On an inequality concerning the integrals of moduli of regular analytic functions

By Bengt Andersson

With 1 figure in the text

1. Let $f(z)$ be an analytic function, regular in a convex domain D and on its boundary C. Let L be a rectificable curve in D. Our problem is to estimate

$$
\int_{L}|f(z) d z|
$$

by means of the integral

$$
\int_{C}|f(t) d t| .
$$

Professor F. Carlson (1) has shown that in the case D being a circle, then

$$
\left.\int_{\dot{L}}|f(z) d z| \leq \frac{1}{\pi} \int_{C} V(t) \right\rvert\, f(t) d t
$$

where $V(t)$ is the upper limit of the sum of the angles at which the elements of L are seen from a point t on C. He has called my attention to the possibility of solving the problem for convex domains by the same method as the one he uses for a circle.

Gabriel, in a first work (2), has treated the problem for a circle and in a second work (3) for convex regions.
2. Let L be a rectilineár segment in D. We may suppose that L is parallel to the real axis. Let $F(\zeta, z)$ be a function that for each $z \in D$ is an analytic function of ζ, regular in D and continuous on C. Then, by Cauchy's theorem, we have

$$
f(z)=\frac{1}{2 \pi i} \int_{\dot{C}} \frac{F(t, z)}{F(z, z)} \frac{f(t)}{t-z} d t
$$

Hence

$$
|f(z)| \leq \frac{1}{2 \pi} \int_{C}\left|\frac{F(t, z)}{F(z, z)} \frac{1}{t-z}\right||f(t) d t|
$$

and

B. ANDERSSON, Integrals of moduli of regular analytic functions

$$
\int_{\dot{L}}|f(z) d z| \leq \frac{1}{2} \int_{\dot{C}} \lambda(t)|f(t) d t|
$$

where
1)

$$
\lambda(t)=\int_{\dot{L}}\left|\begin{array}{lc}
\frac{F}{}(t, z) & d z \\
F(z, z) & t-z
\end{array}\right|
$$

Let $z \in L$ and $t \in C$. If $t-z=r e^{i 0}$, then

$$
\left|\begin{array}{c}
d z \\
t-z
\end{array}\right|=\left|\begin{array}{c}
d \theta \\
\sin \theta
\end{array}\right|
$$

Fig. 1.
Let $u(\zeta, z)$ be an harmonic function of ζ, regular for $\zeta \in D, z \in D$. When $\rightarrow t \in C$ along a path in D, then $u(\zeta, z) \rightarrow \log \mid \underset{\sin \theta}{1}$ Let $v(\zeta, z)$ be the conjugated harmonic function and put

Then

$$
F(t, z)=e^{-(u+i v)}
$$

2)

$$
\lambda(t)=\int_{i} e^{u(z, z)}|d \theta| .
$$

If D is the circle $|\zeta| \leq R$, then we obtain by this construction

$$
F(\zeta, z)=\frac{1}{2}\left[1-\zeta(\zeta-z) \quad \begin{array}{l}
R^{2}-\zeta \bar{z}
\end{array}\right] ; e^{u(z, z)}=2
$$

and hence

$$
\lambda(t)=2 \int_{L}|d 0|=2 V(t)
$$

where $V(t)$ is the angle at which the segment L is seen from a point t on C. This is exactly F. Carlson's result which is easily extended to the case, where L is a polygon and finally a rectificable curve. Now we shall prove the following theorem

Theorem. Let L be a rectificable curve in a convex domain D. Then

$$
\int_{\dot{L}}|f(z) d z| \leq \frac{A}{2} \frac{\int_{i}}{i} V(t)|f(t) d t|
$$

where $A=4$ and $V(t)$ is the upper limit of the sum of the angles, at which the elements of L are seen from the point t on C.

It is sufficient to prove that $u(z, z) \leq \log 4$. Further, we can assume that the curve C is smooth. The potential of a double layer $\mu_{z}(t)=\frac{1}{\pi} \log \frac{1}{|\sin \theta|}$ on C is

$$
U_{z}(\zeta)=\mathcal{J}\left\{\int_{\dot{C}} \mu_{z}(t) \frac{d t}{t-\zeta}\right\}=\int_{\dot{C}} \mu_{z}(t) d[\arg (t-\zeta)]
$$

When $\zeta \rightarrow t_{0} \in C$ along a path in D, then

$$
U_{z}(\zeta) \rightarrow \log \frac{1}{|\sin \theta| t_{0}}+\int_{\dot{c}} \mu_{z}(t) d\left[\arg \left(t-t_{0}\right)\right] \geq \log \frac{1}{|\sin \theta|_{t_{0}}}=u\left(t_{0}, z\right)
$$

since C is convex and the double layer is non-negative.
Hence follows

Putting $\zeta=z$, we get

$$
u(\zeta, z) \leq U_{z}(\zeta), \quad \zeta \in D
$$

$$
u(z, z) \leq U_{z}(z)=\frac{1}{\pi} \int_{0}^{2 \pi} \log \frac{1}{|\sin \theta|} d \theta=\log 4
$$

