On singular monotonic functions whose spectrum has a given Hausdorff dimension

By R. Salem

1. This paper deals exclusively with continuous monotonic functions which are singular and of the Cantor type, that is to say which are constant in each interval contiguous to a perfect set of measure zero. This perfect set will be called the spectrum of the function.

We shall first prove the following results:
Theorem I. Given any number $a, 0<\alpha<1$, and a positive ε, arbitrarily small, but fixed, there exists a perfect set E, with Hausdorff dimension α, and a non-decreasing function $F(x)$, singular, with spectrum E, such that the Fourier Stieltjes transform of $d F$ belongs to L^{q} for cvery $q \geq \frac{2}{a}+\varepsilon$.

Theorem II. Given any number $\alpha, 0<\alpha<1$, and a positive ε, arbitrarily small, but fixed, there exists a perfect set E, with Hausdorff dimension a, and a non-decreasing function $F(x)$, singular, with spoctrum E, such that the FouriorStielljes coefficients of $d F$ are of order $1 / n^{\frac{\pi}{2}-:}$.

Remarks.

1). Theorem I could be deduced from Theorem II, but since the method of the proof is the same, we prove both theorems.
2). Theorem I has been proved in an earlier paper ${ }^{1}$ for the case $\alpha=1$ (the Lebesgue measure of the set being of course zero), even in the stronger form. that the Fourier Stieltjes transform of the singular function belongs to L^{4} for every $q>2$. The argument is the same as in the present paper, although much simpler.

We next prove:
Theorem III. No singular function (except constant) exists having as spectrum a perfect set of Hausdorff dimension $\alpha=0$, and whose Fourier-Stieltjes transform belongs to L^{q} for some $q<\frac{2}{a}$.

[^0]
R. salem, On singular monotonic functions

Likewise, no singular function (except constant) can have as spectrum a perfect set of Hausdorff dimension $a>0$, and have Fourier Stieltjes coefficients of order $n^{-\frac{\alpha}{2}-\varepsilon} \varepsilon>0$ (no matter how small ε is).

Remark. The results of theorem III are trivial for $\alpha=1$. So we prove them for $0<\alpha<1$.

Finally, we show that the results of theorem I and II can be sharpened so as to obtain:

Theorem IV. There exist singular monotonic functions having as spectrum a perfect set of Hausdorff dimension $\alpha(0<\alpha<1)$ and whose Fourier-Stieltjes transform belongs to L^{q} for every $q>\frac{2}{\alpha}$.

Theorem V. There exist singular monotonic functions having as spectrum a perfect set of Hausdorff dimension a $(0<\alpha<1)$ and whose Fourier-Stieltjes coefficients are of order $\frac{\Omega(n)}{\varepsilon}, \Omega(n)$ increasing less rapidly than any positive power n^{2} of n.

Remark. As we have said, Theorem IV is known for $\alpha=1$. Theorem V, in case $\alpha=1$, has also been proved in an earlier paper. ${ }^{1}$
2. Preliminary constructions. Let $O A$ be a segment of length L whose end points have abscissae 0 and L respectively. Let d be an integer ≥ 2. Let $\alpha_{1}, \alpha_{2}, \ldots \alpha_{d}$ be d distinct numbers such that

$$
0<\alpha_{1}<a_{2} \cdots<a_{d}<1
$$

Let each of the points $L \alpha_{j}$ be the origin of an interval ($L \alpha_{j}, L \alpha_{j}+L \eta$) of length $L \eta$, the number η satisfying the conditions

$$
\begin{equation*}
\eta>0, \quad \eta<\alpha_{2}-a_{1}, \quad \eta<a_{3}-a_{2}, \ldots \eta<\alpha_{d}-a_{d-1}, \quad \eta<1-\alpha_{d} \tag{1}
\end{equation*}
$$

The d disjoint intervals thus obtained will be called "white" intervals, the $d+1$ complementary intervals with respect to $O A$ will be called "black" intervals, and the dissection of $O A$ will be said to be of the type (d, a_{1}, a_{2}, \ldots $\ldots \alpha_{d}, \eta$).

