On the Diophantine equation $u^{2}-D v^{2}= \pm 4 N$

By Bengt Stolt

Part I

§ 1. Introduction

It is easy to solve the Diophantine equation

$$
A x^{2}+B x y+C y^{2}+D x+E y+F=0
$$

with integral coefficients, in integers x and y when the equation represents an ellipse or a parabola in the (x, y)-plane. If the equation represents a hyperbola, the problem is much more difficult. In this case the problem may be reduced to the solution of the equation

$$
\begin{equation*}
u^{2}-D v^{2}= \pm N \tag{1}
\end{equation*}
$$

where D and N are integers. We exclude the case of D being a perfect square, which is without interest. For solving an equation of this type one may use either the theory of quadratic forms or the theory of quadratic fields.
T. Nagell has shown ${ }^{1}$ how it is possible to determine all the solutions of (1) independently of these theories.

Suppose that (1) is solvable, and let u and v be two integers satisfying (1). Then $u+v \sqrt{D}$ is called a solution of (1). If $x+y \sqrt{D}$ is a solution of the Diophantine equation

$$
\begin{equation*}
x^{2}-D y^{2}=1 \tag{2}
\end{equation*}
$$

the number

$$
(u+v \sqrt{D})(x+y \sqrt{D})=\left(u_{1}+v_{1} \sqrt{D}\right)
$$

is also a solution of (1). This solution is said to be associated with the solution $u+v \sqrt{D}$. The set of all solutions associated with each other forms a class of solutions of (1).

A necessary and sufficient condition for the two solutions $u+v \sqrt{D}$ and $u^{\prime}+v^{\prime} \sqrt{D}$ to belong to the same class is that the two expressions

$$
\begin{equation*}
\frac{u u^{\prime}-v v^{\prime} D}{N}, \quad \frac{v u^{\prime}-u v^{\prime}}{N} \tag{3}
\end{equation*}
$$

be integers.

[^0]B. STOLT, On the Diophantine equation $u^{2}-D v^{2}= \pm 4 N$

Let K be the class which consists of the numbers $u_{i}+v_{i} \sqrt{D}, i=1,2,3, \ldots$. Then the numbers $u_{i}=v_{i} \sqrt{D}, i=1,2,3, \ldots$ form another class, which is denoted by $\overline{\boldsymbol{K}} . \boldsymbol{K}$ and $\overline{\boldsymbol{K}}$ are said to be the conjugates of one another. Conjugate classes are in general distinct but may sometimes coincide; the latter case is called an ambiguous class.

Among the solutions of K, a fundamental solution of the class is defined in the following way. $u^{*}+v^{*} \sqrt{D}$ is the fundamental solution of \boldsymbol{K}, if v^{*} is the smallest non-negative value of v of any solution belonging to the class. If the class is not ambiguous, u^{*} is also uniquely determined, because $-u^{*}+v^{*} \sqrt{D}$ belongs to the conjugate class; if the class is ambiguous, u^{*} is uniquely determined by supposing $u^{*} \geq 0$. $u^{*}=0$ or $v^{*}=0$ only occurs when the class is ambiguous. ${ }^{1}$

If $N=1$, there is only one class of solutions, and this class is ambiguous.
For the fundamental solution of a class, Nagell deduced the following theorems (D and N are natural numbers, and D is not a perfect square).

Theorem. If $u+v V \bar{D}$ is the fundamental solution of the class K of the Diophantine equation

$$
\begin{equation*}
u^{2}-D v^{2}=N \tag{4}
\end{equation*}
$$

and if $x_{1}+y_{1} \sqrt{D}$ is the fundamental solution of the Diophantine equation (2), we have the inequalities

$$
\begin{align*}
& 0 \leq v \leq y_{1} \sqrt{\frac{N}{2\left(x_{1}+1\right)}} \tag{5}\\
& 0<|u| \leq \sqrt{\frac{1}{2}\left(x_{1}+1\right) N} \tag{6}
\end{align*}
$$

Theorem. If $u+v \sqrt{D}$ is the fundamental solution of the class K of the Diophantine equation

$$
\begin{equation*}
u^{2}-D v^{2}=-N \tag{7}
\end{equation*}
$$

and if $x_{1}+y_{1} \sqrt{D}$ is the fundamental solution of equation (2), we have the inequalities

$$
\begin{align*}
& 0<v \leq y_{1} \sqrt{\frac{N}{2\left(x_{1}-1\right)}} \tag{8}\\
& 0 \leq|u| \leq \sqrt{\frac{1}{2}\left(x_{1}-1\right) N}
\end{align*}
$$

Theorem. The Diophantine equations (4) and (7) have a finite number of classes of solutions. The fundamental solution of all the classes can be found after a finite number of trials by means of the inequalities in the preceding theorems.

[^1]If $u^{*}+v^{*} \sqrt{D}$ is the fundamental solution of the class K, we obtain all the solutions $u+v \sqrt{D}$ of \boldsymbol{K} by the formula

$$
u+v \sqrt{D}=\left(u^{*}+v^{*} \sqrt{D}\right)(x+y \sqrt{D})
$$

when $x+y \sqrt{D}$ runs through all the solutions of equation (2), including ± 1. The Diophantine equations (4) and (7) have no solutions when they have no solutions satisfying inequalities (5) and (6), or (8) and (9) respectively.

Nagell also proved the following theorem.
Theorem. 1) If p is a prime, the Diophantine equation

$$
\begin{equation*}
u^{2}-D v^{2}= \pm p \tag{10}
\end{equation*}
$$

has at most one solution $u+v \sqrt{D}$ in which u and v satisfy inequalities (5) and (6), or (8) and (9) respectively, provided $u \geq 0$.
2) It solvable, equation (10) has one or two classes of solutions according as the prime p divides $2 D$ or not.

In this paper we shall extend the results of Nagell to the more general equation

$$
\begin{equation*}
u^{2}-D v^{2}= \pm 4 N \tag{11}
\end{equation*}
$$

For this equation we deduce inequalities equivalent to those given by Nagell. Furthermore, we shall treat the problem of the number of classes corresponding to a square-free N. An upper limit for the number of classes will be determined.

These investigations will be continued in a second part, in which the problem of determining an upper limit for the number of classes corresponding to an arbitrarily given N will be solved by elementary methods. Furthermore, we shall prove that there is at most one ambiguous class. In a third part, the same problems will be treated by means of the theory of algebraic numbers and ideals.

§ 2. The Diophantine equation $\boldsymbol{x}^{2}-\boldsymbol{D} \boldsymbol{y}^{2}=4$

Consider the Diophantine equation

$$
\begin{equation*}
x^{2}-D y^{2}=4, \tag{12}
\end{equation*}
$$

where D is a positive integer which is not a perfect square. When x and y are integers satisfying this equation, the number

$$
\frac{x+y \sqrt{D}}{2}
$$

B. stolt, On the Diophantine equation $u^{2}-D v^{2}= \pm 4 N$
is said to be a solution of this equation. Two solutions $\frac{x+y \sqrt{D}}{2}$ and $\frac{x^{\prime}+y^{\prime} \sqrt{D}}{2}$ are equal, if $x=x^{\prime}$ and $y=y^{\prime}$. Among all the solutions of the equation there is a solution

$$
\frac{x_{1}+y_{1} \sqrt{D}}{2}
$$

in which x_{1} and y_{1} are the least positive integers satisfying the equation. This solution is called the fundamental solution.

A well-known result is the following
Theorem. ${ }^{1}$ When D is a natural number which is not a perfect square, the Diophantine equation

$$
\begin{equation*}
x^{2}-D y^{2}=4 \tag{12}
\end{equation*}
$$

has an infinity of solutions. If the fundamental solution is denoted by ε, every solution $\frac{x+y V \bar{D}}{2}$ may be written in the form

$$
\frac{x+y V \bar{D}}{2}= \pm \varepsilon^{k}, \quad(k=0, \pm 1, \pm 2, \pm 3, \ldots)
$$

If the fundamental solution of the Diophantine equation

$$
\begin{equation*}
x^{2}-D y^{2}=1 \tag{2}
\end{equation*}
$$

is denoted by $x^{\prime}+y^{\prime} \sqrt{D}$, the following results are easily obtained.
If $D \equiv 1$ (mod. 8), $D \equiv 2(\bmod .4), D \equiv 3(\bmod .4)$, the fundamental solution of (12) is $\frac{2 x^{\prime}+2 y^{\prime} \sqrt{D}}{2}$.

