinates is of the absolutely 
continuous type so tha t  it is given by  frequency functions go (xl, x~ . . . .  xn) and 
gl (xl, x2 . . . .  xn) respectively according to the two hypotheses. I t  is possible 
to prove the same results also when the coordinates have a discrete distribution 
or a combination of these two simple cases. We shall consider the possible 
, !ternatives. 

A :  Suppose that  P1 (H)~--O. This will be called the regular case. Take an 
arbi t rary  cylinderset C~ < D with a basis B~ < Rn (x~, x 2 . . . .  xn). Put  

go (xl  . . . .  x,,) 

If  the numerator and denominator in this expression both vanish we put  In (~o) = 1. 
Then 

f / (co) dPo (~o) = P1 (Cn) = f l~ (xl, �9 �9 �9 x~) go (xl, �9 .r.. Xn) dx l  . . . .  dxn. 
Cn B n 

According to the definition of conditional expectation (see 1.1) we get 

in (X 1 . . . .  Xn) = E 0 [/ (og) l Xl, . . . Xn] 

ahnost  certainly with respect to P0. Using a theorem by  Levy which has been 
generalized by  Doob (see DooB 3) we have 

/ (co) = lira gl (xl . . . .  Xn) 
n ~  g o  ( X l  . . . .  Xn) 

almost ce r t a in lywi th  respect to P0, and also with respect to P1 as P1 ( H ) =  0. 

B : Suppose that  0 < P1 (H) < 1. As we always have P0 (H) ~ 0, it is possible 
to cover the set H by a denumerable sum of disjoint finite dimensional inter- 

vals I,, in the coordinate space so tha t  P0 I~ < e. As , P1 ( L . ) ~  1, we 
1 

can choose an integer N so tha t  ~ P1 ( I , ) <  e. We get 
N q  1 

P l { H ; l n ( ~  <~P1 L ; l n ( c o ) - < k  + e .  

Choose n greater than t, he largest index used in determining the intervals 
I1, I2 . . . .  I,v. Then the set 

} 
t-i-- 

is a cylinderset with a basis C' in Rn ( X l ,  X 2 . . . .  Xn), and we have 
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P1 {H; 1,(o~) --< k} ~< e + f ln(xa . . . .  x,)go(Xl . . . .  Xn) dXl . . . .  d x n  <~ 
C' 

< e + k P o I,, --< e(1 + k). 

As this can be made  arbi t rar i ly  small  for given k we have  proved t h a t  l,~ (~o) 
converges in probabi l i ty  with regard to P1 to + c~ in H, as n tends to infinity. 

Consider the measure  of p robabi l i ty  

PI (S H*) /(co) 
F(S) p l (u , )  - - . f p ~ ) d P o ( o ~ )  

S 

which is possible as PI(H*)> 0. We have  F(S)-= P:(SIH*), and the fre- 
quency function of (xl, x2 . . . .  x ,)  with respect  to F is 

g (x:, x2, x ,  I H*) = gl (xa . . . .  Xn) P1 (H* [ x 1 . . . .  Xn) 
�9 " " P 1  ( H * )  

because of 

f P1 (H* [ X l ,  . . Xn) -p-(H;) gl(xa, . . . . . .  x~)dXl dx, P:(H*B)p1 (H*) - F(B) 
B 

which is t rue for every  set B ~ Rn (x: . . . .  x,)  according to the definition of 
conditional probabil i ty .  As the case Po against  F is regular,  we can use the  
above result  and  get 

/ ((o) - -  lim g: (xl . . . .  xn) P :  (H* [ xl . . . .  x,,) 
P : ( H * )  n ~  g o ( x : , . . . x , )  P I ( H * )  

a lmost  certainly. Bu t  if co E H* we have  

l i m  P :  (H* I X  1 . . . .  Xn) = l 
n ~ oo 

almost  certainly with respect  to P :  (see DooB 1), i.e. we have  proved tha t  in H* 

/ (~) = lim gl (x: . . . .  x,,) 
, ~ r  go (Xl, �9 �9 �9 Xn) 

a lmost  certainly with respect  to P1. If  there is a set E < H* where the above  
is not  true, we have jus t  seen t h a t  P I ( E ) = 0 -  But  if P o ( E ) > 0 ,  then  we 
can use our previous result  applied to P1 and Po (in changed order) and  get  

go (x :  . . . .  x,,) + 
-V CxD 

gl  (xl  . . . .  xn) 

in probabi l i ty  with respect  to P0 in E, i.e. 
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g l  (Xl . . . .  Xn) ---)- 0 
go (Xl . . . .  Xn) 

in probability with respect to Po in E. But in E we must have /((o)----0 
almost certainly with respect to Po so that we have in E with convergence in 
probability with respect to Po 

/ ((o) ~ lim gl @1 . . . .  Xn). 
n ~  r162 g0 (Xi . . . .  X . )  

(]: Suppose finally that P : ( H ) ~ - 1 .  Then we have sho~'n that ln(o)) con- 
verges to + c~ in probability with respect to P: .  I t  is easily seen that  ln(w) 
tends to /(~o) in probability with respect to Po- 

Summing up we have: 

With respect to Po: ln(~O) converges to /(co) in probability. 
With respect to P : :  ln(~O) converges to ] (o~) in probability in H*. 
With respect to P : :  ln(w) converges to + c~ in probability in H. 

Now we can take as usual a sub-sequence ln,, (o~) converging almost certainly 
with respect to both measures to ](co) and to + ~ in H* and H respectively. 
We thus have 

Sk = {lira ln~ (a)) > k}~. 

In the applications it will hardly be necessary to choose such a sub-sequence 
for different reasons. In a certain type of application the coordinates can be 
chosen in such a way that  they are independent stochastic variables, and ac- 
cording to the zero or one law we will have probability zero or one for the 
convergence of 1,~(o~). We will thus have either the regular case or the extreme 
singular case. For the pointprocesses to take another important case 1,. (~o) will 
be independent of ~ when v is greater than the first coordinate n, so that we 
will have no difficulty with regard to the convergence of the sequence. Almost 
all cases we shall meet will be of the regular type. 

4.3. Tests for composite alternatives. In the preceding sections we have 
shown how to construct the most powerful region for testing a simple hypo- 
thesis against another simple one. In practice, however, one meets more com- 
plicated situations. To deal with these several types of critical regions have 
been proposed. Difficult as these questions are, it is evident that the princ@al 
di//iculty o/ trans/erring the concept o/ the best critical region to the case o/ 
stochastic processes has been solved in 4.1--4.2. Therefore we will only treat 
two more cases. 

Suppose that  we still want to test the simple hypothesis H 0 but against a 
family H~ of simple alternatives. Here a is a real parameter, which may be 
normed so that  a ~-0  corresponds to H 0. 

Fix a and construct the best critical region S~ < f2 foi testing H o against 
H,~ on the level ~. If we get the same S for all values of a under considera- 
tion, we call the test corresponding to S uniformly most powerful. Unfortunately 
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this is seldom the case, except sometimes for one-sided alternatives, where a 
takes values only of one sign. 

In  the classical case it is then sometimes possible to find a uniformly most 
powerful unbiased test. Using the result of 4.1-4.2 it is easily seen how to 
transfer this to our case. Suppose for simplicity~ that  the singular part  H 

vanishes. If  then the derivative 0/(~o, a) exists almost certainly and is dominated 
0 a  

i (_<o, .)[ 
O a < F (~,) 

for au a, where F(w)  is integrable with respect to Po, we take as critical 
region the set 

S = /(co, a) --> c + cl \OaJa :0 j  

We suppose that  this set is independent of a and that  it is possible to choose 
the constants c and cl to satisfy 

Po (8) = s 

ioPo(s)l 
\ - - ~ ] o = 0  = 0. 

If  E is another unbiased region of the same size, we get 

/ I OP~(S---ES)) _ P~(S--ES)=.  ](~o,a) dPo(~O) >--cPo(S--ES) + C1\ ()a ~=O-- 
S ES 

=cPo(E--  ES) + el Oa ~=o 

and 
P~ (S) ~ P ,  (E). 

Thus S is really the unifornlly most powerful unbiased region. 

4.4 .  Tests  for the  m e a n  va lue  funct ion  in the n o r m a l  case.  Now we are 
going to apply the obtained results to the following problem, x (t) is the normal 
process considered in 3.1 with known covariance function r (s, t). We want to 
test  the hypothesis 

H o : E 0x(t) = mo(t) 
against the alternative 

H I : E ix ( t )  ---- m l(t). 

As described in 3.1 we take as the observable coordinates of the process 

b b 

x,=fx(t)9~(t)dt;  y,=fx(t)y~(t)dt;  v = l ,  2 . . . . .  
a a 
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Here {~,(t)} is the orthonormal system corresponding to the integral equation 
of the process. In  most practical cases r (s, t) is a positive definite kernel so 
that  {%(t)} is a complete system. I t  may, however, happen that  the system is 
not complete and we then add another orthonormal system {~p, (t)} with {y;} _L {~}. 
I t  is immediately seen tha t  the y 's  have a normal distribution with the para- 
meters 

/ ~ 
E~y~ = f m~(t)~,~(t)dt; i =  O, 1. 

i ~ D ~ y ~ O ;  i ~ O ,  1. 

I f  there is an integer v such tha t  E o y~ ~= E,  y, we take as the critical region 

'} } S = / x (t) W- (t) dt  ~ E 1 y, , 

which has P o ( S ) =  0, P I ( S ) ~  1. We have thus arrived at the extreme end o/ 
the singular case and can determine the true hypothesis from the knowledge o/one 
realization, if we disregard events of probabili ty zero. 

In  the following we exclude this case by  supposing E 0 y~ = E 1 y,, for all v. 
Then we only have to take the x's  into account. They have independent normal 
distributions with parameters  

Ho : o. 1 H, : 
Do x~ ---- A--~ D~ x~ -= , 

b 

where ai ~ f m~(t)~ (t)dr. We have the frequency functions in Rn 
a 

n 

V A  1 ~\' 02 �9 �9 . A n  - � 8 9  2 v ( x r - - a ' )  

go ( x ,  . . . .  x ~ )  -- ~ e 

(2 n) 2 
n 

g l  (Xl ,  - �9 �9 Xn) - -  V A I  - �9 �9 ~n(~--  �89 ~':~ " 1  12 
n 

(2  ~)2 

and 
~n n 

�9 % (% - % ) - ~ x,, ( % -  a , )  .% 

l n ( ~ )  = e * 1 

Suppose now that ~_~ A,. (a ~ - -  a{) 2 < c~. We have, putting 
1 

Z . . . .  1 L (a; 2 - -  a ? )  - -  A,, x~ (a~ - -  a~,) 
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that  

Then using 

( n ~  z~ = ),~ (a  ~ - -  a~) 2. ( D~  z~ = 2~ (a~' - -  a l )  2 . 

almost certainly with respect to both Po and P~. 
case and almost certainly 

~z~ 
/ (co) --~ l i m e  1 

n ~ c ~  

a known theorem of Kolmogoroff we see tha t  ~ zv is converging 
1 

Thus we have the regular 

I t  is convenient to use another form. Putt ing 

we get 

/n (t) = ~ (a~ - -  a~) 2~ q), (t) 
1 

b 
-- f / n  (t) [x(t) m~ (t)] dt 

In (0)) = e a 

and using the result of 4.1 we get the /ollowing most pou,er/ul region to test H o 
against H 1 

b 

lim f /n(t)[x(t) m ~  
n ~  2 

a 

Suppose now that ~ 2v (a~ -- a~) 2 ---- c~. Using Tchebychef's inequality and 
1 

putting 
b 

tn ((D) = ~ f  /n (t) I x  (t) - m0 (t) "~-2 ?~'l(t)] d t  

el 

we then have for large n 

Po (tn ~-- (%) = Po (tn - -  E o t n  ~ a - -  ~o  in) ~ Po ([ tn - -  E o t n  [ ~ [a  - -  E0 t~ ]) -< 
n 

"~ ~ (a~ - -  a~,) 2 

1 < 

1 

which tends to zero for every a when n tends to infinity. Thus l n ( w ) = e  -t,~(~) 
converges to zero in probabili ty with respect to P0 when n tends to infinity. 
In  the same way 
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P i  ( t ,  >-- a) ~- P i  (tn - -  E i  in ~ a - -  E 1 tn) ~ P i  (] tn - -  E1  tn [ >-~ [a - -  E 1 tnl) <- 

~ ).,, (a~ - -a~)  ~ 
1 <_ 

a -F } ~,, ( a  ~ - -  a~) 2 

1 

which tends to zero for every a when n tends to infinity. Thus I~(o~) con- 
verges to + co in probability with respect to P1 when n tends to infinity. 
From this follows as is easily seen by applying the result of 4.2 that  we 
have P o ( H ) - ~  O, PI (H)  ~ 1 and thus again come to the case o/ extreme 
singularity. In the chapter on estimation we will give a more explicit expres- 
sion for the true hypothesis. I t  is interesting to note the two distinct ways in 
which the singular case has been met with. The first one appeared already 
when only a finite number of the coordinates were taken into account. The 
second is essentially dependent on the property of convergence of a sequence 
involving an infinite number of coordinates. 

4.5. Continuation;  composite alternatives. Now when we are going to 
consider composite hypotheses, we shall only deal with the regular case. Sup- 
pose that  we want to test 

i H o : E o x ( t )  = 0 

~ H i : E ~ x ( t )  = mc~(t). 

As ~9 ~,, a"; ( a ) <  co, the best critical regions corresponding to the values of a 
1 

have the form 
n 

lira ~ xv A~ a,. (a) >-- c (a) 
n ~ o o  1 

which follows from the above. I t  is easily seen that  in order to get a uni- 
formly most powerful region we must have 

m, (a) = k (a) a ,  

where k (a) is of constant sign. If this is true we get the test 

b 

lim f/. (t) x (t) a t _> c 

where /n (t) = ~ a~ 2,. q~, (t) if k (a) > 0 and the -< sign is used if k (a) < O. 
1 

This test has the character of one-sidedness, and is uniformly most powerful 
with respect to the alternatives k ( a ) >  0 (or k ( a ) <  0). 
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We now want to construct a uniformly most powerful unbiased test under 
the conditions 

j H o : E  ox(t )  = 0 

I H~: E~x(t) = aa(t). 
We get 

o / (o~, ~) 
Oa 

~ c ,o  

- - e  7 ~ ~ 7 ,--a~2,,a,2.+[ : x , s  

Introducing X = ~ x~ 2,, a, which is a normally distributed stochastic variable, 

we get the domination valid for l a l <  1 

As the last expression has existing mean value, the assumptions made in 4.3 
are fulfilled. Using the method described there we get the region 

e -}~ >-- C + c:X.  

Exactly as in the corresponding classical case this gives us the uniformly most 
powerful unbiased region 

b 

[limn~r fa /n( t )x( t )dt l  >- k. 