This proves the theorem.
If the inner curve L is convex, then $V(t) \leq 2 \pi$ and ${ }^{1}$
3)

$$
\int_{L}|f(z) d z| \leq A \int_{C}|f(t) d t| ; \quad A=4
$$

3. The obtained value $A=4$ is not the best possible. Let α_{θ} be that arc of C for which $0 \leq \arg t-z \leq \theta$ and let $\omega\left(\zeta, \alpha_{\theta}, D\right)=\omega\left(\zeta, \alpha_{\theta}\right)$ be the harmonic measure of α_{θ} with respect to the region D. Then
4)

$$
u(z, z)=\int_{\dot{C}} \log \frac{1}{|\sin \theta|} d \omega\left(z, \alpha_{\theta}\right)
$$

For convex regions the following lemma holds:
Lemma 1. $\omega\left(z, a_{0}\right)$ is an absolutely continuous function of θ and

$$
0 \leq \frac{d \omega\left(z, \alpha_{\theta}\right)}{d \theta} \leq \frac{1}{\pi}
$$

Let $\Delta \theta>0$ and consider the function

$$
\Delta \omega=\omega\left(z, \alpha_{\theta+\Delta \theta}\right)-\omega\left(z, \alpha_{\theta}\right)
$$

[^0]
B. ANDERSSON, Integrals of moduli of regular analytic functions

which is an harmonic function of z, regular in D. Since $\Delta \omega$ is the harmonic measure of the arc $\Delta \alpha=\alpha_{\theta+\Delta \theta}-\alpha_{\theta}$, it is non-negative and the lower bound of $\frac{d \omega}{d \theta}$ is immediately obtained.

Let H be the half-plane that is bounded by the straight line through the end-points of $\Delta \alpha$, and that does not contain $\Delta \alpha$ in its interior. If $\Delta \theta$ is sufficiently small, then $z \in H$. Let α^{\prime} be the rectilinear segment between the end-points of $\Delta \alpha$. Then it is well known that

$$
\omega\left(z, a^{\prime} ; H\right)-\Delta \omega \geq 0 .
$$

For the left member is a regular harmonic function of z in the region $H \cdot D$, where it has non-negative boundary-values. But

$$
\omega\left(z, a^{\prime} ; H\right)=\frac{\Delta \theta}{\pi}
$$

Hence

$$
\frac{\Delta \omega}{\Delta \theta} \leq \frac{1}{\pi}
$$

and the lemma follows immediately.
Now we may write 4) as
5)

$$
u(z, z)=\int_{0}^{2 \pi} \log \frac{1}{|\sin \theta|} \frac{d \omega\left(z, a_{\theta}\right)}{d \theta} d \theta
$$

From lemma 1 follows that

$$
0 \leq u(z, z) \leq \frac{1}{\pi} \int_{0}^{2 \pi} \log \frac{1}{|\sin \theta|} d \theta=\log 4
$$

This is the result that we have already obtained. But $\frac{d \omega}{d \theta}$ cannot take its maximum-value $\frac{1}{\pi}$ in the whole interval of integration since

$$
\int_{0}^{2 \pi} \frac{d \omega\left(z, \alpha_{\theta}\right)}{d \theta} d \theta=\omega(z, C)=1
$$

We use the following lemma:
Lemma 2. If $g(\theta)$ and $h(\theta)$ are integrable, $g(\theta)$ non-increasing, and

$$
0 \leq h(\theta) \leq k, \int_{0}^{a} h(\theta) d \theta=M
$$

then

$$
\int_{0}^{a} g h d \theta \leq k \int_{0}^{M / k} g d \theta
$$

Put

$$
H(\theta)=\int_{0}^{\theta} h d \theta .
$$

Then $H(a)=M$ and

$$
0 \leq H(\theta) \leq \begin{cases}k \theta & \text { in } 0 \leq \theta \leq M / k \\ M & \text { in } M / k \leq \theta \leq a\end{cases}
$$

Since $g(\theta)$ is non-increasing, it follows that

$$
\begin{aligned}
\int_{0}^{a} g h d \theta=\mid g H-\int_{0}^{a} H d g \leq & \int_{0}^{a} g H-k \int_{0}^{M / k} \theta d g-M \int_{M / k}^{a} d g= \\
& =\int_{0}^{a} g H-k \int_{0}^{M / k} \theta g-\left.H(a)\right|_{M / k} ^{a} g+k \int_{0}^{M / k} g d \theta=k \int_{0}^{M / k} g d \theta .
\end{aligned}
$$

This proves the lemma.
We can write the integral 5)
6)

$$
u(z, z)=\int_{0}^{\pi / 2} \log \frac{1}{\sin \theta} h(\theta) d \theta
$$

where

$$
h(\theta)=\left(\frac{d \omega}{d \theta}\right)_{\theta}+\left(\frac{d \omega}{d \theta}\right)_{\pi-\theta}+\left(\frac{d \omega}{d \theta}\right)_{\pi+\theta}+\left(\frac{d \omega}{d \theta}\right)_{2 \pi-\theta} .
$$

