On the coefficients in the power series expansion of a rational function with an application on analytic continuation

By Christer Lech

The coefficients of the power series

$$
\frac{2}{2-x}=\frac{1}{1}+\frac{1}{2} x+\cdots+\frac{1}{2^{n}} x^{n}+\cdots=\sum_{n=0}^{\infty} \frac{\alpha_{n}}{\beta_{n}} x^{n}
$$

have the property that the denominators β_{n} tend to infinity exponentially with the index n. Let the function $\frac{2}{2-x}$ be replaced by another rational function and the coefficients $\left.\frac{\alpha_{n}}{\beta_{n}}\left(\alpha_{n}, \beta_{n}\right)=1\right)^{*}$ be altered accordingly. Might it then occur that simultaneously $\varlimsup_{n=-\infty} \beta_{n}=\infty$ and $\beta_{n}=O\left(n^{k}\right)$? We shall give an answer in the negative in proving the following theorem:

Let $r(x)$ be a rational function, which in the neighbourhood of $x=0$ is represented by a power series with rational coefficients, whose reduced forms are $\frac{\alpha_{n}}{\beta_{n}}$,

$$
\begin{aligned}
& r(x)=\frac{\alpha_{0}}{\beta_{0}}+\frac{\alpha_{1}}{\beta_{1}} x+\cdots+\frac{\alpha_{n}}{\beta_{n}} x^{n}+\cdots \\
& \alpha_{n}, \beta_{n} \text { integers, }\left(\alpha_{n}, \beta_{n}\right)=1 \quad n=1,2,3, \ldots \\
& \beta_{n}=1, \text { when } \alpha_{n}=0 .
\end{aligned}
$$

Then, either the sequence $\left|\beta_{n}\right|(n=1,2,3, \ldots)$ is bounded or $\lim _{n=\infty}^{n} V^{n}\left|\beta_{n}\right|>1$.**
The proof is given in the sections 1 and 2 below. In section 3 there is an application on analytic continuation in connection with a paper ${ }^{1}$ by Professor F. Carlson. The results of this note were also suggested by him.

[^0]c. LECH, On the coefficients in the power series expansion

1. We begin with the case where $r(x)$ is of the form

$$
\begin{equation*}
\frac{b_{0}}{b_{0}+b_{1} x+\cdots+b_{m} x^{m}}=a_{0}+a_{1} x+\cdots+a_{n} x^{n}+\cdots \tag{1}
\end{equation*}
$$

in which the numbers b_{v} are rational integers, not all with a common factor. Apparently $a_{0}=1$. Multiplying (1) by $b_{0}+b_{1} x+\cdots+b_{m} x^{m}$ and equating the coefficients for x^{n} in both members, we get a recursion formula for a_{n} :

$$
\begin{gather*}
a_{n}=-\frac{b_{1}}{b_{0}} a_{n-1}-\frac{b_{2}}{b_{0}} a_{n-2}-\cdots-\frac{b_{m}}{b_{0}} a_{n-m} \quad n \geq 1 \tag{2}\\
\left(a_{v}=0 \text { for } v<0\right) .
\end{gather*}
$$

From this formula it appears that all the a_{r} are rational numbers and, if $b_{0}= \pm 1$, integers. Next we assume that b_{0} is a power of a prime p. If $a_{n}=\frac{\alpha_{n}}{\beta_{n}}, \quad\left(\alpha_{n}, \beta_{n}\right)=1$, we shall show that $\lim _{n=\infty} \sqrt[n]{\left|\beta_{n}\right|} \geq \sqrt[m]{2}$. In this case, th. formula (2) may be written

$$
\begin{equation*}
a_{n}=\frac{c_{1}}{p^{\mu_{1}}} a_{n-1}+\frac{c_{2}}{p^{\mu_{2}}} a_{n-2}+\cdots+\frac{c_{m}}{p^{\mu_{n}}} a_{n-m} \quad n \geq 1 \tag{3}
\end{equation*}
$$

where c_{r} and μ_{v} are integers, $\left(c_{r}, p\right)=1$ and, for one ν at least, $\mu_{v}>0$. If $c_{v}=0$ for certain values of ν, we also put the corresponding $\mu_{\nu}=0$.

