
A R K I V  F O R  M A T E M A T I K  B a n d  1 nr  28 

Communicated 11 October 1950 by F. CARLSON and J. MALMQUIST 

Solid spaces and absolute retracts 

B y  OLOF HANI~ER 

1. The well-known TIETZE extension theorem says that  a bounded real-valued 
continuous function defined on a closed subset of a normal space can be ex- 
tended to a function defined on the whole space and there having the same 
lower and upper bounds as the original function. This theorem, which is o f  
great importance in the theory of normal spaces, can also be looked upon as 
giving a property of the closed interval: Any mapping into a closed interval 
of a closed subset of a normal space has an extension to the whole space. 
STEENROD [7] has suggested the name "solid" for spaces having this property.  

Definition. A space X is called solid, if for any normal space Y, any  closed 
subset B of Y, and any m a p p i n g / : B  -~. X there exists an extension F :  Y-~ X o f / .  

TIETZE'S extension theorem then simply asserts tha t  a closed interval is solid. 

L e m m a  1.1. A n y  topglogical product o] solid spaces is solid. 

Proof.  For if X is the topological product of the spaces X~, then a mapping 
/ : B  ~ X of a closed subset B of a normal space Y is equivalent to a collec- 
tion of mappings f , : B - ~ X ~ ,  obtained from ] by projection onto each X , .  
X ,  being solid, / ,  can be extended to Y. These extensions together define an 
extension of L 

Since a closed interval is a solid space, so also is any cube, i.e. a product 
of closed intervals. In particular the Hilbert cube is solid. 

2. There is a Strong connection between the concept of a solid space and of 
an absolut~ retract. We shall in this paper study this connection. 

Using KURATOWSKI'S extension ([5] p. 270) of BORSUK'S original definition, 
we mean by  an absolute retract (abbreviated AR) a separable metric space X 
such that,  whenever X is imbedded as a closed subset of a separable metric 
space Z, X is  a retract of Z. 

Similarly we mean by  an absolute neighborhood retract (abbreviated ANR) 
a separable metric space X such that,  whenever X is imbedded as a closed 
subset of a separable metric space Z ,  X is a retract  of some neighborhood 
of X in Z. 

L e m m a  2.1. A retract o/ a solid space i s  s~lid. 

Proof.  Assume X is a retract of Z. Denote the retraction by r : Z  ~ X .  
Let ] : B - ~  X be a given mapping of a closed subset B of a normal space Y. 
Considering / as a mapping into Z we. have an extension F :  Y-~ Z. Then 
r F : Y - +  X is an extension of / to Y relative to X. 
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Any compact AR is a retract of the Hilbert cube. So we deduce from this 
lemma that all compact AR ' s  are solid. Later, however, we shall see by an 
example (example 5.1) that  there are non-compact AR's which are not solid. 

3. We now introduce the concepts that correspond to AR and ANR, if in 
the definition "separable metric" is replaced by "normal" (cf. [3], [6]). 

Definition. A normal space X is called an absolute retract relative to ~,ormal 
spaces (abbreviated ARbT) if, whenever X is imbedded as a closed subset of a 
normal space Z, X is a retract of Z. 

Definition. A normal space X is called an absolute neighborhood retract rela- 
tive to normal spaces (abbreviated ANRN) if, whenever X is imbedded as a 
closed subset of a normal space Z, X is a retract of a neighborhood of X in Z. 

The relation between these concepts and the concepts of AR and ANR will 
be discussed in the next section. In this section we prove the .following two 
theorems. 

Theorem 3.1. A normal space is an A R N  i/  and only i/  it is solid. 

Theorem 3.2. A normal space is an A N R N  i/  and only i] any mapping 
/ : B  ~ X o/ a closed subset B o/ a normal space Y can be extended to some 
neighborhood U o/ B in Y. 

The corresponding theorems for AR's and ANR's with the normal pair (Y,  B) 
replaced by a separable metric pair are well-known (cf. [2]). 

The proofs of theorems 3.1 and 3.2 depend upon lemma 3.3 below. Assume 
that  there is given a mapping ] : B  ~. X .  where B is a closed subset of Y, and 
where the spaces 'X  and Y are normal. Then we construct a new topological 
space Z as follows. In t h e  free union X u  Y of X and Y, i.e. the space in 
which X and Y are complementary disjoint open sets, we identify every point 
y e B with ] (y)e  X. The identification space (cf. [1] p. 64) is denoted by Z. 
The natural mapping of X v Y onto Z, restricted to X and to Y, yields two 
mappings i : X - + Z  and k : Y - ~ Z .  A set 0 in Z is open if and only i f j - l ( O )  
and k -1 (0) are open. Z is clearly a Tl-space. 