Starting from the interval $(0,1)$ and fixing the numbers $d, \alpha_{1}, \alpha_{2}, \ldots \alpha_{d}$, we operate a dissection of the type $\left(d, \alpha_{1}, \ldots \alpha_{d}, \eta_{1}\right)$ and we remove the black intervals. On each white interval left we operate a dissection of the type $\left(d, \alpha_{1}, \ldots \alpha_{d}, \eta_{2}\right)$ and we remove the black intervals, - and so on. After p operations we have d^{p} white intervals, each of length $\eta_{1} \eta_{2} \ldots \eta_{p}$. When $p \rightarrow \infty$ we obtain a perfect set E nowhere dense, which is of measure zero if

[^1]$d_{p} \eta_{1} \eta_{2} \ldots \eta_{p} \rightarrow 0$. This will be always the case throughout the paper. The sequence $\eta_{1}, \eta_{2}, \ldots$ is arbitrary, provided each η_{k} satisfies the inequalities (1). The abscisse of the points of the set are given by the formula
$$
x=\alpha\left(\varepsilon_{0}\right)+\eta_{1} \alpha\left(\varepsilon_{1}\right)+\eta_{1} \eta_{2} \alpha\left(\varepsilon_{2}\right)+\eta_{1} \eta_{2} \eta_{3} \alpha\left(\varepsilon_{3}\right)+\cdots
$$
where $\alpha(j)$ stands for α_{j} and each ε_{k} takes all values $1,2, \ldots d$.
Let now $\boldsymbol{F}_{\boldsymbol{p}}(x)$ be a continuous non-decreasing function such that $\boldsymbol{F}_{\boldsymbol{p}}(0)=$ $=0, F_{p}(1)=1, F_{p}$ increases linearly by $\frac{1}{d^{p}}$ on each of the d^{p} white intervals obtained on the $p^{\text {th }}$ step of the dissection, F_{p} is constant in every black interval. The limit $F(x)$ of $F_{p}(x)$ as $p \rightarrow \infty$ is a continuous non decreasing function, singular, having the perfect set E as spectrum, and such that $F(0)=0$, $F(1)=1$. We extend the function so as to have $F(x)=0$ for $x \leq 0, F(x)=1$ for $x \geq 1$. The Fourier-Stieltjes transform $\gamma(u)=\int_{-\infty}^{\infty} e^{i u x} d F(x)$ is the limit, for $k=\infty$, of
$$
\sum \frac{1}{d^{k}} \exp \left[i u \alpha\left(\varepsilon_{0}\right)+i u \eta_{1} \alpha\left(\varepsilon_{1}\right)+\cdots+i u \eta_{1} \ldots \eta_{k-1} \alpha\left(\varepsilon_{k-1}\right)\right]
$$
the sum being extended to the d^{k} possible combinations of $\varepsilon_{0}, \varepsilon_{1}, \ldots \varepsilon_{k-1}$. Thus, writing
$$
Q(\varphi)=\frac{1}{d}\left(e^{i \alpha_{2} p}+e^{i \alpha_{2} \Psi}+\cdots+e^{i \alpha_{d} \psi}\right)
$$
we have
$$
\gamma(u)=Q(u) \prod_{k=1}^{\infty} Q\left(u \eta_{1} \eta_{2} \ldots \eta_{k}\right)
$$

The Fourier Stieltjes coefficient

$$
\int_{0}^{1} e^{2: i n x} d F=\gamma(2 \pi n)
$$

will be denoted by c_{n} or $c(n)$.
The above construction of a set E and of the corresponding function F will be used for the proof of Theorems I and II. For the proof of Theorems IV and V it is necessary to use more complicated sets in which not only the number η, but also $d, \alpha_{1}, \ldots \alpha_{d}$ change from one dissection to another (the type of dissection being, however, always the same for each white interval at a given step). If the successive dissections are of the type $\left(d^{(k)}, \alpha_{1}^{(k)}, \ldots \alpha_{d^{(k)}}^{(k)}, \eta_{k}\right)$ where

$$
\begin{equation*}
\eta_{k}>0, \eta_{k}<\alpha_{j}^{(k)}-\alpha_{j-1}^{(k)}\left(j=2,3, \ldots d^{(k)}\right), \eta_{k}<1-\alpha_{d}(k) \tag{2}
\end{equation*}
$$

E. SAlem, On singular monotonic functions

and if

$$
Q^{(k)}(\varphi)=\frac{1}{d^{i k}} \sum_{j=1}^{\left.d^{k}\right)} e^{i c\left(c_{j}^{(k)}{ }_{\psi}\right.}
$$

then

$$
\gamma(u)=Q^{1)}(u) \prod_{k=1}^{\infty} Q^{k+1}\left(u \eta_{1} \ldots \eta_{k}\right)
$$

