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Some theorems on absolute neighborhood retracts 

B y  OLOF HANI~ER 

1. In this paper we shall s tudy A1NR's (absolute neighborhood retracts). The 
general problem will be as follows. Suppose we have proved that  all ANR's  
have a certain property. Then we may  ask, if this proper~ty is characteristic 
for ANR%, or in other words if it is true tha t  a separable metric space having 
this property necessarily is an ANR. Thus we shall s tudy necessary conditions 
for a space to be an ANR, and we shall find tha t  some of these conditions 
are also sufficient. 

Using KURATOWSKI'S modification ([7] p. 270) of BORSUK'S original definition 
([1] p. 222), we mean by  an ANR a separable metric space X such that,  when- 
ever X is imbedded as a closed subset of another separable metric space Z, it 
is a retract  of some neighborhood in Z. 

First, we take up the study of local properties of ANR's.  I t  is known tha t  
an ANR is locally contractible (cf. [4] p. 273) and BORSUK proved tha t  local 
contractability is sufficient for a finite dimensional compact space to be an 
ANR ([1] p. 240). In  a recent paper, however, he has given an example of a 
locally contractible infinite dimensional space, which is not an ANR [3]. So 
the question then arises, if the property of a space to be an ANR is a local 
property.  That the answer is affirmative is shown by  theorem 3.3. In the case 
of a compact space this has already been proved by  YAJIIMA [10]. 

Thereafter we prove some theorems on homotopy of mappings into an ANR. 
Briefly the result can be stated by  saying that  two mappings of the same 
space into an ANR which are "near"  enough to each other, are homotopic, and 
tha t  if the homotopy is already given on a closed subset and is "small"  enough, 
then this homotopy is extendable. For a compact ANR we can give an exact 
meaning to the words near and small in terms of some metric. But  the uni- 
formity structure implied by  a metric does not seem to be a suitable tool for 
handling non-compact ANR's.  Instead of a metric we therefore use open cover- 
ings of the space. 

BORSUK proved [2] tha t  any  compact ANR X is dominated by  a finite poly- 
hedron P. This means tha t  there exists two mappings q : X -+ P and ~v : P -+ X 
such tha t  ~o ~0 : X -+ X is homotopic to the identity mapping i : X ~ X. We 
now prove tha t  the polyhedron P and the mappings ~ and yJ can be chosen 
so tha t  this homotopy between ~ ~ and i is arbitrarily small, and we show 
tha t  in this way we get a sufficient condition. This result is generalized 
in a natural  way to n?n-compact spaces by  using infinite locally finite poly- 
hedra. Since these polyhedra are ANR's  (see corollary 3.5) we thus see tha t  
any  ANR is dominated b y  a locally compact A~R.  
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Finally we study a theorem by J. H. C. WtIITEHEAD. By a new proof we 
are able to generalize it slightly. 

2. Let  us develop in this section some notations and well-known results, 
which we need in the sequel. 

All spaces in this paper will be sepa rab le  me t r i c  (or rather separable me- 
trizable, since we often consider different metrics for the same space). 

By a pair (Y,B)  we mean a space Y and a closed s u b s e t B o f  Y. I f ( Y , B )  
is a pair and F : Y - ~  X and ]:B---> X are two mappings into a space X such 
that  ~ ' ( y ) = / ( y )  for y e B ,  we call F an extension of ] to Y and ] the re- 
striction of F to B, denoted ] = F I B .  If  F is only defined on some neigh- 
borhood of B in Y, F is called a neighborhood extension of ] in Y. 

Suppose X is a subset of Z. Then we distinguish between two mappings 
] : B  ~ X and g : B - +  Z for which ] ( b ) = g ( b )  for all b e B. This distinction is 
of importance, when we speak about extensions. That / i s  extendable to Y ~  B 
implies that  g is extendable, but the converse is not in general true. An exten- 
sion of g will also be called an extension of ] relative to Z, and an extension 
of ] will be called an extension of g relative to X. 

If  ] ( y , t ) : Y •  denotes a homotopy, I being the interval 0 < t <  1, 
we shall also use the notation ] t : Y  ~ X ,  where ]t for each t is the mapping 
determined by [t (Y)= ] (y, t). When the notation ]t (Y) is used this will impli- 
citely mean that the function is continuous in both variables y and t. 

By an open covering ~ = {U~} of a space X we mean a family of open sub- 
sets U~ of X, the union of the U~'s being X. An open covering fl = {V,} is 
said to be a refinement of ~ = {U~}, if for each # there is a 7 such tha t  
V , c U ~ .  A covering ~ = {U~} is called star-finite, if for each 7 we have 
U ~ n U , ~ O  ( = t h e  void set) for only a finite number of #. By a countable 
covering ~ = {U~} we mean  a covering for which the index set {A} is countable. 
A countable covering can be written ~ = {Un}, n = 1, 2 . . . .  ~vith the set of 
natural numbers as the index set. S. KAPLAN ([6] p. 249) has proved tha t  
every open covering of a separable metric space X has a countable star-finite 
refinement. A slightly different proof of this .theorem will be derived from the 
method in the proof of theorem 3.3 (see remark 3.4). 

By a locally finite polyhedron we mean a simplicial polyhedron with a count- 
able number of simpliees each meeting only a finite number of simplices. The 
polyhedron is topologized in the natural way by  taking as open sets all sets 
that  intersect any simplex in an open subset of that  simplex. This topology 
makes a locally finite polyhedron into a locally compact separable metric space. 
We shall later see tha t  it is an ANR. 

A locally finite polyhedron can be topologically imbedded in a Hilbert space 
as follows. Let {pn} be the vertices of the polyhedron and {en} the unite points 
of the countable number of coordinate axises of the Hilbert space. Define the 
topological mapping ~0 by  setting ~0 (p~) = e~ and extending the mapping linearly 
for every simplex of the polyhedron. 

For every covering of a space the nerve of the covering is the abstract  
simplieial complex whose vertices are the sets of the covering and in which 

{U~ 1, U~ . . . . . .  U~r} is a simplex if and only if r U~ i is non-void. T h e  poly- 
i = l  

hedron corresponding to this complex is called the geometrical realization of the 
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nerve of the covering. The geometrical realization is locally finite if and only 
if the covering is countable and star-finite. 

