On an unsolved question concerning the Diophantine equation $\boldsymbol{A} \boldsymbol{x}^{3}+\boldsymbol{B} \boldsymbol{y}^{3}=\boldsymbol{C}$

By Per Häggmark

§ 1.
The Diophantine equation

$$
\begin{equation*}
x^{3}+D y^{3}=1 \tag{1}
\end{equation*}
$$

was solved completely by B. Delaunay [1] ${ }^{1}$ who showed that it has at most one solution in integers x and y when $y \neq 0$; if x, y is an integral solution, then

$$
\begin{equation*}
\eta=x+y \sqrt[3]{D} \tag{2}
\end{equation*}
$$

is the fundamental unit of the ring $\boldsymbol{R}\left(1, \sqrt[3]{D},(\sqrt[3]{D})^{2}\right)$.
T. Nagell [2], [3], [4], and [5] proved the same theorem independently of Delaunay and, moreover, a stronger form of the latter part of the theorem.

Nagell [4] and [5] proved that η is the fundamental unit of the field $K(\sqrt[3]{D})$, except when $D=19,20$, and 28 , in which cases η is the square of the fundamental unit. These values of D correspond to the solutions $x=-8, y=3$; $x=-19, y=7$; and $x=-3, y=1$.

To solve (1), one has thus to determine the fundamental unit of $K(\sqrt[3]{D})$, and to examine whether it has the form (2) or not.

Nagell [4] generalized these results and showed that the Diophantine equation

$$
\begin{equation*}
A x^{3}+B y^{3}=C \tag{3}
\end{equation*}
$$

where $C=1$, or $C=3$, where A and B are >1 when $C=1$ and where $A B$ is not divisible by 3 when $C=3$, has at most one solution in integers x and y.

He also established the following result: Put $A=a c^{2}$ and $B=b d^{2}$, where a, b, c, and d are positive integers, relatively prime in pairs, and possessing no square factors. Then, if x, y is a solution, one has

$$
\begin{equation*}
\eta=\frac{1}{C}(x \sqrt[3]{A}+y \sqrt[3]{B})^{3}=\xi^{2^{r}} \tag{4}
\end{equation*}
$$

[^0]P. Häggmark, The Diophantine equation $A x^{3}+B y^{3}=C$
where ξ is the fundamental unit of the field $\boldsymbol{K}\left(\sqrt[3]{a c^{2} b^{2} d}\right), 0<\xi<1$, and where r is an integer $\geqq 0 .{ }^{1}$

This theorem may also be expressed in the following way: If x, y is a solution, then

$$
\begin{equation*}
\eta=\frac{1}{C}(x \sqrt[3]{A}+y \sqrt[3]{B})^{3}=\zeta^{2^{s}} \tag{5}
\end{equation*}
$$

where ζ is the fundamental unit of the ring $\boldsymbol{R}\left(1, \sqrt[3]{a c^{2} b^{2} d}, \sqrt[3]{a^{2} c b d^{2}}\right), 0<\zeta<1$, and where s is an integer $\geqq 0$.

The relation between ζ and ξ is $\zeta=\xi$, or $\zeta=\xi^{2}$. Hence we have $r=s$, or $r=s+1$ (Cp. [4], p. 267).

Although an upper limit of the integers r and s could generally not be determined, Nagell succeeded in constructing an algorithm to decide if (3) is solvable or not. In the former case, this algorithm gives a method to determine the solution of the equation (Cp. [4], p. 257 and p. 263). This method, a sort of descente finie, is, however, too cumbersome to be practical. It would thus be of value to solve the question of the upper limit of r and s.

Nagell [4] has treated this question and proved that $s=0$ when $C=1$, and $r=0$ when $C=3$, if A is even and B is divisible by a prime factor of the form $8 t-1$, or $8 t+5$, and if A and B are both divisible by a prime factor of the form $8 t-1$, or $8 t+5$. He further proved in [4] that there is an infinite number of fields \boldsymbol{K} in which $s=0$ and $s=1$ when $C=1$, and that there is an infinite number of fields K in which $r=0$ and $r=1$ when $C=3$.

Nagell [6] and [7] has proved that $s \leqq 1$ when $C=1$ if A and B contain at most three distinct prime factors each.

Finally, Nagell [7] has proved that $s \leqq 1$ when $C=1$ if A and B contain no prime factors of the form $3 t+1$.

The purpose of the present paper is to show that the method employed by Nagell in [6] may be extended and used in a few more cases in order to find an upper limit of r and s.
μ and λ denote the largest number of distinct prime factors of A and B respectively. By ν, we denote the largest of the numbers μ and λ. The following results are obtained in this paper:

```
r\leqq1 when }C=3\mathrm{ if }v\leqq2
r\leqq1 when }C=3\mathrm{ if }A\mathrm{ and }B\mathrm{ are odd and v@4;
r\leqq1 when C=3 if A or B is divisible by 4 and v\leqq4;
s\leqq1 when C=1 if A and B are odd and v\leqq6;
s\leqq1 when C=1 if A or B is divisible by 4 and v\leqq6.
```

[^1]In order to prove the theorems mentioned above, we start from some of the results in [4].