3. Lemma. Let $P(\varphi)=\lambda_{1} e^{i \alpha_{1} \rho}+\cdots+\lambda_{d} e^{i i_{i} d^{f}}$, where the α_{j} are linearly independent. Let $r>0$. There exists a positive T_{0} (depending on r, d, the λ_{i}, the α_{j}) such that for $T \geq T_{0}$, and for all values of a,

$$
T \int_{a}^{T+a}|P(\varphi)|^{r} d \varphi<2\left(\frac{r}{2}+1\right)^{r}\left(\Sigma \lambda_{j}^{2}\right)^{r}
$$

The proof is immediate. Let $2 q$ be the even integer such that $r \leq 2 q<r+2$. Then

$$
|P(\varphi)|^{2 q}=\sum_{h_{1}+\cdots+h_{d}=q} \lambda_{1}^{2 h_{1}} \ldots \lambda_{l}^{2 h_{d}}\left(\frac{q!}{h_{1}!\ldots h_{l}!}\right)^{2}+R
$$

R being a sum of terms of the form $A e^{i \mu t}$ with non-vanishing μ. Then obviously

$$
\begin{aligned}
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{u}^{T+a}|P(\varphi)|^{2 q} d \varphi & =\sum \lambda_{1}^{2 h_{1}} \ldots \lambda_{d}^{2 h_{d}}\left(\frac{q!}{h_{1}!\ldots h_{d}!}\right)^{2} \\
& \leq q!\left(\lambda_{1}^{2}+\cdots+\lambda_{\mathrm{d}}^{2}\right)^{q} \\
& \leq q^{q}\left(\lambda_{1}^{2}+\cdots+\lambda_{\mathrm{d}}^{2}\right)^{q}
\end{aligned}
$$

uniformly in a. Hence for $T \geq T_{0}$, where T_{0} is independent of a,

$$
\begin{aligned}
\left\{\frac{1}{T} \int_{a}^{T+a}|P(\varphi)|^{2 q} d \varphi\right\}^{\gamma_{2 q}^{1}} & <2^{\frac{1}{2 q}} q^{\frac{1}{2}}\left(\lambda_{1}^{2}+\cdots+\lambda_{\mathrm{d}}^{2}\right)^{\frac{1}{2}} \\
& <2^{\frac{1}{2 q}}\left(\frac{r}{2}+1\right)^{\frac{1}{2}}\left(\lambda_{1}^{2}+\cdots+\lambda_{\mathrm{d}}^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

hence

$$
\frac{1}{T} \int_{a}^{T+a}|P(\varphi)|^{r} d \varphi<2\left(\frac{r}{2}+1\right)^{\frac{r}{2}}\left(\hat{\lambda}_{1}^{2}+\cdots+\lambda_{\mathrm{d}}^{2}\right)^{\frac{r}{2}}
$$

4. Proof of Theorem I. The numbers $\alpha,(0<\alpha<1)$, and $\varepsilon>0$ are given. Let $s=\frac{2}{\alpha}+\varepsilon$. Take for d the smallest integer ≥ 2 such that

$$
\begin{equation*}
d^{\frac{\varepsilon}{10}} \geq 2\left(\frac{s}{2}+1\right)^{\frac{s}{2}} \tag{3}
\end{equation*}
$$

Having thus fixed d, determine the number ξ by the condition

$$
\begin{equation*}
\frac{\log d}{\log 1, \xi}=\alpha \tag{4}
\end{equation*}
$$

so that $0<\xi<\frac{1}{d}$. Fix now d numbers $\alpha_{1}, \ldots \alpha_{d}$, linearly independent, satisfying the conditions

$$
\begin{aligned}
& 0<\alpha_{1}<\frac{1}{d}-\xi \\
& \xi<\alpha_{2}-\alpha_{1}<\frac{1}{d} \\
& \xi<\alpha_{3}-\alpha_{2}<\frac{1}{d} \\
& . \cdot . \cdot . \cdot . \\
& \xi<\alpha_{d}-\alpha_{d-1}<\frac{1}{d}
\end{aligned}
$$

from which it follows that $\alpha_{d}<1-\xi$, that is to say all inequalities (1) are satisfied for $\eta=\xi$. A fortiori, all inequalities (1) are satisfied when η is any positive number $<, \xi$. Consider a. sequence of numbers $\xi_{1}, \xi_{2}, \ldots \xi_{k} \ldots$ satisfying the following conditions
(5)

$$
\left\{\begin{array}{l}
a_{1}=\xi\left(1-\frac{1}{2^{2}}\right) \leq \xi_{1} \leq \xi \\
a_{2}=\xi\left(1-\frac{1}{3^{2}}\right) \leq \xi_{2} \leq \xi \\
\cdot \\
a_{k}=\xi\left(1 \cdots \frac{1}{(k+1)^{2}}\right) \leq \xi_{k} \leq \xi \\
\cdot \cdots \cdot \cdots \cdot \cdot \cdots
\end{array}\right.
$$