If $D \equiv 5$ (mod. 8), and if there exist odd solutions of (12), we have, for the fundamental solution, the relation

$$
\begin{equation*}
\left(\frac{x_{1}+y_{1} \sqrt{D}}{2}\right)^{3}=x^{\prime}+y^{\prime} \sqrt{D} \tag{13}
\end{equation*}
$$

If there only exist solutions with even x and y, the fundamental solution of (12) is $\frac{2 x^{\prime}+2 y^{\prime} \sqrt{D}}{2}=x^{\prime}+y^{\prime} \sqrt{D}$.

If $D=4 D_{1}$, we denote the fundamental solution of

$$
x^{2}-D_{1} y^{2}=1
$$

[^2]by $x^{*}+y^{*} \sqrt{D} \bar{D}_{1}$. Then the fundamental solution of (12) is $\frac{2 x^{*}+y^{*} V \bar{D}}{2}$. If y^{*} is even, the fundamental solution of (2) is $x^{*}+\frac{y^{*}}{2} \sqrt{D}$, and the fundamental solution of (12) is $x^{\prime}+y^{\prime} \sqrt{D}$, as before. When $y^{*}=y_{1}$ is odd, we have the relation
\[

$$
\begin{equation*}
x^{\prime}+y^{\prime} V \bar{D}=\frac{x_{1}^{2}-2+x_{1} y_{1} V \bar{D}}{2} \tag{14}
\end{equation*}
$$

\]

The last formula is easily obtained by observing that

$$
x^{\prime}+y^{\prime} \sqrt{D}=x^{* 2}+D_{1} y^{* 2}+x^{*} y^{*} \sqrt{D}
$$

Finally, we give a table of the fundamental solutions of the equation $x^{2}-D y^{2}=4$ for $D \equiv 5(\bmod .8), D<100$.

D	Fundamental solution	D	Fundamental solution
5	$\frac{1}{2}(3+\sqrt{5})$	53	$\frac{1}{2}(51+7 \sqrt{53})$
13	$\frac{1}{2}(11+3 \sqrt{13})$	61	$\frac{1}{2}(1523+195 \sqrt{61})$
21	$\frac{1}{2}(5+\sqrt{21})$	69	$\frac{1}{2}(25+3 \sqrt{69})$
29	$\frac{1}{2}(27+5 \sqrt{29})$	77	$\frac{1}{2}(9+\sqrt{77})$
37	$\frac{1}{2}(146+24 \sqrt{37})$	85	$\frac{1}{2}(83+9 \sqrt{85})$
45	$\frac{1}{2}(7+\sqrt{45})$	93	$\frac{1}{2}(29+3 \sqrt{93})$

§ 3. The classes of solutions of the Diophantine equation $\boldsymbol{u}^{2}-\boldsymbol{D} \boldsymbol{v}^{2}= \pm 4 \boldsymbol{N}$. The fundamental solutions of the classes

Let D be a natural number which is not a perfect square, and consider the Diophantine equation

$$
\begin{equation*}
u^{2}-D v^{2}= \pm 4 N \tag{11}
\end{equation*}
$$

where N is a positive integer. Suppose that the equation is solvable, and that $\frac{u+v V \bar{D}}{2}$ is a solution of it. If $\frac{x+y \sqrt{D}}{2}$ is any solution of

$$
\begin{equation*}
x^{2}-D y^{2}=4 \tag{12}
\end{equation*}
$$

the number

$$
\frac{u+v \sqrt{D}}{2} \cdot \frac{x+y \sqrt{D}}{2}=\frac{u x+v y D+(u y+v x) \sqrt{D}}{4}
$$

ह. stolv, On the Diophantine equation $u^{2}-D r^{2}= \pm 4 N$
is also a solution of (11). This solution is said to be associated with the solution $\frac{u+v \sqrt{D}}{2}$. The set of all solutions associated with each other forms a class of solutions of (11).

It is possible to decide whether the two given solutions $\frac{u+v \sqrt{D}}{2}$ and $\frac{u^{\prime}+v^{\prime} \sqrt{D}}{2}$ belong to the same class or not. In fact, it is easy to see that the necessary and sufficient condition for these two solutions to be associated with each other is that the two numbers

$$
\frac{u u^{\prime}-v v^{\prime} D}{2 N} \text { and } \frac{v u^{\prime}-u v^{\prime}}{2 N}
$$

be integers.
If K is the class consisting of the solutions $\frac{u_{i}+v_{i} \sqrt{D}}{2}, i=1,2,3, \ldots$, it is evident that the solutions $\frac{u_{i}-v_{i} V \bar{D}}{2}, i=1,2,3, \ldots$, also constitute a class, which may be denoted by $\overline{\boldsymbol{K}}$. The classes \boldsymbol{K} and $\overline{\boldsymbol{K}}$ are said to be conjugates of each other. Conjugate classes are in general distinct, but may sometimes coincide; in the latter case we speak of ambiguous classes.

Among all the solutions $\frac{u+v \sqrt{D}}{2}$ in a given class K we now choose a solution $\frac{u_{1}+v_{1} V \bar{D}}{2}$ in the following way: Let v_{1} be the least non-negative value of v which occurs in \boldsymbol{K}. If \boldsymbol{K} is not ambiguous, then the number u_{1} is also uniquely determined; for the solution $\frac{-u_{1}+v_{1} V \bar{D}}{2}$ belongs to the conjugate class \bar{K}. If \boldsymbol{K} is ambiguous, we get a uniquely determined $u_{\mathbf{1}}$ by prescribing that $u_{1} \geqq 0$. The solution $\frac{u_{1}+v_{1} \sqrt{D}}{2}$ defined in this way is said to be the fundamental solution of the class.

In the fundamental solution the number $\left|u_{1}\right|$ has the least value which is possible for $|u|$, when $\frac{u+v \sqrt{D}}{2}$ belongs to K. The case $u_{1}=0$ can only occur when the class is ambiguous, and similarly for the case $v_{1}=0$.

If $N=1$, clearly there is only one class, and then it is ambiguous.
We prove
Theorem 1. If $\frac{u+v \sqrt{D}}{2}$ is the fundamental solution the class K of the Diophantine equation

$$
\begin{equation*}
u^{2}-D v^{2}=4 N \tag{15}
\end{equation*}
$$

where D and N are positive integers and D is not a perfect square, and if $\frac{x_{1}+\frac{y_{1}}{2} \sqrt{D}}{2}$ is the fundamental solution of equation (12), we have the inequalities

$$
\begin{align*}
& 0 \leqq v \leqq \frac{y_{1}}{\sqrt{x_{1}+2}} \sqrt{N} \tag{16}\\
& 0<|u| \leqq \sqrt{\left(x_{1}+2\right) N} \tag{17}
\end{align*}
$$

Proof. If inequalities (16) and (17) are true for a class K, they are also true for the conjugate class $\overline{\mathbf{K}}$. Thus we can suppose that u is positive.