For countable, star-finite coverings of a space X we consider the barycentric 
mapping of X into the geometrical realization of the nerve of the covering. If  
the geometrical realization is imbedded in the Hilbert space in the way described 
above, this mapping is defined by letting the image-point of a point x E X be 
the point {a,,(x)}, where 

d (x, X - U,~) 
an(X) = 

~ '  d (x, X - -  Ui) 
i=1  

I t  has been proved tha t  a space X is an ANR if and only if for any pair 
(Y, B) and any mapping ] : B  ~ X there exists a neighborhood extension o f / ( c f .  
Fox  [4]). This result will be used in this paper without any further reference. 

Let X be a closed subset of an ANR Z. Then X is an ANR if and only 
if X is a neighborhood retract of Z. To be able to apply this when deter- 
mining if a space X is an ANR, we want to imbed X as a closed set in an 
ANR Z. This is always possible. In fact, we can choose Z to be an AR 
(absolute retract). If  X is compact, we simply imbed X in the Hilbert cube I~. 
For I~ is an AR. For a non-compact space this method fails to work, because 
X will not be closed in I~. WOJDYSLAWSKI [9] has proved, however, tha t  any 
space X can be imbedded as a closed set in a space T which is a convex 
subset of a Banach space and which is therefore an AR. 

Some use has been made within the theory of compact ANR's  of the fact 
tha t  the Hilbert cube I~ is convex. To be able to prove the corresponding 
theorems in the non-compact case we shall use the space T just mentioned. 

3. L e m m a  3.1. "Any open subset o~ an A N R  is an A N R .  

Proof .  Let  O be an open subset of the A N R  X .  Suppose there is given a 
pair (Y, B) and a mapping / : B -~ O. We shall show that  / has a neighborhood 
extension. 

Since X is an ANR, / has a neighborhood extension relative to X, say 
g : U  ~ X,  where U is a neighborhood of B. The set 0 is open so that  
V = g- l (O)  is open in U, and because B c V, V is a neighborhood of B in Y. 
Define F : V-~  0 by  

F(y)  = g ( y )  for y E V .  

Then F is an extension of / to the neighborhood V of B in Y. 
This proves lemma 3.1. 
Len-lma 3.1 suggests the following concept. 

Definition. A space X is called a local A N R  if every point x E X  has a 
neighborhood which is an ANR. 

I f  a point x has a neighborhood which is an ANR, it follows from lemma 
3.1 that  given any neighborhood U of x, there is an open neighborhood of x 
contained in U which is an ANR. This justifies the name local ANR. 

I t  is clear that  an ANR is a local ANR. The converse is also true. 
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T h e o r e m  3.2. The two concepts A N R  and local A N R  are equivalent. 

T h e o r e m  3.3. A space which is the union o/ open ANR's  is an ANR.  

Proofs .  To prove theorem 3.2 we have to show that  a local ANR is an 
ANR. Since every point of a local ANR has an open neighborhood which is 
an ANR, theorem 3.2 follows from theorem 3.3. 

To prove theorem 3.3 let us con'sider two special cases and from them deduce 
the general case. 

a) X is the union of two open ANR's: X = 0 1 o 0 2 .  Let  / : B - + X  be a 
given mapping of a closed subset B of a space Y. We have to show that  / 
has a neighborhood extension. 

The two sets 
Fa - B - - / - 1  (02) , F2 = B - - / - 1  (01) 

are disjoint sets, closed in B and therefore also closed in Y. By ' the  normality 
of Y take two disjoint open sets Y1 and Y2 in Y such that  

Y1 ~ F1, Y2 ~ F2. 

Then Yo= Y - - ( Y 1 u Y 2 )  is a closed set in Y. Set B i =  YinB,  i = 0 ,  1,2.  
We have 

(l) ](Bo) c Oifl 02, 

/(B1) c 01, /(B~) c 02. 

Bo is a closed subset of Yo, and 01002  is an ANR. Therefore (1) shows 
that  there exists an extension of ]lBo relative to 01 n 09. to an open neigh- 
borhood Uo of Bo in Yo- This extension defined on Uo and the original map- 
ping ] defined on B agree on Bo = Uo n B, so they together define a mapping 
g : U o u B - + X .  Since 

Uo = (Uo u B) n Yo, 

Uo is closed in U o o B. B, being closed in Y, is also closed in U o o B. There- 
fore g is continuous. 

We have 

(2) g(UooB1) C 01, g(UouB2) c 02, 

(3) Y o -  Uo is closed in Y. 

The set Uo uB  1 is closed in Uo u Y1. For 

(U o u Y x ) - ( U o U B 1 ) =  Y 1 - - B I =  Y 1 - - B  

is open in Y. Since 01 is an ANR, we therefore in view of (2) have an exten- 
sion g l : U 1 - +  01 of g lUo u B1 relative to O1 to an open neighborhood U1 of 
UouB1 in UouY1. Because of (3) UouY1, is open in YouY1, so that  

(4) U1 is open in You Y1. 
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Similarly let g2:U2---> 0 2 be an extension of g lUo u B 2 relative to 02 to an 
open neighborhood Us of Uo u B  2 in Uo v Y2. Because of (3) Uo u Y2 is open 
in You Y2, so tha t  

(5) U2 is open in You Y2. 

Set U =  UlUUs  and define F : U - + X  by  

F (u) = el (u) for u E U1, 

F (u) = gz (u) for u E U2. 

For  u E Uo = U1 n U2 we have gl (u) = gz (u) = g (u). Hence F is uniquely deter- 
mined. We have 

U 1 = U -  Y~, Us = U -  YI, 

so that  U1 and Us are closed in their union U. Thus F is continuous. F is 
an extension of /. Therefore we only have to prove tha t  U is a neighborhood 
of B in Y. 