From lemma 1 follows that $0 \leq h(\theta) \leq \frac{4}{\pi}$. Further

$$
\int_{0}^{\pi / 2} h(\theta) d \theta=\omega(z, C)=1 .
$$

Now, applying lemma 2 to the integral 6), we obtain

$$
0 \leq u(z, z) \leq \frac{4}{\pi} \int_{0}^{\pi / 4} \log \frac{1}{\sin \theta} d \theta
$$

By integrating the well-known development

$$
\log \frac{1}{\sin \theta}=\log \frac{1}{\theta}+\sum_{n=1}^{\infty} \frac{2^{2 n-1} B_{n}}{n \underline{2 n}} \theta^{2 n}, \quad|\theta|<\pi
$$

where the B_{n} are Bernoulli's numbers, we obtain

$$
\frac{4}{\pi} \int_{0}^{\pi / 4} \log \frac{1}{\sin \theta} \dot{d} \theta=\log \frac{4}{\pi}+1+\sum_{n=1}^{\infty} \frac{2^{2 n} B_{n}}{n \mid 2 n+1}\left(\frac{\pi}{4}\right)^{2 n}=\log 4-K .
$$

B. ANDERSSON, Integrals of moduli of regalar analytic functions

A numerical calculation gives $K=0.1100$. Thus

$$
e^{u(z, z)} \leq 4 e^{-K}=3.5833<3.6 .
$$

This upper limit gives the improved value of A.
By the formal calculation of $u(z, z)$ we have supposed for the sake of simplicity that the element of L at the point z is parallel to the real axis. If the angle between this element and the real axis is β, then

$$
u_{\beta}(z, z)=\int_{\bullet} \log \frac{1}{|\sin (\theta-\beta)|} d \omega\left(z, \alpha_{\theta}\right)
$$

Hence

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} u_{\beta}(z, z) d \beta=\log 2 \int_{C} d \omega\left(z, a_{\theta}\right)=\log 2 .
$$

Thus, the mean-value of $u_{\beta}(z, z)$ for all elements at z is $\log 2$.
If D is a circle, then $u_{\beta}(z, z)=\log 2$ for all β and $z \in D$. But in the general case $u(z, z)$ is not constant. The function

$$
z=\frac{w}{(1-\delta w)^{2}}
$$

is schlicht for $|\delta| \leq 1$ and represents the unit circle $|w| \leq 1$ on a convex domain D for $|\delta| \leq 2-\sqrt{3}$. If $\delta=2-\sqrt{3}$, then we can show by elementary calculus, that the value of $u(z, z)$ at $z=0$ for a segment L, coinciding with the real axis, is $\log \left(1+\frac{2}{\sqrt{3}}\right)$. Hence the best possible value of A in the theorem, obtained by this method, is $\geq 1+\frac{2}{\sqrt{3}}$.

Lemma 3. Let $z=w+a_{2} w^{2}+\cdots$ be schlicht and map the unit circle $|w| \leq 1$ on a convex region D. Then for $0<\varrho \leq 1$:

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|\frac{1}{\mathcal{J} z\left(\varrho e^{i \varphi}\right)}\right| d \varphi \leq A+\log \frac{1}{\varrho}
$$

where A is the constant calculated in the preceding.
Putting $\theta_{\varphi}=\arg z\left(\varrho e^{i \varphi}\right)$ we have $\mathscr{J} z=|z| \sin \theta_{\varphi}$. In the z-plane the circle $|w| \leq \varrho$ is represented on a convex region $D_{\varrho}<D$. We denote by α_{θ} the arc

$$
0 \leq \arg z \leq \theta, z \in \text { the boundary of } D_{e} .
$$

Now, it is easily seen that

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|\frac{\varrho}{z\left(\varrho e^{i q}\right) \sin \theta_{\varphi}}\right| d \varphi=\int_{0}^{2 \pi} \log \frac{1}{|\sin \theta|} d_{\theta} \omega\left(z=0, \alpha_{\theta}, \quad D_{\varrho}\right) \leq A
$$

Hence the lemma follows. It is evident that in the lemma we can substitute $\mathscr{J} z$ by the more general $\cos \beta \cdot \mathscr{J} z+\sin \beta \mathscr{R} z$ where β is real.

REFERENCES. (1) Carlson, Quelques inégalités concernant les fonctions analytiques. Ark. Mat. Astr. Fys. 29 B, N:o 11 (1943). - (2) Gabriel, Some results concerning the integrals of moduli of regular functions along curves of certain types. Proc. London Math. Soc. 28 (1928). - (3) - Concerning integrals of moduli of regular functions along convex curves. Proc. London Math. Soc. 39 (1937).

[^0]: ${ }^{1}$ Gabriel (3) has shown this inequality with $A=\pi(1+e)+e$.