It is plain that

$$
\begin{equation*}
\frac{u x_{1}-D v y_{1}}{4}=\frac{u x_{1}}{4}-\sqrt{\left(\frac{u^{2}}{4}-N\right)\left(\frac{x_{1}^{2}}{4}-1\right)}=0 . \tag{18}
\end{equation*}
$$

Consider the solution

$$
\frac{u+v V \bar{D}}{2} \cdot \frac{x_{1}-y_{1} V \bar{D}}{2}=\frac{u x_{1}-D v y_{1}+\left(x_{1} v-y_{1} u\right) l D}{4}
$$

which belongs to the same class as $\frac{u+v V \bar{D}}{2}$. Since $\frac{u+v V D}{2}$ is the fundamental solution of the class, and since by (18) $\frac{u x_{1}-D v y_{1}}{4}$ is positive, we must have

$$
\begin{equation*}
\frac{u x_{1}-D v y_{1}}{4} \geqq \frac{u}{2} \tag{19}
\end{equation*}
$$

From this inequality it follows that

$$
u^{2}\left(x_{1}-2\right)^{2} \geqq D v^{2} y_{1}^{2}=\left(u^{2}-4 N\right)\left(x_{1}^{2}-4\right)
$$

or

$$
u^{2} \frac{x_{1}-2}{x_{1}+2} \geqq u^{2}-4 N
$$

and finaily

$$
u^{2} \leqq\left(x_{1}+2\right) N
$$

This proves inequality (17), and it is easily seen that (17) implies (16).
Theorem 2. If $\frac{u+v \sqrt{D}}{2}$ is the fundamental solution of the class K oi the Diophantine equation

$$
\begin{equation*}
u^{2}-D v^{2}=-4 N \tag{20}
\end{equation*}
$$

B. STolt, On the Diophantine equation $u^{2}-D v^{2}= \pm 4 N$
where D and N are positive integers and D is not a perfect square, and if $\frac{x_{1}+y_{1} \sqrt{D}}{2}$ is the fundamental solution of equation (12), we have the inequalities

$$
\begin{equation*}
0<v \leqq \frac{y_{1}}{\sqrt{x_{1}-2}} \sqrt{N} \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
0 \leqq|u| \leqq \sqrt{\left(x_{1}-2\right) N} \tag{22}
\end{equation*}
$$

Proof. If inequalities (21) and (22) are true for a class K, they are also true for the conjugate class \bar{K}. Thus we can suppose that $u \geqq 0$.

We clearly have

$$
\frac{x_{1}^{2} v^{2}}{4}=\left(\frac{y_{1}^{2}}{4}+\frac{1}{D}\right)\left(u^{2}+4 N\right)>\frac{y_{1}^{2} u^{2}}{4}
$$

or

$$
\begin{equation*}
\frac{x_{1} v-y_{1} u}{4}>0 \tag{23}
\end{equation*}
$$

Consider the solution

$$
\frac{u+v \sqrt{D}}{2} \cdot \frac{x_{1}-y_{1} \sqrt{D}}{2}=\frac{u x_{1}-D v y_{1}+\left(x_{1} v-y_{1} u\right)}{4} \sqrt{D}
$$

which belongs to the same class as $\frac{u+v \sqrt{D}}{2}$. Since $\frac{u+v \sqrt{D}}{2}$ is the fundamental solution of the class, and since by (23) $\frac{x_{1} v-y_{1} u}{4}$ is positive, we must have

$$
\begin{equation*}
\frac{x_{1} v-y_{1} u}{4} \geqq \frac{v}{2} \tag{24}
\end{equation*}
$$

From this inequality it follows that

$$
D v^{2}\left(x_{1}-2\right) \geqq D y_{1}^{2} u^{2}=u^{2}\left(x_{1}^{2}-4\right)
$$

or

$$
u^{2} \leqq\left(x_{1}-2\right) N
$$

This proves inequality (22), and it is easily seen that (22) implies (21).
From Theorems 1 and 2 we deduce at once

Theorem 3. If D and N are positive integers, and if D is not a perfect square, the Diophantine equations (15) and (20) have a finite number of classes of solutions. The fundamental solutions of all the classes can be found after a finite number of trials by means of the inequalities in Theorems 1 and 2.

If $\frac{u_{1}+v_{1} \sqrt{D}}{2}$ is the fundamental solution of the class K, we obtain all the solutions $\frac{u+v V \bar{D}}{2}$ of \boldsymbol{K} by the formula

$$
\frac{u+v V \bar{D}}{2}=\frac{u_{1}+v_{1} \sqrt{D}}{2} \cdot \frac{x+y V \bar{D}}{2}
$$

where $\frac{x+y \sqrt{D}}{2}$ runs through all the solutions of (12), including ± 1. The Diophantine equations (15) and (20) have no solutions at all when they have no solutions satisfying inequalities (16) and (17), or (21) and (22) respectively.

We next prove
Theorem 4. The necessary and sufficient condition for the solutions $\frac{u+v \sqrt{D}}{2}$, $\frac{u_{1}+v_{1} V \bar{D}}{2}$ of the Diophantine equation

$$
u^{2}-D v^{2}= \pm 4 N
$$

to belong to the same class is that

$$
\frac{u v_{1}-u_{1} v}{2}
$$

be an integer.
Proof. We already know that a necessary and sufficient condition is that

$$
\frac{u u_{1}-v v_{1} D}{2 N}, \frac{u v_{1}-u_{1} v}{2 N}
$$

be integers. Thus it is sufficient to show that $\frac{u u_{1}-v v_{1} D}{2 N}$ is an integer when $\frac{u v_{1}-u_{1} v}{2 N}$ is an integer, and that $\frac{u v_{1}-u_{1} v}{2 N}$ is not an integer when $\frac{u u_{1}-v v_{1} D}{2 N}$ is not an integer.

Multiplying the equations

$$
\begin{equation*}
u^{2}-D v^{2}= \pm 4 N, \quad u_{1}^{2}-D v_{1}^{2}= \pm 4 N \tag{24}
\end{equation*}
$$

we get

$$
\begin{equation*}
\left(u u_{1}-v v_{1} D\right)^{2}-D\left(u v_{1}-u_{1} v\right)^{2}=4(2 N)^{2} \tag{25}
\end{equation*}
$$

It is apparent from (25) that $u u_{1}-v v_{1} D$ is divisible by $2 N$ when $u v_{1}-u_{1} v$ is divisible by $2 N$. Further, if $\frac{u u_{1}-v v_{1} D}{2 N}$ is not an integer, there exists an integer d which is a divisor of $2 N$ but is not a divisor of $u u_{1}-v v_{1} D$. d is

B. stolt, On the Diophantine equation $u^{2}-D v^{2}= \pm 4 N$

not a divisor of D, for if it were, it is apparent from (24) that both u and u_{1} would be divisible by d, and thus d would be a divisor of $u u_{1}-v v_{1} D$, which is contrary to hypothesis. From (25) it is seen that if d were a divisor of $u v_{1}-u_{1} v$, it would also be a divisor of $u u_{1}-v v_{1} D$, which is contrary to hypothesis. Hence the theorem is proved.

If $x^{*}+y^{*} \sqrt{D}$ is the fundamental solution of

$$
\begin{equation*}
x^{2}-D y^{2}=1 \tag{2}
\end{equation*}
$$

and $\frac{x_{1}+y_{1} \sqrt{4 D}}{2}$ is the fundamental solution of

$$
x^{2}-4 D y^{2}=4
$$

we have shown in $\S 2$ that

$$
x_{1}=2 x, \quad y_{1}=y
$$

If the fundamental solution of the class K^{*} of the Diophantine equation

$$
\begin{equation*}
u^{2}-D v^{2}= \pm N \tag{1}
\end{equation*}
$$

is $u^{*}+v^{*} \sqrt{D}$, we get from inequalities (5) and (6), or (8) and (9) respectively:

$$
\begin{aligned}
& 0<v^{*} \leq y^{*} \sqrt{\frac{N}{2\left(x^{*} \pm 1\right)}}, \\
& 0<\left|u^{*}\right| \leq \sqrt{\frac{1}{2}\left(x^{*} \pm 1\right) N} .
\end{aligned}
$$

For the fundamental solution of the class K of the Diophantine equation

$$
\begin{equation*}
u^{2}-4 D v^{2}= \pm 4 N \tag{26}
\end{equation*}
$$

from inequalities (16) and (17), or (21) and (22) respectively, we get

$$
\begin{aligned}
& 0<v \leq y_{1} \sqrt{\frac{N}{x_{1} \pm 2}} \\
& 0<|u| \leq \sqrt{\left(x_{1} \pm 2\right) N}
\end{aligned}
$$

Observing that $x_{1}=2 x^{*}, y_{1}=y^{*}$, we get the inequalities

$$
\begin{aligned}
& 0<v^{*} \leq y_{1} \sqrt{\frac{N}{x_{1} \pm 2}}, \\
& 0<\left|u^{*}\right| \leq \sqrt{\left(x_{1} \pm 2\right) N}
\end{aligned}
$$

Thus u^{*} and v^{*} lie between the same limits as u and v respectively.

