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On the Diophantine equation u 2 -  D v~= • 4 N 

B y  B E N C T  STOLT 

P a r t  I 

w 1. Introduct ion  

I t  is easy to solve the Diophantine equation 

A x  2 + B x y  + C y  2 + D x  + E y  + F = 0 

with integral coefficients, in integers x and y when the equation represents an 
ellipse or a parabola in the (x, y)-plane. If the equation represents a hyperbola, 
the problem is much more difficult. In this case the problem may be reduced 
to the solution of the equation 

(1) u 2 - D v  2 =  + N,  

where D and N are integers. We exclude the case of D being a perfect square, 
which is without interest. For solving an equation of this type one may use 
either the theory of quadratic forms or the theory of quadratic fields. 

T. NAG~.LL has shown 1 how it is possible t o  determine all the solutions of 
(1) independently of these theories. 

Suppose that  (1) is solvable, and le t  u and v be two integers satisfying (1). 
Then u + v l f D  is called a solution of (1). I f  x + y V 1 )  is a solution o f  the 
Diophantine equation 

(2) x 2 - -  D y  2 = 1, 

the number 
(u + v VD) (x + y V b )  = (ul + vl VD) 

is also a solution of (1). This solution is said to be associated with the solu- 
tion u + v l/D. The set of a l l  Solutions associated with each other forms a 
class o/ solutions of (1). 

A necessary and sufficient condition for the two solutions u + v V ~ ) a n d  

u ' +  v' 1 /~  to belong to the same class is tha t  the two expressions 

u u ( - - v v ' D  v u ' - - u v '  
(3) ~ ' N 

be integers. 

1 See [1]' [2], [3], [4]. I n  the  following we use the  not ions  proposed b y  NAGEr~. 
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Let K be the class which consists of the numbers ui + v~ V1), i = 1, 2, 3, . . . .  
Then the numbers u i - v ~ V 1 ) ,  i = 1, 2, 3 . . . .  form another class, which is 
denoted by K. K and K are said to be the conjugates of one another. Conjugate 
classes are in general distinct but  may sometimes coincide; the latter case is 
called an ambiguous class. 

Among the solutions of K, a ]undamental solution o/the class is defined in the 
following way. u * +  v* ] /D is the fundamental solution of K, if v* is the 
smallest non-negative value of v of any solution belonging to the class. If  the 
class is not ambiguous, u* is also uniquely determined, because - - u * +  v 'V1)  
belongs to the conjugate class; if the class is ambiguous, u* is uniquely de- 
termined by supposing u * - -  > 0. u * =  0 or v*= 0 only occurs when the class 
is ambiguous. 1 

If  N = 1, there is only one class of solutions, and this class is ambiguous. 
For the fundamental solution of a class, ~AGELL deduced the following 

theorems (D and N are natural  numbers, and D is not a perfect square). 

T h e o r e m .  I] u + v V D  is the /undamental solution o~ the class K o] the 
Diophantine equation 

(4) u 2 - -  Dv 2 = N, 

and i/ z I -4-Yl V~) is the ]undamental solution o~ the Diophantinc equation (2), 
we have the inequalities 

(5) 

(6) 

T h e o r e m .  
Diophantine equation 

(7) 

and i] xl + Y l l /D  is 
inequalities 

(s) 

(9) 

V N 
O<v<--y l  2(Xl+  1)'  

0 < l U [  - < V � 8 9  1)N. 

I /  u + v l /D is the /undamental solution o/ the class K o/ the 

u 2 - -  D v 2 = - -  N ,  

the ]undamental solution o/ equation (2), we have the 

N 
O < v < - - Y l l /  2 (xl__ 1)'  

0 -< lul-< ~/-~--(xi - l )_ /~ .  

T h e o r e m .  The Diophantine equations (4) and (7) have a /inite .number o/ 
classes o/ solutions. The /undamental solution o/ all the classes can be /ound 
a/ter a /inite number o[ trials by means o/ the inequalities in the preceding 
theorems. 

l In his first papers I~AGELL defined the fundamental solution in a slight)y fliffere~;{ 
manner. 
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I] u* + v* V~) is the /undamental solution o/ the class K, we obtain all the 

solutions u + v V1) of K by the ]ormula 

: u + v V ~  = (u* + v* Vi ) )  (x + y Vi)) ,  

whe~c x + y V D  runs through all the solutions o/ equation (2), including +_ 1. 
The Diophantine equations (4) and (7) have no solutions when they have no solu- 
tions satis/ying inequalities (5) and (6), or (8) and (9) respectively. 

~TAOELL also proved the following theorem. 

Theorem. 1) I /  p is a prime, the Diophantine equation 

(lO) U 2 -  D v  2 = T_ p 

has at most one solution u + v WD in which u and v satis[y inequalities (5) and 
(6), or (8) and (9) respectively, provided u ~ O. 

2) I /  solvable, equation (10) has one or two classes o] solutions according as 
the prime p divides 2 D or not. 

In this paper we shall extend the results of NAGELL to the more general 
equation 

(11) u 2 - - D v  2 = +_ 4 N .  

For this equation we deduce inequalities equivalent to those given by NAGELL. 
Furthermore, we shall treat the problem of the number of classes corresponding 
to a square-free N. An upper limit for the number of classes will be de- 
termined. 

These investigations will be continued in a second part, in which the problem 
of determining an upper limit for the number of classes corresponding to an 
arbitrarily given N will be solved by elementary methods. Furthermore, we 
shall prove that  there is at most one ambiguous class. In a third part, the 
same problems will be treated by means of the theory of algebraic numbers 
and ideals. 

w 2. The Diophantine equation x 2 -  D y 2 =  4 

Consider the Diophantine equation 

(12) x 2 -  D y  2 = 4, 

where D is a positive integer which is not a perfect square. When x and y 
are integers satisfying this equation, the number 

x +  y V ~ )  
2 



B, STOLT, O n  the D i o p h a n t i n e  equa t ion  u 2 - -  D v 2 = -4- 4 N 

is said to be a solution of this equation. Two solutions x + y ] /D and x'  + y '  ] /D  
2 2 

are equal, if x = x" and y = y'. Among all the solutions of the equation there 
is a solution 

xl § Yl V[)  
2 

in which x 1 and Yl are the least positive integers satisfying the equation. This 
solution is called the ]undamental solution. 