Let the greatest of the numbers $\frac{\mu_{v}}{\nu}, v=1,2, \ldots, m$ be $\frac{r}{q}$, where $q>0$, $(r, q)=1$ and consequently $r>0,1 \leq q \leq m$. We introduce ψ as a q :th root of p, thus $\varkappa^{q}=p$, and make the substitution

$$
a_{n}=\frac{a_{n}^{\prime}}{x^{r n}} .
$$

We obtain $a_{0}^{\prime}=1$ and a recursion formula:

$$
\begin{equation*}
a_{n}^{\prime}=k_{1} a_{n-1}^{\prime}+k_{2} a_{n-2}^{\prime}+\cdots+k_{m} a_{n-m}^{\prime} \quad n \geq 1 \tag{3}
\end{equation*}
$$

Denote by S the class of numbers which can be written in the form

$$
\begin{equation*}
H \varkappa^{3} \tag{4}
\end{equation*}
$$

where H is an integer and s a non-negative integer. Since $p=x^{q}$, we may assume that in (4) H is not divisible by p. A number in S is then said to be divisible by x, if and only if $s>0$. Evidently, for a rational integer, divisibility by x is equivalent to divisibility by p.

The numbers k_{v} and a_{y}^{\prime} in the formula (3)' belong to S, and when these numbers are written in the form (4), the exponents of x become congruent to $r \cdot v$ to modulus q; at least one of the k_{v} is not divisible by x. This is seen directly for the k_{r}, and by induction for the a_{r}^{\prime}.

We assert that if one a_{n}^{\prime} is an integer, not divisible by p, then there is another such number with higher index. Since $a_{0}^{\prime}=1$, it follows then that there is an infinity of such numbers.

Let $k_{v^{\prime}}$ be the last of the k_{v} which is not divisible by x. Suppose that x does not divide $a_{n^{\prime}}^{\prime}$ but all the following $a_{n}^{\prime}\left(n>n^{\prime}\right)$. In particular x would divide the numbers $a_{n^{\prime}+1}^{\prime}, a_{n^{\prime}+2, \ldots, a_{n}^{\prime}+v^{\prime}-1}^{\prime}$. But then the formula (3)' with $n=n^{\prime}+v^{\prime}$ implies that $a_{n^{\prime}+v^{\prime}}^{\prime}$ is not divisible by \varkappa, and the statement follows.

$$
a_{n^{\prime}+v^{\prime}}^{\prime}=\underbrace{k_{1} a_{n^{\prime}+v^{\prime}-1}^{\prime}+\cdots+k_{v^{\prime}-1} a_{n^{\prime}+1}^{\prime}}_{\varkappa \text { divides }}+k_{v^{\prime}} a_{n^{\prime}}^{\prime}+\underbrace{k_{v}^{\prime}+1 a_{n^{\prime}-1}^{\prime}+\cdots+k_{m} a_{n^{\prime}+v^{\prime}-m}^{\prime}}_{\varkappa \text { divides every } a_{n}^{\prime}}
$$

It is seen that $a_{n^{\prime}+v^{\prime}}^{\prime}$ is equal to a sum of integers (the exponent of x in every term being congruent to zero to modulus q), which are all except one divisible by p.

If an infinity of the a_{ν}^{\prime} are integers, not divisible by p, it follows that infinitely many $a_{n}=\frac{a_{n}^{\prime}}{\chi^{r n}}$ have a reduced denominator $\beta_{n}=\chi^{r n} \geq \chi^{n} \geq p^{n} \geq 2^{n}$, that is

$$
\varlimsup_{n=\infty} \sqrt[n]{\left|\beta_{n}\right|} \geq \sqrt[m]{2}
$$

When $b_{\mathbf{0}} \neq \pm 1$ is not a power of a prime, we may write $b_{0}=b_{0}^{\prime} \cdot b_{0}^{\prime \prime}$, where b_{0}^{\prime} is a power of a prime, and $\left(b_{0}^{\prime}, b_{0}^{\prime \prime}\right)=1$. Substituting