Denote by $E\left(\xi_{1}, \ldots \xi_{k} \ldots\right)$ the perfect set obtained by the successive dissections $\left(d, \alpha_{1}, \ldots \alpha_{d}, \xi_{k}\right)$, where the ξ_{k} satisfy the inequalities (5). To every sequence $\xi_{1}, \ldots \xi_{k}, \ldots$ satisfying (5) corresponds a set E. It is clear from (4) and (5) that all such sets have Hausdorff dimension α. To every set E we associate the corresponding function F described above and having E as spectrum. Writing

$$
\xi_{k}=a_{k}+\left(\xi-a_{k}\right) \zeta_{k}
$$

we have $0 \leq \zeta_{k} \leq 1$ and by the Steinhaus method, we map the interval $0 \leq t \leq 1$ on the "cube" $0 \leq \zeta_{k} \leq 1(k=1,2, \ldots)$ of infinitely many dimensions. If

$$
t=\beta_{1} \beta_{2} \beta_{3} \ldots
$$

is the dyadic expansion of t we put

$$
\begin{aligned}
& \zeta_{1}(t)=\cdot \beta_{1} \beta_{3} \beta_{6} \ldots \\
& \zeta_{2}(t)=\cdot \beta_{2} \beta_{5} \beta_{9} \ldots \\
& \zeta_{3}(t)=\cdot \beta_{4} \beta_{8} \beta_{13} \ldots
\end{aligned}
$$

The correspondence is one-one, except for sets of measure zero. Moreover it is well known that for any measurable function $\Phi\left(\zeta_{1} \ldots \zeta_{p}\right)$ one has

$$
\int_{0}^{1} \Phi\left[\zeta_{1}(t) \ldots \zeta_{p}(t)\right] d t=\int_{0}^{1} \int_{0}^{1} \ldots \int_{0}^{1} \Phi\left(\zeta_{1}, \ldots \zeta_{p}\right) d \zeta_{1} \ldots d \zeta_{p}
$$

whenever either side exists.
The set $E\left(\xi_{1}, \xi_{2}, \ldots \xi_{k} \ldots\right)=E_{t}$ depends now on the variable t and we shall show that for almost all t the Fourier-Stieltjes transform of the function $F_{t}(x)$ corresponding to E_{t} belongs to L^{q} for $q \geq \frac{2}{\alpha}+\varepsilon=s$. Writing, with the notations of $\S 2$,

$$
\gamma_{t}(u)=Q(u) \prod_{k=1}^{\infty} Q\left(u \xi_{1} \ldots \xi_{k}\right)
$$

it will be enough to show that $\gamma_{t}(u)$ belongs to L^{s} for almost all t, and to this end it will be sufficient to prove that

$$
\begin{equation*}
\int_{0}^{\infty} d u \int_{0}^{1}\left|\gamma_{t}(u)\right|^{s} d t<\infty \tag{6}
\end{equation*}
$$

First, fix a T_{0} such that

$$
\frac{1}{T} \int_{a}^{T+a}|Q(\varphi)|^{\varepsilon} d \varphi \leq 2\left(\frac{s}{2}+1\right)^{s / 2} \frac{1}{d^{s / 2}}
$$

for all a, and $T \geq T_{0}$, as is clearly possible by the lemma. Then one has, by (3)

$$
\frac{1}{T} \int_{a}^{T+a}|Q(\varphi)|^{s} d \varphi \leq \frac{1}{d^{\frac{s}{2}-\frac{\varepsilon}{10}}}=\varrho \quad\left(T \geq T_{0}\right)
$$

Now

$$
\left.\left|\gamma_{i}(u)\right|^{s} \leq \prod_{k=1}^{p}\right]\left.Q\left(u \xi_{1} \ldots \xi_{k}\right)\right|^{s}=f(u, p)
$$

say, p being any positive integer. But

$$
\begin{aligned}
\int_{0}^{1} f(u, p) d t & =\int_{0}^{1} \cdots \int_{0}^{1} f(u, p) d \zeta_{1} \ldots d \zeta_{p}== \\
& =\int_{0}^{1} \cdots \int_{0}^{1} f(u, p-1) d \zeta_{1} \ldots d \zeta_{p-1} \int_{0}^{1}\left|Q\left(u \xi_{1} \ldots \xi_{p}\right)\right|^{s} d \zeta_{p} .
\end{aligned}
$$