A well-known result  is the following 

T h e o r e m .  1 When D is a natural number which is not a per]ect square, the 
Diophantine equation 

(12) x 2 - -  D y2 = 4 

has an infinity o/ solutions. I] the ]undamental solution is denoted by ~, every 
x +  yV i )  

solution 2 may be written in the ]orm 

x + y V ~  
+ ~ ,  ( k = o ,  + 1 ,  +2 ,  _+3 . . . .  ). 

2 

I f  the fundamenta l  solution of the Diophantine equation 

(2) x ~ - -  D y  ~ = 1 

is denoted by  x ' +  y '  VD, the following results are easily obtained. 

I /  D ~ 1 (mod. 8), D ~ 2 (rood. 4), D ---- 3 (mod. 4), the /undamental solution 

2x '  § 2 y ' V ] )  o/ (12) is 
2 

I] D-~  5 (mod. 8), and i] there exist odd solutions o/ (12), we have, ]or the 
/undamental solution, the relation 

I /  there only exist solutions with even x and y, the ]undamental solution o/(12) is 
2x' + 2 y ' l / ~  

= x ' + y ' l / ~ .  
2 

I] D = 4 D1, we denote the ]undamental solution o] 

x 2 - -  D1 y~ = 1 

Se [5]. 
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by x* + y* VD 1. Then the /undamental solution o~ (12) is 2 x* + y* ]/D I/  y* 
2 

y* 
is even, the /undamental solution o/ (2) is x* + -~ V-D, and the/undamental solu- 

tion o/ (12) is x' + y' VD, as be~ore. When y*= Yl is odd, we have the relation 

(14) x' + y' VD = ~ - -  2 + xl Yl V-D 
2 

The last formula is easily obtained by observing that 

x' + y' V-D = x .2 + D 1 y,2 + x* y* VD.  

Finally, we give a table of the fundamental solutions of the equation 
x 2 - -  Dy2 = 4 for D ~ 5 (mod. 8), D < 100. 

D F u n d a m e n t a l  solution D Fundamen ta l  solution 

5 

13 

21 

29 

37 

45 

�89 (3 + ]/5) 

�89 + 3V13) 

{(5 + ]/21) 

�89 (27 + 5 V 29) 

�89 (146 + 24 ] /~) 

�89 (7 + V45) 

53 

61 

69 

77 

85 

93 

�89 (51 + 7 V 53) 

�89 (1523 + 195 V 61) 

{ (25 + 3 ]/69) 

{ (9 + ~77) 

{ (83 + 9 F 85) 

{ (29 + 3 V 93) 

w The classes  o f  solut ions o f  the Diophant ine  equation u s -  D v ~ = + 4 N .  
The fundamenta l  so lut ions  o f  the c lasses  

Let D be a natural number which is not a perfect square, and consider the 
Diophantine equation 

(11) u ~ - - D v  2 = + 4N,  

where N is a positive integer. 
u +  vV-D . 

is a solution of it. If 
2 

(12) 

the number 

Suppose that the equation is solvable, and that  

x ~ - - D y 2 = 4 ,  

u + v V ~  x + u V ~  _ u x +  vuD + (uy + vx )Vi )  
2 2 4 

x + uV-D 
2 is any solution of 
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i~ also a solution of (11). This solution is said to be associated with the solu- 

ti,m u + V V~O The set of all S01fftions associated with each other forms a class 
2 

o~ solutions of (l]).  

I t  is possible to decide whether the two give:: solutions u + v V ~  and 
'2 

+ v ' V D  : 
. . . . . . . .  belong to the same class or not. In  fact, it is easy to see tha t  

2 
the necessary and sufficient condition for these two solutions to be associated 
with each other is tha t  the two numbers 

u u '  - -  vv '  D v u '  - -  u v '  
. . . . . . . . .  and 

2 N  2 N  
be integers. 

If  K is the class consisting of the solutions ui + vi VD i = 1, 2, 3, it 
2 ' " " ~  

is evident that  the solutions u-~--vA[-L) i = 1, 2, 3, also constitute a class, 
2 ~ " " " ~  

which may be denoted by K. The classes K and K are said to be coniugates 
of each other. Conjugate classes are in general distinct, but may  sometimes 
coincide; in the latter case we speak of ambiguous classes. 

Among all the solutions u + v V D  ........... in a given class K we now choose a 
2 

solution u: + v: VD 2 in the following way: Let v: be the least non-negative 

value of v which occurs in K. I f  K is not ambiguous, then the number Ul is 

also uniquely determined; for the solution - - U l  + vl VD belongs to the con- 
2 

jugate class K. If  K is ambiguous, we get a uniquely determined Ul by pre- 

scribing that  u: ~ 0. The solution u: + vl VD defined in this way is said to be 
2 

the /undamental solution o/ the class. 

In  the fundamental solution the number lull has the least value which is 
u + 

possible for [u[, when 2 belongs to K. The case u: = 0 can only occur 

when the class is ambiguous, and similarly for the case v: = o. 
If  N = 1, clearly there is only one class, and then it is ~rnbiguous. 
We prove 

u + V5 
T h e o r e m  1. I /  2 is the /undamental sol',tt;o',: .... ; ~:he class K o/ the 

Diophantine equation 

(15) u ~ - - D v  ~ = 4N,  
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where D and N are positive integers and D is not a per/ect square, and ii 

xa + Ya V D  
is the fundamental sotut,ion o] equation (12), we have the inequalities 

2 

(16) < y x  .... ~ .~  
o =< ~., = | / ~ _ 2 . _ 2 _ _ ,  

(17) o < [ul =< Vi~-l7-hY:9. 

Proof .  I f  inequalities (16) and (17) are t rue  for a class K, they  are also 
t rue  for the conjugate  class K. Thus w e  can suppose t h a t  u is positive. 