In  fact, U is open in Y. For 

Y -  U = [(You Y 1 ) -  U1] U [(You Y 2 ) -  Us] 

is closed because of (4) and (5). 
This proof is essentially the same as BORSUK'S proof ([1] p. 226)in the case 

of the union of two closed ANR's  whose intersection is an ANR. 
oo 

b) X is the countable uniort of disjoint open ANR's :  X = U On. Suppose X 

is imbedded as a closed subset of a space Z. Choose some metric for Z. Each 
On, being the complement of an open subset of X, is closed in X and so also 
in Z. Define a collection of disjoint open sets {Gn} in Z such tha t  G~ con- 
tains On. This can be done for instance by  letting Gn be the set of all points 
of Z whose distance to On is less than to X - - O n .  Since On is an ANR and 
is  a closed subset of Gn, it is a retract  of some open set H ,  ~ Gn. Denote the 
retraction by  r , :  Hn->  0, .  These retractions together define a retraction 

oo  

r:  U H n ~ X  by 
n = l  

r (z) = rn (z) f o r  z ~ / / ~ .  

oo 

Since U H~ is an open subset of Z containing X, this proves the theorem in 
n = l  

case b). 
c) Now to prove the theorem in the general case, note tha t  by  LINDELSF'S 

oc 

covering theorem X is a countable union of open ANR's :  X = U On. From 
n = l  

the sequence On we construct some other sequences of open sets. 
First, define Un by  

n 

U , =  UOi. 
i = l  
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U, is open in X, and 
Furthermore 

by  successive use of a) we see that  U.  is an ANR. 

X =  U Un, 
~ = 1  

Un ~ Un+l. 

Secondly, define Vn ~ U,, to be set of all points of X having a distance 
1 

> to X - - U n  (in some metric on X). Vn is open in X, VncUn, so Vn is 
n 

an ANR. We have 
or 

(6) x = u v~, 
n=l 

(7) Vn c Vn+. 

Finally, define Wn by 

W1 = V1, W2 = V~, 

(8) W .  = V . -  V . -2  for n => 3. 

Each Wn is open in X, W n c  Vn, so Wn is an ANR. From (7) and (8) we 
obtain 

W n  :2} Vn - -  Vn -1 ,  
so that  (6) implies 

i = U Wn= U W2n-lU U W2n. 
n = l  n = l  n ~ l  

But U W2,~-1 and U W2n are unions of disjoint open ANR's.  Thus they are 
n = l  ~ = 1  

themselves ANR's  by  b). X, now being a union of two open A~R's ,  is an 
ANR. This proves theorem 3.3 and so also theorem 3.2. 

R e m a r k  3.4. The method of this proof can be used to demonstrate S. KAP- 
LA~'s theorem tha t  an arbi trary open covering of a separable metric space has 
a countable star-finite refinement. For take from a given covering in the same 
way as above .a  countable refinement {On} and construct W,. Then Wn is an 

n 

open subset o f  U Oi. Hence the covering 
i=l 

{ W n n O d ,  n = 1 , 2  . . . . .  i = 1  . . . .  , n ,  

is a refinement of the given covering and is clearly countable and star-finite. 

Coro l la ry  3.5. A locally finite polyhedron is an ANR. 

Proof.  I t  is known tha t  a finite polyhedron is an ANR. Hence a locally 
finite polyhedron is a local ANR and so an ANR by  theorem 3.2. 

4. Let  ] , g : Y - + X  be two mappings of a space Y into a space X. Let  
d(xl, x~) be a metric for the space X. 
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Definition. If X is covered by ~ = {U~}, ] and g are called ~-near if for 
each y C Y  there is a U~ such tha t  /(y) qU~, g(y) eUx. If  e > O  is given, / 
and g are called e-near if d (/(y), g(y))< ~ for each y e Y. 

Let /t: Y-+ X be a homotopy. 

Definition. If  X is covered by  ~ = { U~}, It is called an ~-homotopy if for each 
y q Y  there is a U~ such tha t  /t(y) eU~ for 0 < t < l .  If  e > 0  is given, ]t is 
called an e-homotopy if for each y the set of the points /t (y), 0 < t < 1, has a 
diameter less than e. 

T h e o r e m  4.1. Let X be an A N R  and cr a given open covering. Then there 
exists an open covering ~, which is a re/inement o/ ~, such that .given any pair 
( Y, B), any two ~3-near mappings Fo, F1 : Y --> X,  and any/3-homotopy/t : B ~ X 
between /o = Fo l B and ]1 = Fl  l B then there exists an extension o/ this homotopy 
to all o/ Y, the extension being an ~-homotopy between Fo and F 1. 

Note the special case when B is void. Any two /3-near mappings are 
r162 

That  the converse of theorem 4.1 is true, is shown by theorem 4.2. 

Proof.  As in section 2 we consider X as a subset of the space T. X being 
an ANR, there exists a retraction r : U - + X  of an open set U, X c  U c T .  

From the given covering a = {Uz} we construct fl as follows. Obviously 
: r  {r-l(Ua)} is an open covering of U. Let  /3 '=  {V~,} be a refinement of ~' 
such tha t  each V, is convex. Put  

/3 = IV .  n X } .  

Then fl is a refinement of ~. We shall prove that  /3 has the property stated 
in the theorem. 

Let  (Y, B) be a, pair, Fo, Fa two /3-near mappings, and /t a /3-homotopy 
between ]o = FoIB and /1 = F I I B .  Since T is convex, the two points Fo(y) 
and F1 (y) can be joined in T by the straight line segment (using vector 
notation in T) 

Gt(y)= ( 1 - - t )  F 0(y) + t F  l(y),  

described by  t going from 0 to 1. As we shall show below Gt (y)E U. Hence 
r Gt (y) : Y -+ X is defined and is a homotopy between Fo (y) and F1 (y). But 
it is in general not an extension of /t. We therefore want to replace r Gt (y) 
by  /t(y) for yEB.  

Define 

by  

To save the continuity we proceed as follows. 

h(y , t ) :  Y X {0}oY X {1}uB X I -+ X 

h (y, 0) = F o (y) for y ~ Y, 

h (y, 1) = F1 (y) for y e Y, 

h(y , t )  =It(y)  for y e B ,  t E I .  

Since X is an ANR and I is compact there exists an extension H(y,  t ) o f  
h(y , t )  to a set Y X  {0}u Y • {1}uV • I ,  where V is an open neighborhood 
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of B. By taking V small enough the homotopy Htl V:  V--+ X wi]l be a 
fl-homotopy like /t. 

Let  W be an open set in Y such that  B c  W c  W c  V, and de f inea func-  
tion e (y) : Y -+ I such that  

e(y) = 0  for y E Y - - W ,  

e ( y ) =  1 for yE B.  

Set 
G~ (y) = (1 - -  e r y,) Gt (y) + e (y) Ht (y) for y E V, 

G~ (y) = Gt (y) for y E Y - -  V. 

