ARKIV FÖR MATEMATIK Band 1 nr 20

On a closure problem

By Arne Beurling

Let $f(x)$ be a measurable function defined on the real line and such that $|f|^{p}$ is summable for any $p \geq 1$. Under this condition we shall consider the closure properties of the set

$$
\begin{equation*}
f(x+t) \quad(-\infty<t<\infty) \tag{1}
\end{equation*}
$$

in the different spaces L^{p} for $p \geq 1$. By C_{f}^{p} we shall denote the linear closed subset of L^{p} spanned by (1) in the strong topology of this space.

According to a theorem of F. Riesz and Banach C_{f}^{p} is a proper subset of L^{p} if and only if there is a non-trivial solution $g \in L^{q}(1 / p+1 / q=1)$ of the integral equation

$$
\begin{equation*}
0=\int_{-\infty}^{\infty} f(x-\xi) g(\xi) d \xi=\int_{-\infty}^{\infty} f(\xi) g(x-\xi) d \xi \tag{2}
\end{equation*}
$$

If this is the case for a certain $p>1$ we get another non-trivial solution by setting

$$
h(x)=\int_{x}^{x+1} g(x) d x,
$$

which is bounded and therefore belongs to any space $L^{q^{\prime}}, q^{\prime}>q$. On applying the cited theorem once again we find that $C_{f}^{p} \neq L^{p}$ implies $C_{f}^{p^{\prime}} \neq l^{p^{\prime}}$ for $1 \leq p^{\prime}<p$.

From this we conclude that there will exist in the general case a number $\gamma>1$ such that the system (1) is closed on L^{p} for all $p>\gamma$ but not for any $p<\gamma$. If (1) is always, respectively never, closed on $L^{p}(p>1)$, we obviously have to define γ as 1 or $+\infty$. This number γ shall be called the "closure exponent" of f, and our object is to study the relation between γ and the Hausdorff dimension a of the set E where the Fourier transform of f vanishes. According to two theorems of Wiener [5] we know that $\gamma=1$ if E is empty, while $\gamma \leq 2$ if E is of vanishing linear measure. It is also known (Segal [4]) that this latter condition does not imply $\gamma<2$ in the general case. We shall now prove the following

A. bevrling, On a closure problem

Theorem. If $0 \leq \alpha<1$ the closure exponent satisfies the inequality

$$
\begin{equation*}
\gamma \leq \frac{2}{2-\alpha} \tag{3}
\end{equation*}
$$

In the proof we shall avail ourselves of the following concept of spectral sets (cf. [1]). If $g(x) e^{-\varepsilon|x|}$ is summable for any $\varepsilon>0$, the spectral set Λ_{g} of g is formed by those numbers λ for which it is true that

$$
\int_{-\infty}^{\infty} g(x) e^{-o|x|-i t x} d x
$$

does not converge uniformly to 0 in any interval $|t-\lambda|<\delta$ as $\sigma \rightarrow+0$. The above theorem is essentially a corollary of the following result in harmonic analysis in certain Hilbert spaces (cf. [1], pp. 20-27). Let $\Phi(x)$ be an even function which is convex and decreasing to 0 for $x>0$, and furthermore summable around $x=0$, and let $w(x)$ be the Fourier transform of Φ defined by the formula:

$$
w(x)=\frac{1}{2 x^{2}} \int_{0}^{\infty}(1-\cos x \xi) d \Phi^{\prime}(\xi)
$$

The capacity $C_{\Phi}(A)$ of a compact set A is defined as $1 / V$, where V is the least upper bound of the energy integral

$$
\iint \Phi(x-y) d \mu(x) d \mu(y)
$$

for all positive distributions μ of the unit mass on A. It now holds for any compact A that the class of functions g with the properties $\Lambda_{g}<A$ and

$$
0<\int_{0}^{\infty}|g(x)|^{2} w(x) d x<\infty
$$

is empty, if and only if $C_{\Psi}(A)=0$.
Let us now assume that our theorem is wrong. In that case there will exist numbers p and β such that $C_{f}^{p} \neq L^{p}$ and

$$
\begin{equation*}
2>p>\frac{2}{2-\beta}>\frac{2}{2-\alpha} . \tag{4}
\end{equation*}
$$

This implies that (2) has a non-trivial solution g in the conjugate space L^{q}. From this solution we can derive others by taking convolutions $h=g * k$, where $k \in L^{1}$ and has a bounded spectral set. Any h of this form is an entire function bounded on the real axis and has itself a compact spectral set. Since we also can chose k such that $h \neq 0$, we may without loss of generality assume that g itself has these properties. In case $f \in L^{1}$ it is known for any solution $g \in L^{\infty}$ of the integral equation (2) that $\Lambda_{g} \in E$ (cf. [2], [3]). Since also $g \in L^{q}$ we derive from (4) on applying Hölders inequality over $|x| \geq 1$, that

$$
\begin{equation*}
0<\int_{-\infty}^{\infty}|g(x)|^{2} \frac{d x}{|x|^{1-\beta}}<\infty \tag{5}
\end{equation*}
$$

Except for a numerical factor the functions $|x|^{\beta-1}$ and $|x|^{-\beta}$ are Fourier transforms of each other and thus (5) implies that the capacity of Λ_{g} measured with respect to $\Phi(x)=|x|^{-\beta}$ must be positive. As is well known from potential theory, this implies that the Hausdorff dimension of Λ_{g} is $\geq \beta$. Thus

$$
\alpha=\operatorname{dim} E \geq \operatorname{dim} A_{g} \geq \beta
$$

which is contradictary to (4) and so theorem is proved.
It should finally be noted that the theorem just established does not remain true for all f if we replace the right hand member in (3) by any smaller number. This is a consequence of Theorem I of the paper by Salem in the same issue of this journal.

REFERENCES. [1] A. Beurling: Sur les spectres des fonctions. Coiloques internationaux du Centre national de la recherche scientifique. Analyse harmonique, Nancy, 1947. - [2] --: Sur la composition d'une function sommable et d'une fonction bornée. C. R. Acad. Sci., Paris 1947. - [3] -: Sur une classe de fonctions presque-périodiques. Ibid. - [4] I. E. Segal: The span of the translations of a function in a Lebesgue space. Proc. Nat. Acad. Sci. U.S.A. 30, 1944. - [5] N. Wiener: T'auberian theorems, Ann. of Math. 33, 1932.