I t  is plain tha t  

) (18) u x l - -  DVyl  _ u x l  ] - -  N [x~ \ 
4 , ! T - - l !  > ~  

Consider the  solution 

: u + v V [ )  x l - - y l V D  u x l - - D v y l + ( x l v - - y l u ) | D  
2 2 4 

u + '~" V D  
u + v ] /D . .  Since ---~ -- is the t'unda- which belongs to the same  class as 

2 2 
u x l  - -  DVyl  

menta l  solution of the  class, and since by  (18) . . . . . . . .  ~ .... is positive, w~.~ 

must  have  

(19) -u-xl - -  Dvyl;>_ u .  
4 - 2  

F r o m  this inequal i ty  it follows tha t  

o r  

~nd finally 

U s (X 1 - -  2 )  2 >__-- D v  s y~ = (u s - -  4 N) (x~ - -  4) 

u2 X 1 -  2 > u~ _ 4 N 
x l +  2 - 

~,s < ( x l  + 2 )  N .  

This proves  inequal i ty  (17),: and it  is easily seen t h a t  (17) implies (16). 

u + v V h  
T h e o r e m  2. I /  2 

Dioph, ant,~.,e equation 

is the /undamental solution o/ the class K o.i t],~, 

(21)) u 2 - -  D v 2 = - -  4 N ,  
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where D and N are positive integers and D is not a per/ect square, and i/ 

xl + Yl VD 
is the ]undamental solution o/ equation (12), we have the inequalities 

2 

y l  
(21) 0 < v < 

= V x l -  2 

(22) o <=lu I < V ( x l - 2 ) N .  

Proof .  If  inequalities (21)_and (22) are true for  a class K, they  are also 
true for the conjugate class K. Thus we can suppose tha t  u > 0. 

We clearly have 

4 - + (u2 + 4 N ) >  y~4u~ 

Or 

(23) xl V - -  YlU 
4 > 0 .  

Consider the solution 

U + vV.D x 1 - y l V D  u x  1 - D r y 1  + ( X l V - - y l u )  VD 
2 2 4 

u + v V i )  + 
which belongs to  the same class as 2 Since 2 is the funda- 

mental  solution of the c|ass, and since by  (23) x l v - - y l U  . 4 is positive, we 

must  have 

(24) Xl v - -  Yl u > v. 
4 = 2  

F rom this inequali ty it follows tha t  

Dye(x1 - -2 )  >= Dy~u 2 u2(x~ - - 4 )  

or 

u 2 < (xl - -  2) N. 

This proves inequali ty (22), and it i s  easily seen t h a t  (22) implies (21). 
F rom Theorems 1 and 2 we deduce at once 

T h e o r e m  3. I /  D and N are ~ositive integers, and i~ D is not a per/ect 
square, the Diophantine equations (15) and (20) have a finite number o/ classes 
o~ solutions. The /undamental solutions o~ all the classes can be /ound a/ter a 
finite number of trials by means o/ the inequalities in Theorems 1 and 2. 
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I /  ul + vl V1) is the /undamental solution o/ the class K, we obtain all the 
2 

u+ vVD 
solutions 2 o/ K by the ]ormula 

u + v V D  =: U 1 + V 1 V D  X + y V D  

2 2 2 

. + y V i )  
where 2 runs through all the solutions o] (12), including +_ 1. The Dio- 

phantine equations (15) and (20) have no solutions at all when they have no solu- 
tions satis/ying inequalities (16) and (17), or (21) and (22) respectively. 

We next  prove 

T h e o r e m  4. The necessary and su//icient condition ]or the solutions 

Ul + vl V D  
2 o~ the Diophantine equation 

u " - - D v  ~ = +_ 4 N  

u + v V b  

to belong to the same class is that 

be an integer. 

U V 1 - -  U 1 V 

2 N  

Proof .  We already know tha t  a necessary and sufficient condition is tha t  

u ul - -  v vl D u v  1 - -  U 1 V 
2 N  2 N  

be integers. Thus it is sufficient to show tha t  u u l - - v v l D  . m an integer when 
2 N  

u vl - -  ul v is an integer, and tha t  u vl - -  Ux v is not an integer when u ul - -  v vl D 
2 N  2 N  2 N  

is not an integer. 
Multiplying the equations 

(24) u S - D v  ~ =  + 4 N ,  u ~ - - D v ~ =  _ 4 N  

we get 

(25) (uul  - -  vv l  D) 2 - -  D ( u v l  - -  ul v) 2 = 4 (2 N) ~. 

I t  is apparent  from (25) tha t  U U x - - v v l  D is divisible by  2 N when UVl--UlV 

is divisible by 2 N. Further ,  if UUl - -  VVl D 2 N is not an integer, there exists an 

integer d which is a divisor of 2 N but  is not a divisor of u u l - - w i D ,  d is 
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not a divisor of D, for if it were, it is apparent from (24) tha t  both u and ul 
would be divisible by d, and thus d would be a divisor of u u 1 --VVx D, which 
is contrary to hypothesis. From (25) it is seen that  if d were a divisor of 
U V l - - U l V ,  it would also be a divisor of u u l - - V V l D ,  which is contrary to 
hypothesis. Hence the theorem is proved. 

If x* + y* VD is the fundamental solution of 

(2) x 2 - - D y  2 = 1 

and xl + Y l ~  is the fundamental solution of 
2 

we have shown in w 2 that  

x 2 - - 4 D y  ~ = 4, 

x 1 = 2 x ,  Yl=Y.  

If the fundamental solution of the class K* of the Diophantine equation 

(1) u s - -  D v  ~ = + N 

is u* + v* V~), we get from inequalities (5) and (6), or (8) and (9) respectively: 

O < v , < y , ] ~ ;  N 
- (z* + 1)'  

0 <  lu*l _< V�89 + 1)N. 

For the fundamental solution of the class K of the Diophantine equation 

(26) u ~ - - 4 D v  2 = +_ 4 N ,  

from inequalities (16) and (17), or (21) and (22) respectively, we get 

0 ~'~ V ~ Yl X 1 _ 2 '  

0 < l u I -< V(xl + 2) N. 

Observing that  xl = 2 x*, Yl = Y*, we get the inequalities 

0 < V* --~ Yl X 1 ~ 2' 

0 < l u * l  <~ V ( x l  +_ 2)N.  

Thus u* and v* lie between the same limits as u and v respectively. 

10 
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Theorem 5. The Diophantine equation 

(1) u 2 - D v  9'= + N  

has the same number o] classes as the Diophantine equation 

(26) u 2 - - 4 D v  2 = +_ 4 N .  