The mapping i is a homeomorphism into Z. Therefore we can identify X 
with i ( X ) r  Z, so that  X is a subset of Z, in fact a closed subset. Note that  
k ( y ) =  [ (y) for y e B, and that  k l Y -  B is a homeomorphism onto Z - - X .  

L e m m a  3.3. The space Z iust de/ined is nornml. 

Proof .  Let  F1 and F2 be two disjoint closed sets in Z. We have to find 
two disjoint open sets G1 and Gz for which 

(1) G1 D F1, G2 ~ F2. 

First, we use the normality of X to find two open subsets U1 and U2 of 
X such that  

(2) U1 n Uz = O ( =  the empty se t ) ,  

(3) UI :~ F~ n "X, U2~ F~n X. 
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Note that  since X is clo~ed in Z, 

(4) U x c X ,  1.72cX, 

Se('.ondly. we see tha t  t.he two sets 

F l u t 7 1 ,  F , ,u /72 ,  

are disjoint closed sets in Z, so 
subsets l'~ and 1'~ of Y such tha t  

(a) 

(6) 

Now set 

by the norhmli ty of Y we have two ol)en 

V i n  ] '2 : :  (), 

V 1 :D ]f l ( F  1 u ( f l ) ,  V2 :D I t '  1 ( ~ 2  u ~72). 

(;1 k (V1 B) u l ~1, (;',. "" (1'2 B) u l',, .  

We recall tha, t k I Y - B  is a homeomorl)hism between Y B and Z X. 
Then we see from (3) and (6) t ha t  (1) is true and from (2), (l). and (5) t ha t  
(q and (;~ are disjoint. 

Finally, to prove t h a t  Gi, i .... l ,  2, are ol)en, we lmve to  shiny tha t  j 1 if;i) 
and ]~' l ((;i) are open irl X "m(] Y resl)ectivoly. Now 

which is Ol):m in X, and 
j ' ((h) (;i n X U,., 

k l((;i)  " ( V i -  B) uk" I(t: i) .  

Since k-1 l;i) is open in B a.nd by  (6) contMned in l";, we can writ., 

where Hi 

k ~(Ui) ..... B n H i  B a H i n  V;, 

~s an open subset of Y. F rom 

l; i ((Ii) = (V; B) u [B n (IL n VI)] 

--(V~ B) u(H,-nVi) 

we then conclude, t ha t  k 1 (Gi) is open in Y. 
This proves lemma 3.3. 
We now give the proof of theorem 3.2, 

analogous way. 
thcorem 3.1 being 1)rov('d in an 

P r o o f  of t h e o r e m  3.2. To prove the necessity, let X be an  ANI{N. Suppose 
Y is a given normal  space, B a closed subset, and / : B - >  X a real)ping. Con- 
struct  as above the normM space Z. X is a ch)se(i subset of Z. Since X is 
an ANRN,  X is therefore a retr:mt of some Ol)en neighborhood U of X. Denote 
the re t ract ion ay  r :  U - +  X. Let  k:  Y - ,  Z be the same as above. Then 
V -  1~ 1 (W) is an open set in Y containing B, and the flmction F:  V-> X 
defined by 
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F (v) = rk  (v) for v e V 
is an extension of /. 

The sufficiency is clear from the fact that  if X is a closed subset of a nor- 
mal space Z, the condition in the theorem yields, tha t  the identi ty mapping 
i : X - ~  X has an extension to some neighborhood of X in Z. 

This proves theorem 3.2. 

4. We now want to study the connection between the concepts AR and 
ARN (and between ANR and ANRN). Since AR (ANR) is defined only for 
separable metric spaces, we then have to assume tha t  the space X is sepa- 
rable metric. 

The difference between the definition of a separable metric ARN and of an 
AR is as follows. Let  X be a closed subset of any space Z. Then if X is a 
separable metric ARN, X has to be a retract  of Z, whenever Z is normal. If  
X is an AR, however, X is only required to be a retract  of Z, when Z is 
separable metric. I t  is therefore clear tha t  a separable metric ARN is an AR. 
Conversely, we have seen earlier tha t  every compact AR is solid or, as we 
have shown to be the same, is an ARN. But this is not true in general for 
non-compact AR's.  A characterization of the AR's  that  are also ARN's  is given 
in theorem 4.1. 