4.6.  Ex i s t ence  and d e t e r m i n a t i o n  o f  the  t e s t - func t ion .  As almost certainly 
x(t) is quadratically integrable, we should get, assuming that  /n(t) converges 
in the mean to a function / ( t )eL2(T) ,  that  

b b 

lim f / n  (t) x (t) d t = f / (t) x (t) d t 
n ~  a 

almost certainly. This would be a very convenient form of the test. This 
is, however, not always the case. Because of the theorem of Fisher-Riesz 
it is necessary and sufficient for the convergence in the mean of /n (t) tha t  

2 2 a~ 2~ < c~. Assuming 

function we get 

this and using the bilinear form of the covariance 

f r  (s, t ) / ( s )  gs  = a, (t) 
a 1 

with uniform convergence for t E T. Of course, we have 

f q~,,(t) a , ,~ . ( t ) - -a ( t )  dt  
(t 

= 0  
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for all v. 
{~,}. If for any v 

f~f~(t) " a ~ , ( t ) - - a ( t )  d t = - - f ~ f ~ ( t ) a ( t ) d t @ O  
a @ 

we consider the region 

S~ = w,~ (t) x (t) d t = a .  ~o~ (t) a (t) d t 

If  {~(t)} is not complete we add as before an orthonormal system 

We have immediately Pi3(S,~)~-0 for a # fl a~d Pr 1. As we have 
excluded the singular case we must have 

a (t) = 2 J  ao ~v (t) 
1 

for almost all t E T, and hence 

b 

f r ( t ,  s ) / ( s ) d s  = a ( t )  
t~ 

for almost all t E T. The left hand side is a continuous function of t because 
of the properties of the covariance function, and a(t)is also a continuous 
function being the mean value function of a process which is continuous in the 
mean. Thus we have equality for all t E T. 

If there is a quadratically integrable solution /(t) to this equation, we get 
immediately 

b 

f / ( t ) % ( t ) d t = a v s  /(t) = ~ a ~ % ( t )  
a 1 

so that using the Fisher-Riesz theorem we have ~ a~ ~, )J < co. Thus /or the 
1 

existence o/ a quadratically integrable best test-/unetion / (t) it is necessary and su/- 
/icient that the equation 

b 

f r(t, s)/(s)ds = a(t) 

has a quadratically integrable solution. As the test-function we take the pro- 
jection of the solution on the space spanned by {~s~}. The question considered 
has thus been reduced to/inding a "quellenmiissig" representation o/ the mean value 
/unction by means o~ the covariance /unction. 

The most interesting case is of course a(t)= 1, especially in the stationary 
case. Let us consider a stationary process x (t). Then it seems intuitively that  
if the process is of some strongly regular behaviour, e.g. analytic in t = 0, 
which means that r (t) is analytic in t =-0,  usually no best test of the said 
simple sort will exist. Using the spectral representation of the covariance 
function 
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oO 

r (t) = f e "~ d F (4) 

we get because of the absolute integrabil i ty 

where 

b 

f r(t - s)/(s) ds = ~ e "~ ~v(~) dF(X) 

b 
(4) = f e -it)" / (t) d t. 

g 

As r(z) is analytic in [ z l <  r for some positive r, we know tha t  it is analytic 
in ] I ( z ) ] < r  (see L~vY1) .  Then 

Oo 

f e  its q~(2) dF(2) = 1. 

for all real t. 
b 

As q~ (0) f / ( t )  d t = ~ ~" a ~  > 0, we can write for all real ' x.d 
a 1 

with 

oo  

f e its" cp (4) dF~ (4)= O, 
- -  o O  

~(~) 
A~ 1(4) : F ( 4 ) - -  

(0) 

Now using the same method of approximation as Karhunen  has done in 3, 
p. 64-65,  we get ~ ( ) , ) =  0 almost  everywhere with respect to F ( 2 ) e x c e p t  pos- 
sibly for 2--~ 0. But  as q (),) is a non-identically vanishing integral function, it 
has a discrete set of zeroes, and F(;t) mus t  be a step function 

F (4) = ~ F, 

where we have put  2 0 = 0.1 Thus if the spectrum contains any  absolutely con- 
t inuous or singular component  no best test  of the above type  exists. I f  it is 
a pure pointspectrum we form the Hilbert  space A2 of functions which are 
quadrat ical ly  integrable on (a, b) spanned by  the elements 

{e its.,, a ~ - - t g b ,  v ~ 0 } .  

The frequencies ),~ mus t  not  be so dense tha t  A 2 includes the constant  func- 
t ion 1, because then 

1 = 1. i. m. ~ ,  c n eit~* , 

1 The ~t's do not denote the eigen-values. 
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and 

o< f / ( t )d t=l im c~fe-it~,J(t)dt=O. 

I f  1 r A~ we can write 
i = ~ ( t )  + ~/(t) 

with ~(t) E A2, ~ (t) • A~ and ~/(t) -=  0. Take / (t) = ~ (t). Then 

and 

b 

f /(t) dt 
a 

b b 

= f [~ (t) + v (t)] ~ (t) dt = .(I n (t) l ~ dt  > o 
a (l 

b 

f r(t-- s)/(s)ds 
q, 

b b 

0 a a 

We shall return to similar questions in connection with estimation. 

4.7. Test for the  " c o v a r i a n c e - f a e t o r "  in  the  n o r m a l  case. Another type of 
hypotheses for a normal process is the following. Suppose that  the mean value 
function is known, say, identically zero. The covariance function is known but 
for a multiplicative constant. Pu t  

H o  : Eo x ( t )  = 0 ; -Eo x (s) x (t) = r (s,  t). 

[H~:E~x(t )  = 0 ;  Eox(s)x(t)  = a2r(s, t); 

With the same 
R~ (xi ,  �9 �9 �9 x~) 

and 

a 2 r  l. 

coordinates as before we get the frequency functions in 

( n 

V X l . . . x ,  ~  
(Xl, �9 . X n )  - -  e i go Q 

n 

(2 ~)  2 

I (x~, �9 �9 X n )  - -  n e 1 g l  

n 1 1 1 ] 
l~ (~o) = i ~ n  e 

n 

I f  H o is true we get, using the fact that  1 ~ 2~ x~ converges almost certainly 
n 1 

~o 1, which will be shown later, 

1 1 ~,~ [i ] 1 l o g a < 0 .  - x ~,;t~ ~ 2 - - 1  - - l o g a n � 8 9  2~2 log  In(O~) - -  2 n  
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Thus ln(~o) converges against zero with probability one. If  H~ is true we get 
in the same manner that  ln(~o) converges against + c~ almost certainly with 
respect to P, .  We have the interesting situation that  for these hypotheses we 
always get the singular case. I t  is possible to get an explicit expression to 
determine what hypothesis is true. Regard the expression 

with 
N t 1 

[ Do z,  ~, = 2 ( D~  z~, = 2 a 4. 

As the z's are independent stochastic variables, we can apply the convergence 
theorem of Kolmogoroff and get the result tha t  the limit 

lira ] 2, x (t) ~ (t) d t 

exists almost certainly according to both hypotheses and that  its value is 1 or 
~2 according to whether H o or H~ is true. 

Consider the transformation T~. operating on the elements of the sample 
space with 

T~.x(t) = 2x ( t )  

where 2 is a real constant different from one. Then the set E < .(2 for which 

lim 1 2,. x ( t )~v( t )d t  = 1  

has P0-measure one. Evidently the set T ~ E  is disjoint from E and has Po- 
measure zero. Take especially the case a = 0, b = 1 and r(s,  t ) =  rain (s, t), 
and we have the time-homogeneous differential normal process, the Wiener 
process. The surprising result tha t  there exists a set E having the said pro- 
perties has been shown by Cameron and Martin starting from another point 
than that  of testing statistical hypotheses. 

4.8. Several observations. I t  is now natural to continue the construction 
of best tests for other types of hypotheses, e.g. to test  two given covariance 
functions against each other, when the mean value function is known, or to 
consider a composite null hypothesis and t ry  to find similar regions. In practice 
we have often more knowledge about the type of realization, and using this 
we can sometimes get simple tests. We want to stress the importance of 
choosing an appropriate sample space and shall see the advantages of doing 
this in the following. The difficulty of solving the integral equation of the 
process can then sometimes be avoided. As the results of the preceding sections 
have made clear how to proceed in the manner of 4.4-4.7 we shall restrict 
ourselves to consider only a simple generalization of the above before leaving 
this topic. 
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Suppose that  we want to test the same hypothesis as before 

I Ho:Eox(t)  : 0 

( H 1 : E ix ( t )  -~a( t )  

when the covariance function r (s, t) is known, but  that  we now have observed 
N independent realizations xl(t), x 2 ( t ) , . . ,  xN(t). This sample is naturally 
described by  the coordinates 

b 

x . ~ = f x ~ ( t ) ~ f . ( t ) d t ;  v = l ,  2 . . . .  N;  # - - 1 , 2  . . . . .  
a 

Forming the approximation to the likelihood function, and still supposing the 
case to be regular, we get 

n 

-~ N ~ J.~%+ v Jl~x~'~% 
In (CA)) = e 1 l<~,te~n 

The most powerful test is thus obtained by using as critical region the set where 

b 

lira f [xl (t) §  xN (t)]/n (t) d t ~ ]r 
n ~  or  t% 

where /~(t) is defined as above. Uniformly most powerful onesided tests and 
uniformly most powerful unbiased tests can be found in the same way. 

4.9. A pointprocess with adjoined variables.  The method described in the 
preceding section leads to integral equations which in practical cases can but 
occasionally be solved explicitly, though we shall see in 5.3-5.5 that  the problem 
can be dealt with in the most important  cases. Though approximate numerical 
methods are available, it still seems desirable to find tests of simpler structure. 
As already briefly mentioned, this might be possible when our knowledge of 
the nature of the realizations allows us to consider more restricted functional 
spaces than L2(T). 

Let us consider the following process which will also appear in the chapter 
on estimation. We are observing a Poisson process with intensity fl in the 
time interval (0, T). We get a series of p o i n t s 0 < t l < t 2 <  " < t n < T -  To 
every interval ti < t ~< ti+l is adjoined a normally distributed stochastic vari- 
able xi with mean value m (which is u n k n o w n ) a n d  standard deviation 1. 
Furthermore, these variables are supposed to be independent. This process has 
been used in applications of stochastic processes to the theory of servomech- 
anisms (see ,lAMES, NICHOLS, PHILLIPS 1). The realizations are of the form con- 
sidered at  the end of 3.1, and we choose the same set of coordinates. We 
want to test  the hypothesis m ~ - 0  against the alternative value m. Now of 
course n has a discrete probabili ty distribution, but  as mentioned in 4.2, this 
will add no complication when constructing the test. As is easily seen we get 
the likelihood function 
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n 

- - � 8 9  n n + l  o 
e o m ~X~x,v-Tm" 

0 / (o9) - -  - -  = e 
n 

e o 

The most powerful critical region then has the simple form 

n + l m 2 > k "  
m x ~  

o 2 

This set has the same form as the best test of the mean value of n independ- 
ent normally distributed stochastic variables xl, x ~ , . . ,  xn. We observe, how- 
ever, that  this test could not have been obtained in that  manner, because 
in our case n is not a fixed number but  a stochastic variable. On the other 
hand, one could have got the best conditioned test (by fixing n) of the hypo- 
thesis in that  way. 

To calculate the covariance function which will be needed later we fix t > s 
and get 

E [x(s) - -  m] [x(t) - -  m] = P { n o  time point ti in (s,t)}. 

�9 E [ x ( s ) -  m] 2 + P {some time point ti in (s, t)} .0. 

As the covariance function of a real process is symmetrical in the both argu- 
ments, we have 

r(s ,  t) = e-fl It-81. 

I t  has to be observed that  this is not a normal process, which can be seen 
by considering the simultaneous distribution of x (s) and x(t) .  

4.10. Tests for  pointprocesses. A type of process which is commonly met 
with in practice is the point-process. We shall study some of these types in 
connection with test problems. Let  x(t)  be a generalized Poisson process with 
probability intensity 2 (t) or # (t) according to whether H 0 or H 1 is true. The 
process is observed in the time-interval (0, T). Using the coordinates (n, tl, �9 �9 �9 t,~) 
we easily find the likelihood function 

T 

/ ( @  / , ( t l )  . . . / ~ ( t , , )  " ~t,(,)-~.(t)~dt 
= 2 (q) 2 (tn) e -  

We get the critical region 

' l ~  # ( t , , )>  k}- s=i 
Here we have supposed that  2(t) is different from zero almost everywhere in 
the set where # (t) ~ 0. Otherwise we should have got a singular part  H which 
does not appear now, as no question of convergence turns up (we have 
P (n < oo) = 1). 
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We now restrict the alternative hypotheses to be of the form 

[ H o : t h e  prob. intensity is 2(t) 

Ht ,  : the prob. intensity is # 2 (t). 

Then we get the critical region 

and if we confine ourselves to the alternatives # > 1, (# < 1) we get the one- 
sided uniformly most powerful test 

S = { n - > n 0 }  (or Z =  {n ~ no}). 

Because n has a discrete distribution, it may be impossible to solve no exactly 
from the equation 

Po ( s )  = 

with an arbitrary choice of s, but as this question is of little practical interest, 
we will not deal with it here. 

To get a uniformly most powerful unbiased test we put according to 4.3 

/An ~ C ~ C l~t ,  

and because of the convexity of the exponential function the critical region 
has the form 

S = { n ~ n l /  + { n > n 2 } .  

Also here it might be impossible to solve the equations determining nl and n2 
exactly, but  due to ~he same reason as above we dismiss the question. 

Another choice of hypotheses is the following. Let  

H 0 :2 ( t )  = e at 

H ,  ~ (t) = e(~+~ ")t. 

The most powerful critical region S is easily obtained 

% 

"~ t i 

S = {e ~ >- k} .  

For the one-sided alternative u > 0, we thus get the uniformly most powerful test 

S=[1 t~-->k'- 
n 

Here ~ ,  ti has a continuous distribution so that  we have no difficulty in deter- 

mining k for a given value of e. 
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Suppose now that  x(t)  is a P61ya process (see LUNDBERG 1)defined in (0, T) 
with parameter ft. Then the conditional probability intensity when n events 
have taken place up to the time t is given by 

Pn(t) = 1 + 16n. 
1 + 1 6  t 

We want to test whether 16 = 0 against the simple alternative value 16 > 0. 
To do this we form the expression for the probability element corresponding 
to the coordinates (n, t l , . . ,  tn) for n > 0. 

t l  t2 T 
-- ( dt - ( 1 + ~  dt . . . . .  t ' l+n~d t  

3 l+ i~ t  . nil1 I ~!- ~ ~ e g l+,,~t tJl l + ~t tn 
g2 

loL 1 + 16 t,,+l 

We thus have 

] l+161og l  +16t2 1 +n161ogl + 16Td_ 
log gl~(w) = - -  ~ log (1 + 16ti) - -  ~ f l - -  1 + fl tl 16 l ~ 1 6  t~n 

+n-l~log 1+16v = - -  l log (l +16 T) ~log 1+16t '+1 log 1+16~' 
o 1 -F 16 t,,+l 16 i I + 16 t~ + 1 + 16 t,,+l 

where we have put tn+l = T. Reducing the second term we get 

log gf3(to) = - -  ~ log (1 + f iT )  + log(1 + 1 6 t , ) - - n l o g ( 1  +16T)  + 
1 

n--1  

n-i 1 + 16v 1 log(1 + 16T) + ~ log(1 + 16v) log(1 4-fiT). + ~ log -- -- n 
0 1 + 16t,,+1 16 0 

This expression is valid for n > 0, and for n = 0 we get immediately 

1 log g,,(o,)=-~ log (1 + 16T). 

For the hypothesis 16 = 0 one gets 

and hence 
go (~) = ~-*, 

/(~o) --gig(e~ - -  c(fl) o[ [ (1 + flu), 
go (o~) (1 + 16 T)" 

where the product shall be assigned the value one for n ~ 0. We get the most 
powerful region 

s = {I (~) >- ~} 
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n - - 1  

and as log H (1 + f l u )  is a convex function of n, while n l o g ( 1  + f i T )  is a 
0 

linear one, the best region gets the form 

S - - - - { n < n i }  + {n:>n2} 

with nl < n2. This implies tha t  we reject H0 when wc find very small or very 
large values of n, which intuitively seems to be in accordance with the fact tha t  

D~n = T(1 -i- f i r )  > T = Don. 