2 u  + v V 4 D  
Proof. If u + v l /D is a solution of (1), it is easily seen that  

2 
is a solution of (26). Conversely, since (26) is only solvable when u is even, 
every solution of (26) corresponds to a solution of (1). 

Let u + v ] , / 1 )  and u l + v l V 1 )  be two solutions of (1) which belong to 
different classes. Then the corresponding solutions of (26) belong to different 
classes of (26). In fact, if the solutions belong to different classes of (1), 

U V 1 - -  U l  V 

N 

is not an integer. 
tion that  

For the corresponding solutions of (26) we get the condi- 

2 u v l  - -  2UlV 
2 N  

is not an integer. Thus Theorem 4 is proved. 

w 4. The number  of  classes for square-free N 

Suppose that  u + v VD and Ux + vl VD 2 are two solutions of the Diophantine 

equation 

(11) u 2 - - D v  ~ = +_ 4 N ,  

where u, Ul and v, vl satisfy the inequalities (16) and (17), or (21) and (22) 
respectively. Then, as is easily seen, 

(27) 0--< [uvl ~ ulv] --< 2y,  N, 

where the equality signs only hold if u = Ul, v = V 1 .  I 

Eliminating D from the expressions 

(28) 

we obtain 

(29) 

u 2 - - D v  2= + 4 N ,  u ~ ' D v ~ =  _ 4 N ,  

(UVl + u lv )  (uvl  - -  UlV) = + 4 N (v~-- v2). 

From (28) we also get 

(30) (uu 1 ~ Dvv l )  ~ - -  D (UVl ~ ulv) ~ = 16 N ~, 

11 
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or, dividing by 4 N  *, 

UU 1 ~_ DVVl 2 
(31) ( 2-N ) - D { u v l  2N-  j =4 .  

Thus all the prime factors of 2 N  are divisors of either of the expressions 

u vl + ul v 

2 

as is apparent  from (29). If  all the prime factors of N are divisors of the 
same expression, the squares of the left-hand side of (31) are integers. Then 
u v l T u l v = O  or u v ~ u l v = 2 y i N .  But  t h e n  U = U l ,  v = v ~ ,  and the two 
solutions coincide. 

T h e o r e m  6. 
equation 

(32) 

1) Suppose that N = p, where p is a prime. 

u ~ - - D v  ~ = + 4 p  

The Diophantine 

u + v V n  
has at most one solution in which u and v satis/y inequalities (16) and 

2 
(17), or (21) and (22) respectively, provided u is non-negative. 

2) Suppose that p is an odd prime. I /  solvable, the equation has one or two 
classes according as the prime p divides D or not. 

Suppose that p = 2. I/solvable, the equation has two classes when D ~ 1 (rood. 4), 
and one class when D ~ 1 (mod. 4). 

U "Jr v V D  u I + v i V D  . 
Proof .  Suppose tha t  there existed two solutions 2 ' 2 m 

which u and v would satisfy the conditions of the first par t  of the theorem. 
Then it would be possible to obtain (31). For one of the signs, the squares 
of the left-hand side of (31) would be integers. Thus u = Ul, v = vl. Hence 
the first par t  of the theorem is p r o v e d .  

u +vW-D 
Thus there a r e  no more than  two classes. I f  the two solutions 

2 

+ v V b  
2 are associated,. 2 u v  ~ - p  is an integer. But  if D is divisible by p, 

u is divisible by  p. Thus the necessary and sufficient condition for the two 
solutions to belong to the same class is tha t  p be a divisor of D. 

I f  p = 2, it is easily seen tha t  (32) is only solvable in odd u and v when 
D - ~  1 (rood. 4). In  tha t  case there are two classes at most. If  D ~ 1 (mod. 4), 

2uv  . 
(32) is only solvable when u is even. Thus ~ is an integer, and there is one 

single class. Hence the theorem is proved. 

T h e o r e m  7. 1) Suppose that N = p  q, where p and q are primes, p ~ q. The 
Diophantine equation 

(33) u s - D r  * =  _ 4 p q  

12 
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has at most two solutione ui + vl V]) in which ui and vi satis/y inequalities (16) 
2 

and (17), or (21) and (22) respectively, provided ui is non-negative. 

2) Suppose that p and q are odd primes. I] solvable, the equation has at most 

/our classes when N and D are relatively prime; 
two classes when either p or q is a divisor o] D; 
one class when N is a divisor o / D .  

Suppose that q = 2. I /  solvable, the equation has at most 
/our classes when N and D are relatively prime, D ~ 1 (mod. 4); 
two classes when N and D are relatively prime, D -  3 (mod. g ) ;  

when 2 is a divisor o] D and p is not a divisor o/ D; 
when p is a divisor o] D, D-~  1 (rood. 4); 

one class when p is a dwisor o/ D, D----3 (mod. 4); 
when N is a divisor o ]D .  

Proof. Suppose that p and q are odd primes and that N and D are 
u §  

relatively prime. Then for every solution 2 , u and v are prime to p q. 

Suppose that theorem were incorrect. Then there would exist three solutions 

ul + vl I/D, u2 + v~ VD, u3 + v3 VD in which u~ and vl would satisfy the condi- 
2 2 2 

tions of the first part of the theorem.' Treating them two by two, we would 
obtain three pairs of solutions from which three series of expressions analogous 
to (27)-(31) would be obtained. 

If bot p and q were divisors of 

(34) uivi -T ui vi 
2 

when the same sign is chosen, we would have u~ = uj, ~ vi = vi. Thus two of 
the solutions would be identical. :We therefore suppose that p and q would not 
be divisors of [34) for the same sign. 

Consider the expressions 

(35) �89 (uivj + uivi) =-- 0 (mod. p), �89 (ujv~ + ukvj) ~ 0 (mod. p). 

From these congruences we get 

�89 (uiuj:vivk + u]viv$) ---- 0 (mod. p), 

�89 (uiuivivk + UiUkV~) ~ 0 (mod. p). 
Thus 

�89 (u~v~v~- uiukv~) =-- 0 (rood. p). 

In this congruence, u} may be substituted by Dye. Then 

�89 v} ( u i u k -  Dvivk) =-- 0 (mod. p). 