The last integral with respect to the variable ζ_{p} is equal to

$$
\begin{aligned}
\int_{0}^{1} \mid Q\left(u \xi _ { 1 } \ldots \xi _ { p - 1 } \left[a_{p}\right.\right. & \left.\left.+\left(\xi-a_{p}\right\rangle \zeta_{p}\right]\right)\left.\right|^{s} d \zeta_{p}=\int_{0}^{1}\left|Q\left(l \zeta_{p}+m\right)\right|^{s} d \zeta_{p} \\
& =1 \int_{m}^{l+m}|Q(\varphi)|^{s} d \varphi
\end{aligned}
$$

where $l=u \xi_{1} \ldots \xi_{p-1}\left(\xi-a_{p}\right)>b u \xi^{p} \frac{1}{(p+1)^{2}}, b$ being an absolute constant. Choose p in function of u, such that

$$
b u \xi^{p} \frac{1}{(p+1)^{2}} \geq T_{0}
$$

that is to say

$$
\begin{equation*}
\log u-p \log 1 / \xi-2 \log (p+1)+\log b \geq \log T_{0} \tag{7}
\end{equation*}
$$

It is sufficient to take, when u is large enough

$$
p=p(u)=\left[\theta \frac{\log u}{\log 1 / \xi}\right]+1
$$

the brackets denoting the integral part, $\theta<1$ being fixed, but arbitrarily close to one if u is sufficiently large. Having thus chosen $p=p(u)$, the inequality

$$
b u \xi^{q} \frac{1}{(q+1)^{2}} \geq T_{0}
$$

is satisfied a fortiori for every $q<p$; hence, successive integrations give us

$$
\int_{0}^{1}\left|\gamma_{t}(u)\right|^{s} d t \leq \varrho^{p}, \quad u>u_{0}(\theta)
$$

E. salfa. On singular monotonic functions

Now

Hix now 0 such that $0\left(\begin{array}{cc}s & \varepsilon \\ 2 & 10\end{array}\right)=\begin{array}{cc}s \\ 2\end{array}-\frac{\varepsilon}{5}$. Then, for u larger than a fixed number.

$$
\int_{0}^{1}\left|\gamma_{t}(u)\right|^{s} d t \leq \frac{1}{u^{c}\left(\frac{1}{2}-\frac{t}{2}-\frac{t}{5}\right)} .
$$

But

$$
\frac{s}{2}-\frac{\varepsilon}{5}=\frac{1}{\alpha}+\frac{3 \varepsilon}{10}, \quad \alpha\left(\frac{s}{2}-\frac{\varepsilon}{5}\right)=1+\frac{3 \alpha \varepsilon}{10}>1 .
$$

This proves (6) and, consequently, Theorem I.
5. Proof of Theorem II. Take here, α and ε being given, $(0<\alpha<1$, $\varepsilon>0$), $s=\frac{2+\alpha}{\varepsilon}$. Determine d as the smallest integer ≥ 2 such that

$$
d^{y} \geq 2\left(\begin{array}{l}
s \\
2
\end{array}+1\right)^{s} .
$$

Then determine ξ, the x_{j}, the ξ_{k} as before. Next determine T_{0} and $p=p(u)$ in the same way as in the proof of Theorem I. Then

Fixing θ such that $\theta\binom{s-1}{2}=-\stackrel{s}{2}$, one has

$$
\int_{0}^{1}\left|c_{t}(n)\right|^{s} d t \leq \frac{1}{n^{c}\binom{8}{2}}, \quad n \geq n_{0} .
$$

Writing $\alpha\left(\frac{s}{2}-1\right)=2 \div \gamma$, we have

$$
\sum n^{\gamma} \int_{0}^{1}\left|c_{t}(n)\right|^{s} d t<\infty
$$

and so $n^{\prime}\left|c_{n}\right|^{s} \rightarrow 0$ for almost every set. A fortiori, for such sets and the corresponding functions

$$
\left|c_{n}\right|<\frac{1}{n^{\prime} s},
$$

but

$$
\begin{aligned}
& \gamma=\frac{\alpha}{2}-\frac{\alpha}{s}-2=\frac{\alpha}{2}-\varepsilon
\end{aligned}
$$