Let us first consider the case $C=1$. If the number s of (5) is $>1, \eta$ may be written as the biquadrate of a unit. It is proved in [4] that it is a necessary condition for η being a biquadrate of \boldsymbol{R} that the following equation has a solution in integers f, g, N_{1}, and N_{2} :

$$
\begin{equation*}
1=f^{2} N_{1}^{6}-27 g^{2} N_{2}^{6} \tag{6}
\end{equation*}
$$

where $f g=A$ or $f g=B$. This condition is not sufficient. A necessary and sufficient condition consists in the following system having a solution in integers X, Y, and Z :

$$
\left\{\begin{array}{l}
a b Z^{2}+2 X Y=N M \tag{7}\\
d Y^{2}+2 a c X Z=d M^{2} \\
c X^{2}+2 b d Y Z=-\frac{1}{2} c N^{2}
\end{array}\right.
$$

with $N=2 N_{1} N_{2}$ and $(M, N)=1$.
If $C=3$ and the number r of (4) is $>1, \eta$ may be written as a biquadrate of a unit. It is a necessary condition for η being a biquadrate of \boldsymbol{K} that the following equation has a solution in integers f, g, N_{1}, and N_{2} :

$$
\begin{equation*}
1=f^{2} N_{1}^{6}-3 g^{2} N_{2}^{6} \tag{8}
\end{equation*}
$$

where $f g=A$ or $f g=B$. This condition is not sufficient. A necessary and sufficient condition consists in system (7) having a solution in integers X, Y, and Z.

§ 2.

We begin by proving the following proposition:
Theorem 1. If the equation

$$
p^{n} x^{3}+q^{m} y^{3}=3
$$

where p and q are distinct primes $\neq 3$ and where m and n only take the value 1 or 2, has a solution in integers x and y, then

$$
\eta=\frac{1}{3}\left(x \sqrt[3]{p^{n}}+y \sqrt[3]{q^{m}}\right)^{3}
$$

is the fundamental unit of the field $\boldsymbol{K}\left(\sqrt[3]{p^{n} q^{3-m}}\right)$, or the square of this unit.
We have to consider the equation

$$
\begin{equation*}
1=f^{2} N_{1}^{6}-3 g^{2} N_{2}^{6} \tag{9}
\end{equation*}
$$

where $f g=p^{n}$ (or $f g=q^{m}$), and we distinguish three cases:
P. Häggmark, The Diophantine equation $A x^{3}+B y^{3}=C$

1) p is odd, $f=p^{n}$ and $g=1$.
(9) takes the form

$$
\begin{equation*}
1=p^{2 n} N_{1}^{6}-3 N_{2}^{6} \tag{10}
\end{equation*}
$$

If N_{1} is even, (10) is impossible since the congruence

$$
3\left(N_{2}^{3}\right)^{2}+1 \equiv 0(\bmod 8)
$$

is impossible. Hence N_{1} is odd and N_{2} even, and we get from (10)

$$
p^{n} N_{1}^{3} \pm 1=3 \cdot 2^{n} N_{3}^{6}, \quad p^{n} N_{1}^{3} \mp 1=2^{\beta} N_{4}^{6},
$$

which gives

$$
\begin{equation*}
\pm 2=3 \cdot 2^{\alpha} N_{3}^{6}-2^{\beta} N_{4}^{6} \tag{11}
\end{equation*}
$$

We have either $\alpha=1, \beta=5$, or $\alpha=5, \beta=1$. Hence we get from (11) the two equations

$$
\begin{align*}
& \pm 1=3 N_{3}^{6}-16 N_{4}^{6} \tag{12}\\
& \pm 1=48 N_{3}^{6}-N_{4}^{6} \tag{13}
\end{align*}
$$

From (12) we get the congruences

$$
3\left(N_{3}^{3}\right)^{2} \pm 1 \equiv 0(\bmod 8)
$$

so that this equation is impossible. The upper sign of (13) is impossible modulo 3. (13) may be written

$$
\left(4 N_{3}^{3}+1\right)^{3}-\left(4 N_{3}^{3}-1\right)^{3}=2 N_{4}^{6}
$$

but, as is well known, the Diophantine equation

$$
u^{3}+v^{3}=2 w^{3}
$$

has the only solution $u^{3}=v^{3}=w^{3}$ when $w \neq 0$. Hence the impossibility of the equation.
2) p is odd or even, $f=1$ and $g=p^{n}$.
(9) takes the form

$$
\begin{equation*}
1=N_{1}^{6}-3 p^{2 n} N_{2}^{6} \tag{14}
\end{equation*}
$$

or

$$
\left(p^{n} N_{2}^{3}+1\right)^{3}-\left(p^{n} N_{2}^{3}-1\right)^{3}=2 N_{1}^{6}
$$

and we can see that (14) is impossible.
3) $p=2, f=2^{n}$ and $g=1$.
(9) takes the form

$$
1=2^{2 n} N_{1}^{6}-3 N_{2}^{6}
$$

If $n=2$, we get

$$
1=16 N_{1}^{6}-3 N_{2}^{6} ;
$$

but this equation is impossible since (12) is impossible. If $n=1$, we get

$$
1=4\left(N_{1}^{2}\right)^{3}-3\left(N_{2}^{2}\right)^{3}
$$

The Diophantine equation $4 x^{3}-3 y^{3}=1$ has the only solution $x=y=1$. This gives $\left|N_{1}\right|=\left|N_{2}\right|=1$ and (Cp. [4], p. 263) $a=2, b=c=d=1, N=2$, $M=1$, or $a=2, b=41, c=d=1, N=2, M=-1$.

The former solution corresponds to the equation

$$
2 x^{3}+y^{\mathbf{3}}=3
$$

which we do not take into consideration. The latter solution corresponds to the equation

$$
2 x^{3}+41 y^{3}=3
$$

which has the solution $x=-52, y=19$. However, the number

$$
\frac{1}{3}(-52 \sqrt[3]{2}+19 \sqrt[3]{41})^{3}=(329+22 \sqrt[3]{164}-30 \sqrt[3]{3362})^{2}
$$

is not a biquadrate of the field $K(\sqrt[3]{164})$. If it were, system (7) would have a solution in integers X, Y, and Z. In this case the system may be written

$$
\left\{\begin{array}{l}
41 Z^{2}+X Y=-1 \tag{15}\\
Y^{2}+4 X Z=1 \\
X^{2}+82 Y Z=-2
\end{array}\right.
$$

which gives

$$
\begin{aligned}
& 82 Z^{2}+2 X Y-X^{2}-82 Y Z=0 \\
& 41 Z^{2}+X Y+Y^{2}+4 X Z=0
\end{aligned}
$$

From the third equation of (15) we get $Z \neq 0$. If we put $\frac{X}{Z}=u, \frac{Y}{Z}=v$, and eliminate u, we get

$$
\begin{equation*}
v^{4}+30 v^{3}+246 v^{2}+328 v+123=0 \tag{16}
\end{equation*}
$$

If (15) had a solution in integers, then v would be a rational number. However, (16) has no ratinnal solution.