13 
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From (30) we also get 

(36) �89 (uivk - -  uk vi) =-- 0 (rood. p). 

Consider the expressions 

(37) �89 (uivj + ujvi) ~-- 0 (rood. p), �89 (ujvk - -  ukvi) ~-- 0 (mod. p). 

From these congruences we get 

�89 (uiujvivk + u~vivk) = 0 (mod. p), 

�89 ( u ~ u i v i v ~ -  u~ukv~) z 0 (rood. p). 
Thus 

�89 (u~viv~ + ulukv~ ---- 0 (mod. p). 

In thesame  way as before, we get the congruences 

�89 (uiu~ + Drive)  = 0 (mod. p), 

(38) �89 (uivk + ukvi) =-- 0 (mod. p). 

Now suppose that for every pair of solutions of (33) these expressions hold. 

�89 (uivj + ujvi) --  0 (mod. p), ~ 0 (mod. q), 

�89 (u i v j - -  ujv~) ~ 0 (mod. q), ~ 0 (rood. p). 

From (35), however, it follows that 

�89 (uivk - -  ukvi) ~-- 0 (mod. p). 

This is contrary to hypothesis. If there are three solutions satisfying the 
conditions of the first part of the theorem, the only possibility is that the 
following expressions hold. 

�89 (u l v2  + u s v l )  = 0 (mod. 

�89 (u2 va + ua v~) ~- 0 (mod. 

�89 (Ua Vl + Ul v3) ~ 0 (mod. 

�89 (ul v2 - -  Us vl) ~ 0 (mod. 

�89 (Us Va - -  Ua v2) ~ 0 (mod. 

�89 (U3 ~)1 - -  Ul V3) ---~ 0 (mod. 
Then follows 

(39) 

14 

p), ~ 0 (mod. q), 

p), ~ 0 (rood. q), 

q), ~ 0 (mod. p), 

q), ~ 0 (mod. p), 

q), ~ 0 (rood. p), 

p), ~ 0 (mod. q). 

�89 (u2v3 + Dv2v3) -~ 0 (mod. p), ~ 0 (mod. q). 
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According t o  (37), f rom the third  and the four th  of the six congruences 
above w e  get 

(u~ ua -~ D v2 va) - -  0 (mod. q). 

But  this is contrary  to (39). Hence the first par t  of the theorem is proved. 
I f  N and D are relatively prime, there are no more than  four classes since 

it is clear tha t  every solutions satisfying the conditions of the first part  of the 
theorem may  correspond to  two classes. If  q is a divisor of D, every u is 
divisible by  q. Thus it is apparent  f rom (34) tha t  there is only one solution 
u + v I / D  . 

m which u and v satisfy the conditions of the first par t  of the 
2 

theorem. Then there are no more than  two classes. I f  N is a divisor of D, 
every u is divisible by  N. Thus there is one single class at  most. 

I f  q = 2, (33) is only solvable in odd u and v, when D----- 1 (rood. 4). I f  N 
and D are relatively prime, there are four classes at  most. I f  p is a divisor 
of D, it is apparent  tha t  there are no more than  two classes. If  D ~ 1 (rood. 4), 
every u is divisible by  2, and every D v 2 is divisible by  4. Thus, if p is not  
a divisor of D, there are two classes at  most, and if p is a divisor of D, there 
is no more than  one class. This proves the second par t  of the theorem. 

T h e o r e m  8. 1) Suppose that N = Pl P2 �9 �9 �9 pn, where Pl, P~ . . . . .  pn are primes, 
pi ~ Pi. The Diophantine equation 

(40) .u s - -  D v  2 = +_ 4 Pl P2. �9 �9 P n  

has 2 n-1 solutions ui + vi V D  at most in which u~ and vl satis/y inequalities (16) 
2 

and (17), or (21) and (22) respectively, provided ui is non-negative. 

2) Suppose that all pi are odd primes. I /  solvable, the equation has at most 
2 n classes when N and D are relatively prime; 
2 n-m classes when m o~ the prime divisors o/ N are divisors o/ D; 
one class when N is a divisor o/ D. 

F 

Suppose that pn = 2. I /  solvable, the equation has at most 
2 ~ classes when N and D are relatively prime, D --  1 (mod. 4) ; 

2 n-m classes when m o /  the odd prime divisors o~ N are divisors o /D ,  D:-- 1 (rood. 4) ; 
when m - -  1 o/ the odd prime divisors o~ N are divisors o / D ,  D-~3  (rood. 4); 
when the prime 2 and m -  1 o! the odd prime divisors o/ N are divisors o~ D. 

Proof .  Let  u a §  u i + v t V D ,  u i + v i V ~ ) ,  u k + v k V 1 ) , . . ,  be a num- 
2 2 2 2 

bet  of solutions of (40) in which u and v satisfy the conditions of the first 
par t  of. the theorem. 

For  the sake of brevi ty  we introduce the notions 

(i, i) + = �89 (u~v~ + u~v~), 

(i, i ) -  = �89 (u~vj--ujv~),  

(i, i )•  = �89 (ui~,j + ujv~). 

15 
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If  p~ is a prime divisor of N,  it  is apparent  from (29 ) tha t  ~r divides ei ther 
(i, j)+ or (i, i ) - ,  or perhaps both of them. Then we may  suppose tha t  (i, j)+ 
is divisible by 

~ , p ~ . . .  ~n  

and tha t  (i, i ) -  is divisible by  

where a t =  1 or 0 according as p~ divides (i ,  7")+ or not,  and f ~ - 1  or 0 
according as pr divides (i, i ) -  or not.  F rom (29) it is apparent  t ha t  

a~ + fl, > 1. 

We express this fact  by  the symbol 

(i, i) �9 ~ '  p ~ . . .  ~:,, e ~ ,  ~,~ . . .  ~ , .  

U i  " b  V i  V D  
We call this symbol the distribution corresponding to the solutions 

2 
uj + vj Vb 

2 , or shorter the distribution corresponding to (i, j)+-. 