which proves the theorem.
Remark. Taking $\alpha=1-\delta, \varepsilon=\frac{\delta}{2}, \delta$ arbitrarily small, one proves the existence of a singular monotonic function of the Cantor type with Fourier Stieltjes cocfficients of order $\frac{1}{n^{\frac{1}{i} / 2-\gamma}}$. This result has been obtained in an carlier paper ${ }^{1}$ by a quite different method. This method is inapplicable to the proof of the general result of Theorem II.
6. Proof of Theorem III. This is reduced immediately to a known resuit. Suppose the existence of F non-constant having as spectrum a perfect sat E of Hausdorff dimension α, and Fourier Stieltjes cofficients $c_{n}=O\binom{1}{n^{n}+\varepsilon}$. One has $\sum_{n^{1-\cdots-\varepsilon}}^{\mid}\left|c_{n}\right|^{2}, ~$ This proves, by classical results on capacity of sets, that the $(\alpha+\varepsilon)$ capacity of E is positive (the terms of the series being asymptotically of the same order as the terms of the series representing the energyintegral with respect to the distribution $d F$, and the generalized potential with kernel $r^{-(\varphi+\varepsilon)}$). But the Hausdorff measure of order $\alpha+\varepsilon$ being zero, the $(\alpha+\varepsilon)$ capacity is also zero, by a well known theorem, and this contradiction proves the second part of theorem III.

The first part is proved in a similar fashion, using the fact that if $\gamma(u) \in L^{\prime \prime}$ where $q=\frac{2}{\alpha+2 \varepsilon},(\varepsilon>0$, arbitrarily small, $\alpha+2 \varepsilon<1)$, one has

$$
\int_{i}^{\infty} \frac{|\gamma(u)|^{2} d u}{u^{1-u-\varepsilon}}<\left\{\int_{i}^{\infty}|\gamma(u)|^{\frac{2}{x+2 \varepsilon}} d u\right\}^{\alpha+2}\left\{\int_{i}^{\infty} \frac{d u}{u^{1-u-\varepsilon}}\right\}^{1-\alpha-\alpha-2 \varepsilon}
$$

7. Proof of Theorem IV. We only sketch the proof which is more complicated than the proof of Theorem I, without involving essentially new ideas.

Fix first an $s_{0}>\frac{2}{\alpha}$, taking, for instance, $s_{0}=\frac{2}{\alpha}+1$. Let $r=r(\alpha)$ be the integer such that $s_{0} \leq 2 r<s_{0}+2$. Take an increasing sequence $d^{(1)}, d^{(2)} \ldots d^{(k)} \ldots$

[^2]For each $d^{d i}$ determine a $\xi^{(k)}$ such that $\log d^{k j}=\alpha \log 1 / \xi^{k i}$. We construct the polynomial $Q^{k \mid}(\phi)$ of $\S 2$ by choosing the numbers $\alpha_{j}^{(k)},\left(j=1,2, \ldots d^{(k)}\right)$ such that

$$
\begin{aligned}
0 & <\alpha_{1}^{(k)}<\frac{1}{d^{(k)}}-\xi^{k)} \\
\xi^{(k)} & <\alpha_{j}^{(k)}-\alpha_{j-1}^{(k)}<\frac{1}{d^{(\bar{k})} \quad\left(j=2,3, \ldots d^{(k)}\right.}
\end{aligned}
$$

(so that all inequalities (2) are satisfied for $\eta_{k}=\xi^{k}$), and we further submit the $\alpha_{j}^{(k)}$ to the condition that $\left|\Sigma h_{j} \alpha_{j}^{i k}\right|$ has a positive lower bound $\mu^{(k)}$ when the integers h_{j} take all possible values, not all zero, such that $\left|h_{j}\right| \leq r$. It is easily seen that the conditions for the $\alpha_{i}^{\prime k)}$ are compatible if $\mu^{(k)}=(C r)^{-2 d^{(k)}}$, C being an absolute constant. This number $\mu^{(k)}$ is relevant in the determination of $T_{0}^{: k)}$, which replaces T_{0} at each step, and which is such that

$$
\left\{\frac{1}{T} \int_{a}^{T \div a}\left|Q^{(k)}(\varphi)\right|^{s} d \varphi\right\}^{\left(\frac{1}{s}\right.} \leq\left\{\frac{1}{T} \int_{a}^{T+a}\left|Q^{(k)}(\varphi)\right|^{2 r} d \varphi\right\}^{\} \frac{1}{2 r}} \leq \frac{A_{r}}{\sqrt{d^{(k)}}}
$$

if $T \geq T_{0}^{k)}, s \leq 2 r, A_{r}$ depending on r only. One finds by easy calculation that $T_{0}^{k)}$ may be taken equal to $(C r)^{\left.3 d^{\prime} k\right]}$.