Theorem 5. The Diophantine equation

$$
\begin{equation*}
u^{2}-D v^{2}= \pm N \tag{1}
\end{equation*}
$$

has the same number of classes as the Diophantine equation

$$
\begin{equation*}
u^{2}-4 D v^{2}= \pm 4 N \tag{26}
\end{equation*}
$$

Proof. If $u+v \sqrt{D}$ is a solution of (1), it is easily seen that $\frac{2 u+v \sqrt{4 D}}{2}$ is a solution of (26). Conversely, since (26) is only solvable when u is even, every solution of (26) corresponds to a solution of (1).

Let $u+v \sqrt{D}$ and $u_{1}+v_{1} \sqrt{D}$ be two solutions of (1) which belong to different classes. Then the corresponding solutions of (26) belong to different classes of (26). In fact, if the solutions belong to different classes of (1),

$$
\frac{u v_{1}-u_{1} v}{N}
$$

is not an integer. For the corresponding solutions of (26) we get the condition that

$$
\frac{2 u v_{1}-2 u_{1} v}{2 N}
$$

is not an integer. Thus Theorem 4 is proved.

§4. The number of classes for square-free N

Suppose that $\frac{u+v \sqrt{D}}{2}$ and $\frac{u_{1}+v_{1} \sqrt{D}}{2}$ are two solutions of the Diophantine equation

$$
\begin{equation*}
u^{2}-D v^{2}= \pm 4 N \tag{11}
\end{equation*}
$$

where u, u_{1} and v, v_{1} satisfy the inequalities (16) and (17), or (21) and (22) respectively. Then, as is easily seen,

$$
\begin{equation*}
0 \leq\left|u v_{1} \mp u_{1} v\right| \leq 2 y_{1} N \tag{27}
\end{equation*}
$$

where the equality signs only hold if $u=u_{1}, v=v_{1}$.
Eliminating D from the expressions

$$
\begin{equation*}
u^{2}-D v^{2}= \pm 4 N, u_{1}^{2}-D v_{1}^{2}= \pm 4 N \tag{28}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\left(u v_{1}+u_{1} v\right)\left(u v_{1}-u_{1} v\right)= \pm 4 N\left(v_{1}^{2}-v^{2}\right) \tag{29}
\end{equation*}
$$

From (28) we also get

$$
\begin{equation*}
\left(u u_{1} \mp D v v_{1}\right)^{2}-D\left(u v_{1} \mp u_{1} v\right)^{2}=16 N^{2} \tag{30}
\end{equation*}
$$

B. stolt, On the Diophantine equation $u^{2}-D v^{2}= \pm 4 N$
or, dividing by $4 N^{2}$,

$$
\begin{equation*}
\left(\frac{u u_{1} \mp D v v_{1}}{2 N}\right)^{2}-D\left(\frac{u v_{1} \mp u_{1} v}{2 N}\right)^{2}=4 \tag{31}
\end{equation*}
$$

Thus all the prime factors of $2 N$ are divisors of either of the expressions

$$
\frac{u v_{1} \mp u_{1} v}{2}
$$

as is apparent from (29). If all the prime factors of N are divisors of the same expression, the squares of the left-hand side of (31) are integers. Then $u v_{1} \mp u_{1} v=0$ or $u v_{1} \mp u_{1} v=2 y_{1} N$. But then $u=u_{1}, v=v_{1}$, and the two solutions coincide.

Theorem 6. 1) Suppose that $N=p$, where p is a prime. The Diophantine equation

$$
\begin{equation*}
u^{2}-D v^{2}= \pm 4 p \tag{32}
\end{equation*}
$$

has at most one solution $\frac{u+v \sqrt{D}}{2}$ in which u and v satisfy inequalities (16) and (17), or (21) and (22) respectively, provided u is non-negative.
2) Suppose that p is an odd prime. If solvable, the equation has one or two classes according as the prime p divides D or not.

Suppose that $p=2$. If solvable, the equation has two classes when $D \equiv 1(\bmod .4)$, and one class when $D \neq 1$ (mod. 4).

Proof. Suppose that there existed two solutions $\frac{u+v \sqrt{D}}{2}, \frac{u_{1}+\frac{v_{1}}{2} \frac{\sqrt{D}}{2}}{}$ in which u and v would satisfy the conditions of the first part of the theorem. Then it would be possible to obtain (31). For one of the signs, the squares of the left-hand side of (31) would be integers. Thus $u=u_{1}, v=v_{1}$. Hence the first part of the theorem is proved.

Thus there are no more than two classes. If the two solutions $\frac{u+v \sqrt{D}}{2}$, $\frac{-u+v \sqrt{D}}{2}$ are associated, $\frac{2 u v}{2 p}$ is an integer. But if D is divisible by p, u is divisible by p. Thus the necessary and sufficient condition for the two solutions to belong to the same class is that p be a divisor of D.

If $p=2$, it is easily seen that (32) is only solvable in odd u and v when $D \equiv 1(\bmod .4)$. In that case there are two classes at most. If $D \neq 1(\bmod .4)$, (32) is only solvable when u is even. Thus $\frac{2 u v}{4}$ is an integer, and there is one single class. Hence the theorem is proved.

Theorem 7. 1) Suppose that $N=p q$, where p and q are primes, $p \neq q$. The Diophantine equation

$$
\begin{equation*}
u^{2}-D v^{2}= \pm 4 p q \tag{33}
\end{equation*}
$$

has at most two solutions $\frac{u_{i}+v_{i} \sqrt{D}}{2}$ in which u_{i} and v_{i} satisfy inequalities (16) and (17), or (21) and (22) respectively, provided u_{i} is non-negative.
2) Suppose that p and q are odd primes. If solvable, the equation has at most four classes when N and D are relatively prime;
two classes when either p or q is a divisor of D;
one class when N is a divisor of D.
Suppose that $q=2$. If solvable, the equation has at most four classes when N and D are relatively prime, $D \equiv 1$ (mod. 4); two classes when N and D are relatively prime, $D \equiv 3$ (mod. 4);
when 2 is a divisor of D and p is not a divisor of D;
when p is a divisor of $D, D \equiv 1$ (mod. 4);
one class when p is a divisor of $D, D \equiv 3$ (mod. 4);
when N is a divisor of D.
Proof. Suppose that p and q are odd primes and that N and D are relatively prime. Then for every solution $\frac{u+v \sqrt{D}}{2}, u$ and v are prime to $p q$.

Suppose that theorem were incorrect. Then there would exist three solutions $\frac{u_{1}+v_{1} \sqrt{D}}{2}, \frac{u_{2}+v_{2} \sqrt{D}}{2}, \frac{u_{3}+v_{3} \sqrt{D}}{2}$ in which u_{i} and v_{i} would satisfy the conditions of the first part of the theorem. Treating them two by two, we would obtain three pairs of solutions from which three series of expressions analogous to (27)-(31) would be obtained.

If bot p and q were divisors of

$$
\begin{equation*}
\frac{u_{i} v_{j} \mp u_{j} v_{i}}{2} \tag{34}
\end{equation*}
$$

when the same sign is chosen, we would have $u_{i}=u_{j}, v_{i}=v_{j}$. Thus two of the solutions would be identical. We therefore suppose that p and q would not be divisors of [34) for the same sign.