If a l  = a2 . . . . .  an = 1, or if fix = f12 . . . . .  fir = l,  it is apparent  from 

(31) tha t  the solutions ui + v iVD,  uj + v jVD coincide. 
2 2 

Let  the distributions corresponding to  (i, 7')+ and (h, k) +- be 

(i,i) ~ p ~ p 2 . . . ~ , ,  e ~ , ,  

(h, k) " ~' ~-' ~ "  ~ '  
�9 " " ~ '1  ~"2 " " " 

Suppose tha t  for every  r, ei ther a ~ = a ~ =  1 or f i r = f l ~ = l  holds, 1 < r < n .  
Then the  distr ibution corresponding to  (i, j)-+ and (h, k) -+ are said to  be positive- 
equivalent. If  for every  r either a r = f l ~ =  1 or f i r = a ~ = l  holds, 1 < r < n ,  
the distributions corresponding to  (i, j)+ and (h, k) + are said to be negative- 
equivalent. 

When proving Theorem 7 we calculated (33)-(38). These results may  be 
expressed as follows�9 

If Pr divides (i, i) + and (i, k) +, it  also divides (i, k ) - .  

If  p,  divides (i, i) + and (i, k ) - ,  it also divides (1, k) +. 

If Pr divides (i, j ) -  and (i, k ) - ,  it also divides (1, I t ) - .  

Le t  the  distr ibution corresponding to (1, k) + be 

(i, k) ~ ~~ ~ "  ~ . . . . . . . .  - 1  - 2  . . .  , g . . . .  . 

If  the distributions corresponding to  (i, i) + and (i, k) + are posit ive-equivalent,  
it  is apparent  t ha t  

16 
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and if the distr ibutions corresponding to (i, j)-+ and (i, k)-+ are negat ive-equiv-  
alent,  i t  is apparen t  t h a t  

P,* I f  ~*;* 

a l  = a 2  ---~ . . . .  (Xn = 1 .  

In  both  these cases the  solutions uj + vj V D ,  uk + vk VD 
2 2 

Let  

coincide. 

us + ~ V 5  u= + ~= V 5  u3 + v3 V 5  
2 ' 2 ' 2 

2 2 2 2 

be the  solutions of (40) in which u and v satisfy the  conditions of the  first 
pa r t  of Theorem 8. 

I f  we know the distr ibutions corresponding to (1, 2) + and (1, 3)• we m a y  
determine the distr ibution corresponding to (2, 3 ) -  + . I f  we also know the 
distr ibution corresponding to (1, 4)-+, we m a y  determine the  dis t r ibut ions cor- 
responding to (2, 4) -+ and (3, 4)-+, and so forth.  

We now determine the conditions for all the  solutions to be distinct. 
Le t  the  distr ibution corresponding to (1, i) -+ be 

a~ a ~  . . . a n @ p&,nB2 p~nn. (1, i ) - + ~ t  P2 Pn , 1 *'2 . . -  

I f  a 1 = a 2 . . . . .  an = 1, or if fll = f12 . . . . .  fin = 1, the  solutions ul + Vl VD,  
2 

U i  + Vi V D  
coincide. Thus these possibilities have to be excluded. Fur ther ,  if 

2 
the distr ibutions corresponding to (1, i) -+ and (1, j)-+ are posi t ive-equivalent  or 

ul + v~ VD u+ + v+ VD 
negat ive-equivalent ,  it is apparen t  t h a t  the solutions 

2 2 
coincide. Thus the  number  of dist inct  solutions satisfying the  conditions of 
the first pa r t  of Theorem 8 depends on the  number  of distr ibutions corre- 
sponding to (1, 2) -+, (1, 3) -+ . . . . .  (1, i ) + , . . ,  any  two of which are nei ther  
posi t ive-equivalent  nor negat ive-equivalent .  

Le t  
(1, i) ~ :o  2p~ Pn , 1~2 �9 �9 

be a dis t ibut ion in which a ~ +  fir > 1 holds for one or more r, 1 < r _-< n. Then 
this dis t r ibut ion is posi t ive-equivalent  to the distr ibution 

(1, i) ~ ~ ~ ' P l  P2 " * " ~ n  n ,  O T fl*'l JOB"2 "" " JO~n' 

in which a~ + fl~ = 1 holds for every r, 1 < r < n. 
Le t  u s d e t e r m i n e  the m a x i m u m  number  of possibilities any  two of which 

are not  posi t ive-equivalent .  I f  w e  consider those distr ibutions in which 

a , + f l r =  1 

2 17 
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holds for every r, 1 < r < n, there are 
Q *  

1 distr ibut ion (1, i) O/~1 P~ �9 �9 �9 P- ,  

n distr ibutions (1, j) �9 ~r,, e pr, ~v3 �9 �9 �9 P ~ ,  

n (n - -  1) distr ibutions (1, k) $ ~ ,  ~r2, e ~,~ Pr, �9 �9 �9 P,~, 
2 

1 dis tr ibut ion (1, m) �9 Pl ~2 �9 �9 �9 Pn- 

Here j runs th rough  n values, k runs th rough  n ( n - - 1 )  values, and so on. 
2 

I t  is apparen t  t h a t  any  two of tilese distr ibutions are not  posi t ive-equivalent  
and tha t  every other  distr ibution is posit ive-equivalent  to  at  least one of these 
distributions. Thus  the  m a x i m u m  number  of distr ibutions any  two of which 
are not  posit ive-equivalent,  is 

(o)+(;)+(;)+ 
I t  is apparen t  t ha t  these distr ibutions are negat ive-equivalent  in pairs and 

tha t  two distr ibutions of different pairs are not  negative-equivalent .  Thus  the  
m a x i m u m  number  of distr ibutions any  two of which are nei ther  positive- 
equivalent  nor negative-equivalent ,  is 2 ~-1. 

If  we exclude the  dis t r ibut ion 

(1, m) ~ p l ~ 2 . . . ~ n  or (1, i) e ~ 1 ~ 2 . . . ~  

there remains  2 n-1 - -  1 distr ibutions corresponding to  just  one of (1, 2) +-, (1, 3) +-, 
. . . .  (1, 2~-1) -+. Then it is apparen t  t h a t  there are a t  most  2 ~-1 solutions 
sat isfying the conditions of the  first pa r t  of the  theorem. Hence this par t  of 
the theorem is proved.  