Then G'(y, t) is continuous. We have 

G~ (y) = F 0 (y), Gi (y) = F ,  (y). 

Let  us show that  

(1) Gi (y) E V 

and that  for each y there is a U~E~ such that  

(2) r G~ (y) E Uz, for t E I. 

From (2) it will follow that  r G; (y) : Y -+ X is an ~r Being an ex- 
tension of [t (y), r G~ (y) is therefore the sought-for homotopy between F 0 (y)and 
F1 (u). 

We have to prove (1) and (2). They will follow if we show that  for each 
y e  Y the curve 

(3) ai (y) Z V. 

for some V, eft ' .  There are two cases. 
a) e ( y ) =  0. Then G~(y)= Gt(y), the straight line segment between Fo(y)  

and F 1 (y). Since F0 and F1 are fl-near, and since all V,'s are convex, this 
line segment ties in some Vu eft ' .  

b) e ( y ) > 0 .  Then y e W .  H t ( y )  is a fl-homotopy. Hence 

(4) Ht (Y) E V u 

for some V, eft ' .  In particular 

Ho(y) = F o ( y )  =Go(y)  EV,,  H~(y) = F I ( y )  = G I ( y )  EVg. 

Since V, is convex we therefore deduce 

(5) Gt (y) E V,,, 

and (3) follows from (4) and (5). 
This completes the proof of theorem 4.1. 
That  ANR's are locally contractible is an immediate corollary of theorem 4.1. 
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T h e o r e m  4.2. A necessary and su]/icient condition /or a space X to be an 
A N R  is that there exists an open covering a o/ X with the/ollowing property. I /  
( Y, B) is a pair, Fo, F1 : Y ---> X are two a-near mappings, and /t : B ---> X is an 
:r between /o = Fo I B and /1 = Fxl  B, then there exists a homotopy 
Ft : Y---> X between F o and F1 which is an extension o/ /t. 

Proof.  The necessity follows from theorem 4.1. To prove the sufficiency let 
x E X be an arbi trary point and let U be an element of the covering a con- 
taining x. Define F~ : U --> X, F~ : U ~ X, and [~ : x --> X by  

Fo (u) = x for  u E U, 

F ~ ( u ) = u  for u E U ,  

/;(x) = x  for t E I .  

Then obviously Fo and F1 are a-near, and /~ is an a-homotopy, so we have 
an extension F~: U--> X of /~. 

Since F ' ( x X I ) = x E U  we can by  the compactness of I take an open 
neighborhood V of x such tha t  

F' (V X I) c U .  

We assert tha t  V is an ANR. 
For let (Y, B) be any  pair and / : B --> V any mapping. Define F~' : Y -2 X, 

F'I' : Y ~ X ,  and ft' : B ~ X by 

Fo' (y) = F~' (y) ~ x for y E Y, 

/~" (y) = F~t(/Cy)) for yEB,  0 < t < 

/;' (y) = F2-2t( /(y))  for y E B ,  �89 <= t <= 1. 

We see tha t  F~" and F'[ are trivially a-near and tha t  /~" is an a-homotopy. 
Then there exists an extension F~': Y->  X of /;'. Denote by  W the" open set 
F ~ - I ( V )  and define F :  W - +  V by  

F (y) = F~' (y) for y E W. 

Then F is a neighborhood extension of /, showing tha t  V is an ANR. 
T h u s  every point x e X has a neighborhood V which is an ANR, so X is 

an ANR by  theorem 3.2. This proves theorem 4.2. 

5. Definition. The homotopy extensi~)n theorem is said to hold /or a space X ,  
if for any homotopy / t :B - ->  X between two mappings ]o , / I :B - ->  X ,  where B 
is a closed subset of a space Y, the fact tha t  /0 is extendable to a mapping 
F o : Y --> X implies tha t  /t is extendable to a homotopy Ft : Y -+ X between F o 
and an extension F x of /1. 

In  particular let /o,/1 : B  ~ X be two homotopic mappings. Then if ]0 is 
extendable to Y, ./1 is also extendable to Y. 

I t  is known tha t  the homotopy extension theorem holds for any ANR (cf. 
[5] p. 86). 
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Theorem 5.1. A space X is an A N R  i/ and only i] /or each point x E X  
there exists a neighborhood V o] x such that ]or any pair (Y, B) any mapping 
] : B --> V has an extension F : Y -~ X relative to X .  

Proof. The necessity is contained in a proof by KURATOWSKI ([7] p. 275). 
An alternative proof is the following. (Cf. also [10] p. 59.) 

Let x be a point in the ANR X. X is locally contractible. Take V a 
neighborhood of x which in X is contractible to x. Any mapping / : B - - >  V is 
then homotopic to the constant mapping g : B  ~ V, which maps all B into x. 
Since g is extendable to Y, ] is extendable to Y relative to X by the homo- 
topy extension theorem for X. 

To prove the sufficiency we may assume V to be open, otherwise replacing 
V by any open neighborhood of x contained in V. We assert that  V is an 
ANR. For let (Y, B) be a pair. A mapping / : B - ~  V has then an extension 
Y : Y --> X relative to X. W = F -1 (V) is open in Y. Then / '  : W ~ V defined by 

/ ' ( y ) = F ( y )  for y E W  

is a neighborhood extension of /. Hence V is an ANR, so that  X is a local 
ANR and therefore also an ANR. 

R e m a r k  5.2. We may also prove that  if U is a given neighborhood of x, 
we can choose V in theorem 5.1 so that we can require Iv(Y) c U (cf. YAJI~IA 
[10]). For we may assume U open. Then U is an ANR by lemma 3.1, and 
we can apply theorem 5.1 on U instead of on X. 

T h e o r e m  5.3. I1] the h6motcpy extension theorem holds ]or a locally contractible 
space X ,  then X is an A N R .  

Proof. Let X be such a space. Theorem 5.1 gives a necessary and sufficient 
condition for a space to be an ANR. When proving the necessity of that  
condition, we only used the facts that  an ANR is locally contractible and that  
for an ANR the homotopy extension theorem holds. Thus our space X satis- 
fies that  condition. Since the condition is also sufficient, X is an ANR. 

The previously mentioned example by BORSUK [3] shows that  there are lo- 
cally contractible spaces which are not ANR's. As an example of a space for 
which the homotopy extension theorem holds but which is not an ANR, we 
can take the set of rationals on the real line. 

