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An extremal property of the Riemann zeta'function 

By A R N E  B E U R L I N G  

Introduction 

When it is known a ~riori that a function ~ is the solution of a certain 
extremal problem, this very fact usually enables us to derive without difficulty 
the characteristic properties of the function. If, however, the same function is 
explicitly defined while the extremal problem is unknown, we find ourselves in a 
quite different situation where it may be extremely difficult to recognize these 
same properties of % 

In the special case 

(s) = r (s) = ~ ,  (~ > l )  
1 

we have an explicit definition of the Riemann zeta-function from which the 
"elementary" properties of ~ are easily derived, whereas this definition gives 
very poor information as regards the truth of the Riemann hypothesis and 
other "deeper" properties of $. I t  should also be recalled that all this pro- 
perties which we believe to be true but cannot verify, indicate that ~ in a 
certain sense is of minimal order of magnitude. 

I t  therefore seems worth while to ask whether ~ is the solution of an hitherto 
unknown extremal problem, for example, whether in a certain class C of func- 
tions, ~ minimizes an integral of t he  form 1 

oO 

flw(  + it)12p(t) dt. (p > o) 
- - o O  

Suppose this is so, and suppose futhermore the class C has the following pro- 
perty: For any ~EC such that qJ(a+_ifl)= ~(1--a++_ ifl)'~O, a < t ,  this 
quadruple of zeros m a y  be displaced in such a way that ~ remains in C while 
its modulus decreses on a = �89 Then the Riemann hypothesis is obviously true. 

However this may be, it certainly is an interesting problem to investigate 
the extremal properties of the zeta-function. The main i purpose of this paper 

1 Except  for the question of the existence of classes C and weight t ~ e t i d n s  p of this 
kind, which will not  be considered here, this paper is a summary 0 f  a lecture g iven  at  the 
Harvard  Mathematical Colloquium in 1949. �9 
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is to show that in a certain class of Dirichlet series ~ actually is of minimal 
growth and that it has a remarkable position in this class even in other 
respects. 

O n  a c las s  o f  D i r i c h l e t  ser ies  

We shall consider sequences of positive numbers {2. }, 

0 < ~ 1 - - <  ~2 < . . .  --<~n----- . . . ,  

such that the Dirichlet series 
oo 1 

(1) q(s) = ~ ~ 

converges for ~ > 1. For any positive number k, Ck shall denote the class of 
series (1) with the properties 

1 
(~) q~ (s) - -  ~---~ is entire 

(~) ~ ( - - 2 n )  = 0, n = 1, 2 , . . .  

Max < const. F(r) (r >--- 2). 

The class C~ thus defined is obviously decreasing for increasing k. By Dk we 
shall denote the set of functions ~ which for e > 0 are contained in Ck-~ but  
not in Ck+~. 

From the functional equation of the Riemann zeta-function, 

y~ 
~(1 - - s )  = 2" (2~)-s cos ~ s ' / ' ( s ) "  ~(s), 

we conclude that ~ belongs to the class D1. 

Theorem:  For 0 < k <-- �89 each class Dk contains an in/inity o/]unctions, while 
Dk is empty /or k > �89 except ]or the class D1 that contains as only elements the 
two ]unctions ~ (s) and (2 s -  1)~(s), corresponding to the sequences { n }~, and 
{ n - -  �89 }~, respectively. 

The essence of this theorem could be expressed by saying that the Riemann 
zeta-function is uniquely determined by the property 4i = 1 added to the 
conditions (~), (~) and (T), if �89 < k--< 1. 

The proof will be divided into two parts, both dealing with entire functions 
of exponential type. To the Diriehlet series (1) we associate theentire function 

(2) 
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I t  is an elementary consequence of the condition (6) that  ~ / n  ~ ~ > 0 and ] (z) 
is therefore always of exponential type at most. Starting from the formula 

we obtain 

and by  summing 

o 0  

log (1 ~ d x  z~ 
+ x )x-iT~ ~ s '  

0 S s i n -  
2 

0r 

(iog (i + 1 
~ x 1+' 2~ . ~rs '  

D n 8 S l n  - -  
2 '  

(0 < a < 2) 

(0 < a < 2) 

o~ 

f ~v (s) (1 < a < 2). 
d X Y~ (8) 

log/(X) x~-  s =  . ~ts 
0 8 S l U  - -  

2 

According t o  our assumptions (6) and (~3), ~o(s) is meromorphic in a < 2 and 
has poles only at s = 1 and 8 = 0 with the principal parts 

2 ~ (o) + 2 ~' (o) 
s - -  1 '  s ~" - - - s - -  ' 

respectively. 
Let  us now assume that  ~ (s) belongs to a certain class Ck. Comparing the 

functions ~p (s) and 

~0 (s) = (2 ~ k ) ' / ' ( 2  - -  s), 

we find by (y) and the inequalities 

It(�89 + / t ) l > V ~ e  -~.~' Iv(~ + it)] = o(1), 

that  v2/~po = 0(1)  on the boundary of the region a < 6 ,  t > O ,  [s 1 > 2 .  On 
applying the Phragm~n-Lindel5f principle, we find that  

I v (~)I -< const I / ' (2 - -  s) (2 g k) e [ 

in the region considered, as well as in the region symmetric with respect to 
the real axis. Using the inequality 

oO 

f l r ( ~  + 2 + it)]dt<-const, a3I'(a), (a>_ 2) 
- - o 0  

we obtain in particular 

oO 

f ~ F (a) ( a )  IW(--q+it)ldt<const.~, ( ~ >  2). 
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Now the Mellin inversion formula yields 

e+ioo 

1 1" s) 
l og / (x )  = ~ - i J y J (  x~ds, 

e--i  or 

(1 < c < 2); 

we next  move the part  of integration to the left beyond the poles at s = 1 
and s = 0 into the left half-plane and obtain 

- -c+ior  

1 t" s) l o g / ( x ) - - ~ x - - 2 9 ( O ) l o g x - - 2 ~ ' ( O )  = ~ - ~ ) ~ (  x~ds, 
- - e - i  zr 

Setting 
p = 2 ~ (0), a = e 2'p' (0), 

w e  get by  (3) 

[ log / (x )  - -  log {axPe'X}[ < const 

(c > 0). 