§ 3.

We shall prove the following proposition:
Theorem 2. Let a, b, c, and d denote positive integers, relatively prime in pairs, and possessing no square factors. If the equation

$$
A x^{3}+B y^{3}=3
$$

P. HÄgGmark, The Diophantine equation $A x^{3}+B y^{3}=C$
where $A B$ is not divisible by 3 and where $A=a c^{2}$ and $B=b d^{2}$ have at most two distinct prime factors each, has a solution in integers x and y, then

$$
\eta=\frac{1}{8}(x \sqrt[3]{A}+y \sqrt[3]{B})^{3}
$$

is the fundamental unit of the field $\boldsymbol{\kappa}\left(\sqrt[3]{a^{2} b^{2} d}\right)$, or the square of this unit.
We have to consider the equation

$$
\begin{equation*}
1=f^{2} N_{1}^{6}-3 g^{2} N_{2}^{6}, \tag{17}
\end{equation*}
$$

where $f g=A$ (or $f g=B$), and we distinguish three cases:

1) $t g$ is even and $f=2 h$.
h cannot be even, for then

$$
3\left(g N_{2}^{3}\right)^{2}+1 \equiv 0(\bmod 8),
$$

which is impossible. Hence h is odd, and for the same reason N_{1} is odd. It is easily seen that g is odd. From (17) we get

$$
\begin{equation*}
1=4 h^{2} N_{1}^{6}-3 g^{2} N_{2}^{6} . \tag{18}
\end{equation*}
$$

Since $f g=2 h g$ is supposed to contain at most two distinct prime factors, and since (h, g) $=1$ according to (18), we have either $h=1$, or $g=1$.
If we put $h=1$, the equation (18) may be written

$$
\left(g N_{2}^{3}+1\right)^{3}-\left(g N_{2}^{3}-1\right)^{3}=\left(2 N_{1}^{2}\right)^{3} .
$$

However, the Diophantine equation

$$
x^{3}+y^{3}=z^{3}
$$

has integral solutions only when $x y z=0$. Thus we get the only solution $\left|N_{2}\right|=\left|N_{2}\right|=1, f=2$, and $g=1$. As is shown in $\S 2$, this solution corresponds to the equations

$$
2 x^{3}+y^{3}=3 \text { and } 2 x^{3}+41 \cdot y^{3}=3
$$

We do not take the former equation into consideration. The latter equation satisfies the conditions of the theorem.

If we put $g=1$, we get from (18)

$$
1=4 h^{2} N_{1}^{6}-3 N_{2}^{6},
$$

which gives

$$
2 h N_{1}^{3} \pm 1=3 N_{3}^{6}, \quad 2 h N_{1}^{3} \mp 1=N_{4}^{6},
$$

and

$$
\pm 2=3 N_{3}^{6}-N_{4}^{6},
$$

where the lower sign is impossible modulo 3 . The equation may be written

$$
\left(N_{4}^{2}\right)^{3}=3\left(N_{3}^{3}\right)^{2}-2 .
$$

However, as was shown by T. Nagell [5], the equation

$$
x^{3}=3 y^{2}-2
$$

has the only integral solutions $x=1, y= \pm 1$. We thus get $\left|N_{4}\right|=\left|N_{3}\right|=$ $=\left|N_{2}\right|=\left|N_{1}\right|=1$ and $h=1$, and again the above-mentioned equations.
2) $f g$ is even and $g=2 h$.

Let us first suppose that h is odd. (17) may be written

$$
\begin{equation*}
1=f^{2} N_{1}^{6}-3 \cdot 4 h^{2} N_{2}^{6} \tag{19}
\end{equation*}
$$

It is immediately evident that N_{1} and f are odd integers. Further we have $f \neq 1$, because if $f=1$, (19) could be written

$$
\left(2 h N_{2}^{3}+1\right)^{3}-\left(2 h N_{2}^{3}-1\right)^{3}=2\left(N_{1}^{2}\right)^{3} ;
$$

but this equation is impossible. Since $f g=2 f h$ is supposed to contain at most two distinct prime factors, and since $(f, h)=1$ according to (19), we have $h=1$. Hence (19) may be written

$$
1=f^{2} N_{1}^{6}-3 \cdot 4 N_{2}^{6}
$$

which gives

$$
f N_{1}^{3} \pm 1=3 \cdot 2 N_{3}^{6}, \quad f N_{1}^{3} \mp 1=2 N_{4}^{6},
$$

and

$$
\pm 1=3 N_{3}^{6}-N_{4}^{6},
$$

where the upper sign is impossible modulo 3 . The equation may be written

$$
\left(N_{3}^{3}+1\right)^{3}-\left(N_{3}^{3}-1\right)^{3}=2\left(N_{4}^{2}\right)^{3} .
$$

Hence the impossibility of (19) when h is odd.
Let us now suppose that h is even. Then $g=4 h_{1}$, where h_{1} is odd, since A and B possess no cubic factors. (17) may be written

$$
\begin{equation*}
1=f^{2} N_{1}^{6}-3 \cdot 2^{4} h_{1}^{2} N_{2}^{6} \tag{20}
\end{equation*}
$$