Consider the expressions

$$
\begin{equation*}
\frac{1}{2}\left(u_{i} v_{j}+u_{j} v_{i}\right) \equiv 0(\bmod . p), \frac{1}{2}\left(u_{j} v_{k}+u_{k} v_{j}\right) \equiv 0(\bmod . p) \tag{35}
\end{equation*}
$$

From these congruences we get

$$
\begin{aligned}
& \frac{1}{2}\left(u_{i} u_{j} v_{j} v_{k}+u_{j}^{2} v_{i} v_{k}\right) \equiv 0(\bmod . p) \\
& \frac{1}{2}\left(u_{i} u_{j}^{\prime} v_{j} v_{k}+u_{i} u_{k} v_{j}^{2}\right) \equiv 0(\bmod . p)
\end{aligned}
$$

Thus

$$
\frac{1}{2}\left(u_{j}^{2} v_{i} v_{k}-u_{i} u_{k} v_{j}^{2}\right) \equiv 0(\bmod . p)
$$

In this congruence, u_{j}^{2} may be substituted by $D v_{j}^{2}$. Then

$$
\frac{1}{2} v_{j}^{2}\left(u_{i} u_{k}-\mathrm{D} v_{i} v_{k}\right) \equiv 0(\bmod . p)
$$

B. STOLT, On the Diophantine equation $u^{2}-D v^{2}= \pm 4 N$

From (30) we also get

$$
\begin{equation*}
\frac{1}{2}\left(u_{i} v_{k}-u_{k} v_{i}\right) \equiv 0(\bmod . p) \tag{36}
\end{equation*}
$$

Consider the expressions

$$
\begin{equation*}
\frac{1}{2}\left(u_{i} v_{j}+u_{j} v_{i}\right) \equiv 0(\bmod . \mathrm{p}), \quad \frac{1}{2}\left(u_{j} v_{k}-u_{k} v_{j}\right) \equiv 0(\bmod . p) \tag{37}
\end{equation*}
$$

From these congruences we get

$$
\begin{aligned}
\frac{1}{2}\left(u_{i} u_{j} v_{j} v_{k}+u_{j}^{2} v_{i} v_{k}\right) & \equiv 0(\bmod . p) \\
\frac{1}{2}\left(u_{i} u_{j} v_{j} v_{k}-u_{i} u_{k} v_{j}^{2}\right) & \equiv 0(\bmod . p)
\end{aligned}
$$

Thus

$$
\frac{1}{2}\left(u_{j}^{2} v_{i} v_{k}+u_{i} u_{k} v_{j}^{2} \equiv 0(\bmod . p)\right.
$$

In the same way as before, we get the congruences

$$
\begin{align*}
& \frac{1}{2}\left(u_{i} u_{k}+D v_{i} v_{k}\right) \equiv 0(\bmod . p) \\
& \frac{1}{2}\left(u_{i} v_{k}+u_{k} v_{i}\right) \equiv 0(\bmod . p) \tag{38}
\end{align*}
$$

Now suppose that for every pair of solutions of (33) these expressions hold.

$$
\begin{aligned}
& \frac{1}{2}\left(u_{i} v_{j}+u_{j} v_{i}\right) \equiv 0(\bmod . p), \not \equiv 0(\bmod . q) \\
& \frac{1}{2}\left(u_{i} v_{j}-u_{j} v_{i}\right) \equiv 0(\bmod . q), \not \equiv 0(\bmod . p)
\end{aligned}
$$

From (35), however, it follows that

$$
\frac{1}{2}\left(u_{i} v_{k}-u_{k} v_{i}\right)=0(\bmod . p)
$$

This is contrary to hypothesis. If there are three solutions satisfying the conditions of the first part of the theorem, the only possibility is that the following expressions hold.

$$
\begin{aligned}
\frac{1}{2}\left(u_{1} v_{2}+u_{2} v_{1}\right) \equiv 0(\bmod . p), & \neq 0(\bmod . q), \\
\frac{1}{2}\left(u_{2} v_{3}+u_{3} v_{2}\right) \equiv 0(\bmod . p), & \neq 0(\bmod . q), \\
\frac{1}{2}\left(u_{3} v_{1}+u_{1} v_{3}\right) \equiv 0(\bmod . q), & \neq 0(\bmod . p), \\
\frac{1}{2}\left(u_{1} v_{2}-u_{2} v_{1}\right) \equiv 0(\bmod . q), & \neq 0(\bmod . p), \\
\frac{1}{2}\left(u_{2} v_{3}-u_{3} v_{2}\right) \equiv 0(\bmod . q), & \neq 0(\bmod . p), \\
\frac{1}{2}\left(u_{3} v_{1}-u_{1} v_{3}\right) \equiv 0(\bmod . p), & \neq 0(\bmod . q) .
\end{aligned}
$$

Then follows

$$
\begin{equation*}
\frac{1}{2}\left(u_{2} v_{3}+D v_{2} v_{3}\right) \equiv 0(\bmod . p), \neq 0(\bmod . q) \tag{39}
\end{equation*}
$$

According to (37), from the third and the fourth of the six congruences above we get

$$
\frac{1}{2}\left(u_{2} u_{3}+D v_{2} v_{3}\right) \equiv 0(\bmod . q)
$$

But this is contrary to (39). Hence the first part of the theorem is proved.
If N and D are relatively prime, there are no more than four classes since it is clear that every solutions satisfying the conditions of the first part of the theorem may correspond to two classes. If q is a divisor of D, every u is divisible by q. Thus it is apparent from (34) that there is only one solution $\frac{u+v \sqrt{D}}{2}$ theorem. Then there are no more than two classes. If N is a divisor of D, every u is divisible by N. Thus there is one single class at most.

If $q=2$, (33) is only solvable in odd u and v, when $D \equiv 1(\bmod .4)$. If N and D are relatively prime, there are four classes at most. If p is a divisor of D, it is apparent that there are no more than two classes. If $D \neq 1(\bmod .4)$, every u is divisible by 2 , and every $D v^{2}$ is divisible by 4. Thus, if p is not a divisor of D, there are two classes at most, and if p is a divisor of D, there is no more than one class. This proves the second part of the theorem.

Theorem 8. 1) Suppose that $N=p_{1} p_{2} \ldots p_{n}$, where $p_{1}, p_{2}, \ldots, p_{n}$ are primes, $p_{i} \neq p_{j}$. The Diophantine equation

$$
\begin{equation*}
u^{2}-D v^{2}= \pm 4 p_{1} p_{2} \ldots p_{n} \tag{40}
\end{equation*}
$$

has 2^{n-1} solutions $\frac{u_{i}+v_{i} V \bar{D}}{2}$ at most in which u_{i} and v_{i} satisfy inequalities (16) and (17), or (21) and (22) respectively, provided u_{i} is non-negative.
2) Suppose that all p_{i} are odd primes. If solvable, the equation has at most
$2^{\text {n }}$ classes when N and D are relatively prime;
2^{n-m} classes when m of the prime divisors of N are divisors of D;
one class when N is a divisor of D.
Suppose that $p_{n}=2$. If solvable, the equation has at most
2^{n} classes when N and D are relatively prime, $D \equiv 1(\bmod .4)$;
2^{n-m} classes when m of the odd prime divisors of N are divisors of $D, D \equiv 1$ (mod.4); when $m-1$ of the odd prime divisors of N are divisors of $D, D \equiv 3(\bmod .4)$; when the prime 2 and $m-1$ of the odd prime divisors of N are divisors of D.
Proof. Let $\frac{u_{h}+v_{h} \sqrt{D}}{2}, \frac{u_{i}+v_{i} \sqrt{D}}{2}, \frac{u_{j}+v_{j} \sqrt{D}}{2}, \frac{u_{k}+v_{k} \sqrt{D}}{2}, \ldots$ be a number of solutions of (40) in which u and v satisfy the conditions of the first part of the theorem.

For the sake of brevity we introduce the notions

$$
\begin{aligned}
& (i, j)^{+}=\frac{1}{2}\left(u_{i} v_{j}+u_{j} v_{i}\right), \\
& (i, j)^{-}=\frac{1}{2}\left(u_{i} v_{j}-u_{j} v_{i}\right), \\
& (i, j)^{ \pm}=\frac{1}{2}\left(u_{i} v_{j} \pm u_{j} v_{i}\right) .
\end{aligned}
$$

B. stolt, On the Diophantine equation $u^{2}-D v^{2}= \pm 4 N$

If p_{r} is a prime divisor of N, it is apparent from (29) that p_{r} divides either $(i, j)^{+}$or $(i, j)^{-}$, or perhaps both of them. Then we may suppose that $(i, j)^{+}$ is divisible by

$$
p_{1}^{a_{1}} p_{2}^{\alpha_{2}} \ldots p_{n}^{\alpha_{n}}
$$

and that $(i, j)^{-}$is divisible by

$$
p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \ldots p_{n}^{\beta_{n}}
$$

where $\alpha_{r}=1$ or 0 according as p_{r} divides $(i, j)^{+}$or not, and $\beta_{r}=1$ or 0 according as p_{r} divides $(i, j)^{-}$or not. From (29) it is apparent that

$$
\alpha_{r}+\beta_{r} \geqq 1
$$

We express this fact by the symbol

$$
(i, j) \oplus p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{n}^{a_{n}}, \quad \ominus p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \ldots p_{n}^{\beta_{n}}
$$

We call this symbol the distribution corresponding to the solutions $\frac{u_{i}+v_{i} V \bar{D}}{2}$, $\frac{u_{j}+v_{j} \sqrt{D}}{2}$, or shorter the distribution corresponding to $(i, j)^{ \pm}$.