$$
\begin{equation*}
a_{n}=\frac{a_{n}^{\prime \prime}}{\left(b_{0}^{\prime \prime}\right)^{n}} \tag{5}
\end{equation*}
$$

we get from (2) a. recursion formula for $a_{n}^{\prime \prime}$ of the same kind as the formula (3) for a_{n} :

$$
a_{n}^{\prime \prime}=-\frac{b_{1}}{b_{0}^{\prime} a_{n-1}^{\prime \prime}}-\frac{b_{2} b_{0}^{\prime \prime}}{b_{0}^{\prime \prime}} a_{n-2}^{\prime \prime}-\cdots-\frac{b_{m}\left(b_{0}^{\prime \prime}\right)^{m-1}}{b_{0}^{\prime}} a_{n-m}^{\prime \prime}
$$

When $\quad a_{n}^{\prime \prime}=\frac{\alpha_{n}^{\prime \prime}}{\beta_{n}^{\prime \prime}} \quad\left(\alpha_{n}^{\prime \prime}, \quad \beta_{n}^{\prime \prime}\right)=1$, we have just proved $\varlimsup_{n=\infty} \stackrel{n}{V} \mid \overline{\beta_{n}^{\prime \prime} \mid} \geq \sqrt[m]{2}$. With $a_{n}=\frac{\alpha_{n}}{\beta_{n}},\left(\alpha_{n}, \beta_{n}\right)=1$ it also follows from (5) that $\varlimsup_{n=\infty} \sqrt[n]{\left|\beta_{n}\right|} \geq \sqrt[m]{\sqrt{2}}$. Thus the proof is completed in the case where $r(x)$ is of the form (1).
2. In the more general case, when we have

$$
r(x)=\frac{g(x)}{f(x)}
$$

$g(x)$ and $f(x)$ being polynomials whose coefficients are rational integers, we may assume, without loss of generality, that the coefficients b_{ν} in the polynomial

$$
f(x)=b_{0}+b_{1} x+\cdots+b_{m} x^{m}
$$

C. LEch, On the coefficients in the power series expansion

have no common factors. This amounts to a possible multiplication of $r(x)$ by an integer, which is of no importance for what is to be proved. If $b_{0}= \pm 1$ we have seen before that the coefficients in the power series for the function 1 $f(x)$
are integers, and this must obviously hold also for the function $\begin{aligned} & g(x) \\ & f(x)\end{aligned}$. If $b_{0} \neq \pm 1$, it is true for the function $\frac{1}{f(x)}$ that, with the notations used, $\lim _{n=\infty} \sqrt[n]{\sqrt[n]{\mid \beta} \mid}>1$. We shall now prove the corresponding inequality for $\frac{g(x)}{f(x)}$ under the non-restrictive assumption that $(f x), g(x)=1$.

For the sake of brevity we introduce the notation $\beta_{n}\{F(x)\}$ as follows. $F(x)$ is to be an arbitrary function which can be expanded about the origin in a power series with rational coefficients,

$$
\begin{gathered}
F(x)=\frac{\alpha_{0}^{\prime}}{\beta_{0}^{\prime}}+\frac{\alpha_{1}^{\prime}}{\beta_{1}^{\prime}} x+\cdots+\frac{\alpha_{n}^{\prime}}{\beta_{n}^{\prime}} x^{n}+\cdots \\
\alpha_{n}^{\prime}, \beta_{n}^{\prime} \text { integers, }\left(\alpha_{n}^{\prime}, \beta_{n}^{\prime}\right)=1 \quad n=1,2,3, \ldots \\
\beta_{n}^{\prime}=1, \text { when } \alpha_{n}^{\prime}=0 .
\end{gathered}
$$

Then, by definition, $\beta_{n}\{F(x)\}=\left|\beta_{n}^{\prime}\right|$. Our statement will be:
If $f(x)$ and $g(x)$ are polynomials whose coefficients are rational integers, and $\left(f x, g^{\prime}(x)=1\right.$, then

$$
\begin{equation*}
\varlimsup_{n=\infty} \sqrt[n]{\beta_{n}\left\{\frac{1}{\mid f(x)}\right\}}>1 \text { implies } \varlimsup_{n=\infty} \sqrt[n]{\left.\beta_{n} \frac{|g(x)|}{\mid f(x)}\right\}}>1 \tag{6}
\end{equation*}
$$