Now, the sequence ξ_{k} which will, as before, constitute our set of infinitely many variables of integration, will satisfy the conditions

$$
\xi^{(k)}\left(1-\frac{1}{(k+1)^{2}}\right) \leq \xi_{k} \leq \xi^{(k)}
$$

The condition (7) will be replaced by

$$
\begin{aligned}
\log u-\sum_{1}^{n} \log \frac{1}{\xi^{(k)}}-2 \log (p+1)+\log C & \geq \log T_{v}^{(p+1)} \\
& =3 d^{(p+1)} \log C r
\end{aligned}
$$

where $\sum_{1}^{p} \log 1 / \xi^{(k)}$ can be replaced by $\frac{1}{\alpha} \sum_{1}^{p} \log d^{(k)}$. Let us assume, as we may, that $d^{k i}$ increases in such a way that

$$
d^{p+1)}=o\left\{\sum_{1}^{p} \log d^{(k)}\right\}
$$

We can take, e.g., $d^{k)}=k+1$. Then $p=p(u)$ can be determined so as to have

$$
\sum_{1}^{p} \log d^{[k]}=\theta \alpha \log u \quad u>u_{0}(\theta)
$$

where $\theta<1$ can be chosen as close to 1 as we wish. Let now s be a fixed exponent such that $s_{0}>s>\frac{2}{\alpha}$, and fix θ such that $\theta s>2 / \alpha$. Then

$$
\int_{0}^{1}\left|\gamma_{l}(u)\right|^{s} d t \leq \frac{A_{r}^{s p}}{\left[d^{(2)} \ldots d^{(p+1)}\right]^{s / 2}}<\frac{A_{r}^{s p}}{\left[d^{(1)} \ldots d^{(p)}\right]^{s ; 2}}=\frac{A_{r}^{s p}}{u^{0 ; c_{2}^{s}}}
$$

But $\log u$ is of order $p \log p$, and thus p is of order $\frac{\log u}{\log \log u}$. Hence

$$
\int_{0}^{\infty} d u \int_{0}^{1}\left|\gamma_{t}(u)\right|^{s} d t<\infty
$$

which proves that given s such that $s_{0}>s>\frac{2}{\alpha}$, there exists a set G_{s} of measure 1 in $(0,1)$ such that for $t \in G_{s}$, the corresponding $\gamma_{t}(u)$ belongs to L^{s}. It is enough now to take a sequence $s_{0}>s_{1}>s_{2} \ldots>s_{m} \ldots, s_{m} \rightarrow \frac{2}{\alpha}$, to prove the existence of a Fourier Stieltjes transform $\gamma_{t}(u)$ belonging to L^{q} for every $q>\frac{2}{\alpha}$.
8. Proof of Theorem V. Again we only sketch the proof, inasmuch as the result is apparently not the best possible one. We consider a sequence of integers r_{k} increasing infinitely with k. Following the method of the preceding paragraph we determine the polynomials $Q^{(k)}(\phi)$, for an increasing sequence $d^{(k)}$, in such a way that

$$
\begin{equation*}
\frac{1}{T} \int_{a}^{T+a}\left|Q^{(k)}(\varphi)\right|^{2 r_{k}} d \varphi \leq \frac{2 r_{k}^{r_{k}}}{\left[d^{(k)}\right]^{r}} \tag{8}
\end{equation*}
$$

for $T \geq T_{0}^{(k)}$. It is not difficult to see that $T_{0}^{(k)}$ can be taken equal to $\left(C r_{k}\right)^{d^{(k)}}$, provided $r_{k}=o\left(d^{(k)}\right)$, which we shall suppose. We remark that (8) implies, for $p<k$,

$$
\begin{gather*}
\left\{\frac{1}{T} \int_{a}^{T+a}\left|Q^{(k)}(\varphi)\right|^{2 r_{p}} d \varphi\right\}^{\frac{1}{2 r_{p}}} \leq \frac{2^{\frac{1}{2 r_{k}}} \sqrt{r_{k}}}{\sqrt{d^{k}}} \\
\frac{1}{T} \int_{a}^{T_{+}}\left|Q^{(k)}(\varphi)\right|^{2 r_{p}} d \varphi \leq \frac{2 r_{k}^{r_{p}}}{\left[\frac{\left.\left.d^{(k)}\right]^{r}\right]^{r}}{r}\right.} \tag{9}
\end{gather*}
$$