I t  is of interest that  the position of the time-poir, ts of the events are not used 
in the best test. Hence it follows that  if we observe only n, we can make 
just as strong statements as  when we are considering ti, t2 . . . .  tn also. 

4.11. The s ta t ionary Markoff  process. In  4.4--4.7 we have seen how to 
construct best tests for the mean value of a normal process. Unfortunately the 

b 

test, functions only occasionally get the simple form f / ( t )  x( t )dt ,  but  one can 
g 

sometimes obtain simple test  functions by specializing the sample space in an 
appropriate manner. This is true for the perhaps most important  type of nor- 
mal processes, viz. the stat ionary Markoff process. Let  x(t) be such a process 
with mean value m and covariance function 

r ( s ,  t) - -  e - ~ l t - s l .  

We want  to test  the hypothesis Ho:m ~ 0 against a simple alternative value 
of m to begin with. We shall show tha t  the corresponding test functions/~(t)  
do not converge to a. function in L~ (T). We take T = (0, 1). The kernel r (s, t) 
is positive definite which can be seen by the same argument as we shall use 
to show the divergence of /n(t). Then, if /n(t) converges in the mean to a 
function /(t) 6L2(T), we must  have 

1 s i 

f e-,~ t t-sl /( t)  dt = f e~(t-8)/(t)dt + j e,~('-t)/(t)dt = 1 
0 0 s 

for all s fi T. Then for almost all s 

s 1 

o = - -  [ ~ e - ~ ' f e p t / ( t )  d t  + f ie~ '~f / ( t )  e-, '~t dt, 
0 s 

and by  subtraction 
$ 

1 = 2 e - ~ f / ( t )  e, ~t d t  
0 

and as both sides are continuous, this holds for every s fi T. 

/(s) fl =92 

We get 
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for almost all s e T. But  this function does not satisfy our integral equation. 
Now we shall show tha t  it is still possible to get a simple best test. 

To this end we choose the set of continuous functions in (0, T) as sample 
space, which is possible according to 1.4. As coordinates we use x (t,), n = 1, 2 . . . . .  
where {t,~} is a denumerable sequence of points everywhere dense in (0, T). I t  
is convenient t o  choose tx : 0, t~ : T and the following as �89 T, ~ T, ~ T . . . .  
and so on by repeated dichotomy. We want  to calculate the frequency func- 
tion of x (tl), x (t2) . . . .  x (t,) under the hypothesis Hm. To do this we rearrange 
the t's in their natural  order, and using this new numbering we define 

We then get 

(n) 
g m @ )  = 

and 

x _= 1, 2, . . . n. 
(t~) Xi 

i 
e-fl (tiT1-ti) = ~i. 

~ i [xi + l_Qi x~_ m (1_~/)]~ 
I - �89 (~ -m)~ ' -  '~ E 

e 1 1-- o~i 
nn--1 

1 

log g(~) ((o) m ~ . - 1  - -  - -  -~ m ~ X i + l - - ~ i X i  
g(n)(w ) = m x l  2 ' 1 1 + Qi 

i x  1 - -  
m2 n-1 n-1 

~ - + m  m -- 

2 n--I 
m 1 --o~ _ 

2 ~ 1 + o ~  1 

+ 

Xn ~1 xl m z ~ 1  1 - -  o~ i 

+ m l + Qn-1 m l + Q1 2 ~. 1 + ~i 

I f  n is large An = max ( t i + l -  ti) is small, and we get 

m x (T) x (0) 
l o g l n ( e o ) = m x ( O )  ~ + m l + ~n-1 m l + ~  + 

n--1 } m [/3 ~ m2 n--1 
"~ 2 - ~ 2  X i ~ ( t i  t i - l )  + ( t i+ l - - l i )  + O(A 2) 2 E fl - -  

2 

t i + l - - t i +  O ( A  2) 

As An-+ 0 and as the realizations are continuous, we get almost certainly 

x(o) x(T) 
log ] (co) = lim log 1,~ (co) = m --2--  + m 2 

n ~ o o  

T 
m 2 ~74, f m ~ 

+ -- f l  x ( t ) d t - -  
2 2 - T  

0 

We thus have the regular case, and in the same way as before we get the 
/ollowing s imple [orm /or the un i /ormly  most power/ul  test o/ H o against  the one- 
sided alternative m > 0 
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T 

x(O) + z(r )  + fl f x(t)dt >_k. 
0 

The uniformly most powerful unbiased test is obtained in the same way. We 
shall later return to this process in connection with a problem of estimation. 

4.12. Approximat ion of  tests. As has already been seen, it may  happen 
that  the form of the best test-function is too complicated to be used in prac- 
tical applications. Then one has to construct a simpler but  less powerful test, 
or, if a test  of high power is required, one can approximate to the best test- 
function in some appropriate way. Suppose for simplicity tha t  we have the 
regular case. Then 

= g l  (Xl . . . .  Xn) 
l~(o) go (x~, x~) 

converges to the likelihood function ] (o~) in probability. The best region is 

s = { / (~)  _> k}o~, 

and we can use the following approximation 

For these regions we have 

P~ (S~) --> Pc (S) ; i = O, 1 ; 

which means tha t  the errors of the first and second kinds corresponding to S,~ 
can be made as near as desired to those corresponding to the best region S. 
Choosing n sufficiently large, we thus have a test  which from the practical 
point of view differs little from the best. possible. 

We now leave the problem of testing statistical hypotheses regarding sto- 
chastic processes. To continue the construction of practical tests it seems im- 
portant  to consider the demands of the applications. 

T h e  p r o b l e m  o f  e s t i m a t i o n  

5.1. Unbiased est imates.  Suppose now tha t  a process x(t) has one of the 
distributions P~, where a is a real parameter  in a finite interval A = (a, b). 
To avoid the singular case we suppose further that  for every pair al, a2 E A 
there does not exist any set S with P~, (S) = 0, P ~  (S) ~ 0. Using the know- 
ledge given by  a realization of the process we want to decide which of the 
hypotheses is true, i.e. we want to form a function t (~) estimating a. We have 
for an arbi trary set S 

P~ (S) = f / (w, a) d P  o (r 
S 
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where Po is the measure corresponding to a0, a fixed value of a. We now 
regard the likelihood function as a stochastic process given by the random 
function /(w, a) with a in the r61e of a time-parameter, and with a measure 
of probability P0. The mean value of this process is easily obtained 

Eol(co, a )  = f /(co, a ) d P o ( c o )  = P , ( Y 2 )  = 1. 

We now make the natural assumption that  ] (co, a) has a finite variance and 
that  it is continuous in the mean. Putt ing /(co, s ) = / ( s ) ,  we have the co- 
variance function 

e (s, t) = E 0  [t (s) - ] ]  [1 (t) - 1] .  

Form the usual integral equation corresponding to this kernel and denote its 
eigen-values by ~t~ and its eigen-functions by ~v~ (a). We then have for every a E A 

/(co, a ) = l . i . m .  ~,q~,(a)~(~i) + 1, 
n o o r  1 

where {~,.(co)} is an orthonormal system 
taken with respect to P0. 

We shall now study the existence of 
variance, i.e. functions t(co) satisfying 

in L2(~2), and the convergence is 

unbiased estimates of minimum 

{ E ~ t ( c o )  = a 

E,~ t (co)2 < co 

for every a EA. If the system {~v,} is not complete in L2(Q) with respect to 
P0, we add its orthogonal complement 

L~(~9) e {y~,} = {y~,[,}, 

t r 

where {~v~,} is an orthonormal system. By means of the systems {~} and {yJ~,} 
we can develop an arbitrary estimate with the above properties in a series 
converging in the mean (with respect to Po) 

2 2 '  t (co) = . tv w ,  (co) + t:, w~, (co). 
1 1 

We thus obtain 

a = E.t(co) =.ft(co)/(co, a)dPo(co) = ~1 t'%'(a)V-:~- + Eo t(co). 

The convergence is uniform because 

] 2 r %' (a)2  < t~ ; 

n n 1 
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and as 

1 L - -  e (a ,  a)  

which is a continuous function of a, we obtain the stated result. Thus we 
can integrate termwise and get 

b 
t~ 

r .  = of ( ,  - ,0) (a) - -  V L  

I n  order tha t  an unbiased estimate of finite variance shall exist, it is thus 

necessary tha t  ~ ~ y~, < oo. 
1 

Suppose for simplicity tha t  {~,(a)} is complete in L2(A). Then the condition 

~ , 7 ,  2, < ~ is also a sufficient condition for the existence of an unbiased 
1 

estimate. For, consider 

2 2 '  t (o~) = V~-, y, ~, (co) + t ;  ~v, (@ 
1 1 

o o  

where the t~ are arbi trary real numbers but for the condition ~ t~ < c~. 
1 

This series converges in the mean with respect to P0. We get immediately 

E~ t (~o) = ~ t~ %, (a) + E 0 t (co). 
1 

o o  

Using the same method as before, we can show tha t  ~ t, q ~ ( a ) - a - - a  0 for 
1 

all a e A .  Thus t(eo) + no--Eot(og)  is an unbiased estimate of a. Summing 
up we have: 

In  order that an unbiased estimate with /inite variance shall exist it is nec- 
essary that 

")  X,, a - -  ac) q~ (a) d a < co. 
1 

I /  the system {F,.} is cont)91ete, tMs condition implies the existence o~ a /amily 
o~ unbiased esti~nates whose dimensionality is given by Dim L 2 ( ~  ) o {~f,,}. 

If  there is more than one unbiased estimate, it seems not unnatural  to 
choose the one for which D 0(t) is minimum, if one has reason to believe that  
the true value of a lies in the neighbourhood of %. In  some cases it might 
happen that  in the class of unbiased estimates there is one with minimum 
variance for all a. 

The method described has certain theoretical advantages and could be ex- 
~ended, but it is not quite suitable for applications because of which we shall 
t ry  to find other ways of estimation in the following sections. The following 
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simple example gives a procedure that  in some special cases may  be applied. 
Consider the Poisson process of 4.10 with a constant probabili ty intensity ft. 
We want to find an unbiased estimate fl* of fl which has minimum variance. 
Putt ing fi" ~ fl* (n, tl, �9 �9 �9 tn) we shall have 

i.e. 
0 0 

fl e'~t - -  2 (fit)~E~ ~ , [~ ln=~]  
0 

= v], 

valid for fl in a certain interval. The conditional frequency function for 
t~, t 2 , . . ,  tn when n is known is 

e-flt ~ n n!  
e - ~ t ( t ~ t )  n t n 

n! 

(0  < t I < l 2 ~ " " < tn < t) 

so tha t  Et3 [fl*ln = v] is independent of ft. 
fl, we get equating the Taylor coefficients 

As fle~ ~t is an integral function of 

But  

2 E,~ (fl" - ~)2 = ~ ,  pn E:~ [ ( ~  - ~)21 n] = 
0 0 

As 

the second term vanishes. We thus get the unique unbiased estimate with 
minimum variance by  choosing fl* so that  the first term (which otherwise 
would be > 0) vanishes 

n 

t 

5.2. A class of  l inear estimates.  The approach of the preceding section 
demands complete specification of the probabili ty distributions P, .  I t  often 
happens tha t  we do not want  or are not able to specify the distributions 
completely.  I t  may  still be possible to find unbiased estimates of minimum 
variance in some restricted class of estimates. Consider e.g. the following situa- 
tion, where we want to estimate the mean value m of a stochastic process 
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x(t) which is supposed to be continuous in the mean with covariance function 
r (s, t). Regard the class of linear estimates 

b 

m* = f / ( t ) x ( t ) d t  

where /(t) is quadratically integrable in (a, b). We either take the integral in 
the sense of 1.3 or choose a sample-space such that  x ( t ) i s  quadratically 
integrable in the sense of Doob. To get an unbiased estimate in this class we 
must demand that  

b 

f t(t)dt= 1. 
f~ 

The variance is then 
b b 

E (m* --  m) 2 = f f r (s, t) ] (s) / (t) ds dt. 
a 

Introducing the eigen-values 2~ and the eigen-functions qg~ of the integral equa- 
tion of the process (we suppose that  {~v~.} forms a complete set in L2 (a, b)) 
and using the bilinear expression of the covariance function we get 

where 

E(m*--m)2= i~' 
1 

b 

f c~= /(t)~(t)dt, v = l ,  2 , . . . .  

This should be minimized subject to the condition 

where 

~ ,  Cv Ct,, = 1, 
1 

b 

a~ = f %,(t) dt. 

But using the Schwarz' inequality we obtain, if ~ a~ ~,2, < co 
1 

i.e. 

_ 1 Cv ~v < I Cv Ct,, < Cv 
1 i -~7 1 

1 
E (m* -- m) 2 --> 

1 
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where the sign of equality is realized by 

Put  

and 

a~ ~ 
C v - - -  

1 

AT 

~v 

Z a~2~ 
1 

N 

m}=- f x(t)hv(t)dt=-m + 1iv 

1 

where {x,} is a set of non-correlated stochastic variables with mean value zero 
and standard deviation 1. When N tends to infinity, this sequence of estimates 
evidently converges in the mean to an estimate m* which is unbiased and of rai- 

l 
nimum variance in the class under consideration (see GRE~NAlUDER l).  

, a ~  

1 

If so desired one can extract a subsequence converging almost certainly. I t  
should be noted that  the limit of this sequence is not always of the type in- 
troduced above. This obnoxious property of this class of estimates will be 
dealt with later. 

If on the other hand ~ a~i~ = c~, it is easily seen that  there is a sub- 
1 

sequence m~, converging almost certainly to the true value m when v tends 
to infinity. Thus we are able to state, though we know only the covariance /unc- 

tion o/ the process, that i/  ~ a~,. 2~ = oo we get the singular ease. We have seen 
1 

in 4.4 that  in the normal case this is also necessary if we only consider positive 
definite covariance functions. 

As seen in 4.6, the convergence of /~(t) to a function in L2(T) implies the 
existence of a quadratically integrable solution of the equation 

b 

f r (s, t) / (t) d t = 1. 

This being seldom the case, we are naturally led to consider the following form 
of linear estimates 
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b 

m* = f x(t) dF(t)  
(l 

where E(t) is a function of bounded variation, and the integral is interpreted 
in some appropriate sense (e.g. that  of Karhunen). 

We demand analogously to the above that  

E m * = m  "dE(t) = .m 
a { 

E ( . r  - -  ~)2 _ f f ~  (s, t) dE  (~) dE(t)  
a g 

= rain. 

Suppose that  E(t) satisfies these conditions and let a and fl be two points in 
(a, b). If 

r = ~ ( t  - a) - ~ (t - ~) 

and (~ is a real number, the weight function F(t) + ~ G (t) gives an unbiased 
estimate, as we have 

b 

fd[E(t) + aa(t)]  = 1. 
a 

Further we have, denoting 
b 

f r (s, t) d E (t) = R (s) 
a 

that  

b b b b 

f f r (s, t) d [E (s) + ~ a (~)] e [E (t) + ~ a (t)] --  f f r (s, t) d F (s) d F (t) + 
t~ a a tt  

b b b 

+ 2 5 f R ( t )  dG(t) + a 2 ff,.(s, t) da(~) riG(t). 
a (t  

b b 

As this is to be larger thai) f f r (s, t)d E(s)d E(t) for all 5, we must have 
a 

b 

f R(t) dG(t) = R(a) - -R( f i )  = O, 

so that  
b 

R(s)  - -  f r(s ,  t ) d F ( t )  -~ c 

for s E T. Evidently the minimum variance is just the constant figuring in the 
right member. 