As before, it is clear that f is odd and $\neq 1$. By (20) we have $\left(f, h_{1}\right)=1$, and thus we get $h_{1}=1$. (20) gives
which gives

$$
f N_{1}^{3} \pm 1=3 \cdot 2^{\alpha} N_{3}^{6}, \quad f N_{1}^{3} \mp 1=2^{\beta} N_{4}^{6},
$$

$$
\pm 2=3 \cdot 2^{n c} N_{3}^{6}-2^{\beta} N_{4}^{6}
$$

We have either $a=1, \beta=3$, or $\alpha=3, \beta=1$. Hence we get the two equations

$$
\begin{align*}
& \pm 1=3 N_{3}^{6}-4 N_{4}^{6} \tag{21}\\
& \pm 1=12 N_{3}^{6}-N_{4}^{6} \tag{22}
\end{align*}
$$

P. HÄGGMARK, The Diophantine equation $A x^{3}+B y^{3}=C$
where the upper signs are impossible modulo 3 . (22) may be written

$$
\left(2 N_{3}^{3}+1\right)^{3}-\left(2 N_{3}^{3}-1\right)^{3}=2\left(N_{4}^{2}\right)^{3}
$$

so that this equation is impossible. (21) may be written

$$
4\left(N_{4}^{2}\right)^{3}-3\left(N_{3}^{2}\right)^{3}=1
$$

and since the equation $4 x^{3}-3 y^{3}=1$ has the only solution $x=y=1$, we get $\left|N_{4}\right|=\left|N_{3}\right|=\left|N_{2}\right|=\left|N_{1}\right|=1$ and $f=7$. This gives $a=7, b=11, c=2$, $d=1, M=1, N=2$, or $a=7, b=571, c=2, d=1, M=-1, N=2$.

The former solution corresponds to the equation

$$
28 x^{3}+11 y^{3}=3
$$

which has the solution $x=52, y=-71$. However, the number

$$
\frac{1}{3}(52 \sqrt[3]{28}-71 \sqrt[3]{11})^{3}
$$

is not a biquadrate of the field $K\left(\sqrt[3]{28 \cdot 11^{2}}\right)$. If it were, system (7) would have a solution in integers X, Y, and Z. In this case, (7) may be written

$$
\left\{\begin{array}{l}
77 Z^{2}+2 X Y=2 \tag{23}\\
Y^{2}+28 X Z=1 \\
2 X^{2}+22 Y Z=-4
\end{array}\right.
$$

It follows from (23) that Z is divisible by 2 . If we put $Z=2 Z_{1}$, we may write (24)

$$
X^{2}+22 Y Z_{1}=-2
$$

so that X is divisible by 2 . If we put $X=2 X_{1}$, we get from (23)

$$
77 \cdot 2 Z_{1}^{2}+2 X_{1} Y=1
$$

but this equation is impossible in integers X_{1}, Y, and Z_{1}.
The latter solution corresponds to the equation

$$
28 x^{3}+571 y^{3}=3
$$

which has the solution $x=-724, y=265$. However, the number

$$
(-724 \sqrt[3]{28}+265 \sqrt[3]{571})^{3}
$$

is not a biquadrate of the field $K\left(\sqrt[3]{28 \cdot 571^{2}}\right)$. If it were, system (7) would have a solution in integers X, Y, and Z. In this case the system may be written

$$
\left\{\begin{array}{l}
7 \cdot 571 Z^{2}+2 X Y=-2 \tag{25}\\
Y^{2}+28 X Z=1 \\
2 X^{2}+2 \cdot 571 Y Z=-4
\end{array}\right.
$$

It follows from (25) that Z, and from (26) that X is divisible by 2. If we put $Z=2 Z_{1}$ and $X=2 X_{1}$, we get from (25)

$$
7 \cdot 571 \cdot 2 Z_{1}^{2}+2 X_{1} Y=-1
$$

but this equation is impossible in integers X_{1}, Y, and Z_{1}.
3) $f g$ is odd.

If we put $f=1$ in (17), it may be written

$$
\left(g N_{2}^{3}+1\right)^{3}-\left(g N_{2}^{3}-1\right)^{3}=2\left(N_{1}^{2}\right)^{3}
$$

and we can see that this equation is impossible. Hence $f \neq 1 . N_{1}$ is odd in (17); otherwise we would get from (17) the congruence

$$
3\left(g N_{2}^{3}\right)^{2}+1 \equiv 0(\bmod 8)
$$

which is impossible. Hence N_{2} is an even integer, and we get

$$
f N_{1}^{3} \pm 1=3 \cdot 2^{\alpha} h^{2} N_{3}^{6}, \quad f N_{1}^{3} \mp 1=2^{\beta} k^{2} N_{4}^{6}
$$

which gives

$$
\begin{equation*}
\pm 2=3 \cdot 2^{\alpha} h^{2} N_{3}^{6}-2^{\beta} k^{2} N_{4}^{6} . \tag{27}
\end{equation*}
$$

We have either $\alpha=1, \beta=5$, or $\alpha=5, \beta=1$.
In the former case we get

$$
\pm 1=3 h^{2} N_{3}^{6}-16 k^{2} N_{4}^{6}
$$

which is impossible modulo 8 .
In the latter, we get

$$
\begin{equation*}
\pm 1=3 \cdot 16 h^{2} N_{3}^{6}-k^{2} N_{4}^{6} \tag{28}
\end{equation*}
$$

where the upper sign is impossible modulo 3 . If $k=1$, (28) may be written

$$
\left(4 h N_{3}^{3}+1\right)^{3}-\left(4 h N_{3}^{3}-1\right)^{3}=2\left(N_{4}^{2}\right)^{3} ;
$$

but this equation has no integral solution when N_{3} and N_{4} are $\neq 0$. Hence $k \neq 1$. Since $f g$ is supposed to contain at most two distinct prime factors and since $(f, g)=1, f \neq 1$, and $g=h k \neq 1, g$ evidently contains only prime factors of the same kind, and we may put $g=p^{n}$, where p is an odd prime and $n=1$, or $n=2$. According to (28), we have $(h, k)=1$, which implies $h=1$. Hence the equation (28) may be written

$$
1=p^{2 n} N_{4}^{6}-48 N_{3}^{6}
$$

P. HÄGGMARK, The Diophantine equation $A x^{3}+B y^{3}=C$
which gives

$$
p^{n} N_{4}^{3} \pm 1=3 \cdot 2^{r} N_{5}^{6}, \quad p^{n} N_{4}^{3} \mp 1=2^{\varepsilon} N_{6}^{6}
$$

and

$$
\begin{equation*}
\pm 2=3 \cdot 2^{v} N_{5}^{6}-2^{\varepsilon} N_{6}^{6} \tag{29}
\end{equation*}
$$