E. salem, On singular monotonic functions

We write now here, changing slightly the method of Theorem I:

$$
\left|\gamma_{t}(u)\right|^{2 r_{p}} \leq \prod_{k=p ; 1}^{2 p}\left|Q^{(k\rangle}\left(u \xi_{1} \ldots \xi_{k-1}\right)\right|^{2 r_{p}}
$$

and we integrate successively with respect to $\zeta_{2 p-1}, \zeta_{p p-2}, \ldots \zeta_{p}$, that is to say p times. Provided that $p=p(u)$ satisfies the condition

$$
\begin{align*}
\log u-\sum_{p+1}^{2 p} \log \frac{1}{\xi^{(t-1)}}-2 \log (2 p) & +\log b \geq \log T_{0}^{(2 p)} \tag{10}\\
& =3 d^{\left(2 p^{\prime}\right)} \log C r_{p}
\end{align*}
$$

one has, using (9),

$$
\begin{aligned}
\int_{0}^{1}\left|\gamma_{t}(u)\right|^{2 r_{p}} d t & \leq \frac{2^{p}\left(r_{p+1} r_{p+2} \ldots r_{2 p}\right)^{r_{p}}}{\left[\tilde{d}^{(p+1)} \ldots d^{2 p}\right]^{r_{p}}} \\
& \leq \frac{\left(2 r_{2 p}^{r p}\right)^{p}}{\left[d^{(p)} \ldots d^{(2 p-1)}\right]^{r_{p}}} .
\end{aligned}
$$

Now, taking again $\left.d^{k}\right)=k+1$ and $\log r_{k}=0\left(\log d_{k}\right)$ one sees that (10) is satisfied by taking $p=p(u)$ such that:

$$
\sum_{p+1}^{2 p} \log d^{(k-1)}=\theta_{p} \alpha \log u
$$

where θ_{p} is a certain function of p with the property $\theta_{p}<1, \theta_{p} \rightarrow 1$ as u, and so $p=p(u)$, increase infinitely. Then

$$
\int_{0}^{1}\left|\gamma_{t}(2 \pi n)\right|^{2 r_{p}} d t \leq \frac{\left(2 r_{2 p}^{r_{p}}\right)^{p}}{n^{\theta_{p} \alpha r_{p}}}
$$

Now $\log n$ is of order $p \log p$, and so p is of order $\frac{\log n}{\log \log n}$. Take, now, e.g., $r_{p} \sim \sqrt{\log p}$. Then

$$
p\left[\log 2+r_{p} \log r_{2 p}\right]=O(p \sqrt{\log p} \log \log p)<\frac{p \log p}{2}<\log n
$$

for large n, so that for $n>n_{0}$,

$$
\int_{0}^{1}\left|c_{t}(n)\right|^{2 r_{p}} d t \leq \frac{1}{n^{\theta} p^{c} r_{p}-1}
$$

Taking $\nu_{n}=\theta_{p} \alpha r_{p}-3$, one has

$$
\searrow^{\prime} n^{1} n \int_{0}^{1}\left|c_{t}(n)\right|^{2 r_{p}} d t<\infty
$$

and thus. for almost all t,

$$
n^{\imath} n\left|c_{n}\right|^{2 v_{n}} \leq 1
$$

for n large enough. Hence the existence of a function such that

$$
\left|c_{n}\right| \leq \frac{1}{n^{1} n / 2 r_{p}} \quad\left(n>n_{0}\right)
$$

but

$$
\begin{gathered}
v_{n} \\
2 r_{p}
\end{gathered}=\stackrel{\theta_{p} \alpha}{2}-\frac{3}{2 r_{n}}=\begin{aligned}
& \alpha \\
& 2
\end{aligned}-\varepsilon_{n}
$$

with $\varepsilon_{n}=o(1)$, which proves the theorem.

[^0]: ${ }^{1}$ R. Satem. On sets of multiplicity for trigonometrical series. American Journal of Mathematies, Yol. 64 (1942), pp. 531-538.

[^1]: ${ }^{1}$ R. Salem. On singular monotonic functions of the Cantor type. Journal of Mathematies and Physics, Vol. 21 (1942), pp. 69-82.

[^2]: ${ }^{1}$ R. Salem. On singular monotonic functions of the Cantor type. Tournal of Mathematics and Physics, Vol. 21 (1942), pp. 69-82.