Suppose on the other hand that  F(t) satisfies this integral equation and that 
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b 

f dF(t) 
a 

b 

fri l l( t)  
r 

-----1. If  H(t) is another function of bounded variation in (a, b) with 

= 1, we have, putting H = F -,'- G 

b b b 

f dG(t)= f r i l l ( t ) - -  f dF(t) =: 0, 
a a a~ 

and 

b b 

f f r (s ,  t)dH(s)dH(t) 
s a 

b b 

= f  f r ( s , t )  d F ( s ) d F ( t ) +  
a 

b b b b 

+ 2f f r ( s , t )  dF(s)dG(t)+ f f r ( s , t )  dG(s)dG(t). 
a (l, a a 

The last term is non-negative, and further 

Thus we have 

b b b 

f f r (s ,  t) dF(s)dG(t) = c fdG(t)  = O. 
a ct a 

D ~ (m~) ~ D 2 (m~). 

We have previously seen that  the covariance function e-~ jt-s] (in the nor- 
mal  case corresponding to a stationary Markoff process) does not admit  any 
best test function in L2(T) for the mean. But  by considering the equation 

T 2 
re-.  ~lt-sldF(t) -- 2 + f i t  
0 

it is easily verified that  the function of bounded variation 

(t) + e ( t - - T )  + # t  
F(t) = 2 + ~I r  

satisfies the equation considered. Thus 
2' 

x(O) + x(T) 4- fl f x(t) dt 
~ v ~ * - - -  0 

2 + ~ r  

is an unbiased estimate of m with minimum variance in the class of estimates 
which has been considered. We shall later on see that,  if the process is normal, 
this estimate is the best one out of a larger class of estimates. 

Another case is obtained by considering a time-homogeneous orthogonal pro- 
cess x (t) in the time-interval (a, b) with constant though unknown mean value 
m and covariance function r(s, t ) =  rain (s, t). The equation 
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~evidently has the solution 

b 

f rain (s, t) d F (t) = c 
t~ 

e 
F ( t )  = e ( t  - a )  - 

,so that  we get the best estimate 

m *  = �9 ( a ) .  

5.3. The equidlstributed estimate. When the process is stationary, the 
problem dealt with in 5.2 shows some special features. If the spectra] energy 
in 2 = 0 is zero it is known that  the estimate 

T 

- - T  

which is a priori unbiased, converges in probability to m (see 1.3), i.e. m* is 
a consistent estimate. This estimate which will be called the equidistributed 
estimate of m has another optimal property, which shall be studied in this 
section. The result obtained seems to be capable of generalization which the 
author wishes to consider in a later publication. 

Suppose that  the spectrum is absolutely continuous with a spectral density 
h (2) which is continuous at the origin and bounded. Consider unbiased estimates 
of  the type 

T T 

m~-- f /(t)x(tldt; f /(t) dt = 1. 
- - T  - T  

We get, putting 

that 

/(t) = -Tg 

1 1 

m~ = ( ~  (u) x (u T) d u; .]'g (u) d u  = 1. 
- -  i - -  1 

Thus g(u) measures the relative weight given to different values of t. Con- 
fining ourselves to the regular class of unbiased estimates obtained, when g(u) 
belongs to a class C of functions, which are uniformly continuous and uniformly 
bounded in ( - -1 ,1) ,  we shall see that the equidistributed estimate is o/ minimum 
variance asymptotically in this class when T tends to in/inity. More precisely, 
we define the efficiency of the estimate 

. a s  

T 

1 x 

- - T  
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eT  = 

inf D 2 m~, 
m * E C  ; 0 ~ e T  ~ 1. 

This concept of efficiency is different from the one used in the classicaI theory,  
as it takes only the linear properties of the process into consideration. We shall 
show tha t  eT tends to uni ty as T tends to infinity. Pu t  lim e T  = e. 

there is a sequence T , - ~  oo and corresponding estimates m~, E C so tha t  

as ~--> (x~. 

D 2 mT, 
~-e n 2 * ~aT, 

Introduce the functions 

1 

r,(~) = f d ~  a~(u) du. 
--1 

Then 
T r T,. 

l f f  D 2 (m~,) = T~, r (s, t) 

- -T  v - -Tv  

Then 

(;) g,. g, d s d t  = 

/, i f ,  = r,(T,~)12h(a)dg= G r,(~) I~h d~. 

For the equidistributed estimate one gets in the same way 

,ur, = T,: j i~2 ~ d #  
- - o r  

and using a property of the Fej6r kernel, 

T ,  D2 #~ ,, -~ ~h(O)  

as v tends to infinity. Because of the uniform continuity of the g's it is 
possible to choose a subsequence converging to a continuous function g(u) .  
Supposing this to be already done we get 

1 

f Ig( ) -g (u)pdu - ,  o 
- - 1  

as ~,-~ ~ ,  because of the theorem of Lebesgue on bounded convergence. 
Thus, using the theorem of Plancherel 

- -  z , r  
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and 

as v ~ o z .  Hence 
ov  

j (~:) f t,'~l I ~,. (~1 F-/~ d,. --- I ~ (~) I ~ ~ ~T;:I d.i~ 
--r162 --o0 

-~0. 

But  

-+0 

ao 

If (~;) f,,(, } I y(]~) I-~ h d t ~ -  h(o) ]2d~ _< 

_< I + [ ;  
and choosing 
large that  f l  Y(#)I~d# < d, we get. 

t ! , [  >- ~T, 

h ~ df~ 

e so small that  I h 0 0 -  h(O) l <  ~ for ] # ] <  s, and then T, so 

f -~ h(o) I r ( ~ ) P @  

as r ~ oz. But according to Plancherel's theorem 

- - o q  ~J_  

and thus, using the Schwarz' inequality 

f ] "g(u)du 1. e = ~  ~(~)pd~>_ Ig(~) [du- ->  = 
- - 1  

According to' the definition of e only the equality sign is possible, and we 
have thus proved our proposition. 

Corollary: The nmst important consequence of this seems to be that  it is 
impossible to get any asymptotically more e//icient estimate o/ m than the equi- 
distributed one by constructing estimates o/ the type 

T 

f (;) m~=~T-.~ g x ( t )d t  
- - T  
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1 

where f g ( t ) d t =  l, and g(u) is a ./unction de/ined in ( - - l ,  1 ) n o t  depending 
- - 1  

upon T. The above  proof shows fur ther  t h a t  the  best  of these es t imates  
ac tual ly  is the  equidis tr ibuted one. 

I t  has  to be noted  t h a t  it is not  possible to remove  the condit ion t h a t  
g, E C wi thout  restr ict ing in some way  the type  of the process. Take  e.g. the 

t z 

process with correlat ion function e e. I f  a realization is observed in a non- 
degenerate  in terval  we know the real izat ion for all values of t because of t h e  

A 

fact  t h a t  the process is analyt ic  for all t. Then we can form 2 A  ,~ x (t) d t which, as. 

A ~ co, tends to m in the mean  because the spec t rum is continuous.  Thus  
the equidis tr ibuted es t imate  has efficiency zero. 

5.4. Doob's elementary processes. We have  seen t h a t  in order to tes t  the  
mean  value of a process it is not  sufficient to consider es t imates  of the t ype  
f x (t) / (t) d t where ] (t) is quadra t ica l ly  integrable,  bu t  we have  had to introduce 
Stieltjes integrals.  We shall see t ha t  in other  cases the best  tes t  is not  even 
of the  Stieltjes integral  type.  Because of this it is appropr ia te  to consider 
this p rob lem from another  point  of view. 

We observe the process y (t) • m + x (t) during the  t ime  (a, b) and suppose 
t h a t  E x ( t ) ~  O. I t  is required to find an unbiased linear es t imate  of m with 
min imum variance.  I f  m* is an unbiased es t imate  and  

we have  

2~ 
= *" m*  : ~_~ e[. n) y (t(n)~ �9 t~ n) E (a,  b); m* 1. i .m .  mn, n ,~ / ,  

n ~  oo 1 

. E  ~ n  ~ m c (n)  --> m 

1 

Thus we can wri te  

{ 1  ~ (n) (n) m * = l . i . m ,  c y(t ) § 

aS n - - >  co .  

1 

because the quan t i ty  in rec tangular  brackets  tends to zero as n tends to in- 
finity. In  this way  every  unbiased linear es t imate  can be regarded as the  l imit  
of finite sums 

n ~ 

"~ c~ 0 y (t(;)) with . ~  c~ ~) = 1. 
1 1 

Consider the set M0 < L2 (X;  a, b) consisting of all e lements  of the form 

~ c ~  x(t ,)  with ~ c,. ~- 1, t~ E (a, b). 
1 1 
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Closing this set with respect to convergence in the mean we obtain a set 
M < L 2 (X; a, b). As this set is closed and convex there exists a t  least one 
element #* with 

There cannot be more than one such element for suppose td' is another one. 
#* + #~ 

Then also E M and 
2 

I # * -" /t~ ll2 --  H #* ]]2 + [J fl~4 ~2 + 2 R e ~E # * ft~ < ll /~ * 4 4 

which contradicts the definition of #*. Thus there is a uniquely determined 
estimate o/ minimum variance in the class o/ unbiased linear estimates. 

Denote this estimas by m* and regard the expression E m* x (t) as a --~ t ~ b. If  

Zm*x(a) ~ Em*x(fl); a-< a , / ~ - <  b; 
we introduce 

m~ = m* + e [~ (a) - x (fl)] 

which is also unbiased. Then 

11 mT - m II ~ = II m* - m It ~ + 2 R e  {Z E Ira* - -  m] Ix (a) - -  x (fl)]} + 

and it is possible to choose s such that  D m~ < Din* contrary to the definition 
of m*. Hence the ]unction Era* x(t) is a constant /or t in the interval (a, b) 

But as m* = 1. i. m. m.  with 

we get 

Em* x(t) = c ;  tE(a, b). 

n 

1 

D2m "-~ ] lm.*-m[I  2 - - l i m E m *  * m n - - m = c ~ ( n ) = c , ,  
n ~  oo 1 

so that  the constant c is equal to the variance o~ the estimate m*. 
The solution o~ this equation always gives us the uniquely determined unbiased 

estimate o~ minimum variance. For if 

E m * x ( t ) = c  }; a ~ t ~ b ;  

E m~ x (t) = cl 
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we see tha t  if c = c 1 the two estimates coincide. If  c ~ cl we can suppose 
tha t  c ~ 0 and we then have 

m] =-%m* 
C 

and  as both  estimates are unbiased we get c~ = c. 
Let  us apply  the above to the impor tan t  class of s ta t ionary processes in- 

t roduced by DooB (5). We shall deal with the non-deterministic type  of these. 
The correlation function can then be wri t ten as 

r(t) = f e  it;" d,~ 
,~ lan(i ,~)n+an-l( i~)n-l  § 2 4 7  2 

- o o  

where the denominator  has its zeroes ~ in the upper half plane and the 
coefficients av are real 

an ( i ) ~ ) n  § . . .  + a o  ~ an i n H ()~ - -  ~ , v ) .  
1 

This process can also be obtained as a solution of a linear differential equa- 
t ion  with constant  coefficients (see KARnUNEN 2). For  n--~ 1 we get a correla- 
t ion function of the type  e-~ ~ltl. 

I t  is immediately seen tha t  the process has strong derivatives up to the 
order  n -  1. Consider the estimate (where x(t) is the observed process) 

where 

n - - 1  T 

{ ~ < ' ) ( 0 1  + ~.x<')(T)} + ~ofx(s)d8 
Tg* ~ 0 0 

2al + aoT 

a v : ( - - l ) ' a " + l [ ; ]  v = O ,  1 . . . .  n - - ] .  
f t .  ~ a , , + l  ) 

This is possible because 

ial  = (--  l)n-l in an ~ ~l "i,," )m 
1 

- -  a o  - -  a o 

so tha t  i al (a0 ~ 0) has positive imaginary part,  i.e. a l >  0. The estimate is, 
a 0 a 0 

of course, unbiased and we shall show tha t  it has min imum variance. Consider 
the  expression 

n- -1  T 

{(~ r ( " ) ( -  t) + ~v ~'<')(T - t)} + ao f ~ (8 - -  t) d t 
E m * : ~ ( t ) - - m  = o o 

2al + ao T 
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But  

d~r( t )  
a n - ~ n  ~ a n - 1 -  - -  

d n-1 r (t) 

d t ~ - I  

r 

j ' e " '  a (i )n + ... + a oOl d  = 
+ ""  + a o =  lan(i,~)n ~_ _" + 

--cr 

= f eit~ d)~ 

1 

which according to Cauchy 's  theorem is equal to zero for t > 0. For  t < 0 
one gets in the same way  

Thus 

dnr( t )  d n - l r ( t )  
an--~t n - - - a n - l - - d i n _  1 + . . . .  ( - -  1)naor( t )  ~- O. 

a 0 f r ( s - - t )  d s = a o l i m  r ( s - - t )  d s +  r ( s - - t )  ds  -~ 
0 e~O td-s 

= :ira {a~ [r ( - -  ~) - -  r ( - -  t)] - -  a~ I t '  ( - -  ~) - -  r '  ( - -  t)] + . .  ( - -  : )n+ :  a~ [r(n-:)  ( - -~ )  

- -  r(~--~) ( - - t ) ]  - -  a~ [r  ( T - -  t)  - -  r (~) ]  - -  a~  [r '  ( T - -  t)  - -  r '  ( e ) ]  . . . . .  a .  It( '~-~) ( r  - -  t) 

- -  r(n-3)(e)]} - - - -2a i r (0)  + 2 a ~ r "  (0) + - . .  + 2a,~r(.~-l) (0) 

- - a  z r ( - t ) - a  l r ( T - t )  + a 2 r ' ( - t ) - a ~ r ' ( T - t )  + . . . .  

_u. (__ I )n  an  r (n - l )  ( - -  t) - -  an  r (n - l )  (T - -  t). 

Here we have pu t  # = n  if n is odd, otherwise # = n - - 1 .  We ha'ce 

2 a  l r ( 0 )  -~- 2 a  2 r ' ( 0 )  -~- . . -  -~ 2 a l ~ r  (~tt-1)(0) 
E m* x (t) - -  m = ' ~ const. 

2 a l  + ao T 

As the r ight  hand  member  does not  depend upon t we know tha t  m* is the 
unique  unbiased estimate o/ m i n i m u m  variance. To find the variance we only 
have to calculate the constant .  We get 

A 

2 al r (0) + 2 a 3 r"  (0) + ...  2 a~, r(, ~-1) (0) = lira ao f r (t) d t 
A ~  - -A 

by  integrat ing the two differential equations for r(t)  between - - A  and A and 
letting A tend  t o  infinity because the functions r(t),  r ' ( t ) , . . ,  r('~-l)(t) tend to 
zero as t tends to infinity according to Lebesgue's  theorem on Fourier  coeffi- 
cients. Hence the variance is 

] 
a o 2 ~  a~ ~ 2 

- -  ~ 

2 a  1 + a o T  a o ( 2 a  1 + a o T )  
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5.5. Purely non-deterministic processes. We have seen that  if the process 
can be completely extrapolated when we know the realization on an interval 
of length A, the equidistributed estimate has efficiency zero if the length of 
the interval of observation exceeds A. To avoid this it seems natural to 
consider the purely non-deterministic processes (see HAr(NER 1 and KA~nUNErr 4). 
Then the spectrum is absolutely continuous and there is a quadratically inte- 
grable function /(2) with 

and such that  the function g(a) defined by  

A 
__1= 

g(a) = 1. i .m.  /(,~) d,~ 

-A 

vanishes for negative arguments. We shall suppose that  for small values of A 

/(~) = / o  + /1~( 1 + 0(~)) 

where /o is real and different from zero. 
Consider functions of ;t with the inner product 

w) = f (x) w (x) d G (X) 
- - o o  

The function 

e - - i T )  . . . .  