By means of Euclid's algorithm it is possible to find polynomials $p_{1}(x)$ and $p_{2}(x)$ whose coefficients are rational integers, and a rational integer K, so that
or

$$
p_{1}(x) f(x)+p_{2}(x) g(x)=K
$$

$$
\begin{equation*}
\frac{K}{f(x)}=p_{2}(x) \frac{g(x)}{f(x)}+p_{1}(x) \tag{7}
\end{equation*}
$$

We put

$$
\begin{aligned}
& \frac{1}{f(x)}=c_{0}+c_{1} x+\cdots+c_{n} x^{n}+\cdots \\
& \frac{g(x)}{f(x)}=d_{0}+d_{1} x+\cdots+d_{n} x^{n}+\cdots \\
& p_{2}(x)=e_{0}+e_{1} x+\cdots+e_{k} x^{k}
\end{aligned}
$$

Then, according to (7), for large values of n,

$$
K c_{n}=e_{0} d_{n}+e_{\mathbf{1}} d_{n-1}+\cdots+e_{k} d_{n-k}
$$

from which follows

$$
\frac{\beta_{n}\left\{\frac{1}{f(x)}\right\}}{K} \leq \beta_{n}\left\{\frac{g(x)}{f(x)}\right\} \beta_{n-1}\left\{\frac{g(x)}{f(x)}\right\} \cdots \beta_{n-k}\left\{\frac{g(x)}{f(x)}\right\}
$$

Thus

$$
\varlimsup_{n=\infty} \sqrt[n]{ }_{\beta_{n}\left\{\frac{1}{f(x)}\right\}}^{x} \leq\left[\varlimsup_{n=\infty} \sqrt[n]{\beta_{n}\left\{\frac{\{g(x)}{\mid f(x)}\right\}}\right]^{k+1}
$$

of which (6) is an immediate consequence.
Our theorem is now completely proved by the following lemma ${ }^{1}$, which we shall not demonstrate here:

If, in the power series expansion of a rational function about the origin, all the coelficients are rational numbers, then the function can be written as the quotient of two polynomials with integral coefficients.
3. Suppose that $f(x)$ is an analytic function, regular and one-valued inside the unit circle, except for a finite number of singularities, and that, in the neighbourhood of the origin, it is represented by a power series with rational coelficients,

$$
\begin{aligned}
& \quad f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}+\cdots \\
& \quad a_{n}=\frac{\alpha_{n}}{\beta_{n}} \\
& \alpha_{n}, \beta_{n} \text { integers, }\left(\alpha_{n}, \beta_{n}\right)=1 \quad n=1,2,3, \ldots \\
& \beta_{n}=1, \text { when } \alpha_{n}=0 .
\end{aligned}
$$

Then, it

$$
\begin{equation*}
\varlimsup_{n=\infty}\left|\beta_{n}\right|=\infty, \lim _{n=\infty} \frac{\beta_{n}}{n}=0 \tag{8}
\end{equation*}
$$

$f(x)$ cannot be continued across the unit circle.
The proof of this theorem depends wholly upon Carlson's work, mentioned in the introduction, which states a necessary condition for us to be able to continue $f(x)$ across the unit circle: with the notation

$$
\Lambda_{p}^{(q)}=\left|\begin{array}{ccc}
a_{p}, & a_{p+1}, \ldots, a_{p+q-1} \\
a_{p+1}, & a_{p+2}, \ldots, a_{p+q} \\
\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \\
a_{p+q-1}, & a_{p+q}, \ldots, a_{p+2 q-2}
\end{array}\right|
$$

the inequality

$$
\begin{equation*}
\varlimsup_{p=\infty}\left|\Delta_{p}^{(q)}\right|^{\frac{1}{p^{2}}}<1 \tag{9}
\end{equation*}
$$

must hold for $q=p, p+1$.