We have either $\gamma=1, \varepsilon=3$, or $\gamma=3, \varepsilon=1$. Hence we get from (29) the two equations

$$
\begin{align*}
& \pm 1=3 N_{5}^{6}-4 N_{6}^{6} \tag{30}\\
& \pm 1=12 N_{5}^{6}-N_{6}^{6} \tag{31}
\end{align*}
$$

where the upper signs are impossible modulo 3 . The equation (31) is identical with the equation (22) and thus impossible. (30) is identical with (21) and has the only solution $\left|N_{6}\right|=\left|N_{5}\right|=1$, which gives $\left|N_{4}\right|=\left|N_{3}\right|=1,\left|N_{2}\right|=2$, $\left|N_{1}\right|=1, g=7$, and $f=97$. We get $a=679, b=2131, c=d=M=1$, $N=4$, or $a=679, b=110771, c=d=1, M=-1, N=4$.

The former solution corresponds to the equation

$$
679 x^{3}+2131 y^{3}=3
$$

which has the solution $x=20168, y=-13775$. However, the number

$$
\frac{1}{3}(20168 \sqrt[3]{679}-13775 \sqrt[3]{2131})^{3}
$$

is not a biquadrate of the field $K\left(\sqrt[3]{679 \cdot 2131^{2}}\right)$. If it were, system (7) would have a solution in integers X, Y, and Z. In this case, the system may be written

$$
\left\{\begin{array}{l}
679 \cdot 2131 Z^{2}+2 X Y=4 \tag{32}\\
Y^{2}+2 \cdot 679 X Z=1 \\
X^{2}+2 \cdot 2131 Y Z=-8
\end{array}\right.
$$

From (32) and (34) we see that Z and X, respectively, are even. It follows from (33) that Y is odd. We put $Z=2 Z_{1}$ and $X=2 X_{1}$ and get from (32) and (34)

$$
\begin{gather*}
679 \cdot 2131 Z_{1}^{2}+X_{1} Y=1 \tag{35}\\
X_{1}^{2}+2131 Y Z_{1}=-2 \tag{36}
\end{gather*}
$$

Let us suppose that X_{1} is odd. From (35) we get that Z_{1} is even, and from (36) that X_{1} is even, which contradicts our postulate. Hence X_{1} is even, and from (36) we get that Z_{1} is even. We put $X_{1}=2 X_{2}$ and $Z_{1}=2 Z_{2}$, and get from (35)

$$
679 \cdot 2131 \cdot 4 Z_{2}^{2}+2 X_{2} Y=1
$$

but this equation is impossible in integers X_{2}, Y, and Z_{2}.
The latter solution corresponds to the equation

$$
679 x^{3}+110771 y^{3}=3
$$

which has the solution $x=-280904, y=51409$. However, the number

$$
\frac{1}{8}(-280904 \sqrt[3]{679}+51409 \sqrt[3]{110771})^{3}
$$

is not a biquadrate of the field $K\left(\sqrt[3]{679 \cdot 110771^{2}}\right)$. If it were, system (7) would have a solution in integers X, Y, and Z. In this case, the system may be written

$$
\left\{\begin{array}{l}
679 \cdot 110771 Z^{2}+2 X Y=-4 \tag{37}\\
Y^{2}+2 \cdot 679 X Z=1 \\
X^{2}+2 \cdot 110771 Y Z=-8
\end{array}\right.
$$

From (37) and (39) we see that Z and X, respectively, are even. It follows from (38) that Y is odd. We put $Z=2 Z_{1}$ and $X=2 X_{1}$, and get from (37) and (39)

$$
\begin{align*}
& 679 \cdot 110771 Z_{1}^{2}+X_{1} Y=-1 \tag{40}\\
& X_{1}^{2}+110771 Y Z_{1}=-2 \tag{41}
\end{align*}
$$

Let us suppose that X_{1} is odd. From (40) we get that Z_{1} is even, and from (41) that X_{1} is even, which contradicts our postulate. Hence X_{1} is even, and from (41) we get that Z_{1} is even. We put $X_{1}=2 X_{2}$ and $Z_{1}=2 Z_{2}$, and get from (40)

$$
679 \cdot 110771 \cdot 4 Z_{2}^{2}+2 X_{2} Y=1
$$

but this equation is impossible in integers X_{2}, Y, and Z_{2}.

§ 4.

Let us suppose that equation (3) has a solution in integers and that η is the biquadrate of a unit in \boldsymbol{R} when $C=1$, and in \boldsymbol{K} when $C=3$. Then equations (6) and (8), respectively, have a solution in integers f, g, N_{1}, and N_{2}. Further, system (7) has a solution in integers X, Y, and Z. We know that $N=2 N_{1} N_{2}$ and that $(M, N)=1 . M$ is thus odd. The system may be written

$$
\left\{\begin{array}{l}
a b Z^{2}+2 X Y=2 N_{1} N_{2} M \tag{42}\\
d Y^{2}+2 a c X Z=d M^{2} \\
c X^{2}+2 b d Y Z=-2 c N_{1}^{2} N_{2}^{2}
\end{array}\right.
$$