H(~)  = 

where G (~) = F (~) + e ()0. 

1 1 
e i T  ). _._ 

/(~) /(~) 

clearly has a finite norm. The functions ei t~; - - T  <-~ t < T ;  also have finite 
norms, The Hilbert space spanned by these will be denoted by ;t 2 (T). Put, 

1 

1(0) e - i T 2 _ _ e i T ) .  
U(~)  = e -~r~-'')~" + + 

;~ / (0) 

1 1 

+ eiv;](O) . . . . . . . . . . .  ~ ]()') H i  ()~) ~ H2 (~) _l_, Ha (~), 

T 

1 f where Hi,  H 2 and H 3 have finite norms and H 2 = ;;/(~._,,v. e~td te~ '~(T)"  
--T 

I Hr, r = P~,(T) Hi  

and 

~Pu$ 
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I f  

then  

H }  (2) ---- H~, T (2) + He (2) + H~, T (2) 6 22 (T). 

oo 

x(t) = f e~t~'dZ(X) 
- - o r  

c ~  

y(t) = m + x(t) = f dt;dZ'(2)  where Z ' (2 )  = Z(2)  + me(2). 

As we have  observed y (t) in the  in terval  ( - - T ,  T) we can form 

m~ = f ll~ (2) dZ' (2). 

For  if 

we get 

We have  

H} (2) = 1. i. m. 2 c(n)~ ei t($)~.; _ T <-- t (")~ <-- T; 
n +  oo 1 

, = ~ c(~)y (C)). mo 1. i. m. 
1 

E m0 = m HT (0) = m [H~, T (0) + H 2 (0) + Hi, T (0)]. 

Bu t  the project ion Hi, T(2) of 

1 ,:0)] 
on the space spanned b y  {ei(T+t);-; - - T  < t--< T;} is eif;'Ha:T(2) and as 1' 
tends to inf ini ty Hi, ~,(2) tends to a l imit  Hi,  ~ (2). Thus 

(H1; 1) = (H~, T; 1) == (e--if;'Hi, T(2) --e-iT~H],oo(2); 1) + (e-iT;-H~.oo; 1). 

When  T tends to infini ty the left member  

l l(2) l ~ 
/V ; / ( 2 ) - - / ( 0 ) e _ i T ; . d 2 + H I ( O ) _ _ > H I ( O ) ]  , (H1; 1) = .  H1 (2) d (; (2) :: j. /~ 

- - o o  - r  

and the first  t e rm of the r ight  member  

I (e-~m~'Hi, T - e-~='"Hi ,  ~- ; 1) l --< 111 I['[[HI, T - - H i , ~  II -+ O. 

The second t e rm 
o o  

(e-~ z~. H~, ~ (2); l) = f H i , .  (2) e -r T ;. 1/(2) 12 d2 + H i , .  (0) ~ H i , .  (0) 

f rom which follows 

lira * ' ' H~, r (0) ---- lim H1, T (0) - -  H1, (0) = H 1 (0). 
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In  the same way it is shown that  

Hence 

lira H~, T (0) ---- H a (0). 

co 

f H~ g) d z '  (~) 
- - o o  

2 T  
* 3, r (0) H~,T(O) + i/(O) + H* 

where the denominator is different from zero when T is sufficiently large, is 
an unbiased estimate. We shall show that  it has mininmm variance. 

We have 
E m* ~ (t) = E [m* - -  m]  x (t) 

and 

HI*, 2 T . ] 
T(O) + i/(O) + H3'T(O) E [ m * - - m ] x ( t )  

= f H~ g) e="~ F" (;~) d ~ = f H~, (~) e - ~ -  d ~ g) - -  H~ (0) = 

o r  a ~  

= f H  (~)e -~t+- dG(2) --  H~(O) = fe-~t~iH(2)F'  (~)d2 + H(O) --  H~(O). 
- -  oo - -  c/~ 

But  putting 
0 r  

n (t) = f H (;~) e -~t  ~' F '  (;.) d ;. 
- - o c J  

we get for - - T ~ t t ,  t 2 ~ T  

or co 
n ( t 2 )  - -  n ( t l )  ~ ,/ e i ( - T - t 2 ) 2 - e i ( - T - t l ) ) ~  / ( ) . ) d 2  - -  f ei 

-- oo --r162 

( T - t 2 ) ,  ~. _ _  e i ( T  t ~ ) ) . _ _  

The first term is according to Plancherel's theorem 

because 

- - T - - t 2  

i ~ g ( a ) d a - -  0 
- - T - t ~  

T <_t~. 

The other term is also zero because 

[t~ <- T 
[t ~<T. 
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Then 
n ( t ) = C ( T )  when - - T - < - t ~ < T  

and hence m* has minimum variance. In the same way it is shown that  C (T) 
is independent of T. To calculate the variance we regard 

C = ; H (2) F '  (2) d 

The first integral tends to zero as T tends to infinity (it is the Fourier-coef- 
ficient of an integrable function) and the second one tends t o -  2 i n / ( 0 ) .  
The variance of the unbiased estimate of minimum variance is then 

- - 2 i / ( 0 ) n + H ( 0 ) - - H ~ ( 0 )  ~/(0) 2 ~F'(0) 
D 2 m *  - -  - . . . . .  

2 T  T T 
H;,~(o) + ~l(O) + tI~',~(o) 

Hence we have shown that  /or the purely non-deterministic process the equi- 
distributed estimate is asymptotically efficient without having restricted the class of 
estimates as in 5.3. 

5.6. Efficiency of estimates. In this and the following sections we shall 
deal with the method of maximum likehhood. Though it is possible to transfer 
this method to the case of a stochastic process with a continuous time-para- 
meter, some very interesting and essential complications will turn up. A first 
step in the direction of solving these problems will be taken in 5.7--5.9. 

We still suppose that  for a in the finite interval A under consideration we 
have the regular case, and that  /(co, a) almost certainly has a derivative which 
is dominated 

where F(o)) is a stochastic variable of iinite variance with respect to Po, and 
further that  

E~ (O l~ ] (c~ 2< O a 

Considering estimates a*(m) of finite variance and using theorem 15.1 in 
SAKS 1, we get an expression o/ the minimum variance which is analogous to 
the one obtained in the /inite dimensional case (see Cma~I~R 4). 

If b(a) is the bias of the estimate, we have 

and 
+ b (a) = R,, ~* = Eo [~* (<o) I (~o, a)] 

db(a) E0[a , c)/(~,~)] 
l + - d ~  = (o~) o~ 
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because the integrand is less than [a*(co) l F(w) in absolute value, and this 
majorant is according to Schwarz' inequality integrable with respect to Po. In 
the same way we get 

1 = E ~ I  - Eo / (o), a) 
and 

Thus 

o = Eo ~- -~--l. 

1 +  d a !  = E ~  Oa _ --  

--< E ~ 1 7 6 1 7 6  l~ / ( ~ ' a ) )  2 / ( ~ ,  a) 

which gives us 

E .  (a* - -  a)  2 -> 

, I O_!o /i 2. ~-Ec~(a - -  a)2E~, \ t )a  ] 

1 * d b~ ~ 

Passing by we want to point out the formal similarity of this result when 
using coordinates of the type used in the study of point-processes with adjoined 
variables, to a theorem on minimum variance of sequential estimates by 
W O L F O W I T Z  1 .  

As is easily seen we obtain the equality sign in the above formula if and 
only if 

o log  / (o~, a) _ ~ (~) [ .  (o~) - a]. 
Oa 

In the same way as in the classical case we thus see that  if there is an effi- 
cient estimate it is obtained as the unique, non-identically constant, solution 
of the maximum likelihood-equation. 

Consider now the estimation problem studied in 5.2, and suppose we have 
the normal, regular case. We get 

or or 
�9 2 - . 

2 
/ ( r  ~ , )  = e 1 1 

which satisfies the regularity conditions. If m* is an unbiased estimate of 
finite variance of m, we thus have 

1 1 
D~, m* >-- 

Em a,. ~,, x,. - -  m ~ a a2 ).~ 
1 1 

But as 
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0 log / ((9, m) 
Om a-:2~ ] 1 

we therefore have an efficient estimate 

a,, ), ,, x 1, 
m * - -  1 

1 

as is easily verified by direct caJculation. 
We are especially interested in the case of a stat ionary Markoff process. Then 

T 
2- Ix m ~ ~ T m (O)+x(T)+13fx(t)dt]--.  ~ (1+ 2- )  

/((9, m) = e o 

and in the same way we obtain the estimate 

T 

+ x(T) + flfx(t)_ dt x(O)  

7Ft* ~ 0 
2+~T 

which is unbiased and of minimum variance. Hence it is the best in this sense 
in the class of all estimates of finite variance. 

5.7. The method of m a x i m u m  likelihood. I t  is now possible to prove pro- 
perties of estimates by methods quite similar to those of the finite dimensional 
case: e.g. if two estimates of the same parameter  are efficient, they coincide 
with probabil i ty one. Also the case of several parameters can be treated in 
the same way. On the other hand, we shall encounter some difficulties when 
trying to apply the maximum likelihood method to stochastic processes. But  
the following result is easily obtained: 

Suppose tha t  the conditions 1--3 are satisfied. 

0 ~ log /((9, a) 
1) 0 a ~ ; ~ = 1, 2, 3; exist almost certainly. 

2) For every a C A  we shall have ~ < _ F  1((9), ~)~g <F~( (9 )  

- ~ a  a -  < H ( ( 9 )  where E o F  t < 0 %  EoF ~<00 and E ~ / / < k .  

3) For every a 6 A E ~ \  0 a ] shall be positive and finite. 

and 
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We consider the case when we have observed N independent realizations of 
the process and want to estimate a. Denoting the realizations by r co2 . . . .  og~v 
we form the simultaneous likelihood function 

/ (o~1, ~.~, �9 �9 �9 o~N; a)  = / (o~1 ; a )  / ( ~  ; a)  . . . / (o~v ; a ) .  

Then it is possible to show that  the likelihood-equation 

0 log / (o)1, ~o 2 . . . .  ~o~v ; a) : 0 
8 a  

has a solution a* (co z . . . .  co~) which is a consistent, asymptotically normal and 
asymptotically efficient estimate of a as N tends to infinity. 

This is proved in the same manner as in C R A ~  r p. 500--503. 
As an application of this we consider the stochastic process used in :EIN- 

STEIN 1 tO describe the movement of pebbles on the bottom of a water 
channel. The stone which is observed during the time interval (0, T), has two 
possible states: either it rests or moves. The movement takes place without 
loss of time. At t : 0 the stone is supposed to be in movement. The other 
time points of movement tx, t2 . . . .  t~ are distributed according to a Po'.'sson 

1 
process with probability intensity ~ -  As is easily seen, v a is the mean resting 

time. In  the movement at the time instants 0, tl . . . .  t~ the stone is transported 
over lengths Xo, x l  . . . .  , xn.  Here the x's are independent stochastic variables 

taking positive values with the frequency function ~ e ~. ~ is the mean length 

of transport. N stones are independently observed. We want to estimate v a. 

___Xnl 

x 2 l - -  - -  _ 

xl I 
• 1 7 6  : I 

o t 1 t 2 

We get the probability element 

t n T 

1 _~-~ _ 1 tl 1 tn--tn-1 1 _ 5  T-t~ 
- e  ~ d x o ~ o e - ~ d t l . . . ~ e  .~ d t n - ~ e  ~ d x n e  ~ -= 

X T 

~-(n+l )  e -~ -  ~ - n  e - ~  d x o  . . . d x ,  d t l  �9 �9 �9 d t~ ,  

where we have put X : xo + Xl ~- " ' '  2_ X n .  Labelling the coordinates of the 
different realizations with the index i ~-- 1, 2 . . . .  N, we get the simultaneous 
probability element 
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N N X .  n N T  
- -  %'q (hi+l) - -  V" '~  - -  %~ ~i 

# 1 e 1 "v~ 1 e 

leaving out the differentials. From this it is possible to Calculate the distribu- 
tion of X. We shall need only the first four moments, which, using the usual 
symbols, are 

( ( 
( T T~ T~ r ~ ) 

at = $4 24 + 9 6 ~ +  7 2 a 2 +  1 6 ~ + ~  �9 

+ 12 �9 

The maximum likelihood estimate is easily obtained 

N T  
~ * - =  N 

1 

N 

If ~ ni ~--0, we get ~ * =  c~, but  when N tends to infinity, the probability 
1 

of this tends to zero. This detail is of small practical importance. We have 

- -  n i  

N 1 

T 
where ni has a Poisson distribution with mean value ~ .  Because of the central 

limit law ~ 1 n i -  is asymptotically normal with mean value zero and 

standard deviation . As H n~ converges to ~- in probability when N 

gends to infinity, we have (using theorem 20.6 in C R . ~ R  4 ) t h a t  0 ~ is asymp- 
1 t~ 3 

totically normal with mean value 0 and variance ~ ~ -  for large values of N. 

To calculate the efficiency we form 
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~!  = N  O0 

and thus find tha t  v q* is asymptotically efficient. 
Our observable coordinates have been the time points and the lengths of 

transport,  but in the best estimate only the number of time-points is used. In  
EINSTEIN 1 X1, X 2 . . . .  XN are the only variables tha t  have been observed. 
Presumably it  would have been practically impossible to observe the numbers 
n~, but  as this might be possible in other applications of this process, it is of 
some interest to investigate the loss of efficiency when only observing the X's.  
Einstein uses the method of moments to estimate v ~ and gets (p. 38) 

where 

.03=T {1 11 1 - -  m 2  

[ 1 iv 

| 

I W~t2 ~ -  X i  - -  a l  
I N " 

Regarding ~9~-  v~ as a function H (al, m2) of the sample moments,  

[ H (al, ~2) = 0 

Yai o -  ~Ir2(1 + 20) 

[ \~m2m2/O- 2~2T2 (1 -~ 0) 

we obtain 

$2(1 + 20) 
/~2 (al) N 

~a (2 + 6 0) 
# n  (a,, m2) N 

t t2 (m2) -  ~4(8 ~:- 320 + 802 ) 
N 

T 0=~-, 

where the index 0 is used to denote the value obtained when putt ing a 1 = al, 
/t2 ~-- m2, in the expression in the brackets. Using theorem 28.4 in CRAM~R 4, 
we see that  v ~ -  v a is asymptotically normal with mean value zero and with 
variance 

06 
N T 4 ( I +  60 + 1002 + 80  a +  204). 

Then the efficiency is 
0 a 

e ( 0 ~ ) - - - - 1 + 6 0 +  1 0 0 2 + 8 0  a + 2 0 4 .  

The following similar process has been met in connection with a problem of 
medical statistics. We investigate the occurrence of a phenomenon A in an 
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interval which we denote as usual with (0, T) although the parameter  does not 
denote t ime but  location. At t =  0 we suppose tha t  A* always occurs. As 
the sample-space we take functions taking the values 0 (for A*) and 1 (for A) 
and having the value 0 for t ~--0. As coordinates we take the nmnbers 
n l ,  n2 ,  t l ,  t2 . . . .  t n , + n 2 ,  where the t's denote the time-points when the states 
change and n~ denotes the number of starting points for the state A and n2 
the number of end points for A-intervMs. Evidently nl = n2 or nl = n2 + 1 
according as the state a t  t = T is A* or A. We suppose tha t  the length of 
an A*- (or A-)interval has the frequency function f l e - J  t, t > 0 (or a e  - ~ t ,  t > O) 

with independence in the usual manner between different intervals. We get 
the  probabili ty element 

e - f i  t~ f l  d q  e - ~  (t~--t~ a d r 2  . . . e - "  (tn1+n2--tnl ~n2--1 ) Ct d t m + n  ~ e - f l  ( T - t n l + n 2 )  --~- 

----- e - f l v  f l ~ , e  - ~ v '  a ' ~ d t l  . . . d t ~  + ~  

if  n l - ~  n2 and similarly 

e-[3  t~ f l  d t l  . . . e - ~  ( T - t n ~ + ~ )  = e - ,  ~ z fl"~ e - "  z '  a ~'~ d r 1  �9 �9 . d t , ~+ ,~  

i f  n 1 = n2 + 1. Here we have put  

t l' = tl + t 3 -  t2 -[- " "  + I ' -  tn~+n~ 

~ l "  = t 2 - -  t 1 § . . .  tn~+n~ - -  t n lq -n2-1  

) /  = t 1 + "'" tn~+n~ - -  t n l + n 2 - 1  

~ "  = t2 - -  t l  + " '"  + T . - -  t m + n  2 . 