6. In section 3 we proved that  a locally finite polyhedron is an ANR. We 
are now going to show that  any ANR is dominated by a locally finite poly- 
hedron (see theorem 6.1). Later we shall prove that  the converse of theorem 
6.1 is true (see theorem 7.2). 

Definition. The space Z is said to dominate the space X if there exist two 
mappings ~0 : X -~ Z and ~ : Z -> X such that y~ ~ i : X -> X, where i denotes 
the identity mapping. If the homotopy is an :r �9 being a covering 
of X, Z is said to a-dominate X .  If the homotopy is an e-homotopy, e being 
a positive number, Z is said to e-dominate X .  
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T h e o r e m  6.1. 71/ X is an A N R ,  then /or any open covering :r there exists 
a locally /inite polyhedron ~r X .  1 

Proof .  As in section 2 we consider X as a subset of the space T. X being 
an  ANR,  there exists a retract ion r : U - ~ X  of an open set U , X ~  U ~ T .  

Let  ~ = {U~} be the given covering. Consider ~ ' =  {r-l(U~)}, which is an 
open covering of U. For  each u E U  we determine a number  ~ ] = ~ ( u ) ~ 0  
such tha t  the convex T-neighborhood S (u, ~j) of u in T, i.e. the set of all 
points of T with a distance to u less than  7, satisfies 

(1) 
for some U~ E :r Set 

S(U,  7) C r - l ( U 2 )  

Then fl is a refinement of ~. Let  7 = {Vn}, n = 1, 2 . . . . .  be a countable star- 
finite refinement of ft. Tha t  7 is a refinement of fl means tha t  for each Vn 
we  can select a point  un and the corresponding number  ~n such tha t  

Let  now P be the geometrical realization of the nerve of 7. Denote the 
ver tex  corresponding to V~ by  p~. We are going to show tha t  P ~-dominates X. 

We define ~ : X -~ P to be the barycentr ic  mapping and set ~o = r g : P -~ X, 
where g : P -~ U is the mapping defined by  sett ing g (p.) = us for every vertex 
and  extending the mapping linearly on every simplex of P.  We have to verify 
tha t  g (P) ~ U. 

For  an arbi t rary  point  x f iX denote by  V~I . . . . .  Vnr the finite number  of 
elements  of 7 containing x. Then ~n, . . . .  , ~nr are the corresponding ~-numbers, 

and we m a y  assume tha t  the notat ion is chosen so t h a t  (i = 1 . . . . .  r) 

F r o m  

we obtain 

~?n~ > ~n i �9 

d (x, u,~) < -~ = 7 '  

so tha t  

(2) d (u~,, u~i) < 7.,. 

The point  x is mapped by  ~ into the simplex of P spanned by  P-I . . . .  , Pnr 

and  this simplex is mapped by  g onto the simplex in T spanned by  the points  
uni. F rom (2) we see tha t  

1 I have been informed that  C. H. DOWXER has independently proved this theorem and 
i ts  converse. 
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(3) u.~ e S (u . .  ~,,~). 

Hence 

(4) a ~ (x) E Z (u,,. ~l.,). 

Now to prove tha t  g ( P ) ~  U let a = ( p , , , . . . ,  Pmq) be a simplex of P.  
q 

Let x in the arguments above be a point in N U~j. Then the p~i's are 
i=1 

among the p,~'s, and (3) yields 

g (p,,~) e S (u,,, ~,~). 
Hence 

g (a) c S (u.L, ~ ,J  c U, 

showing g (P) c U. 
Thus ~ = r g is defined. Let  us show tha t  ~o~:X--> X is ~-homotopic to 

the identi ty mapping i : X -~ X. An arbi trary point x E X and the corresponding 
point g ~  (x) can be joined in T by a straight line segment. This gives a h o m o -  
topy in T between g ~  and i. For each x, (4) and the trivial fact 

(5) x E S (u.,, 7.,) 

show tha t  this homotopy is in U. Applying r to the homotopy we have a 
homotopy in X between v2~ and i. (1), (4), and ( 5 ) i m p l y  tha t  this is an 
a-homotopy. 

Coro l l a ry  6.2. Any  A N R  is dominated by a locally compact A N R .  

Proof .  For a locally finite polyhedron is locally compact. 

T h e o r e m  6.3. I] X is a compact A N R  with a given metric, then ]or any 
number e > 0 there exists a ]inite pglyhedron e-dg~ninating X.  

Proof .  Let  ~ in the proof of theorem 6.1 be a covering by  open sets with 
diameter less than e. Proceed as in tha t  proof, but  choose 7 to be a finite 
covering. This we can do, since X is compact. The geometrical realization of 
the nerve of 7 is a finite polyhedron e-dominating X. 

7. The purpose of this section is to prove the converse of theorem 6.1 
(proved by theorem 7.2}. 

Let  X be a space. We consider deformations of X, i.e. homotopies ht : X -~ X 
such tha t  ho = i : X  ~ X ,  the identity mapping. The mapping hi is a mapping 
into X. Thus if X is an ANR, there exists for any space Z in which X is 
imbedded as a closed subset, a neighborhood extension of hi in Z. Conversely, 
however, suppose tha t  we know of a space X tha t  there exists a deformation 
ht:X--> X such tha t  whenever X is a closed subset of a space Z, hi is always 
extendable to some neighborhood of X. Then X is not necessarily an ANR. 
For any  contractible space satisfies this condition, and there are contractible 
spaces which are not ANR's.  However, if ht can be chosen arbitrari ly small, 
it turns out tha t  X must  be an ANR. 

400 



ARKIV FOR MATEMATIK. B d  1 nr 30 

D e f i n i t i o n .  Let  X be a space. A sequence of deformations h~ : X --> X, hno = 
= i : X --> X, n = 1, 2, . . . ,  is said to converge to the identity mapping i, if for 

any  point  x 0 e X and any  neighborhood V of x0 there is another  neigborhood 
W of x 0 and an integer N such tha t  x E W  and n > N  imply hn(x, t)  E V  
for all t. 

T h e o r e m  7.1. Each o/ the ]ollowing three conditions is a sufficient condition 
]or a space X to be an A N R .  Let Z be a space in which X is imbedded as a 
closed subset. 