Let us suppose that $A=a c^{2}$ and $B=b d^{2}$ are odd integers. From (42) we get that Z is even, from (43) that Y is odd, and from (44) that X is even. We put $X=2 X_{1}$ and $Z=2 Z_{1}$, and get from (42)

$$
2 a b Z_{1}^{2}+2 X_{1} Y=N_{1} N_{2} M
$$

Thus we have either N_{1} or N_{2} divisible by 2 . If N_{1} is even, we get from (6) the congruence

$$
3\left(3 g N_{2}^{3}\right)^{2}+1 \equiv 0(\bmod 8)
$$

P. HÄGGMARK, The Diophantine equation $A x^{3}+B y^{3}=C$
and from (8) the congruence

$$
3\left(g N_{2}^{3}\right)^{2}+1 \equiv 0(\bmod 8)
$$

which are both impossible, so that N_{1} must be odd and N_{2} even. We put $N_{2}=2 N_{3}$ and can write the system

$$
\left\{\begin{array}{l}
a b Z_{1}^{2}+X_{1} Y=N_{1} N_{3} M \tag{45}\\
d Y^{2}+8 a c X_{1} Z_{1}=d M^{2} \\
c X_{1}^{2}+b d Y Z_{1}=-2 c N_{1}^{2} N_{3}^{2}
\end{array}\right.
$$

Let us suppose that N_{3} is odd. If X_{1} is odd it follows from (45) that Z_{1} is even, and from (46) that X_{1} is even, which contradicts our postulate. Hence X_{1} is even, and from (46) we get that Z_{1} is even, but this is impossible according to (45). Hence N_{3} is an even integer, $N_{3}=2 N_{4}$, and we conclude that a necessary condition for η being a biquadrate of \boldsymbol{R} when $C=1$ and of \boldsymbol{K} when $C=3$ is that the following equations have a solution in integers f, g, N_{1}, and N_{2} :

$$
\begin{equation*}
1=f^{2} N_{1}^{6}-27 \cdot 2^{12} g^{2} N_{4}^{6} \tag{47}
\end{equation*}
$$

and

$$
\begin{equation*}
l=f^{2} N_{1}^{6}-3 \cdot 2^{12} g^{2} N_{4}^{6} \tag{48}
\end{equation*}
$$

respectively, where $f g=A$ or $f g=B$.
Let us consider the equation (48). If $f=1$, (48) may be written

$$
\left(2^{6} g N_{4}^{3}+1\right)^{3}-\left(2^{6} g N_{4}^{3}-1\right)^{3}=2\left(N_{1}^{2}\right)^{3} ;
$$

but this equation is impossible. Hence $f \neq 1$, and we get from (48)

$$
f N_{1}^{3} \pm 1=2^{\alpha} f_{1}^{2} N_{5}^{6}, \quad f N_{1}^{3} \mp 1=3 \cdot 2^{\beta} g_{1}^{2} N_{6}^{6}
$$

which gives

$$
\begin{equation*}
\pm 2=2^{\alpha} f_{1}^{2} N_{5}^{6}-3 \cdot 2^{\beta} g_{1}^{2} N_{6}^{6} . \tag{49}
\end{equation*}
$$

We have either $\alpha=1, \beta=11$, or $\alpha=11, \beta=1$. Hence we get from (49) the two equations

$$
\begin{align*}
& \pm 1=f_{1}^{2} N_{5}^{6}-3 \cdot 2^{10} g_{1}^{2} N_{6}^{6} \tag{50}\\
& \pm 1=2^{10} f_{1}^{2} N_{5}^{6}-3 g_{1}^{2} N_{6}^{6} \tag{51}
\end{align*}
$$

where the lower signs are impossible modulo 3 . From (51) we get the congruence

$$
3\left(g_{1} N_{6}^{3}\right)^{2}+1 \equiv 0(\bmod 8)
$$

so that this equation is impossible.
If the equation (48) has a solution in integers, so has equation (50). We have $f_{1} g_{1}=g$, and as before we can see that $f_{1} \neq 1$, which implies $g \neq 1$. Since $(f, g)=1, f g$ contains at least two distinct prime factors.

Continuing this process, we arrive at the equations

$$
\begin{align*}
& 1=f_{2}^{2} N_{7}^{6}-3 \cdot 2^{8} g_{2}^{2} N_{8}^{6} \\
& 1=f_{3}^{2} N_{9}^{6}-3 \cdot 2^{6} g_{3}^{2} N_{10}^{6} \\
& 1=f_{4}^{2} N_{11}^{6}-3 \cdot 2^{4} g_{4}^{2} N_{12}^{6} \tag{52}
\end{align*}
$$

where $f_{2} g_{2}=g_{1}, f_{3} g_{3}=g_{2}$, and $f_{4} g_{4}=g_{3}$. Further we have $f_{2} \neq 1, f_{3} \neq 1$, and $f_{4} \neq 1$, which implies $g_{1} \neq 1, g_{2} \neq 1$, and $g_{3} \neq 1$. Since $\left(f_{1}, g_{1}\right)=1$, $\left(f_{2}, g_{2}\right)=1$, and $\left(f_{3}, g_{3}\right)=1$, it follows that

$$
f g=t f_{1} f_{2} f_{3} f_{4} g_{4}
$$

must have at least five distinct prime factors if (48) is to have a solution in integers. We have thus proved

Theorem 3. Let a, b, c, and d denote positive integers, relatively prime in pairs, and possessing no square factors. If the equation

$$
A x^{3}+B y^{3}=3
$$

where $A=a c^{2}$ and $B=b d^{2}$ are odd integers not divisible by 3 , containing at most four distinct prime factors each, has a solution in integers x and y, then

$$
\eta=\frac{1}{3}(x \sqrt[3]{A}+y \sqrt[3]{B})^{3}
$$

is the fundamental unit of the field $\boldsymbol{K}\left(\sqrt[3]{a c^{2} b^{2} d}\right)$, or the square of this unit.
The reasoning will be quite analogous if we start from equatioc (47). We have only to substitute the coefficient 27 for 3 everywhere. (52) may then be written

$$
1=f_{4}^{2} N_{11}^{6}-27 \cdot 2^{4} g_{4}^{2} N_{12}^{6}
$$

which gives

$$
f_{4} N_{11}^{3} \pm 1=2^{\gamma} f_{5}^{2} N_{13}^{6}, \quad f_{4} N_{11}^{3} \mp 1=27 \cdot 2^{8} g_{5}^{2} N_{14}^{6}
$$

and

$$
\pm 2=2^{y} f_{5}^{2} N_{13}^{6}-27 \cdot 2^{\varepsilon} g_{5}^{2} N_{14}^{6}
$$