Introducing the total  length of the A*-intervals L ,  w e  see that  L = l' in the 
first case and L = l" in the second case. The analogous is true about  the 
total  length A of the A-intervals. In  both cases we thus have the probability 
elements 

fln~ e -  / L an~ e -  ~ A d t 1 . . . d t ~  + n~ . 

Repeating this experiment N times independently we get the maximum likelb 
hood estimates 

n l ,  i ~_j ~/2, i 

~VI ~ a*  1 Rr,* = - = ~v . . . . .  
X) Li ~ A~ 
1 1 

The quantities in the denominator are the times of risk of the event tha t  
.one state changes to the other, and the quantities in the numerator  are the 
numbers of times this has happened. 

5 . 8 .  M e t r i c  t r a n s i t i v i t y  - -  consistent estimates.  We have hitherto considered 
the case when N independent realizations of the process have been observed. 
As seen it is then possible to use the maximum likelihood method to obtain 
consistent and asymptotically efficient estimates -when N tends to infinity. In 
the  important  case when the process is stationary one might hope that  it would 
be possible to get such estimates by  the maximum likelihood method using 
only one realization of length T ,  when T tends to infinity. This seems prob- 
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able, because, for large T, we can split up the interval (0, T) into a large: 
number of intervals In, separated by  other intervals In', where the latter ones 
have negligible length in proportion to the former ones, but  still so large t h a t  
the values of the process in two different In are approximately independent. 
The validity of this s tatement seems to demand some condition of asymptot ic  
independence between values of the process observed at timepoints which are 
separated by a long interval. The following example is intended to illustrate this. 

Let  y(t) be a normal process of the kind studied several times before with 
mean value zero and covariance function e(s,  t) and x a normal stochastic 
variable independent of y(t) for all t. x shall have mean value zero and 
standard deviation (~. We are observing the process 

x(t) = m  + x + y(t);  0 G t G T ;  

where m is an unknown real parameter.  As has been shown the maximum 
likelihood estima.te m~, has a variance given by  the expression 

T T 

D 2 m~, = inf f f r (s, t) / (s) / (t) d s d t 
0 0 

where r (s, t) is the covariance function of x(t).  Thus 

r ( s , t )  = e ( s , t )  + (12 
and 

D 2 m ~  --~ a 2. 

Hence m~, is not a consistent estimate of m when T tends to infinity. This, 
depends evidently on the fact tha t  the autocorrelation of the process is too 
strong. In  order to avoid this we want to impose some condition on the process, 
which ensures the existence o/ a consistent estimate. The property we are going 
to use /or this purpose is metric transitivity. 

To avoid unessential difficulties we consider the situation dealt with in 4.1 
where we had only two simple hypotheses corresponding to the probabi l i ty  
distributions P,1 and P,~, al < a2. We shall now show the existence of a 
consistent estimate of a (or rather  a consistent test) when the length T of the 
interval of observation tends to infinity. Consider all finite dimensional inter- 
vals {In} where n denotes the number of dimensions. I f  for all I e {In} 

Pc~ (I) = P ~ ( I )  

the distributions are equivalent which case is trivial. In  the other case there 
must  be some interval I with 

P~I (I) # P , ,  (I), say P~,I (I) > P ~  (I). 

We shall see in 5.14 that,  using the property of metric transitivity,  it is pos- 
sible to construct a consistent estimate ~T(I) of P ( I ) .  Forming the real func- 
tion / (x)  defined by  

254 



ARKIV FOR MATEMATIK. B d  1 n r  17 

/(x) = al for x ~  P~'(I) + P ~ ( I )  
2 

[ / (x) a2 for x > P~( I )  +2 P~( I )  

we thus see  that  / [~T (I)] is a consistent estimate of a. 

5.9. The method of maximum likelihood. Besides the metric transitivity 
we shall need another condition to ensure that  the method of maximum likeli- 
hood gives optimum estimates. This condition will restrict, not the degree of 
dependence of the process, but  the type of dependence. Regard the values of 
the process during the time subsequent to t. When the realization is known 
for a <~ s ~ b, (b < t),  we get a conditional distribution for the process x (s), 
s >~ t > b. If there is a number T such that  this conditional distribution only 
depends on the values observed during the time b - -  T ~< s --< b, (a < b - -  T), 
we shall say that  x (t) is of generalized Markoff type. To this type belong inter 
alia the usual Markoff process and the processes where the knowledge of the 
derivatives of some order suffice to determine the conditional probabilities. 
In the case of discrete time we have the Markoff chain of finite order. 

In the following we shall suppose that  the conditional distributions can be 
so defined that  they almost certainly are probability distributions and that  the 
likelihood functions satisfy conditions analogous to those stated in 5.7 (we still 
suppose that  we have the regular case). Let  us regard the process during the 
time (0, N T ) ,  where N is a positive integer, and denote the realization during 
( ( v -  1)T, v T) with o~., v = 1, 2 . . . .  N. The type of coordinates used shall 
not depend upon v. The space corresponding to o)+ is called D,,. 

Consider an arbitrary set A < Y2~v and another S < D1 X .-. X ~Q2v-1. Then 
introducing the likelihood functions and using the definition of conditional 
probability, we get 

P  (SA) = f e A I . . . .  d P o  . . . .  = 
S 

= f P a { ( = o N E A I ( D N -  1}dPa((D 1 . . . .  O N - l )  = f P a  { ( o 2 f e A l ( D 2 v - 1 } / ( o ) l . . . o ) N - 1 ; a ) .  
s s 

�9 d P o ( O o l . . .  ("~v-1) = f / ( c O l  . . . .  o ~ ;  a)  d P o  ( o l  . . . .  colv). 
SA 

Denoting 

A 

we get (see Doo]~ 2) 

f P~ {~o2v e A I w2v-~} / ((Ol . . . .  (oiv-1 ; a) d P0 (o~1 . . . .  o~iv-1) = 
8 

= . f g  (Wl, �9 �9 �9 a~N-1,  A ; a)  d P o  (~ol, �9 �9 �9 ~o2v-1) 
S 
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for every set S < ~(~1 X .- .  X ~c~N_ 1. Thus almost certainly 

P~(~oNeA  Io~N_~) = ( 1(o~: . .  :co~; _a_)dp0@~vlcoN_l ) 
. 1 t ( % .  ~oN-i; a) 

A 

from which can be deduced that  

t ((01 . . . .  (,ON ; a)  
/ (o~l, �9 �9 �9 ~oN-i ; a)  

almost certainly does not depend upon co 1, we . . . .  coN-2. As we have supposed 
the regular case the denominator is different from zero with probability one. 
We write 

] ((9 1 . . . .  0)37 ; fl) = / (0.) 1 ; a)  / (0)1' (/)2 ; a)  
] (0)1 ; (/) 

/ (~oi . . . .  con ; a) 
/ (COl~ �9 �9 �9 O)N-i ; a) 

In the same way as above one shows that the ratios depend only on the two 
last co's entering into the expressions. Thus we can write 

/ ((-01 . . . .  0-)h," ; a)  = / (0)1; 0~) ]2 (0)2 I ('01 ; (1) . . . /N (ON I (-0N--1 ; (2). 

Because of the stationarity of the process we can leave out the indices of the ]'s 

/ ( % . . .  ,,N; -) = / (~ol; -) t (~o~ I "x ; " ) - ' ' / N  (o~N I o~N-1; ,). 

Hence 

1 0 log / (0) 1 . . . .  ON ; a) 1 010g / ( 0  1 ; (~) 1 x~7 0 log ] (co~ I o),.< ; a) 

and now we use the method in CRAMEg 4 p. 501--503 and have, with anal- 
ogous notation, the likelihood equation 

with 

B i = 

B 2 

B o  + B 1  ( a  - -  ao) + 21 0 B 2  ( a  - -  ao) 2 = 0 

1 ( o l ~ 1 7 6  ' 1 0 a -  - - ) 0  • N ~2 ( 0 1 0 g / @ , [ W , _ l , a ) )  ~  " 

1 (~210g/(o)i;  a)) + 1 ~ ( 0 2  log/(eo, ,]w,,-1;a))  
O a 2 -~ O a 2 

0 2 0 

1 N 
1 H ( ( , O l )  JF ~ 2  H(o)r l ( .o~, -1  ). 

Because of the ergodic theorem and the metric transitivity these expressions 
converge to their mean values in probability when N tends to infinity. But  
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[0 log / (eo~ I Eo t Oa 

Putting 

~o~-1 ; a))o 

(-Or--1 ; a ) )  0 = 0 .  

__ Eo (0s l~  ~ a)) = k 
~) aS 0 

(we have to suppose tha t  k ~ O, otherwise we would get a trivial case), we get 

Eo(Olog/ (o~l  . . . .  o~v; a)) s 
Oa /o 

Thus 

= _  Eo (os l o g / ( ~  . . . .  ~ ; - ) )  = 
0 a s o 

= - - E ~  ~)2l~176 2 a)) 
0 

+ (N  - -  ~) k. 

B o -+ 0, B 1 -> -k, B2 -> M < co in probability. 

In the same way as in CRAM~R 4 we can show that  there is a consistent 
maximum likelihood estimate and we have 

/ /  - - R  

( a .  - a) : i _ ,  
U Z  

where u~v converges to unity in probability. But B o has mean value zero and 
variance 

1 (o2log/( ( .Ol;a))  + N - 1  
E~ 0 a 2 N ~ -  k. 

o 

Using the definition of asymptotical efficiency which has been given by WALD 1 
we have thus proved that  there is a maximum likelihood estimate which is 
consistent and asymptotically e//icient. 

5 . 1 0 .  Cr i t er ia  o f  m e t r i c  t r a n s i t i v i t y .  The concept of metric transitivity 
seems to be important in the problem of estimation in the case of a stationary 
stochastic process. The results given in DooB 2 dealing with Markoff pro- 
cesses may be useful in this connection. We will give two other criteria of 
metric transitivity. 

T h e o r e m :  In  order that a stationary normal process with a continuous c~rrela- 
tion /unction r (t) shall be metrically transitive, it is necessary and su//icient that 
the spectrum o/ the process is continuous. 

For the proof we shall utilize ideas due to DooB 1 and ITO 1. We suppose 
the process to be (D)-integrable. Let 

r 
r(t) = f e" '  dF(~),  r(O) = 1, 

- - c o  
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where F (2) is the spectral function, which we have supposed to be continuous. 
If  the process is not metrically transitive, there exists a set S which is in- 
variant and has P (S) = 8, 0 < ~ < 1. We approximate S with a finite sum I 
of finite dimensional intervals in such a way that  

[ P ( I )  < ~ + s 

~ P ( S I * )  < 

where e is a positive number given in advance. I t  is evident that  we can 
choose intervals of finite sides. Let T t I  = It. Denote the time points cor- 
responding to It by z~ + t . . . .  v, + t. Introduce 

~xi = x ( ~ : ) ;  i = 1 ,  2 ,  . . . n .  

[ Xn+i  = X (Ti Jr- t); i = 1, 2, . . . n. 

These stochastic variables have a 2 n-dimensional normal probability distribu- 
tion determined by the moment matrix 

A (t) = 

1 ~" ( ~  - ~ )  --- 

r ( ~ - z l )  . -  1 

~ ' ( T  1 -~- t - - T 1 )  " ' '  

( , (~ ,~  + t -  ~ )  

r ( z l  - -  ~ 1  - -  t )  ---  

1 

A B( t ) l  

= B(t) A J '  

where the matrix A does not depend on t. Now it is evident that  no moment 
matrices can be singular because of the spectrum being continuous. We have 
(large values of t) 

P (I It) 
A ( t ) - i  

( 2 = ) ,  f f f " .fl e-*Q(x)dxl"''dx~'' 
( x l , . . . ~ n )  E I  (Xn+ 1 . . . .  X2n) E I t  

where Q (x) is the quadratic form in xl, x2 . . . .  x~ ~ corresponding to the inverse 
of A(t). We arrange all numbers of the form v l - - z j  as t 1, t 2 , . . ,  tN. Then 
using the absolute integrability we get 

Ir (ti + t)I2dt = ~ .  ei(q+t)~-i(ti+t) t' d F (2) d F (#) 
- - ~  -- --oo --oo 

d t =  

~oo m o o  

e i (ti+ T) (~--u)  _ _  e i (t i -  T)  ().--~) d F (4) d F (#). 
2 T i ( ~ t - -  #) 
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By an argument of the usual type (see e.g. I-IoPF 1, p. 16) we get 

and thus 

T 
�9 M 

lim ~ j  ~,lr(t,+ t'l~ =O, 
- - T  

2r 

l i m ~ I r ( t i +  t)]2 = 0. 
t ~  1 

Hence there is a sequence t, tending to infinity when v tends to infinity such 
that  Btv ~ 0 and 

A (t,) -~ A / 

Using Lebesgue's theorem on bounded convergence we have 

P (I It) --> P (l) 2. 
Thus for large values of v 

(Q + s) ~ > P (I It,) >-- P (S I Itv) ~ P (S) - -  P (S I*) - -  P (S I?~) > ~ - -  2s. 

But  in order that  this shall be possible for an arbitrarily small e, we must 
have 0 = 1 or 0 contrary to our assumption, which proves the sufficiency of 
our condition. 

To see that  it is also necessary we consider the process x(t) 2. As the normal 
distribution has a finite moment of the fourth order this process has finite 
variance and further 

e (t) = E [x  ~ (s)  - -  E x 2 (s ) ]  [ x  ~ (s  + t) - -  E x ~ (s  + t)] = 2 r 2 (t) .  

We know that  the limit 
T 

lira f x (t)d  
r ~  r 

- -T  

exists almost certainly and has the variance 

T T 

D2y = lim 1/~ f l e ( t ) d t = l i m  1 ~  f 2 r 2 ( t ) d t .  

--T --T 

But the last expression is according to CaAM~R 1 

D~y = 2 ~ A v F  
1 
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where A , F  denote the saltuses in the points of discontinuity of F(~). In order 
that x(t) shall be metrically transitive it is thus necessary that  F (~)is contin- 
uous which completes our proof. 

When we do not suppose the process to be normally distributed, we do not 
get complete knowledge of the process by specifying just the correlation func- 
tion. I t  is still possible to give a criterion of metric transitivity which essen- 
tially is a generalization of the above. 

The process is said to be mixing, if for every pair of measurable sets A, B 
it is true that 

lira P ( A B t )  = P ( A ) P ( B )  where Bt = TtB.  