If  N and D are relat ively prime, it is apparent  t h a t  there are 2 ~ classes a t  
most.  I f  the pr ime ~ divides D, it divides every u. Thus pi is a divisor of 
(i, j)+ as well as of (i, j ) - .  I f  m of the  primes ~ divide D, there are no more 
than  2 ~-m-1 - - 1  distr ibutions and 2 ~-m classes at  most.  I f  all the  prime 
divisors of N except  one divide D, there is no more t h a n  one solution satis- 
fying the condit ions of the first :part  of the  theorem, and two classes a t  most.  
I f  N divides D, the  equat ion has no more than  one single class. 

I f  io~ = 2, (40) is only solvable in odd u and v when D ~  1 (mod. 4). I f  N 
and D are relat ively prime, there are 2 n-1 - - 1  distr ibutions and 2 ~-1 solutions 
satisfying the  conditions of the  first pa r t  of the theorem. Thus  there are 2 n 
classes a t  most .  I f  D ~ 1 (mod. 4), every u is divisible by  2 and every D v  2 

is divisible by  4. Thus it  is apparen t  t h a t  there are 2 n -~  classes a t  most,  
when m of the odd prime divisors of N are divisors of D, D ~ 1 (rood. 4), or 
when m - -  1 of the  odd pr ime divisors of N are divisors of D, D ~ 1 (mod. 4). 
Hence the  theorem is proved.  

18 
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T h e o r e m  9. Suppose that N = P l  P 2  �9 �9 �9 P n ,  where P l ,  P 2 ,  * �9 ", P n  are distinct 
primes ~ + 1 (mod. 8). The Diophantine equation 

(41) u 2 - 2 v  2 = p l p 2 . . . p n  

has 2 n classes. 

Proof. I t  is a well-known fact that  the Diophantine equation 

? s  ( i = l ,  2 , . . . , n )  

is always solvable in integers ui and vl, and according to Theorem 6 it has 
two classes. If the fundamental solutions are denoted by ui _+ vi ]/2, 

n 

(42) u + v V2 = 1 I  (ui _+ vi V2) 
i = l  

clearly is a solution of (41). From (42) we get 2 n solutions u + v V2  of (41). 
Thus Theorem 9 is proved, if all the solutions belong to different classes. We 
prove the theorem by induction. 

Suppose that  Theorem 9 holds for n primes, and consider the Diophantine 
equation 

U 2 - -  2 V 2 = Pl P2 �9 �9 �9 pn Pn+l, 

where Pn+l----- + l (mod .  8). If  u + v ] / : 2  and u l + v l V 2  are two solutions of 
(41) belonging to different classes, and if ?s + vn+lV2  are the fundamental 
solutions of the equation 

2 2 
?s - -  2 V n + l  ~ Pn+l ,  

clearly the solutions 

V + V V2 = (u + v V2) (un+~ + vn+l V2), 

u1 + V1 V2 = (~ + v V2) (?s - v~+~ V2) 

belong to different classes. So do the solutions 

U + V Y2 : (u + v V2) (U.+l + v.+~ Y2), 

U 1 + V 1 V2 : (?s + VlV2)  (Un+l + V n + l  V 2 ) .  

If the solutions 

U + V V2 = (u + v g2 ) (u .+ l  + v.+l V2), 

U 1 + V 1 V 2  = (u I d- 4,1 ]/"2) ( u n + l - - V n + l V 2 )  

belong to the same class, 

(U -]- V V2) (Un+l -I- V n + l  V2) 2 = ~ (U 1 -~- V 1]/ '2)" Pn+I = Pn+l  (A + B V2), 

19 
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holds. I n  this expression ~ is a solution of (2), and A + B 1/�89 is a solution 

of (41). Multiplying by  A -  B V 2  we get 

(u + v 1/2) (A - -  B V2) (Un+l + ~ n + l  V 2 )  2 = P n + l "  :Pl  P 2  �9 �9 �9 P n .  

The left-hand side m a y  be writ ten 

(A 1 + B 1 ] /2)(Un+l  -~- ~dn+l ~/2)2 = 

= A l ( u ~ + l  + 2v~+1) + 4 B l U n + l v n + l  + V 2 ( B I ( u ~ + I  + 2 ~4+1) + 2 A l u n + l V n + l ) .  

From this we get the congruences 

A1 (U~+l + 2 V~+l) + 4 B1 ~ + 1  v,+l  ~- 0 (rood. p~+l), 

B1 (?g~+l ~- 2 V~n+l) -[- 2.41 Un+l Vn+l "~ 0 (mod. Pn+l). 

From these congruences we get 

2 2 2 A1 U,+l V~+l - -  4/~1 un+l V,+l ~ 0 (rood. p~+l), 

or, since neither v~+l nor U~+l is divisible by  P~+I, 

A~ - -  2 B~ ~- 0 (rood. P,+l). 

This proves the theorem. 

w 5. N u m e r i c a l  e x a m p l e s  

Finally, we give some examples which illustrate the preceding theorems. 

E x a m p l e  1. u s -  5 v ~ = 44 = 4.11 (Theorem 6). 
3+V5 

The fundamenta l  solution of the equation u 2 -  5 v 2 =  4 i s ~  For  the 

fundamenta l  solutions in which u and v are non-negative, according to inequal- 
ities (16) and (17) we get 

0 < v < l ,  0 < u _ - < 7 .  

+7+V5 
We find the fundamenta l  solutions - 

2 

E x a m p l e  2 .  u 2 -  5 v  ~ = - -  20  = - -  4 .5  ( T h e o r e m  6). 

For the fundamenta l  solutions in which u and v are non-negative, according 
to inequalities (21) and (22) we get 

0 < v ~ 2 ,  0 ~ u ~ 2 .  

We find the fundamental  solution - -  

and this class is ambiguous. 

V5 
. Thus the equation has only one class, 

20 



ARKIV FOR MATEMATIK. B d  2 nr  1 

Example  3. u 2 -  17v s = 8 = 4.2 (Theorem 6). 

66 + 16 
The fundamental solution of the equation u 2 -  17v s =  4 is 

2 
For the fundamental solutions in which u and v are non-negative, according 
to inequalities (16) and (17) we get 

O<v<5, 0 ~ u <  17. 