We have either $\gamma=1, \varepsilon=3$, or $\gamma=3, \varepsilon=1$.
In the former case, we get

$$
\begin{equation*}
\pm 1=f_{5}^{2} N_{13}^{6}-.27 \cdot 4 g_{5}^{2} N_{14}^{6}, \tag{53}
\end{equation*}
$$

where the lower sign is impossible modulo 3 . If $f_{5}=1$, (53) may be written

$$
\left(6 g_{5} N_{14}^{3}+1\right)^{3}-\left(6 g_{5} N_{14}^{3}-1\right)^{3}=2\left(N_{13}^{2}\right)^{3}
$$

but this equation is impossible. Hence $f_{5} \neq 1$, and we get from (53)

$$
f_{5} N_{13}^{3} \pm 1=2 f_{6}^{2} N_{15}^{6}, \quad f_{5} N_{13}^{3} \mp 1=2 \cdot 27 g_{6}^{2} N_{16}^{6},
$$

P. häggmark, The Diophantine equation $A x^{3}+B y^{3}=C$
which gives

$$
\pm 1=f_{6}^{2} N_{15}^{6}-27 g_{6}^{2} N_{16}^{6}
$$

where the lower sign is impossible modulo 3. However, as was shown by T. Nagell [6], this equation has no solution in integers when the number of distinct prime factors in $g_{5}=f_{6} g_{6}$ is $\leqq 2$.

In the latter case, we get

$$
\begin{equation*}
\pm 1=4 f_{5}^{2} N_{13}^{6}-27 g_{5}^{2} N_{14}^{6} \tag{54}
\end{equation*}
$$

where the lower sign is impossible modulo 3 . If $f_{5}=1$, (54) may be written

$$
1=4 N_{13}^{6}-27 g_{5}^{2} N_{14}^{6}
$$

but this equation is impossible modulo 9. Hence $f_{5} \neq 1$, and we get from (54)
which gives

$$
2 f_{5} N_{13}^{3} \pm 1=f_{6}^{2} N_{15}^{6}, \quad 2 f_{5} N_{13}^{3} \mp 1=27 g_{6}^{2} N_{16}^{6}
$$

$$
\begin{equation*}
\pm 2=f_{6}^{2} N_{15}^{6}-27 g_{6}^{2} N_{16}^{6} \tag{55}
\end{equation*}
$$

In (55) we have $f_{6} \neq 1$, otherwise we would get

$$
\pm 2=N_{15}^{6}-27 g_{6}^{2} N_{16}^{6}
$$

which is impossible modulo 9 .
Hence we have $f_{5} g_{5}=g_{4}, f_{6} g_{6}=g_{5}, f_{5} \neq 1$, and $f_{6} \neq 1$, which implies $g_{4} \neq 1$, and $g_{5} \neq 1$. Since $\left(f_{4}, g_{4}\right)=1$ and $\left(f_{5}, g_{5}\right)=1$,

$$
f g=t f_{1} f_{2} f_{3} f_{4} f_{5} f_{6} g_{6}
$$

must have at least seven distinct prime factors if (47) is to have a solution in integers. We have thus proved

Theorem 4. Let a, b, c, and d denote positive integers, relatively prime in pairs, and possessing no square factors. If the equation

$$
A x^{3}+B y^{3}=1
$$

where $A=a c^{2}$ and $B=b d^{2}$ are odd integers >1, containing at most six distinct prime factors each, has a solution in integers x and y, then

$$
\eta=(x \sqrt[3]{A}+y \sqrt[3]{B})^{3}
$$

is the fundamental unit of the ring $\boldsymbol{R}\left(1, \sqrt[3]{a c^{2} b^{2} d}, \sqrt[3]{a^{2} c \overline{b d^{2}}}\right)$, or the square of this unit.

$$
\S 5 .
$$

Let us now suppose that $A=a c^{2}$, or $B=b d^{2}$, is even and divisible by 4 .
Let us further suppose that equation (3) has an integral solution and that η is a biquadrate of \boldsymbol{R} when $C=1$, and of \boldsymbol{K} when $C=3$. Let A be even and divisible by 4 . Then $c=2 c_{1}$, where c_{1} is odd.

We first consider the case $C=1$.
If η is a square of \boldsymbol{R}, the following equation has a solution in integers x_{1}, y_{1}, and z_{1} (Cp. Nagell [4], p. 253):

$$
\begin{equation*}
x_{1}^{3} a^{2} c+y_{1}^{3} b^{2} d+z_{1}^{3} a c^{2} b d^{2}-3 x_{1} y_{1} z_{1} a b c d=1 \tag{56}
\end{equation*}
$$

Further, we have either

$$
\begin{equation*}
\frac{2 x_{1}}{c}= \pm N^{2}, \quad \frac{y_{1}}{d}=\mp M^{2}, \quad z_{1}=M N \tag{57}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{x_{1}}{c}= \pm N^{2}, \quad \frac{2 y_{1}}{d}=\mp M^{2}, \quad z_{1}=M N \tag{58}
\end{equation*}
$$

When η is a biquadrate of \boldsymbol{R}, it follows from (56) and (57) that N is even, and that the following equation has a solution in integers f, g, N_{1}, and N_{2} :

$$
\begin{equation*}
1=f^{2} N_{1}^{6}-27 g^{2} N_{2}^{6} \tag{59}
\end{equation*}
$$

where $f g=A$, and $2 N_{1} N_{2}=N$; it follows from (56) and (58) that M is even and that equation (59) has a solution in integers f, g, N_{1}, and N_{2}, where $f g=B$, and $2 N_{1} N_{2}=M$.