One knows that the mixing property implies metric transitivity but the con- 
verse is not true (see Hoof  1). In the theorem just proved we have seen that  
if the process has no point spectrum it is metrically transitive. The spectrum 
can then consist of an absolutely continuous part and a singular part. If also 
the singular part disappears, I to  has shown in the normal case that  the pro- 
cess is mixing. But we have seen, again in the normal case, that  the process 
is metrically transitive even in the case of the spectrum having a singular 
component. But then there is a sequence t,,-+ c~ such that  lira r (t,.) = 0. This 

leads us to the following weakened concept of a mixing process. 
The process is said to be partially mixing if for every measurable set A it 

is true that  there is a sequence t,, (A) such that  

lim P (A At,) = P (A) 2. 
v ~ o  

Theorem:  In  order that a process shall be metrically transitive it is necessary 
and su/[icient that it is partially mixing. 

If x(t) is partially mixing, it is shown in the same way as above that. it is 
metrically transitive. We only have to show the necessity of the condition. 
Take an arbitrary set A and call the characteristic function of At for c (t, o)). 
This is a stationary process with correlation function 

ra  (t) = E c (s, co) c (s + t, ~o) - -  E c (s,  ~o) E c (s + t, o)) = 

= P (As As+t) - -  P (As) P (As+t) = P (A At) - -  P (A) 2. 

Because of the ergodicity we must have 

T T 

lim rA (t) d t = lim 1 ra (t) d t = 0. 
T ~ o r  T~oo T .  

- -T  0 

As the process is supposed to be (D)-integrable and -measurable, P ( A A t )  ls a 
continuous function of t (see e.g. HoPF 1). Either r A ( t ) h a s  a sequence of 
zeroes tending to infinity, or it is of constant sign for t > t 0. I n  both cases 
we can find a sequence G(A) for which 

liE P(AAt~,) = P (A)  2, 
a , ~  o o  

Which proves the theorem. 
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Remark: In  the definition of the mixing p roper ty  a certain condition is to 
be satisfied for every measurable  set A. This is not  a quite convenient  formula-  
t ion for applications. We shall show tha t  i t  is sufficient to consider only finite 
dimensional intervals.  Suppose t h a t  

lim P (I Jr) = P (I) P (J) 
t ~ o v  

for every pa i r  of finite dimensional 
able set, we can approx imate  to i t  
vals so t ha t  

P (A* Z) 
Then 

] P (A) 
and 

intervals  I ,  J .  I f  A is an a rb i t r a ry  measur-  
b y  a finite sum v = ~ I,, of disjoint inter- 

+ P ( A Z * ) < s .  

- P ( E ) [ < 8 ,  

P {AAt (E  v-t)*} + P {(AAt)* V- Et} ~ P ( A A t X * )  + 

+ I A A  v * , _  A ~* , + P ( A * V - X t )  P ( A ~ X X t ) + P ~  t z . t j < P (  V- ) ~- P(A*V-)  + 

+ P(At  v*~ ~.~ s + P (A~ v-t) < 2 s. 
Bu t  

P(VV.t  ) = P(v .L ,V-I~)  = V- P(I~It~) 

which tends to v p (L.)P (It,) as t tends to infini ty and thus  

lim P (V- v-t) = P (}2) 2. 
l ~ o c  

We get 

[P (AAt) - -  P (A) 21 <- I P (A At) - -  P (v v-t)] + IF (V V,t) - -  P (V-)e I + 

§ I P (v), ,  _ p (A)2] _< 4 s + I P (E Et) - -  P (22) 2 [, 
so t ha t  

Jim P (A At) = P (A) 2. 
t ~ ' ~  

5.11. Appl ica t ions .  We shall "proceed to app ly  the  me thod  of m a x i m u m  
likelihood to two simple s ta t ionary  stochastic processes. I f  x (t) is a s ta t ionary  
normal  Markoff  process with mean  value m and covariance funct ion e-( ~lt-*l, 
we know t h a t  the spec t rum is absolutely  continuous and  hence the  process is 
metr ical ly t ransi t ive.  The likelihood function is 

T 
m2 (I+'~T'  m {x(O)+x(T)+~ ;x(t)  dt } 

- T  y!+~ 
! (~ ,  m) = e o , 

and the  m a x i m u m  likelihood es t imate  is 
T 

x(o) + x(T) + 3 j 'x(t)dt 
m* ~ o 

2 + f i T  
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which thus is a consistent and asymptotically efficient estimate of m. In this 
case this is true a f o r t i o r i  because we have seen in 5.6 that  m* is efficient 
for finite T. 

Consider now the process in 4.9. I t  is stationary and of the Markoff type. 
The covariance function is also now e-~l t -~ l  but as the process is not normally 
distributed we can not apply the same result as before to show that  it is 
metrically transitive. But  consider an interval I with the corresponding time- 
points t , , t2 . . . .  & and another interval J with the time-points t~, t ~ . . .  t~. 
Let  t be a large positive number. Then 

P (I  Jr) = Po (t) P ( I  Jt  ] O) + P ,  (t) P (I  Jt  I 1) 

where the index 0 is used to denote the condition that  no change has occurred 
during the time t~, t~ + t and the index 1 for the alternative condition. 

when t -~  oo. But 
P o ( t )  = e - f l ( t i+ t - tn  ) -+ 0 

P (I Jt ] 1) = P (I) P (J) 

which by the aid of the remark in the preceding section shows that  x(t) is 
metrically transitive. The maximum likelihood estimate has the simple form 

m* 1 ~_j 
- X r ~  

n + l  o 

which can be considered as an integral with a weight function depending upon 
the realization. I t  is unbiased because 

Era* \ ~ P , E [ m * ] v ]  = m  P,  = m .  
0 0 

The variance is easily calculated 

= % ~  
0 0 

And as 

1 1 - -  e-~ ~T 
e--,~ T _ _  

v + 1 f i T  

= P , . E  x n ~  (v + 1)m [v = 
Om o 

~ (~ T)" 
= e-fi T ~.~--  (v + 1) = I + BIT, 

0 

we get the following expression for the efficiency 

e ( m * )  = f i t  
(1 + f l T ) ( 1 - - e - f i  r ) 
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For T = 0 we get the efficiency 1, and when T increases e(m*) decreases at 
first, but for large values of T e(m*) tends to 1 again. If we had used the 
best linear estimate of m, we should have got 

T 

x(o) + x(T) + fl f x(t) dt 
0 

mL = 
2 + f i t  

with the variance 

We then have the efficiency 

2 
D 2 m~ = ~ .  

2 ~  l 

2 
e(m~) 1 + f T 

For T = 0 we have e (m~) = e (m*) = 1, and the two estimates must coincide. 
For T = 0 we get with probability one n = 0 and m* = x0, and of course we 
have m;  = x 0 from the expression for m;. When T tends to infinity we get 
e (m~) --> �89 

The equidistributed estimate 
T 

= x (t) d t 

0 

has the variance 
2 2 D mE~~ 

asymptotically when T tends to infinity, and the asymptotic efficiency 

l ime (m}) = �89 
T ~  0o 

By using some of these linear estimates we thus loose about 50 % of the 
efficiency if T is large. 

5.12. Distribution of a type of estimates. When we consider stationary 
point-processes with adjoined stochastic variables, we may sometimes meet with 

estimates involving expressions of the type ~ x~. To study the asymptotic 
1 

distribution of these when T tends to infinity we suppose, without any attempt 
to generality, that  the x's are independent with mean value zero and standard 
deviation a. We suppose further that  n -+ oo in probability when T ~ co. Then 

1 
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is asymptotically normal (0, 1) when T - +  c~, because 

and 

P 

n n I xi = ~ PT(v) P" 1 
I : n 

n [Zx, } 
P ~ I /  -+ ~ ( a ) ;  v -+ c~; 

where q~(x) is the normal distribution function, because of the central limit 
law. For e > 0 there is a number v(e) such tha t  

n 

P ~a]v = n  ~5(a) < s  for v > v ( s ) .  

Choose T so large tha t  ~ PT(V)< S. 
1 

Then 

n 

P ~--a 

[ o r ' ~  

(a) ~ PT (v) 
' 1 

which is the stated result. 

n 

a[n = v[ 

2s + e ~ PT(V) < 3s 
( s ) + l  

Dn(T) 
If  E n(T) tends to zero when T tends to infinity, the sum x~ is asymp- 

1 

totically normal {0, a ] / E ~ T ~ }  because 

n n 

Ex, Zx lr 
- =  ~ l /  9 . 

oVEn~T~ oV~ [ En(T) 

n 
But the stochastic variable . . . .  has mean value 1 and standard deviation 

E n (T) 
Dn(T) 
En(T)' and hence converges to 1 in probability when T - +  c~. With the aid 

of theorem 20.6 in Cm~M~R 4 the result immediately follows. 
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Xi 

Finally, 1 is asymptotically normal 
n 

same manner because 
I ~ which is seen in the 

5.13. Approximation of estimates. We shall now give a result concerning 
estimates analogous to 4.12. To obtain the regular eas8 we have supposed that  
P~ is absolutely continuous with respect to P0- We now demand that  this 
holds uniformly for a e A. Then, if a* (co) is an estimate with 

E ~  a *~ ( ~ )  = v (a ) ,  

which we suppose to be a continuous function of a, it is possible to approximate 
a* by estimates a* @1, �9 �9 �9 xn) involving only a finite number of the coordinates. 
The approximation will be uniform for a E A. 

Form the stochastic variable 

Then 

a*(o~) if Ja*(~~  
t~ (~) = I 0 if I a* (~) I > N. 

E.(tN--a*) 2 = f (t~--a*)2dp~= f a*edpc~r 0 
.,z I a*l ->- Ar 

when N tends to infinity. Bug 

] f a*2{/(~O, ao) -/(o),a)}dPo(~o ) <_N 2[/f[[(to,ao)-/(o~,a)]2dpo(eo) 
I~*I<N .~ 

which according to the assumption on /(w, a) in 5.1 tends to zero when a 
tends to %. Thus 

f a*2(co)/(o~,a)dP0(~o ) = v(a)-- f a*2(w)/(w,a)dPo(w) 
I~*l~V I~*I<N 

is a continuous function of a. Because of Dini's theorem the above conver- 
gence will be uniform, so that  for every s > 0 there is a N o = No(e ) with 

Ec~[tN--a*] 2 < ~  for N > N 0 .  

Consider now the stochastic variable 

a~v (X 1 . . . .  Xn) = J~o [tzv I Xl . . . .  Xn]. 
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When n tends to infini ty a ~ ( x l , . . .  Xn) tends to tN(0)) a lmost  certainly.  In-  
t roduce the set 

{ l a ~ ( x l , . . .  x ~ ) -  tN(0))I < S } ~  = E = <  9 .  
We get 

E~ [a~ (xl . . . .  Xn) -- tN (0))]2 = f [a} (x,, . . . x~) - -  tiv (0))] 2 dP ,  (0)) -<- 
-'2 

s2P,(En) + 4N2P,(E~).  

But  Po(E~)-~ 0 when n ~ c~ and  because of the uniform absolute cont inui ty  
of P~ with  respect  to Po we obta in  

E .  [a}  (Xl . . . .  x~) - -  t~ (0))]2 < 6 if n > no (N, 8). 

Using the t r iangular  inequal i ty  we get the wanted result  

E~ [a~v @1 . . . .  x~) - -  a* (0)) ]z < s for all a 6 A 

if N and n are chosen sufficiently large. We can then get an es t imate  depending 
on a finite number  of coordinates which has mean  value and var iance arbi-  
t rar i ly  close to those of a* (0)) uniformly for a e A. 

I f  we form est imates  involving a finite number  n of coordinates a n d  choose 
the best  one a * ( x l , . . .  Xn) of these, the above shows t h a t  when we increase 
n sufficiently, a* (xl . . . .  xn) is pract ical ly as good an es t imate  as any  es t imate  
depending on all coordinates.  

5.14. E s t i m a t i o n  o f  funct ions .  We hav~ hi ther to main ly  considered the case 
when the probabi l i ty  dis tr ibut ion of the process is known but  for a real para-  
meter .  The problem dealt  with in 5 .2 -5  is of another  type,  because we deal 
there with processes about  whose probabi l i ty  dis tr ibut ion nothing is known ex- 
cept the covariance function. Another  type  of problems of similar na ture  is 
obtained when the distribution o~ the process depends upon an unknown/unction, 
vhich we want t9 estimate by the aid o/ our observations. The two following 
:ases are i l lustrative. 

Le t  x(t) be a real, s ta t ionary,  normal  and (D)-measurable  process with mean 
value zero and correlation funct ion r (t) which is supposed to be cont inuous as 
usual. The process is observed during the t ime (0, T) and we want  to es t imate  
r(t). I t  is possible to give a consistent est imate,  if the process is metr ical ly  
t ransi t ive,  i.e. if the spect rum is continuous (see 5.10.). We known (see HOPF 1, 
p. 54---55) t ha t  a lmost  cer ta inly for all t 

T 

lira x(s) x ( s - -  t) ds = r ( - -  t) = r(t). 

0 

As the process is real and the correlation function symmetr ica l ,  we have to  
consider only t > 0. Bu t  

T T t 

1T~ x ( s ) x ( s - - t ) d s - - ~ ,  x ( s ) x ( s - - t ) d s =  ~ .  
0 t 0 
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which almost certainly tends to zero for all t when T tends to infinity. 
the expression 

r~( t )  = 

Hence 

/f 1 " 
~ x(s) x ( s - - t ) d s  for 0 - < - t < T  

t 

0 for t --> T, 

which depends only upon observations during the t ime (0, T), is a consistent 
estimate of r (t). 

Consider now a process tha t  is still s tat ionary,  (D)-integrable and metrically 
transit ive.  We want  to find a consistent est imate for the distr ibution function 

F(a) = P {x(t) -<- a}, - -  c~ < a < or .  

To this end we introduce the stochastic process 

1 if  x ( t , ~ o ) - - < a  

et (co) = I 0 if x (t, o~) > a. 

For  a fixed value of t this is a stochastic variable, et (~o) is measurable and 
integrable on the product  space T X ~Q where T is an a rb i t ra ry  finite interval.  
We thus have with probabil i ty  one 

T 

lim 2 1  ( e t ( ~ o ) d t  = Eet(o)) = P {x(t) --< a} = F(a).  
T ~  . 

- - T  

T 

But  f et(~) is the t ime belonging to the interval  ( - - T ,  T ) w h e n  x(t)<--a. 
- - T  

Denoting 
1 

2 ~ m  {x(t, o~) <_ a; ] t l  < T}t = F~(a,  ~), 

which is possible ahnost  certainly according to Fubini 's  theorem, we get 

lim F}, (a, ~o) = F (a). 

Le t  {a~; v = 1, 2, . . .} be a sequence of real numbers tha t  is everywhere dense 
on the real axis. Because of the denumerabi l i ty  we have 

lira F~, (a,~ r = F (m) 
T ~  ar 

almost certainly for all v. Bu t  F }  (a, co) is a non-decreasing function of a. If 
a is a point  of cont inui ty  of F ( x )  and a'v $ a and a:' t a we have 

t t  ,. ~ , F~ (av, co) <_ FT (a, ~) <- FT (a,, o)) 
and it  follows tha t  

l ira F~, (a, ~) = F (a) 
T ~  c~ 
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almost certainly for all points of continuity of F(x), i.e. F~ is a consistent 
estimate of F. In the same way we can construct consistent estimates for the 
multi-dimensional distribution functions. 

I t  is easily seen tha t  the estimate in the latter case is unbiased and that  
the estimate in the former case can be made unbiased by  multiplication with 

T 
the factor T - ~ t  t �9 I t  seems desirable to define concepts like efficiency and to 

investigate properties of estimates of functions in such terms. 
Before we leave the problem of estimation, we want to point out tha t  the 

definition of a confidence region can now be translated almost word for word 
to the case of a stochastic process. 