+5+Vi  
We find the fundamental solutions - 2 As D ~ 1 (mod. 4), the equation 

has the maximum number of classes. 

Example  4 .  u 2 - - 5 v  2 =  8 3 6  = 4.11.19 (Theorem 7) .  

For the fundamental solutions in which u and v are non-negative, according 
to inequalities (16) and (17) we get 

0<v_-<6,  0 ~ u  < 32. 

We find the fundamental solutions • 29 + V5, • 31 + 5 V5 
2 2 

Example  5. u 2 -  17vS= 104 = 4.2.13 (Theorem 7). 

For the fundamental solutions in which u and v are non-negative, according 
to inequalities (16) and (17) we get 

0 < v < 9 ,  0 ~ u <  17. 

We find the fundamental solutions • 11 + V ~ ,  • 23 + 5 V ~  
2 2 

Example  6. u 2 -  33 v s = 88 = 4.2.11 (Theorem 7). 

46 + 8 
The fundamental solution of the equation u s -  33v s =  4 is 

2 
For the fundamental solutions in which u and v are negative, according to 
inequalities (16) and (17) we get 

0 < v < 5 , =  = 0 ~ u < 1 4 .  

We find the fundamental solutions • 11 + V ~  
2 

Example  7. u s - -  21 v s = 84 = 4.3.7 (Theorem 7). 

5+V  
The fundamental solution of the equation u 2 -  21 v 2 =  4 is - - - -  For 

2 
the fundamental solutions in which u and v are non-negative, according to 
inequalities (16) and (17) we get 

0 < v < l ,  0 ~ u <  12. 

We find no fundamental solutions. Thus the equation is not solvable. 
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E x a m p l e  8. u ~ ~ 21 v 2 = - -  84 = - -  4.3.7 (Theorem 7). 

F o r  the  f u n d a m e n t a l  so lu t ions  in which  u and  v are  non-nega t ive ,  according  
to  inequal i t i es  (21) and (22) we ge t  

0 < v 2 2 ,  0 ~ u ~ 1 0 .  

We f ind the  f u n d a m e n t a l  so lu t ion  . . . .  

E x a m p l e  9. u 2 -  5 v 2 = 751564 = 4.11119.29.31 (Theorem 8). 

F o r  the  f u n d a m e n t a l  so lu t ions  in which  u and v are  non-nega t ive ,  accord ing  
to inequal i t i es  (16) and (17) we get  

0 =< v___< 193, 0 < u  = 969. 

W e  f ind the  f u n d a m e n t a l  solut ions  

___ 867 -.~ 51/5 _+ 872 + 401/5  + 8 8 3 + 7 5 ] / 5  

2 . . . .  ' 2 - - '  2 

+ 888 + 86 V5 
2 

_ + 8 9 7 +  ] 0 3 V 5  + 9 0 3 +  1131/5 + 937 + 159V5 + 9 5 3 +  177V5 

2 2 2 2 

E x a m p l e  10. u 2 -  t 4 8 v  ~ = 3108 = 4.777 = 4.3.7.37 (Theorem 8). 

146 + 12 1/148 
The f u n d a m e n t a l  solut ion of t he  equa t ion  u 2 -  148v 2 =  4 is 

2 
F o r  the  f u n d a m e n t a l  solut ions  in which u and  v are  non-nega t ive ,  accord ing  
to inequal i t i es  (16) and  (17) we get  

0 < v < 2 7 ,  0 < u  < 338. 

+ 74 + 4 V148 
We f ind the  f u n d a m e n t a l  so lu t ions  - . Thus  the  equa t ion  has  ha l f  

2 
t he  m a x i m u m  n u m b e r  of classes. 

E x a m p l e  11. u 2 -  37 v ~ = 777 = 3.7.37 (Theorem 8). 

The f u n d a m e n t a l  solut ion of the  equa t ion  u 2 - - 3 7 v  2 =  1 is 73 + 1 2 V ~ .  
F o r  t he  f u n d a m e n t a l  solut ions  in which u and v are  non-nega t ive ,  accord ing  
to  inequal i t i es  (5) and  (6) we ge t  

0 ~ v 2 1 8 ,  0 < u ~ 1 6 9 .  

W e  f ind the  f u n d a m e n t a l  solut ions  + 37 + 4 V ~ .  Accord ing  to  Theorem 5, 
the  given equa t ion  will  have  the  same n u m b e r  of classes as  t he  p reced ing  
equat ion .  
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E x a m p l e  12. u S -  148 v 2 = 924 = 4.231 = 4.3.7.11 (Theorem 8). 

F o r  t he  f u n d a m e n t a l  so lu t ions  in which  u and v are  non-negat ive ,  according 
to  inequa l i t i es  (16) and  (17) we ge t  

0 < v <  14, 0 ~ u  < 184. 

+ 68 + 5 V ~  
W e  find the  f u n d a m e n t a l  solut ions  - 

2 

E x a m p l e  13. u S -  37 v ~ = 231 = 3.7.11 (Theorem 8). 

Accord ing  to  Theorem 5, the  equa t ion  has the  same number  of classes as the  

p reced ing  equat ion .  Then  the  f u n d a m e n t a l  solut ions  are  __+ 34 + 5 V3-7. 

E x a m p l e  14. u 2 -  148 v 2 = 5628 = 4.1407 = 4.3.7.67 (Theorem 8). 

F o r  t h e  f u n d a m e n t a l  so lu t ions  in  which  u and  v are  non-negat ive ,  according 
to  inequal i t ies  (16) and (17) we ge t  

0<v_<-  36, 0 ~ u  < 456. 

§ 2 4 7  V ~  •  
W e  f ind the  f u n d a m e n t a l  solut ions  - - -  , --  

2 2 

E x a m p l e  15. u 2 -  148v 2 = 61908 = 4.15477 = 4.3.7.11.67 (Theorem 8). 

F o r  the  f u n d a m e n t a l  so lu t ions  in which  u and  v are  non-negat ive ,  accord ing  
to  inequa l i t i es  (16) and  (17) we ge t  

0 =<v<  122, 0 ~ u  < 1512. 

+ 2 5 0 + 2 V 1 4 8  
W e  f ind the  f u n d a m e n t a l  solut ions - 

2 

_+ 934 + 74 V ~  
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