[^1]
C. LECH, On the coefficients in the power series expansion

As we have shown previously, the relations (8) involve that $f(x)$ cannot be a rational function. It follows, according to Borel ${ }^{1}$ and Pólya ${ }^{2}$, that there exists no number p_{0} such that $p>p_{0}$ implies that $\Delta_{p}^{(p)}=\Delta_{p}^{(p+1)}=0$. Thus, either $\Delta_{p}^{(p)} \neq 0$ for infinitely many p or $\Delta_{p}^{(p+1)} \neq 0$ for infinitely many p.

We write

$$
\begin{equation*}
\max _{p \leq v \leq 3 p}\left|\beta_{r}\right|=N=p \varphi(p) \tag{10}
\end{equation*}
$$

Then, by the second of the relations (8),

$$
\begin{equation*}
\lim _{p=\infty} \varphi(p)=0 \tag{11}
\end{equation*}
$$

Let $p_{1}, p_{2}, \ldots, p_{\pi(N)}$ be the primes $\leq N, \pi(x)$ the prime number function. If we multiply every column in the determinant $\Delta_{p}^{(p)}$ by*

$$
T=p_{1}^{\left[\frac{\log N}{\log p_{1}}\right]} p_{2} \begin{gather*}
{\left[\begin{array}{c}
\log N \\
\log p_{2}
\end{array}\right]}
\end{gather*} p_{\pi(N)}\left[\begin{array}{c}
{[\log N} \tag{12}\\
-\log \frac{p_{\pi(N)}}{}
\end{array}\right] \leq N^{\pi(N)}
$$

all the elements in the new determinant become integers. Thus, if $\Delta_{p}^{(p)} \neq 0$,

$$
\begin{equation*}
T^{p}\left|\Lambda_{p}^{(p)}\right| \geq 1 \tag{13}
\end{equation*}
$$

By the prime number theorem, $\frac{\pi(N) \log N}{N}$ is a bounded function of N. Hence, on account of (10), (11) and (12)

$$
\begin{equation*}
\varlimsup_{p=\infty} T^{\frac{1}{p}} \leq \lim _{p=\infty} e^{\frac{\pi(N) \log N}{N}-f(p)}=1 \tag{14}
\end{equation*}
$$

If $\Delta_{p}^{(p)} \neq 0$ for an infinity of p, it follows from (13) and (14) that

$$
\overline{\lim }_{p=\infty} \left\lvert\, \Delta_{p}^{(p)} \frac{1}{p^{p^{2}}} \geq 1\right.
$$

In a similar way, it may be shown that, if $\Delta_{p}^{(p+1)} \neq 0$ for an infinity of p,

$$
\varlimsup_{p=\infty}^{-}\left|\Delta_{p}^{(p+1)}\right|^{\frac{1}{p^{2}}} \geq 1
$$

The inequality (9) is therefore contradicted either for $q=p$ or $q=p+1$, which proves the theorem.

[^2]$$
\text { Tryckt den } 22 \text { september } 1950
$$

[^0]: * (a, b) means the highest common divisor of a and b.
 ** We put $\beta_{n}=1$, when $\alpha_{n}=0$, for the sake of brevity. In reality, only those values of n are considered for which $\alpha_{n} \neq 0$. A remark of this kind is relevant sometimes also in the sequel.
 ${ }^{1}$ Carlson, Über Potenzreihen mit ganzzahligen Koeffizienten, Math. Z., 9 (1921), p. 1-13.

[^1]: ${ }^{1}$ Heine, Kugelfunktionen I, in the second edition p. 52-53. The lemma is stated there more generally, for algebraic functions.

[^2]: ${ }^{1}$ Borel, Sur une application d'un théorème de M. Hadamard. Bull. Sciences Math.. (2), XVIII (1894), p. 22-25.
 ${ }^{2}$ Pólya, Über Potenzreihen mit ganzzahligen Koeffizienten, Math. Ann., 4 (1919), p. 497-513. See also Carlson's paper.

 * $[x]$ is the integral part of x.