The corresponding distinction exists between separable metric ANRN's  and 
ANR's.  

T h e o r e m  4.1. A separable metric space is an A R N  i/ and only i/ it is an 
A R  and an absolute G~. 

T h e o r e m  4.2. A separable metric space is an A N R N  i] and enly i/ it is an 
A N R  and an absolute Go. 

By ~n absolute G0 we mean a metric space which, whenever imbedded in a 
metric space, is a G0, i.e. a countable intersection of open sets. Since a closed 
set in a metric space is a G0, all compact metric spaces are absolute G~'s. 
Also all locally compact metric spaces can be shown to be absolute Go's. 

The class of all absolute G~'s is known to be the same as the class of all 
topologically complete spaces, i.e. spaces which can be given a complete metric. 
For further information about these spaces, see for instance KURATOWSKI [4], 
Chapter 3. 

I t  is known that  any subset of the Hilbert cube which is a G0 in the Hil- 
bert  cube, is an absolute G~. Thus the separable metric absolute G~'s are the 
spaces homeomorphic to a G~ in the Hilbert  cube. 

We now prove theorem 4.2, theorem 4.1 being proved similarly. 

P roo f  of t h e o r e m  4.2. We have to show tha t  the condition given in the 
theorem is both necessary and sufficient. 

a) Necessity. Suppose tha t  X is a separable metric ANRN. Then X is an 
ANR. Let  us prove tha t  X is an absolute G~. 

Let  X be imbedded in the Hilbert  cube I~ .  We construct a new space Z. 
The points of Z shall be in 1 -  1-correspondence with the points of ]~.  Let 
h (z) e I~ be the point corresponding to z e Z under this 1 - -  1-correspondence. 
Let  X ' =  h -1 (X), i.e. the subset of Z corresponding to X. The topology of Z 
is determined by taking as open sets all sets of the form 

378 



AIIKIV FOR MATEMATIK. B d  1 nr 28 

(1) h -1 (0) u A, 

where 0 is any open subset of I~ ,  and A is any subset of Z - -  X ' .  Z is readily 
seen to be a Hausdorff space. Let  us show tha t  Z is normal. 

Suppose F1 and F2 are two disjoint dosed subsets of Z. Let  the distance 
between two points of Z be the same as between the corresponding points 
of I~ .  (This metric is not in general a metrization of the topological space Z.) 
Consider a point x 1 E F  l a X ' .  By the e-sphere S (x  1,e) ,  s > 0 ,  we mean the 
set  of all points having a distance less than e to xl .  Since xl E X' ,  the collec- 
tion of all S (xz, e) make up a base for neighborhoods of xl .  Therefore, since 
F2 is closed, for some e 1 

S (xl, el) n F~ = O. 

Choose el = el (Xl) in this way for each x le  F1 n X' .  Then the set 

G 1 -~ F 1 u U S Xl, 
x~ E ~'~ N X' 

is open and contains F 1 . Similarly, choose e2 = e2(x2) for each x 2 E F e n X '  
such tha t  

S (x2, e~) n F1 = O, 
and take 

G2 ~ F2 u IJ S (x~ 
x,  E F~ f'l X '  \ 

Then G2 is open and contains F~. But  G1 and 
tha t  Z is normal. 

The 1 - -  l -mapping h i Z =- I~ is continuous, but  not topological. However, 
h I X '  is topological, showing tha t  X and X '  are homeomorphie. Then X '  is an 
ANRN, and since X '  is closed in Z, there exists a retraction r : U - +  X '  of an 
open neighborhood U of X' .  Since U is open in Z, U can be written in the 
form (1). Then X '  and A are disjoint, and we have 

G~ are disjoint, which proves 

X '  c h -1 (0). 

'Therefore we may assume h(U)  to be open in X, otherwise replacing U 
b y  h -1 (0). 

In order to show tha t  X is a G~ in I~ we consider for each n =  1 , 2 , . . .  
the set An c Z of all points z E U such tha t  the distance 

We see tha t  

1 
d (z, r (z)) >-- - .  

n 

A n n X '  = 0 

oo 

(2) x ' =  u - -  u A . .  
n = l  

We assert tha t  

(3) h (An) n X = O. 
3 7 9  
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....... ( , )  
For suppose there did exist a point x Eh ( A , ) n  X .  Take S = S x, ~.~ , 

1 
2 n -sphere with center x. S is an open neighborhood of x. Therefore 

t he  

(4) x e It (A,,) n S.  