The problem of regression 

6.1. Regression in function space. Besides the problem of testing and 
estimation we will just  shortly deal with two other types of inference and show 
how they belong to the theory of regression which is since long familiar to the 
statistician. In the following we shall have to deal with conditional distribu- 
tions, and assume, as some times before, that  these can be defined with prob- 
ability one in such a way tha t  they are probability distributions. 

We observe a stochastic process x(t) during the time-interval T, and desire 
to make a statement about a stochastic variable y, when we know the simul- 
taneous distribution of {y, x(t);  t E T}. Denoting the observed realization by co, 
we have a conditional probability distribution P{Ylco} for y. We want to give 
a probable value of y knowing r and we can take some central value of the 
distribution P {y I co}. If  y has a finite expectation, it seems reasonable to take 
the conditional expectation as an estimate of y 

v* = E [ y l c o ] .  

To be able to proceed further we must specify the distribution. Suppose 
that  the process and y are normally distributed with mean value zero and that  
x(t) is continuous in the mean. Denote the Hilbert space generated by x(t), 
t e T, by L2(X) and form 

Yl = PLy(X) Y, 
and put 

y = y l  + z .  

Then z s x (t) ; t E T, and because of the normality of the distributions x (t), (t E T), 
and z are independent stochastic variables. We have almost certainly 

z [y I co] : E [ 11 co] + E t co] = Yl (co) + E : y (co). 

But Yl can a]so be considered as the point in L2(X  ) which makes I I Y - - x l l ;  
x E L~ (X); as small as possible. If  nothing is assumed about the distributions, 
Yl seems still to be a reasonable estimate of y. This is nothing but  a general- 
ization of the fact tha t  the regression of the multi-dimensional normal distribu- 
tion is linear. 
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6.2. P r o g n o s i s  as  r e g r e s s i o n .  Suppose that  x (t) has the properties demanded 
in the preceding section and is normally distributed. As y we take x (c) with 
cCT.  The question of how x(c) shall be estimated by the aid of x(t), t E T ,  
is known as the problem of prediction or prognosis. The result of 6.1 is im- 
mediately applicable to this problem. As several times before we represent the 
process by the following series which converges in the mean 

~ (t) 
x ( t )  = z~ �9 t E T ;  

1 V L '  

where the involved quantities are defined in 1.3. I t  is easily seen that  L 2 ( X )  
coincides with the space Z spanned by the orthonormal vectors z,, v = 1, 2 , . . . ,  
so that  in order to obtain the prognosis of the process to the time c, we just 
have to form 

x* (c) = P z  x (t) = ~ z,. E z~ x (c). 
1 

But 

E ~,, x @) = Vs E x @) f x (t) ~,, (t) d t = V L  .f ~ @, t) ~, (t) d t. 
T T 

For s E T  we have 

;,, . f  ~ (s, t) % (t) d t = ~ ,  (s) 
T 

and so it is natural to put 

E z, x (c) rot: (c) 
= lt,~,, ' 

where ~ ( c )  are the continued eigen-funetions of the process. 
prognosis is given by 

z* @) = ~ , , - - .  
VL 

Hence the best 

This representation is due to Karhunen, defining the best prognosis as the point 
in L 2 (X) which has the smallest distance to x (c ) .  For the important  case of 
a stationary process observed during the interval T = ( - - c ~ ,  a), WIENER 1 
has obtained a technique os finding the best linear prognosis. 

6.3. An example.  If  the process is not normally distributed we can either 
use the best linear prognosis, or we can t ry  to calculate the conditional ex- 
pectntion. Let us consider the simple process of 4.11, which is not normally 
distributed. Putt ing T = (a, b) we get the conditional distribution function for x (c) 

F ( x l ~ )  = e -,~(~--e) ~ [z - x (b)] + [1 - -  e-~(b-~)]  ~ ( x ) .  

The conditional expectation is then 

E [x(c)  I ,o]  = ~ (b) e-i~(b-c~0 
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which is the same result t ha t  would have been obtained by construct ing the 
best linear prognosis. 

6.4. Regions  of  prognosis.  I t  m a y  happen tha t  we want  to give, not  a 
single point, bu t  a region into which the values Qf the process at  some future 
t ime-points m a y  be expected to fall. This is quite analogous to the case of 
estimation by  confidence regions (see 2.3). 

Suppose tha t  we have observed the process during the time (a, b), and denote 
the realization by  COa, b E Q~,b. We want  to determine a region z depending 
upon o~, b in the space of all realizations ~o~, d during the time (c, d), ~ < -Q~, d, 
such tha t  we, d can reasonably be expected to fall in z,  i. e. such tha t  P (~1 ~o~, b) 
is large. In  order to be able to choose between different regions, we introduce 
a measure m in /2~, d with the proper ty  tha t  ~Q~, ~ is the denumerable sum of 
sets of finite m-measure. For  a fixed o~, b we have the conditional probabil i ty 

which is a probabil i ty distribution with probabil i ty one. According to the 
theorem of Lebesgue on decomposition of additive set functions we obtain 

P(SI~oa, b) = P ( X S I o ) a , b )  + .f ](~oc, glcO~,b)dm(og~,,~), 
S 

where X = X ((ga, b) is the singular par t  of the distribution. We want  to find 
a set z < De, d with fixed m (~) and with max imum P (~ I o)~, l,). This is formally 
the same problem tha t  we have considered in 4.1 and we get 

= x (o~ . ,b )  + { / ( ~ r  --> kl,,,~,d < ~ , ~ ,  

where the constant  k is determined to give r e ( n ) t h e  required value, z~ is 
called the best region o /  prognosis with respect to m, and is thus obtained by 
using a sort o~ maximum likelihood principle. 

I t  is evident tha t  the obtained best region of prognosis will depend upon 
the choice of the measure m. We will just  sketch two possible ways of choosing 
m, applied to a Markoff process. 

Consider the following case, where x(n) is a stat ionary,  normal, Markoff 
process observed in the integral t ime-points ( . . . .  1, 0, 1 , . . . ) ,  with mean 
value zero and s tandard deviation 1. The correlation function is then 

r (n )  = e-~ ~lnt, fl > 0. 

Here we have left out  the trivial cases fl = 0, fl - + c~. Let  

(a,b) = ( - - N ,  - - N  + 1, - - . 0 )  

and let the interval (c,d) be the point t = z > 0. Because of the Markoff 
proper ty  the conditional probabil i ty of x(z) with respect to 

x (  N), x ( - -  N -.~ 1), . . . x(0) 
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depends only on x(0). As the measure m we take the Lebesgue measure on 
the axis - - o v  ~ x ( ~ ) <  c~. The singular part  X does not appear and 

_ �89 [x ( , ) : e - t  ~ ~ (0)] 3 
] = ce 1-e-2~3~ 

Thus we get the best region of prognosis 

- -  ]~ < x ( ~ )  - -  e - ~ 3 ~ x ( O )  < k .  

If  instead the interval (c, d) is (r, r + 1 . . . .  ~ + ~), we get in the same way 
a (~ + 1)-dimensional ellipsoid in the Euclidean space with coordinates x(T). 
x (~ + 1) . . . .  x (r + ~). Such a region of prognosis is not fit for applications, 
but  we can instead confine ourselves to consider intervals 

{ a ~ , < x ( 7 : + f ) < b , ~ , ;  # = 0 , 1  . . . .  v} 

and among them t ry  to find one of maximum probability under the condition 
that  its Lebesgue volume is fixed. We have the conditional frequency function 

where 

and 

-�89 ~ (Yi +l--(~iYi)2 

] = c e  o 1 ~,1~ , 

/ y  o = x ( 0 )  

~ y i = x ( ~ "  ~;--1), i = l ,  2 , . . . u + l .  

leo = e - ~  

"(~ =e-~ ~, i =  1 , 2 , . . . ~ .  

The problem is now reduced to finding the (~ + 1)-dimensional interval with 
fixed volume and with maximum probabili ty with respect to the given fre- 
quency function. 

Another possibility is to take as m the absolute (non-conditional) probability 
P in ~2c, d. We still consider a process with a discrete t ime-parameter and 
suppose for simplicity tha t  the distribution is of the continuous type. If  then 
S ~ ~9c, ~ we have 

IP(SIo)~,,b)= f ]((oc, al~o~,b)dv 

i p(8) = f ](rOc, d) d v 

and we get the best region of prognosis z with respect to P 

:~ = ( l ( ~ o r  - -  = l ( O ~ a , ~ ) l ( w ~ , d )  

11 (~'~,, ~; o.,,,: ~) } 
=/ l (~, ,~)l(~,o,d) >-k = {l(~oa,~lo-'~,,,) --> kl(~,,,~)} < Q~,,~ 
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so tha t  for a given O)a, b we obtain z ((Da, b) by choosing points in ~ ,  ~ for which 
the conditional frequency function / (~Oa, b I COc, d) is large. 

Take especially the Markoff process that  we have just considered. We get 
with the same notation 

. . ~  ( Y i + l - - ~ i Y i )  

and 
__~ ~(Yl-- ~O__D~ y0)2 y21~ 

]((Dc, dlO)a, ~) k2 e ( 1-,,,~o . 
1 

Thus 

which is different from the best region of prognosis with respect to Lebesgue 
measure and does not contain any restriction on the values of x (T + 1 ) , . . .  x (v + v). 

6.5. Filtering as regression. Finally we shall apply the method of 6.1 on 
the problem of fi]tering of stationary processes. This problem has been treated 
in WIENER 1, where the filters considered are one-sided, i.e. depend only on 
the past. Though this is a very natural assumption in many  cases, it is still 
plausible that  in the filtering of statistical data we have usually no cause to 
use only the values of the process in the past. We consider the case when 
the realization is known in a long time-interval that  can be considered infinite 
with regard to the effective breadth of the spectrum of the process. 

Either by  supposing the process to be normally distributed and using the 
conditional expectation, or by  finding the best linear fi]ter, we get formally 
the same result. Suppose that  y(t)  is stationary with mean value zero and 
with the correlation function 

oo 
r~(t) = f e~t~- ]y(~)d~t 

where ]u(~) is a non-negative function integrable over ( - - c ~ ,  c~). On y(t)  is 
superimposed a noise term 6(t) which is a stationary process with mean value 
zero and correlation function 

r~(t) = f eit;- /.~'(~)d~. 

The observed process is then x (t) = y (t) + ($ (t). We suppose, at  first, tha t  the 
noise is incoherent, i .e..  that  5(t) and y(t)  are non-correlated. By the aid of 
x(t), - - c o  < t < co, we want to form an estimate of y ( T ) .  We consider the 
linear combinations 

= = '- = z. F 
1 - - o o  1 - - o o  
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where Z(Z) is the orthogonal process belonging to x(t) (see 1.3). In order that  
a sequence Zn shall converge in the mean to a n  element z 6 Lz(X), it is necessary 
and sufficient that  }'n (4) converges in the mean to a function y (~) 6 L 2 (F), where 

and 

s 

f (4) = E I z (4) I ~ = f [1~ (4) + 1,, (4)] d 4 
- - 0 r  

o0  

z = f~,(4)dZ(4). 

In  accordance with the method of 6.1 we shaI1 take z = Pr~<x)y(T)which 
makes II~--y(T)II minimum subject to the condition z6L2(X ). But 

oo oo  

z -  y(~)= f ),(4)dz~(4) + J r ( h d z ~ ( ~ ) -  f ?~"~dZ~(4) 

and hence 

II z - y(T)IP = j" I r (4 )  - -  ~ "  1~/~(4)~4 + f ly (4) I  ~/~(4) d4.  
- - n o  or 

But 

is minimized by 

/y (x) + b' (x) 

because for each value of ,l the integrand is minimized by this value of y(A). 
Further this y(4) belongs to Ls(F),  because ly(x) t_<_ 1. The variance of the 
error of this filter is given by  

o *  

I1~ - ~ ( r ) i i  5 = [ "  
1~ (4) + / ~  (4) ~ 4. 

The best filter is then 

, ['i~ l~(h yop~ (T) - ,  (4) + /~ (4) 
e i T ) . ~ Z ( 4 ) ,  

- ar 

I t  may  happen tha t  this expression is too complicated and we can then t ry  
to approximate to y*pt (T). This is easily seen to be the same as to approximate 

to the function /v(~) with the quadratic metric corresponding to the 
/,, (4) + I,~.(;,) 

weight function .1~ +/d' .  If  e.g. we use an approximation of the form 

N 

F~ c,. ?~ ~-., . . . . .  h, (4) ...... 
h,(~) + l~,(Jt) 
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so tha t  

f ~ C,, e iav 2 
-~ 1 

/~ (4) ~ [/~ (4) + / ~  (4)] d 4 < ~, 
t~ (4) +/,j,(~) 

we get the approximate filter 
N 

* T 
1 

with 

[r yo*~(T) - -  y ; ~ ( ~ ) I I  ~ < ~. 

6.6. A more  general  problem of filtering. Let  us consider the following 
case which is completely analogous to the usual problem of regression in a 
finite-dimensional space, x ( t )  and y( l )  are stationary processes with the correla- 
tion functions 

[ f rx(t) = eit;.]~(4) d 4  
- - o o  

1 

L ; r~(t) = e~ t~ /y (4 )d4 .  

We suppose that  they are stationarily correlated with the cross-correlation 
function 

c,o 

rux(t) = E y ( s ) x  (s + t) = f e"~./~(4)d4. 

The only restriction made here is tha t  the cross-correlation spectrum shall be 
absolutely continuous. We want to estimate the value y ( T )  by a linear filter 
operating on x (t). Putt ing 

oo  

y*(T) = f r(4)dZ~(4) 
- - o o  

we have 

I l y * ( T )  - y(T)I[ 2 = ] l y * ( T ) H  -~ + I[y(T)l] 2 - -  2ReEy*(T)y(T) = 

oo  oo  c o  

= f l r (4 )  l~/~(4)d4+ f /~(4)d4-- 2Re f 7(4)e-iT~'/y~(4)d4. 
- - o o  - - o o  - - o o  

We choose 7(4) so as to minimize the error II y* (T) - -  y (T) II and get 

because of 

l y e ( 4 )  e~T~ " 
7" (4) ~ /~ (4) 

libel 2, 
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which follows from 

I 2 R e r e " T * I y ~ < - 2 I r V ~ I  v!~! ~ -< I~ 'P I~+  1~ 

and because of the choice 

~'* ()0 = ]yx(~.) eiT~ " 
/~(4) 

leading to the equality 

I ~,* (,t)P lz(.~) - 2 R e y " ( 2 )  e-~r~l~,~(2) = - -  11,,,(4)I ~ 
t~(4) 

This filter function can be used because 

I r (4) p 1~ (4) d X = lyx (X) I < (4) d a < co 
_~ : ~  l~(a) - _ ~  

using theorem 3 in CI~AMI~R 2. The error of the filter is 

o~ 4 

II y* (T) - -  y (~) IP = f"/~( ) 1~(4) - -  I/ ,~(4) p d 4 > o. 
,~ / ~ ( ~ )  - 

The problem in 6.5 can be considered as a special item of this. The case of co- 
herent noise can be treated in the same way. Let the cross-correlation be given by 

ry,),(t) = [ e i t ; - ] y a , ( 4 ) d 4  = E y i s ) 0 ( s  + t). 

We get the spectral intensities 

and the filter function 

I x(t):]y(4) + /~(~) + 2Re[y~(4) 

�9 y ( t ) : J y ( 4 )  

Ix (t) • y (t) :/y (4) +/y~ (4) 

~ * ( 4 )  = / , , (4)  + ] ~ ( 4 )  e~z~ " 
/y(~) +/~(4) + 2Re]y~(]O 

For /y6 ~ 0 we have the previous result. 
I t  is of some interest to note, that  if T is considered as a parameter, the 

filters obtained are stationary transformations according to the definition of 
K A ~ n U N E n  (2 ) .  
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