If $\alpha_{1}=\alpha_{2}=\cdots=\alpha_{n}=1$, or if $\beta_{1}=\beta_{2}=\cdots=\beta_{n}=1$, it is apparent from (31) that the solutions $\frac{u_{i}+v_{i} V \bar{D}}{2}, \frac{u_{j}+v_{j} V \bar{D}}{2}$ coincide.

Let the distributions corresponding to $(i, j)^{ \pm}$and $(h, k)^{ \pm}$be

$$
\begin{array}{ll}
(i, j) \oplus p_{1}^{a_{1}} p_{2}^{\alpha_{2}} \ldots p_{n}^{\alpha_{n}}, & \ominus p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \ldots p_{n}^{\beta_{n}} \\
(h, k) \oplus p_{1}^{a_{1}^{\prime}} p_{2}^{a_{2}^{\prime}} \ldots p_{n}^{a_{n}^{\prime}}, & \ominus p_{1}^{\beta_{1}{ }^{\prime}} p_{2}^{\beta_{2}^{\prime}} \ldots p_{n}^{\beta_{n}^{\prime}}
\end{array}
$$

Suppose that for every r, either $\alpha_{r}=\alpha_{r}^{\prime}=1$ or $\beta_{r}=\beta_{r}^{\prime}=1$ holds, $1 \leqq r \leqq n$. Then the distribution corresponding to $(i, j)^{ \pm}$and $(h, k)^{ \pm}$are said to be positiveequivalent. If for every r either $\alpha_{r}=\beta_{r}^{\prime}=1$ or $\beta_{r}=\alpha_{r}^{\prime}=1$ holds, $1 \leqq r \leqq n$, the distributions corresponding to $(i, j)^{ \pm}$and $(h, k)^{ \pm}$are said to be negativeequivalent.

When proving Theorem 7 we calculated (33)-(38). These results may be expressed as follows.

If p_{r} divides $(i, j)^{+}$and $(i, k)^{+}$, it also divides $(j, k)^{-}$.
If p_{r} divides $(i, j)^{+}$and $(i, k)^{-}$, it also divides $(j, k)^{+}$.
If p_{r} divides $(i, j)^{-}$and $(i, k)^{-}$, it also divides $(j, k)^{-}$.
Let the distribution corresponding to $(j, k)^{ \pm}$be

$$
(j, k) \oplus p_{1}^{a_{1}{ }^{\prime \prime}} p_{2}^{a_{2}{ }^{\prime \prime}} \ldots p_{n}^{a_{n}{ }^{\prime \prime}}, \quad \ominus p_{1}^{\beta_{1}^{\prime \prime}} p_{2}^{\beta_{2}^{\beta^{\prime \prime}}} \ldots p_{n}^{\beta_{n}{ }^{\prime \prime}}
$$

If the distributions corresponding to $(i, j)^{ \pm}$and $(i, k)^{ \pm}$are positive-equivalent, it is apparent that

$$
\beta_{1}^{\prime \prime}=\beta_{2}^{\prime \prime}=\cdots=\beta_{n}^{\prime \prime}=1
$$

and if the distributions corresponding to $(i, j)^{ \pm}$and $(i, k)^{ \pm}$are negative-equivalent, it is apparent that

$$
\alpha_{1}^{\prime \prime}=\alpha_{2}^{\prime \prime}=\cdots=\alpha_{n}^{\prime \prime}=1
$$

In both these cases the solutions $\frac{u_{j}+v_{j} V \bar{D}}{2}, \frac{u_{k}+v_{k} V \bar{D}}{2}$ coincide.
Let

$$
\begin{aligned}
& \frac{u_{1}+v_{1} \sqrt{D}}{2}, \frac{u_{2}+v_{2} \sqrt{D}}{2}, \frac{u_{3}+v_{3} \sqrt{D}}{2}, \ldots \\
& \frac{u_{i}+v_{i} \sqrt{D}}{2}, \frac{u_{j}+v_{j} \sqrt{D}}{2}, \frac{u_{k}+v_{k} \sqrt{D}}{2}, \frac{u_{m}+v_{m} \sqrt{D}}{2}, \ldots
\end{aligned}
$$

be the solutions of (40) in which u and v satisfy the conditions of the first part of Theorem 8.

If we know the distributions corresponding to $(1,2) \pm$ and $(1,3) \pm$, we may determine the distribution corresponding to $(2,3)^{ \pm}$. If we also know the distribution corresponding to $(1,4)^{ \pm}$, we may determine the distributions corresponding to $(2,4)^{ \pm}$and $(3,4)^{ \pm}$, and so forth.

We now determine the conditions for all the solutions to be distinct.
Let the distribution corresponding to $(1, i)^{ \pm}$be

$$
(1, i) \oplus p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{n}^{\alpha_{n}}, \quad \ominus p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \ldots p_{n}^{\beta_{n}}
$$

If $\alpha_{1}=\alpha_{2}=\cdots=\alpha_{n}=1$, or if $\beta_{1}=\beta_{2}=\cdots=\beta_{n}=1$, the solutions $\frac{u_{1}+v_{1} \sqrt{D}}{2}$, $\frac{u_{i}+v_{i} V \bar{D}}{2}$ coincide. Thus these possibilities have to be excluded. Further, if the distributions corresponding to $(1, i)^{ \pm}$and $(1, j)^{ \pm}$are positive-equivalent or negative-equivalent, it is apparent that the solutions $\frac{u_{i}+v_{i} \sqrt{D}}{2}, \frac{u_{j}+v_{i} \sqrt{D}}{2}$ coincide. Thus the number of distinct solutions satisfying the conditions of the first part of Theorem 8 depends on the number of distributions corresponding to $(1,2)^{ \pm},(1,3)^{ \pm}, \ldots,(1, i)^{ \pm}, \ldots$ any two of which are neither positive-equivalent nor negative-equivalent.

Let

$$
(1, i) \oplus p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{n}^{\alpha_{n}}, \quad \ominus p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \ldots p_{n}^{\beta_{n}}
$$

be a distibution in which $\alpha_{r}+\beta_{r}>1$ holds for one or more $r, 1 \leqq r \leqq n$. Then this distribution is positive-equivalent to the distribution

$$
(1, j) \oplus p_{1}^{a_{1}{ }^{\prime}} p_{2}^{a_{2}} \ldots p_{n}^{\alpha_{n}{ }^{\prime}}, \quad \ominus p_{1}^{\beta_{1}^{\prime}} p_{2}^{\beta_{2}^{\prime}} \ldots p_{n}^{\beta_{n}{ }^{\prime}}
$$

in which $\alpha_{r}^{\prime}+\beta_{r}^{\prime}=1$ holds for every $r, 1 \leqq r \leqq n$.
Let us determine the maximum number of possibilities any two of which are not positive-equivalent. If we consider those distributions in which

$$
\alpha_{r}+\beta_{r}=1
$$

B. stole, On the Diophantine equation $u^{2}-D v^{2}= \pm 4 N$

holds for every $r, \mathbf{1} \leqq r \leqq n$, there are
1 distribution $(1, i) \ominus p_{1} p_{2} \ldots p_{n}$,
n distributions $(1, j) \oplus p_{\gamma_{1}}, \ominus p_{\gamma_{2}} p_{\gamma_{3}} \ldots p_{\gamma_{n}}$,
$\frac{n(n-1)}{2}$ distributions $(1, k) \oplus p_{\gamma_{1}} p_{\gamma_{2}}, \ominus p_{\gamma_{3}} p_{\gamma_{4}} \ldots p_{\gamma_{n}}$,

1 distribution $(1, m) \oplus p_{1} p_{2} \ldots p_{n}$.
Here j runs through n values, k runs through $\frac{n(n-1)}{2}$ values, and so on.
It is apparent that any two of these distributions are not positive-equivalent and that every other distribution is positive-equivalent to at least one of these distributions. Thus the maximum number of distributions any two of which are not positive-equivalent, is

$$
\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{n}=(1+1)^{n}=2^{n}
$$

It is apparent that these distributions are negative-equivalent in pairs and that two distributions of different pairs are not negative-equivalent. Thus the maximum number of distributions any two of which are neither positiveequivalent nor negative-equivalent, is 2^{n-1}.