O F(c) 
(2 ~ k z F '  (c >-- 2). 

Taking c = 2 ~ k x  and letting x - *  007 we find from Stirling's formula tha t  

(4) ]log ] (x) - -  log {a x p e ~z} ] = 0 (e -2~ (k-~)~) 

and consequently, since /(x)  is even, 

(5) / (x) = alxln e nl:d + O(e '~(l+~-2k)lxl) 

which holds for any e > 0. 
Let  us now assume tha t  {)~}~, is a sequence such tha t  the entire function 

(2) satisfies (5) for some real constants a > 0 and p. Obviously (5)implies (4) 
and from this relation we conclude that  yJ (s) is meromorphic in the half-plane 
a < 2 with poles only at  s = 1 and s = 0 with the principal parts 

p log a 
s 1 s 2 s 

In the left halfplane a < 0, ~0 (s) will have the representation 

which yields 

~, (s) = {log / (x) - -  ~tx - -  p log x - -  log a} dx ~l+s 
0 

r ( o )  ;~) 
M a x l ~ o ( - - a + i t )  ( 2 ~ ( k - - e )  ' ((y ~ o o ) .  

By an application of the Phragm6n-Lindel6f principle in the same way as 
above, we finally see tha t  ~ satisfies (y) with k replaced by  k -  e. Thus 

E Ck-, for any e > 0. We summarize our results so far in 
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L e m m a  I: A Dirichlet series (1) belongs to the class Dk i /and  only i/there are 
real constants a > 0 and p such that the entire /unction (2) satis/ies (5)/or  e > 0 
but not /or e < O. 

The rest of the proof will be concerned with the existence of entire functions 
of this kind. We shall prove 

L e m m a  II :  There are only two entire /unctions / o/  exponential type with 
/(0) = 1 which on the real axis satis/y a relation o/ the /orm 

(6) 

where a > O, (5 > 0 ancl p are real constants, viz.: 

and 

fi( - 1 ~ -  
] (~) 2 7g Z 1 

((')') e~Z ~- e-~tz --  f i  I A- 
/(~) - 2 ~ 

According to a well-known property of functions holomorphic in a half-plane, 
an entire function ] of exponential type vanishes identically i f / (x )  = O(e -al~l) 
on the real axis. From this we first conclude that  / (z) - -  / ( - -  z) ~ 0. Our next 
step is to prove that  the relation (6) is differentiable, i. e. 

(7) h (n) (x) = O ( e - ~ ! ~ ' ) ,  (n = 1, 2 . . . .  ) .  

From the inequality log {/(z)l < A{ z ], A > ~, I z [ > 1, if follows on applying 
the Phragm~n-LindelSf principle to 

h(z) = ] ( z ) - - a z  ve ~z, (z p > 0  for z = x > 0 )  

in the region (x > 1, y > 0) that  

I h (z) l < const, e Ay-~x, (x > 1, y > 0). 

Making the same argument for (x > 1, y < 0), we conclude in particular that  
h (z) = 0 (e - ~ )  in the strip (] y / <  1, x > 1) and (7) follows from the formula 

{n_ h ~ , ~ + l d  z h(") (x) = ~ . f  (z 
Iz-xl=l 

for positive as well as negative x since h (x) is even. 
The functions { x I p e "~ and ] x {v e -nx a r e  both for real x ~ 0 solutions of the 

linear differential equation 

L(u)  ~ x~u '' " 2 p x u ' - -  (~r~x 2 - p ( p  + 1))u = 0. 
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Thus for real x r ~ b 

L ( / )  = L (h)  = 0 ( x  2 e -  ~ M ) .  

Since, however, L (/) is itself an entire function of exponential type, L ( / )mus t  
Vanish identically and / (x)  is hence for x > 0 of the form 

/ (x )  = x~  (c l  e ~ + c2 e - "  ~). 

As readily seen, this function can be entire and even and have the property 
[ (0) = 1 if and only if either 

1 
p = - -  1 ,  c l  = - - c 2  = 

o r  

1 
p = 0, c 1 = c~ = 

which establishes Lemma II. 
Combining the two lemmas, we obtain the latter part  of the theorem and it  

remains only to show that  each class Dk, 0 < k ~ �89 contains an infinity of 
Dirichlet series. Because of Lemma I the t ru th  of this statement is r a t h e r  
obvious and we shall only exhibit some elementary examples proving tha t  none 
of these classes is empty. Defining t by the relation 

/(iy) = cos ~ k ~ .  cos ~ (1 - -  k)y, ( 0 < k - - ~  �89 

we will have for real x 

/(x) = �88 + {e~(1-e~)l~l + 0(1)  

and hence ~ E Dk. 
An interesting problem is whether or not ~ (s) will still be of minimal growth 

"if we extend the classes of Direchlet series Ck by omitting the condition (~). 

Tryckt  den 22 juni  1950 
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