(a) For each covering o~ o~ X there exists an cr ht : X - +  X such 
that /or any Z, hi is extendable to a neighborhood o~ X in Z. 

(b) For some metric on X there exists/or each e ~ 0 an e-de/ormation ht : X -+ X 
such that /or any Z, h i is extendable to a neighborhood o/ X in Z. 

(c) There exists a sequence o./ de/ormations h~ : X ~ X converging to the identity 
mapping such that /or any Z, h n is extendable to a neighborhood o/ X in Z. 

Proof .  I t  is clear t h a t  of these conditions (a) implies ( b ) a n d  (b)implies (c). 
Hence we have to prove t h a t  (c) is a sufficient condition. Note tha t  when X 
is compact  (a), (b), and (c) are directly seen to be equivalent. 

Let  h ~ : X - + X  be as in (c). I f  (Y ,B)  is any  pair  and / : B - + X  is any  
mapping, then hn~/ is extendable to a neighborhood of B in Y. For, as in 
section 2, imbed X in T. Let  n be fixed. The mapping h ~ : X  ~ X has a 
neighborhood extension H : U -+ X, U open in T, and / : B -+ X has an extension 
F :  Y - + T  relative to T. The set V = F  - I ( U )  is then a neighborhood of B 
in Y, and g : V  ~ X  defined by  g ( y ) =  HF(y)  for y E V is a neighborhood 
extension of h, ~ /  in Y. 

We want  to prove tha t  (c) implies t ha t  X is an ANR.  Then it is enough 
to show tha t  X is a neighborhood retract  of T. We notice tha t  h ~ : X  ~ X 
has  an extension H o : U -+ X, U being a neighborhood of X in T. Let  us show 
t h a t  X is a retract  of U. 

For  t ha t  purpose we define a mapping H(u,  t ) : U  X [0, 1)--> X, where [0, l) 
denotes the half-open interval 0 < t ~ 1. Set 

1 
sn = l - - 2 , ~ _ ~ ,  n =  1 , 2  . . . . .  

Start ing with //8, = H o : U  ~ X already defined as an extension of h~, we 
successively define H on the sets U X [sn, s,+~] by  an induction on n. This 
will be  done in such a way  tha t  Hsnl X = hl. 

Assume Ht defined for sl .< t < sn. Take the space U X I and consider the 
closed subset C =  U X  { 0 } o X X I .  Since H, n l X = h  i, we can map C into X 
b y  g :  C ~ X defined by  

g (u, 0) = H~. (u) for u e U, 

g (u, t) = h~_ t (u) for u E X, t E I .  

'The mapping h ' :+ lg :C-~  X is then, as we have proved, extendable to some 
neighborhood of C in U X I .  Applying DOWKER'S method (cf. [5] p. 86), we 
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get an extension G : U • I --> X of h7 +~ g defined on all of U X I .  Now define 
H (u, t) for t E [s,~, s,~+l] by  

H ( u , ( 1 - - s : : s n + s s n + l ) = h ~ + l H ~ ( u )  for 0 < s < � 8 9  

H (u, ( 1 - -  s: s.  + s S ~ + l ) = G ( u ,  2 s - - 1 )  for l < s <  1. 

This extends the definition of H to U X [s~, Sn+l]. We easily verify tha t  H is 
uniquely determined for t=s ,~  and t = � 8 9  For t = s n + l  and x E X  
we have 

H (x, 8n ,L1) : e (x, l )  --  h? +1 g (x, 1) = h? +1 (x), 

which means tha t  
Hsn~_l X .n+l  

Therefore the induction works. In  this way H will be defined for all of 
U X [0, 1). H is clearly continuous. 

Our next  step will be to extend the mapping Kt = H t l X : X - >  X defined 
on X •  to all of X •  by  setting K(x ,  1 ) = x .  Then K ( x , t )  is a con- 
tinuous function. This is already proved for 0 < t < 1, and is proved for t = 1 
as follows. Let  x0 be any point in X and V any neighborhood of x0 in X. 
We want to find a neighborhood W • [T, 1] of x0 X {1} such tha t  

(1) K (W X IT, 1]) r V. 

For t E [s~, Sn+l]  Kt takes the values (t = (1 - -  s) s~ + s s~+l) : 

Kt (x) = bn+l t,n �9 -2s "o,(x) for 0 < s < � 8 9  

Kt (x )=h /+1  n = = h2_2s(x) for � 8 9  

i.e. values of the f o r m  h n+lh n ~ t' t" (~J" Since the sequence of mappings h~, +1 con- 
verges to the identi ty mapping, we can find a neighborhood W1 of x0 and an 
integer N1 such tha t  

(2) h~, +x (x) e V for x e W1, n > N1. 

Again, since h~,, converges to the identity mapping, we can take a neighborhood 
W of Xo and an integer N > N 1 such tha t  

(3) h~,, (x) E W1 for x e W, n > N. 

Hence setting T = sly we have for (x, t) E W X IT, 1] tha t  

(4) K (x, t) c V. 

For, if T < t < l ,  tE[s,,sn+l] for some n > N ,  and (2) and ( 3 ) i m p l y  (4). 
Since W c  W I ~  V and K(x ,  1 ) = x ,  (4) is also true when t = l .  This proves 
(1) and shows the continuity of K (x, t) for t = 1. 
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The two functions H : U X [ 0 , 1 ) - + X  and K : X X I - + X ,  which are bo th  
continuous,  agree on X X [0, 1). However ,  t hey  do not  in general define a 
cont inuous funct ion on U X [0, 1) u X  X {1}, since for a sequence u n E U - - X  
for which u,~-+ x e X ,  and a sequence tn-+ 1, we do not  necessarily have  
H (u~, tn) -> K (x, 1) - x. Therefore,  when we finally define the  re t rac t ion 
r : U -+ X by  set t ing 

r (u) = H (u, e (u)) for  u E U - -  X ,  
(5) 

r (u) = u for u e X ,  

where 0 < e iu ) ~ 1 is a function tending to 1, when u approaches  to X,  we 
have  to be careful when choosing e (u), so t h a t  r is continuous.  