Let us regard the relations (58). Since M is even, y_{1} and z_{1} are even. Since c is even, x_{1} is even; but this is impossible according to (56). In the present case we can thus only use relations (56) and (57). It is hence sufficient to consider (59) when $f g=A=4 a c_{1}^{2}$.

Since η is supposed to be a biquadrate of \boldsymbol{R}, system (7) has a solution in integers X, Y, and Z. The system may be written

$$
\left\{\begin{array}{l}
a b Z^{2}+2 X Y=2 N_{1} N_{2} M \tag{60}\\
d Y^{2}+4 a c_{1} X Z=d M^{2} \\
2 c_{1} X^{2}+2 b d Y Z=-4 c_{1} N_{1}^{2} N_{2}^{2}
\end{array}\right.
$$

Since $(M, N)=1, M$ is odd. Further a, b, c_{1}, and d are odd integers. It follows from (60) that Z is even, from (61) that Y is odd, and from (62) that X is even. We put $Z=2 Z_{1}$ and $X=2 X_{1}$, and get from (60)

$$
2 a b Z_{1}^{2}+2 X_{1} Y=N_{1} N_{2} M
$$

so that N_{1} or N_{2} must be even. As before, we conclude that N_{1} is odd and N_{2} even. We put $N_{2}=2 N_{3}$ and may write (59)

$$
\begin{equation*}
1=f^{2} N_{1}^{6}-27 \cdot 2^{6} g^{2} N_{3}^{6} \tag{63}
\end{equation*}
$$

It is easily seen that f is odd. Hence $g=4 g_{1}$, and (63) may be written

$$
\begin{equation*}
1=f^{2} N_{1}^{6}-27 \cdot 2^{10} g_{1}^{2} N_{3}^{6} \tag{64}
\end{equation*}
$$

where $f g_{1}=\frac{A}{4}$ contains odd prime factors only. Equation (64) is analogous to (50), and exactly the same reasoning as in § 4 may now be applied. We have thus proved
P. Häggmark, The Diophantine equation $A x^{3}+B y^{3}=C$

Theorem 5. Let a, b, c, and d denote positive integers, relatively prime in pairs, and possessing no square factors. If the equation

$$
A x^{3}+B y^{3}=1
$$

where $A=a c^{2}$ and $B=b d^{2}$ are >1, and where one of the numbers A and B is divisible by 4, and contains at most five distinct odd prime factors, has a solution in integers x and y, then

$$
\eta=(x \sqrt[3]{A}+y \sqrt[3]{B})^{3}
$$

is the fundamental unit of the ring $\boldsymbol{R}\left(1, \sqrt[3]{a c^{2}} \overline{b^{2} d}, \sqrt[3]{a^{2} c b d^{2}}\right)$, or the square of this unit.

We regard the case $C=3$, and suppose that η is a biquadrate of K. The reasoning is altogether the same as before. We have only to substitute the number 9 for 1 in the right member of (56), and the coefficient 3 for 27 in (59), (63), and (64). We obtain the following result:

Theorem 6. Let a, b, c, and d denote positive integers, relatively prime in pairs, and possessing no square factors. If the equation

$$
A x^{3}+B y^{3}=3
$$

where $A B$ is not divisible by 3 , and where one of the numbers $A=a c^{2}$ and $B=b d^{2}$ is divisible by 4, and contains at most three distinct odd prime factors, has a solution in integers x and y, then

$$
\eta=\frac{1}{3}(x \sqrt[3]{A}+y \sqrt[3]{B})^{3}
$$

is the fundamental unit of the field $\boldsymbol{K}\left(\sqrt[3]{a c^{2}} \overline{b^{2} d}\right)$, or the square of this unit.
Remark. Theorems 5 and 6 express a somewhat more general result than the one given in § l. It is not necessary to postulate anything as to the number of distinct prime factors in the odd one of the integers A and B.

BIBLIOGRAPHY. [1] B. Delaunay, Journal Charkow Math. Soc. 1915 (in Russian), see also Comptes rendus, t. 162, 1916, p. 150. - [2] T. Nagell, Vollständige Lösung einiger unbestimmten Gleichungen dritten Grades, Videnskapsselskapets Skrifter, I. Mat.-Naturv. Klasse, no. 14, Kristiania 1922. - [3] ——, Über die Einheiten in reinen kubischen Zahlkörpern, Videnskapsselskapets Skrifter, I. Mat.-Naturv. Klasse, no. 11, Kristiania 1923. [4] -, Solution complète de quelques équations cubiques à deux indéterminées, Journal de Mathématiques, t. IV, 9^{e} sér., Paris 1925. - [5] --, Einige Gleichungen von der Form $a y^{2}+b y+c=d x^{3}$, Avh. utgitt av Det Norske Videnskaps-Akademi i Oslo, I. Mat. Naturv. Klasse, no. 7, Oslo 1930. - [6] ——, Zahlentheoretische Notizen VII-IX, Norsk Matematisk Forenings Skrifter. Serie I, no. 17, Oslo 1927. -- [7] - Z, Zahlentheoretische Sätze, Avh. utgitt av Det Norske Videnskaps-Akademi i Oslo, I. Mat.-Naturv. Klasse, no. 5, Oslo 1930.

[^0]: ${ }^{1}$ Figures in [] refer to the Bibliography at the end of this paper.

[^1]: ${ }^{1}$ There is one exception from this theorem, viz. the equation

 $$
 2 x^{3}+y^{3}=3
 $$

 which has the two solutions $x=y=1$ and $x=4, y=-5$. This exception is not taken into consideration in the following.