Under the 1- -1-correspondence  h : Z  , I~ any two points x E X  and x' = 
h i ( x )EX '  have era'responding sets as neighborhoods. Hence (4) implies 

x' :: h- 1 (x) e A,, n h :1 (S). 

Since r is a continuous function, we obtain 

(5) x '  : r (z ' )  e r (A,~ n h -~ (S)). 

But any two points of h - l ( S )  have a distance from each o the r  less than 

S:) by the definition of ,4,, 

1 

n 

(6) r (A,, n 1~ -1S;:)  n h -1 (S) = 0 .  

Now (5) and (6) contradict each other, since h ~(S) is a neighborhood of x'. 
This contradiction shows tha t  (3) is true. 

Finally, since h ( U )  is open in X, (2) and (3) show tha t  X is a Go in I~ :  

X = n ( h ( U ) - -  h,An~). 

b) Sufficiency. The space X is an 'ANR and an absolute G~. We shall 
show tha t  X is an ANRN. 

Let  X '  be a subset of the Hilbert  cube I~ homeomorphic to X. Denote the 
homeomorphism by h : X -~ X' .  

Take the product space I , o X I ,  where I is the closed interval 0 ~ t ~ 1. 
We identify I~ with I~ •  and X '  with X ' X { 0 / ,  so tha t  I~ and X '  are 
subsets of I,,~ • I .  

Let us now, using an idea of Fox [2], consider the set 

r = X '  u (I~ • (0, 1]), 

where (0, 1] stands for the half-open interval 0 < t ~ 1. X '  is closed in T, 
hence there is a retraction r : U - >  X '  of an open subset U of T containing X ' .  

In  order to show tha t  X is an ANRN, let X be imbedded as a closed subset 
of a normal space Z. The mapping h:X- ->  X '  is a mapping onto the subset 
X '  of g , .  Since X is a closed subset of the normal space Z and since Iv  is 
solid, there exists a mapping H : Z - ~  I~  having the same values as h at  all 
points of X. 
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X'  is an absolute G6, so we can write 

or 

X' = I ~ - -  0 An, 
n = l  

where the sets A,, are closed subsets of I~ .  Then the sets 

are closed in 
such tha t  

en (z) = 1 

en (z) = 0 

The mapping e : Z  ~ I defined by 

Bn = H -1 (An) 

Z and disjoint from X. Thus there exist mappings e n : Z - +  I 

for z E B n ,  

for z E X .  

has the following properties: 

e (z)-- ~ 1 
n : l  ~ en (z) 

e (z) > 0 for z E U B n  = H -1 (I~ - -  X ' )  
n = l  

e(z)  = 0 for z e X .  

Therefore the mapping g: Z - ~  I~ X I defined by  

g(z) = (H (z), e (z)) for z e Z  

is into T, and we have 

g ( x ) = h ( x )  for x e X .  

Put  V = g-1 (U), and define / :  V-+ X by  

](V) = h -1 rg(v) for v e V .  

Then / is a retraction of V onto X. But  V is open in Z. Hence X is an 
ANRN. 

This completes the proof of theorem 4.2. 

5. If  we combine theorem 3.1 and theorem 4.1, we see tha t  the separable 
metric spaces tha t  are solid are those which are AR's  and absolute Go's. 
Examples of such spaces are all compact AR's.  That  they are solid was 
proved directly in section 2. Further examples are the real line and the 
product of a countable number  of real lines. The last space is not locally 
compact.  

We want  to show by  an example tha t  not all AR's  are absolute G~'s.  

E x a m p l e  5.1. Let  X be the set in the xy-plane consisting of all points for 
which x 2 + y2 < 1 and all points on x 2 + y2 = 1 with rational x. This space 
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X is known to be an AR ([2] p. 273), but it is not an absolute Go. Hence 
it is not an ARN or, what is the same, n o t  solid. That  X is not an ARN, 
can be proved directly by considering it as a subset of the normal (but not 
metric) space, obtained from the set x 2 +  y 2 ~  1 in the same way as Z is 
derived from I~ in the proof of theorem 4.2.  
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