If we exclude the distribution

$$
(1, m) \oplus p_{1} p_{2} \ldots p_{n} \quad \text { or }(1, i) \ominus p_{1} p_{2} \ldots p_{n}
$$

there remains $2^{n-1}-1$ distributions corresponding to just one of $(1,2)^{ \pm},(1,3)^{ \pm}$, $\ldots,\left(1,2^{n-1}\right)^{ \pm}$. Then it is apparent that there are at most 2^{n-1} solutions satisfying the conditions of the first part of the theorem. Hence this part of the theorem is proved.

If N and D are relatively prime, it is apparent that there are 2^{n} classes at most. If the prime p_{i} divides D, it divides every u. Thus p_{i} is a divisor of $(i, j)^{+}$as well as of $(i, j)^{-}$. If m of the primes p_{i} divide D, there are no more than $2^{n-m-1}-1$ distributions and 2^{n-m} classes at most. If all the prime divisors of N except one divide D, there is no more than one solution satisfying the conditions of the first part of the theorem, and two classes at most. If N divides D, the equation has no more than one single class.

If $p_{n}=2,(40)$ is only solvable in odd u and v when $D \equiv 1(\bmod 4)$. If N and D are relatively prime, there are $2^{n-1}-1$ distributions and 2^{n-1} solutions satisfying the conditions of the first part of the theorem. Thus there are 2^{n} classes at most. If $D \neq 1(\bmod .4)$, every u is divisible by 2 and every $D v^{2}$ is divisible by 4. Thus it is apparent that there are 2^{n-m} classes at most, when m of the odd prime divisors of N are divisors of $D, D \equiv 1(\bmod .4)$, or when $m-1$ of the odd prime divisors of N are divisors of $D, D \neq 1(\bmod .4)$. Hence the theorem is proved.

Theorem 9. Suppose that $\underset{D}{N}=p_{1} p_{2} \ldots p_{n}$, where $p_{1}, p_{2}, \ldots, p_{n}$ are distinct primes $\equiv \pm 1(\bmod .8)$. The Diophantine equation

$$
\begin{equation*}
u^{2}-2 v^{2}=p_{1} p_{2} \ldots p_{n} \tag{41}
\end{equation*}
$$

has 2^{n} classes.
Proof. It is a well-known fact that the Diophantine equation

$$
u_{i}^{2}-2 v_{i}^{2}=p_{i} \quad(i=1,2, \ldots, n)
$$

is always solvable in integers u_{i} and v_{i}, and according to Theorem 6 it has two classes. If the fundamental solutions are denoted by $u_{i} \pm v_{i} \sqrt{2}$,

$$
\begin{equation*}
u+v \sqrt{2}=\prod_{i=1}^{n}\left(u_{i} \pm v_{i} \sqrt{2}\right) \tag{42}
\end{equation*}
$$

clearly is a solution of (41). From (42) we get 2^{n} solutions $u+v \sqrt{2}$ of (41). Thus Theorem 9 is proved, if all the solutions belong to different classes. We prove the theorem by induction.

Suppose that Theorem 9 holds for n primes, and consider the Diophantine equation

$$
U^{2}-2 V^{2}=p_{1} p_{2} \ldots p_{n} p_{n+1}
$$

where $p_{n+1} \equiv \pm 1(\bmod .8)$. If $u+v \sqrt{2}$ and $u_{1}+v_{1} \sqrt{2}$ are two solutions of (41) belonging to different classes, and if $u_{n+1} \pm v_{n+1} V^{\prime}$ are the fundamental solutions of the equation

$$
u_{n+1}^{2}-2 v_{n+1}^{2}=p_{n+1},
$$

clearly the solutions

$$
\begin{aligned}
U+V \sqrt{2} & =(u+v \sqrt{2})\left(u_{n+1}+v_{n+1} \sqrt{2}\right) \\
U_{1}+V_{1} \sqrt{2} & =(u+v \sqrt{2})\left(u_{n+1}-v_{n+1} \sqrt{2}\right)
\end{aligned}
$$

belong to different classes. So do the solutions

$$
\begin{aligned}
U+V \sqrt{2} & =(u+v \sqrt{2})\left(u_{n+1}+v_{n+1} \sqrt{2}\right), \\
U_{1}+V_{1} \sqrt{2} & =\left(u_{1}+v_{1} \sqrt{2}\right)\left(u_{n+1}+v_{n+1} \sqrt{2}\right)
\end{aligned}
$$

If the solutions

$$
\begin{aligned}
U+V \sqrt{2} & =(u+v \sqrt{2})\left(u_{n+1}+v_{n+1} \sqrt{2}\right) \\
U_{1}+V_{1} \sqrt{2} & =\left(u_{1}+v_{1} \sqrt{2}\right)\left(u_{n+1}-v_{n+1} \sqrt{2}\right)
\end{aligned}
$$

belong to the same class,

$$
(u+v \sqrt{2})\left(u_{n+1}+v_{n+1} \sqrt{2}\right)^{2}=\varepsilon\left(u_{1}+v_{1} \sqrt{2}\right) \cdot p_{n+1}=p_{n+1}(A+B \sqrt{2})
$$

B. stolt, On the Diophantine equation $u^{2}-D v^{2}= \pm 4 N$
holds. In this expression ε is a solution of (2), and $A+B \sqrt{2}$ is a solution of (41). Multiplying by $A-B \sqrt{2}$ we get

$$
(u+v \sqrt{2})(A-B \sqrt{2})\left(u_{n+1}+v_{n+1} \sqrt{2}\right)^{2}=p_{n+1} \cdot p_{1} p_{2} \ldots p_{n} .
$$

The left-hand side may be written

$$
\begin{aligned}
& \left(A_{1}+B_{1} \sqrt{2}\right)\left(u_{n+1}+v_{n+1} \sqrt{2}\right)^{2}= \\
& \quad=A_{1}\left(u_{n+1}^{2}+2 v_{n+1}^{2}\right)+4 B_{1} u_{n+1} v_{n+1}+\sqrt{2}\left(B_{1}\left(u_{n+1}^{2}+2 v_{n+1}^{2}\right)+2 A_{1} u_{n+1} v_{n+1}\right)
\end{aligned}
$$

From this we get the congruences

$$
\begin{aligned}
& A_{1}\left(u_{n+1}^{2}+2 v_{n+1}^{2}\right)+4 B_{1} u_{n+1} v_{n+1} \equiv 0\left(\bmod . p_{n+1}\right) \\
& B_{1}\left(u_{n+1}^{2}+2 v_{n+1}^{2}\right)+2 A_{1} u_{n+1} v_{n+1} \equiv 0\left(\bmod . p_{n+1}\right)
\end{aligned}
$$

From these congruences we get

$$
2 A_{1}^{2} u_{n+1} v_{n+1}-4 B_{1}^{2} u_{n+1} v_{n+1} \equiv 0\left(\bmod . p_{n+1}\right)
$$

or, since neither v_{n+1} nor u_{n+1} is divisible by p_{n+1},

$$
A_{1}^{2}-2 B_{1}^{2} \equiv 0\left(\bmod . p_{n+1}\right)
$$

This proves the theorem.