Let  d(ul ,  us) be a metr ic  on U and take  the  met r ic  

dl ((ul, tl), (u2, t~)) = d (ul, us) + I t1  - t2 J 

for U • [0, 1). In  U • [0, 1) consider the  open neighborhood V0 of X • [0, 1) 
defined as follows. A point  (u, t) belongs to Vo if and  only if there  is a po in t  
ix, t') E X • [0, 1) such t h a t  

(6) dl ((u, t), (x, t')) ~ ' 1  - -  t, 

(7) d (H (u, t), H (x, t')) < 1 - -  t. 

Tha t  Vo is open is clear f rom the fact  t h a t  the  same point  (x, t') can be used 
for a neighborhood of (u, t). 

Since for each n = 1, 2 . . . .  [sn, S.+l] is compact ,  X • [s~, sn+l] is contained 
in a subset  of Vo of the  form Un • [s,, s~+l], U~ being an  open subset  of U. 
We m a y  assume U~ ~ Un+l. Take  a mapp ing  e , :  U - >  I such t h a t  

Set 

en (u) = 0 for  u e U - -  Un, 

en (u) = 1 for u e U~+I. 

c,o 

e (u) = ~.~ 1 en (u). 

This funct ion e (u) has the  following propert ies.  

(8) e (u) : U -+ I is continuous,  

(9) e (u) = 1 for u e X ,  

(10) e (u) = 0 for u e U - -  U1, 

(11) (u,e(u))E Vo for u f i U 1 - -  X .  

Proper t ies  (8), i9), and (10) follow direct ly from the  definition of e(u). To 
prove  i l l )  we observe t h a t  (6) implies 
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or  

fi U~= X ,  
n = l  

so t ha t  if u E U 1 - - X ,  we have  u E U i - - U i + l  for some i. Then 

so t h a t  

Therefore 

and  

e ~ ( u ) =  1 for n < i ,  

e . (u)  = 0 for n > i ,  

1 1 1 
( ~ ) = 2 +  . . . .  + 2 ~ =  ~+2~e~(~ )  

1 1 
= 1 -  2;_~ + 2~ e~ (u). 

e (~) e [si, si+l], 

(u, e (u )  e Ui • [st, s~+l] ~ V0. 

With this function e (u) define r : U ~ X by  (5). Obviously r is a retract ion.  
I t  o n l y ' r e m a i n s  to be proved tha t  r is continuous. All we have  to show is 
t h a t  if we have  a sequence unq U 1 - - X ,  n = 1, 2 . . . .  , then u n - - > x E X  implies 
r (u.) -~ r (x) = x. 

The point  (u~, e(u,~;) belongs to Vo, so there is a point  (x,,t ' ,~)fiX X [0, 1) 
such t ha t  (u,, e(u,i)) and (xn, t~) sat isfy (6) and (7). F rom u .  -~ x we obtain 
e (u,,) -~ e (x) = 1, so t ha t  

(12) (u.,  eCu.)) -~ (x, 1), 

and (6) and (7) yield 

(13) 

(14) 

F r o m  (12) and (13) 

Hence 

d 1 ((u~, e (u~)i, (x,, t'~)) -+ O, 

d (H (u,,, e (u~)), H (x,,, t'~)) -+ O. 

(Xn, t~)-->(x, 1). 

(15) K(xn,  t~) -->K(x, 1) = x .  

Since, however,  K (xn, t ~ ) =  H (xn, t;), we obtain f rom (14) and (15) 

r (u.) = H (u. ,  e (u.)) -~ x, 

showing the cont inui ty  of r. 
This completes the  proof of theorem 7.1. 

T h e o r e m  7.2. Each o~ the /olloun;ng three conditions is a su//icient condition 
/or a space X to be an A N R .  
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(a) For each covering o~ o/ X there exists an A N R  or X .  
(b) For some metric on X there exists /or each ~ ~ 0 an A N R  e-dominating X .  
(c) There exists a sequence o/ ANR ' s  Zn dominating X such that the corres- 

ponding sequence of homotopies y~n q~n ~ i : X --> X is a sequence of de/ormations 
converging to the identity mapping. 

Proof. Let X be imbedded in Z as a closed subset, and let Z '  be an ANR 
dominating X, ~ : X -> Z', ~o : Z'  -+ X, ~o ~ ~ i : X -+ X. The theorem will be 
an immediate consequence of theorem 7.1, if we can show that  ~ 0  has an 
extension to some neighborhood of X in Z. 

But (Z, X) is a pair and ~0:X-+  Z' is a mapping into an ANR, so there is 
an extension ~b : U -+ Z', U being a neighborhood of X in Z. Then ~o ~b : U -+ X 
is a neighborhood extension of ~ % This proves theorem 7.2. 

In particular theorem 7.2 contains the converse of theorem 6.1. That the 
sufficient conditions given in theorem 7.1 and theorem 7.2 for a space X to be 
an ANR also are necessary, is trivial. 

8. In this final section we shall use theorem 7.1 to give a new proof of a 
theorem by J. H. C. WHITEHEAD [8]. At the same time we shall be able to 
slightly generalize the theorem, in that we do not require all spaces to be 
compact. 

L e m m a  8.1. Let (X1, A1) be a pair such that X1 and A1 are ANR's .  Then 
i/ cr is a covering o/ X~, there exists an r162 kt : X1 ~ X1 satis/ying 

(1) k(x, 0 ) = x  /orxeX1, 
(2) k(X,t)  = x  /or xEA1,  t E I ,  

(3) there exists an open set V, A 1 c V r X1, ]or which kl (V) =A1.  

Proof.  Since A 1"is an ANR we can find a retraction r : U - +  A1, where U 
is a closed neighborhood of A 1 in X1. In the space Xs X I we consider the 
closed subset 

D = X ~ • 2 1 5 2 1 5  

and the mapping g : D -+ X 1 defined by 

g ( x ,  0)  = x 

g (x, 1) = r (x) 

g (x, t) = x 

X1 is an ANR. Hence there is a 
G : E  ~ X1. E contains a set of the 
X1 containing A1. We may choose 
an ~-homotopy. 

Now, let V be an open set in 
function e : X1 -~ I such that  

�9 (x) = 0 

e (x) = 1 

for x E Xs, 

for x e U, 

for x e A 1 ,  t e l  

neighborhood extension of g to a function 
form U' • I ,  where U' is an open set in 
U' so that  U' r U and so that  Gt[U ~ is 

X1 such that  A 1 c F c  V c U ' .  Take a 

for x E Xx - -  U', 

for x ~ F .  
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Set 
k (x, t) = G (X, t e (x)) for x E X1, t E I .  

Then k(x ,  t) is immediately seen to be an ~-deformation satisfying (1) and (2). 
(3) follows from 

k(x ,  1 ) = G ( x ,  1 ) = g ( x ,  1 ) = r ( x ) E A 1  for x E V .  

This proves lemma 8.1. 
Let XI  and X2 be two ANR's,  and let there be given a mapping cf : A 1 -+ X2, 

where A x c  X 1 is a compact ANR. Observe that  we do not require X1 and 
X 2 to be compact. 

We will introduce a new space X which we shall prove to be an ANR. We 
may assume tha t  X 1 and X2 are disjoint open subsets of a Space Z = X1 u X2. 
Identify in Z each point a E A1 with ~v (a)E X2. The identification space thus 
obtained from Z is called X. 

T h e o r e m  8.2. X is an A N R  (cf. [8]). 

Proof.  First we notice tha t  X is a separable metric space. This is proved 
by  elementary arguments, using the fact that  A 1 is compact. We leave the 
details to the reader. 

Denote the natural  mapping of Z onto X by ~ o : Z - + X .  A set 0 in X is 
open if and only if ~v -1 (0) is open in Z. 

In order to show tha t  X is an ANR we want to apply theorem 7.1, condi- 
tion (a). 

Let ~ =  {U~} be an open covering of X. We consider the covering 
V-~(~) = {~-I(U~)} of Z. Making use of lemma 8.1, we can define a v~-l(~) - 
deformation kt : Z --+ Z such tha t  

(4) k (z, 0) = z for z E Z, 

(5) k(z,  t ) =  z for z E A l ,  t E I ,  

(6) k(z,  t ) =  z for z E X 2 ,  t E I ,  

(7) k (z, t) E X1 for z E Xx, t E I,  

(8) there is an open set V in Z, A 1 c V ~ X1, for which kl (V) ='A1. 

Define 
ht = yJkt~ -1 : X  -+ X .  

Because of (5) and (6) ht is single-valued. As in [8] we prove tha t  h (x, t) is 
continuous. Thus ht is a deformation and clearly an co-deformation. I t  remains 
to be proved tha t  hi : X -+ X has the property in condition (a) of theorem 7.1. 
This we prove in the following formulation. Let  (Y, B) be any  pair and 
/ : B -+ X any mapping. Then hi ! : B -+ X has a neighborhood extension. The 
proof will be rather similar to the proof of theorem 3.3, case a). 

The two set~ 
~V~ = V' ( X ~ -  V), .F~ = V' (X~) 

are disjoint closed subsets of X. Hence 
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are two disjoint closed subsets of Y. Take  two disjoint open sets Y1 and Y2 
in Y such t h a t  

Y1 ~ F1, Ys ~ Fs. 

Then Y o =  Y - - ( Y 1 U  Ye) is a closed subset  of Y. S e t B i = B n  Yi, i = O ,  1,2. 
We have  

(9) 

(~0) 

/ (Bo) c ~o(V-- AO, 

] (B1) c ~o (Xa - -  A1), i (Bu) c ~o (W u X2). 

F r o m  (9) and (10) we ob ta in :  

(] l )  9 -1 ]{ B o is single-valued, ]C 1 ~)--1 ] (Bo) c A1, 

(12) ~o -1 /{  B 1 is single-valued, k 1 ~o -1 ] (B1) c X1, 

(13) 1~ 1 / (B2) = ~o k ~o -1 / (B2) ~ ~o (A 1 u X2) = lP (X~). 

We now s tudy  the  mapp ing  k ly , -1 / [Bo ,  making  use of (11). Since A 1 is 
an ANR,  and B o is a closed subset  of Yo, there is a neighborhood extension 
g ' o : U o + A l  of k l~O- l / IBo  relat ive to A 1 to an open set  Uo in Yo. 

Consider the set  Uo u B1, which is a closed subset  of Uo u Y1. Because of 
(11) and  (12) k l yJ -1 / {BooB1  is single-valued and  takes  values in X 1. Since 
]~1 ~ ~ ] ] Bo t{ B 1 and  g~ : U o -+ A1 agree on the intersection Bo = (Bo u B1) n Uo, 
they  define a function 1 : Uo u B 1 -> X1, which is continuous, since Uo and B o u B1 
are closed in U o u B1. Since X1 is an ANR,  there  is an extension g~ : U1 -+ X1 
of 1 to an  open neighborhood U l o f  U ouB1  in U o0](.1. 

Thereafter ,  consider the  closed set U o u Bs in Uo u Ys. Using (13) we can 
define a mapp ing  m : Uo u Bs -+ y~ (X2) b y  

m (y) = y~ g~) (y) for y e U0, 

m (y) = )ll ] (Y) for y E B o u B s. 

Since for y E B o we have  

yJ g'o (y) = ~f ]cl y) -1 / (y) = hi / (y), 

m (y) is uniquely  determined,  and since Uo and B o u B s are closed in Uo o Bs, 
m is continuous.  The space yJ (X2) is homeomorphie  to Xs and  is therefore  an 
ANR.  Hence  there  is an extension gs : Us -+ ~o (X2) of m to an open neighbor- 
hood Us of U o u B s  in Uo u Ys. 

Finally,  pu t  U = U l o  U s and define g :  U ~ X b y  

g (u) = ~ g~ (u) for u E U1, 

g (u) = gs (u) for u e Us. 
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On U o = U x n U 2  
~i  (u)  = w g;) (u)  = m (u)  = g~ (u) .  

Hence g(u) is uniquely determined. As in the proof of theorem 3.3, case a) 
we see firstly that  U1 and U2 are closed in U, showing that  g is continuous, 
and secondly that  U is open. Since g l B  = h i / ,  g is therefore a neighborhood 
extension of hi / .  

We can now apply theorem 7.1. For we have shown that  X satisfies the 
condition (a) of theorem 7.1. Hence X is an ANR. This proves theorem 8.2. 

R e m a r k  8.3.  The assumption that  A1 is compact is used in this proof 
only when showing that  X is separable metric. When A1 is non-compact, X 
is not necessarily metrizable. This is shown by taking X 1 to be the real line, 
A1 the set of integers, and X 2 a single point. 
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