§ 5. Numerical examples

Finally, we give some examples which illustrate the preceding theorems.
Example 1. $u^{2}-5 v^{2}=44=4.11$ (Theorem 6).
The fundamental solution of the equation $u^{2}-5 v^{2}=4$ is $\frac{3+\sqrt{5}}{2}$. For the fundamental solutions in which u and v are non-negative, according to inequalities (16) and (17) we get

$$
0 \leqq v \leqq 1, \quad 0<u \leqq 7
$$

We find the fundamental solutions $\frac{ \pm 7+\sqrt{5}}{2}$.
Example 2. $u^{2}-5 v^{2}=-20=-4.5$ (Theorem 6).
For the fundamental solutions in which u and v are non-negative, according to inequalities (21) and (22) we get

$$
0<v \leqq 2, \quad 0 \leqq u \leqq 2
$$

We find the fundamental solution $\frac{2 \sqrt{5}}{2}$. Thus the equation has only one class, and this class is ambiguous.

Example 3. $u^{2}-17 v^{2}=8=4.2$ (Theorem 6).
The fundamental solution of the equation $u^{2}-17 v^{2}=4$ is $\frac{66+16 \sqrt{17}}{2}$. For the fundamental solutions in which u and v are non-negative, according to inequalities (16) and (17) we get

$$
0 \leqq v \leqq 5, \quad 0<u \leqq 17
$$

We find the fundamental solutions $\frac{ \pm 5+\sqrt{17}}{2}$. As $D \equiv 1(\bmod .4)$, the equation has the maximum number of classes.

Example 4. $u^{2}-5 v^{2}=836=4.11 .19$ (Theorem 7).
For the fundamental solutions in which u and v are non-negative, according to inequalities (16) and (17) we get

$$
0 \leqq v \leqq 6, \quad 0<u \leqq 32 .
$$

We find the fundamental solutions $\frac{ \pm 29+\sqrt{5}}{2}, \frac{ \pm 31+5 \sqrt{5}}{2}$.
Example 5. $u^{2}-17 v^{2}=104=4.2 .13$ (Theorem 7).
For the fundamental solutions in which u and v are non-negative, according to inequalities (16) and (17) we get

$$
0 \leqq v \leqq 9, \quad 0<u \leqq 17
$$

We find the fundamental solutions $\frac{ \pm 11+\sqrt{17}}{2}, \frac{ \pm 23+5 \sqrt{17}}{2}$.
Example 6. $u^{2}-33 v^{2}=88=4.2 .11$ (Theorem 7).
The fundamental solution of the equation $u^{2}-33 v^{2}=4$ is $\frac{46+8 \sqrt{33}}{2}$. For the fundamental solutions in which u and v are negative, according to inequalities (16) and (17) we get

$$
0 \leqq v \leqq 5, \quad 0<u \leqq 14
$$

We find the fundamental solutions $\frac{ \pm 11+\sqrt{33}}{2}$.
Example 7. $u^{2}-21 v^{2}=84=4.3 .7$ (Theorem 7).
The fundamental solution of the equation $u^{2}-21 v^{2}=4$ is $\frac{5+\sqrt{21}}{2}$. For the fundamental solutions in which u and v are non-negative, according to inequalities (16) and (17) we get

$$
0 \leqq v \leqq 1, \quad 0<u \leqq 12 .
$$

We find no fundamental solutions. Thus the equation is not solvable.
B. stolt, On the Diophantine equation $u^{2}-D v^{2}= \pm 4 N$

Example 8. $u^{2}-21 v^{2}=-84=-4.3 .7$ (Theorem 7).
For the fundamental solutions in which u and v are non-negative, according to inequalities (21) and (22) we get

$$
0<v \leqq 2, \quad 0 \leqq u \leqq 10
$$

We find the fundamental solution $\frac{2 \sqrt{21}}{2}$.
Example 9. $u^{2}-5 v^{2}=751564=4.11 .19 .29 .31$ (Theorem 8).
For the fundamental solutions in which u and v are non-negative, according to inequalities (16) and (17) we get

$$
0 \leqq v \leqq 193, \quad 0<u \leqq 969
$$

We find the fundamental solutions

$$
\begin{aligned}
& \pm 867+5 \sqrt{\prime} 5 \pm 872+40 \sqrt{5} \\
& 2
\end{aligned}, \frac{ \pm 883+75 \sqrt{5}}{2}, \frac{ \pm 888+86 \sqrt{5}}{2}, ~ \begin{aligned}
& 2 \\
& \quad \pm \frac{897+103 \sqrt{5}}{2}, \frac{ \pm 903+113 \sqrt{5}}{2}, \frac{ \pm 937+159 \sqrt{5}}{2}, \frac{ \pm 953+177 \sqrt{5}}{2}
\end{aligned}
$$

Example 10. $u^{2}-148 v^{2}=3108=4.777=4.3 .7 .37$ (Theorem 8).
The fundamental solution of the equation $u^{2}-148 v^{2}=4$ is $\frac{146+12 \sqrt{148}}{2}$. For the fundamental solutions in which u and v are non-negative, according to inequalities (16) and (17) we get

$$
0 \leqq v \leqq 27, \quad 0<u \leqq 338
$$

We find the fundamental solutions $\frac{ \pm 74+4 \sqrt{148}}{2}$. Thus the equation has half the maximum number of classes.

Example 11. $u^{2}-37 v^{2}=777=3.7 .37$ (Theorem 8).
The fundamental solution of the equation $u^{2}-37 v^{2}=1$ is $73+12 \sqrt{37}$. For the fundamental solutions in which u and v are non-negative, according to inequalities (5) and (6) we get

$$
0 \leqq v \leqq 18, \quad 0<u \leqq 169
$$

We find the fundamental solutions $\pm 37+4 \sqrt{37}$. According to Theorem 5, the given equation will have the same number of classes as the preceding equation.

Example 12. $u^{2}-148 v^{2}=924=4.231=4.3 .7 .11$ (Theorem 8).
For the fundamental solutions in which u and v are non-negative, according to inequalities (16) and (17) we get

$$
0 \leqq v \leqq 14, \quad 0<u \leqq 184
$$

We find the fundamental solutions $\frac{ \pm 68+5 \sqrt{148}}{2}$.
Example 13. $u^{2}-37 v^{2}=231=3.7 .11$ (Theorem 8).
According to Theorem 5, the equation has the same number of classes as the preceding equation. Then the fundamental solutions are $\pm 34+5 \sqrt{37}$.

Example 14. $u^{2}-148 v^{2}=5628=4.1407=4.3 .7 .67$ (Theorem 8).
For the fundamental solutions in which u and v are non-negative, according to inequalities (16) and (17) we get

$$
0 \leqq v \leqq 36, \quad 0<u \leqq 456
$$

We find the fundamental solutions $\frac{ \pm 76+\sqrt{148}}{2}, \frac{ \pm 220+17 \sqrt{148}}{2}$.
Example 15. $u^{2}-148 v^{2}=61908=4.15477=4.3 .7 .11 .67$ (Theorem 8).
For the fundamental solutions in which u and v are non-negative, according to inequalities (16) and (17) we get

$$
0 \leqq v \leqq 122, \quad 0<u \leqq 1512
$$

We find the fundamental solutions $\frac{ \pm 250+2 \sqrt{148}}{2}, \frac{ \pm 934+74 \sqrt{148}}{2}$.

BIBLIOGRAPHY. [1] T. Nagell, En elementær metode til à bestemme gitterpunktene på en hyperbel, Norsk Matem. Tidskrift 26 (1944), 60-65. - [2]. -- , Elementär talteori, Uppsala 1950, 199-206. - [3]. —— Über die Darstellung ganzer Zahlen durch eine indefinite binäre quadratische Form, Archiv der Mathematik 2 (1950), 161-165. - [4]. -_-, Bemerkung über die diophantische Gleichung $u^{2}-D v^{2}=C$, Archiv der Mathematik 3 (1951). - [5]. E. Landau, Vorlesungen über Zahlentheorie, Lpz. 1927, Bd. I, 63.

[^0]: ${ }^{1}$ See [1], [2], [3], [4]. In the following we use the notions proposed by Nagell.

[^1]: ${ }^{1}$ In his first papers Nagede defined the fundamental solution in a slighty ifferer: manner.

[^2]: ${ }^{1}$ Se [5].

