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On approximation of continuous and of analytic functions 

B y  HARALD B O H M A N  

1) General survey 

Let {~,.} denote a system of points in the interval (0, 1)wi th  the following 
properties 

n = 1, 2, 3 . . . .  

v = 0, 1 . . . . .  ( n -  1), n. 

With every point ~, n we associate a real function %, n (x), defined for 0 < x _-< 1. 
A system of the above-mentioned type will be said to solve the approxima- 

tion problem, if for every continuous function ] (x) 

A~ (/) = ~: / (~., .) ~ , .  (x) 
v=0 

tends to /(x) when n tends to infinity, uniformly for 0 < x < 1. 
In  this paper we are going to t reat  the case when the approximation func- 

tions ~ ,  n (x) are non-negative. We begin in section 2 by stating the necessary 
and sufficient conditions of a system {~,~} of points. We proceed in section 
3 by  stating the necessary and sufficient conditions of a system {~,~; %,~} of 
points and functions, which solves the approximation problem. Then in section 
4 we apply the obtained results on a special system and finally, in section 5, 
we study the convergence for complex values of x for this same s y s t e m .  

2) Necessary and sufficient conditions of {~,~}. 

We shall prove tha t  the conditions 

~o,,~ "-> 0 } 

Max {~v+l ,n - -  ~,,n} "+ 0 

when n - ~  c~ are necessary and sufficient for {~,n} in the following meaning. 
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If the conditions are fulfilled there is a system {~v,,~} of functions so that  
{$~,n; ~V~,n} solves the approximation problem. 

If the conditions are not fulfilled there is a continuous function ] (x), not 
identically zero, so that  for every system {~v~,~} of functions 

lim A~ (/) = 0 

i.e. the system {$,,~; F,,~} does not solve the approximation problem. 
Let  us first suppose that the conditions are fulfilled. 
We define 

0 for x < $~-1,~ 

~)v,n(X)=l ~v'n-~v-l'n 
~ v + l ,  n - -  X 

~ + 1 ,  ~ - -  $~,~ 

(0 

for ~.-1,~_-< x_-< $.,n 

for $~,. < x <  $~+1,~ 

for x >  $~+1,~ 

This definition is also valid for yo,,  if ~-l,~ is replaced by 0 and for ~ , n  
if $~+1,~ is replaced by 1. 

In each sub-interval 
A .  (/) = ~ / ($.,.) ~ . , .  (x) 

is then a linear function and in the points $,n,,, 

A.  (t) = ~ / ($., .) ~o., n (tin, .) = ] (~m, .) 

Hence it follows from the continuity of /(x) that  A~ ( / ) -~ /  uniformly for 
< X  < 0=  =1.  
Let  us then suppose that  the conditions are not fulfilled. 
If we denote 

Max {$o,~; (1 $.,~); (~e~+l,n--~.,n)}=dn 
y 

the supposition is equivalent to the existence of a constant a > 0 so that  

lim d,~= a > O. 

Hence there is a sub-sequence d . ,  and a constant /~0 so that  

(2 
d ~ . > ~  for # > ~ u  o. 

This statement can also be expressed as follows. There is an infinite set of 

intervals I t ,  each of a length greater than 2' such that  I~ contains n o  point 

of the set ~ $~,,.  
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1 a <  1 
Now choose a number N such that  ~ ~ 4  = N - - 1  and divide the interval 

(0, 1) into N equal sub-intervals il, i2 . . . .  , iiv. Each I s being greater than 2 '  

it covers at  least one of the intervals i~. As the number of intervals I ,  is 
infinite, there must be at least one interval i~ which is 'covered by an infinite 
number of intervals I~. Thus we have found tha t  there is a sub-sequence n~ 
and an interval ik such tha t  i~ contains no point of the set ~ ~ ~nx,~- 

). v 

Consider now a continuous function ](x) which is different from zero in i~ 
but  zero elsewhere. Let {~, .} be some system of approximation functions. 
Then 

In  particular 

Hence ]im A.  (]) = 0. 
A.~(])~O for every ~. 

3) Necessary and sufficient conditions in the case ~ , .  __> 0 

In the preceding section we made no assumptions concerning the sign of 
Y~.,.. From now, however, we shall always assume tha t  ~ , .  is non-negative. 
The consequences of this restriction are prima facie somewhat unexpected. 

We shall give two different necessary and sufficient conditions for a system 
{~, - ;  Y#,n} of points and non-negative functions tha t  solves the approximation 
problem. 

Condition A 
For each ~ 0  

I ~,n-Xl>-n 

as n -~ o% uniformly for 0 < x =< 1. 

Condition B 
A. (I) ~ I 

A .  (~) -> x 

A ~  (x 2) -~ x 2 

as n -~ 0% uniformly for 0 < x < 1. 
Let u s  first assume that  condition A is fulfilled. 

function there is a number M such tha t  

[/I<M 
and an r /= ~ (s) such tha t  

I f  /(x) is a continuous 
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Then we get 

" A I I -  An(~)1= I(1 - -  ~;~)t  + l~n-- n(l) l < 

< M I l - - ~ ] : l + M ~ ] ; + e ~ ] ~ < 2 e  for n>no. 

Condition A is thus sufficient. In  particular it follows, that  if condition A 
is fulfilled, the same is true of condition B. 

Secondly, let us assume that  condition B is fulfilled. This is evidently a 
necessary condition. 

From the assumption follows 

x 2 An (1 i - -  2 x An (x) + An @2) _> x2 _ 2 x 2 + x 2 = 0. 

On the other hand 

z = An (1) - 2 x An (z) + An (x 2) = ~ (x 7 &, n)* W,, n (x) > n* ~ ; .  

Hence ~-+ 0 and as An(1)=Z~, + Z~-*" 1 we have also Z~-+ I. 
Thus, if condition B is fulfilled, the same is true of condition A. 

4) Application of the obtained results 

Let us consider the system 

~,,n-- n W,,n(X) =e - ~  (Nx)~! 

where N=N(n) is a posititive function of n. 
0~r  first problem is t o  determine N(n) so, that  the system solves the ap-  

proximation problem. For this investigation we apply condition B. 

An(l)  = e_2Vx~ (Nx)" 
v=0  ~'! 

and d An(l)  Ne_N~(Nx)~< 0 
dx n! 

for x=O is A n ( 1 ) = l  
n y v  

for x = l  is 7.," ------0 

If  we show tha t  the latter expression tends to 1 as n tends to infinity, i t  
is clear that  An(l)  tends to 1, uniformly for 0 <--x--< 1. 

oo  N 

N 0 
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P u t  x = n + t V n  
N - - n  

N V~ 
1 ( e _ X x n d  x nn+�89 - n | f  . . . .  e - t  

n! ,1 n! J 
o -V~ 

(1 + 

N - n  

~n 
~ ) n d t ~  l~  ~ e - ' V ~ l +  ~ )  

-V;  

b y  Stirlings formula.  Now for every  fixed t 
- t 

e - t V n  1 + = e  -~ 

and hence the  integral  tends to  zero, if and only i f -  

e - ~  

n - - N  
--> + 0% and then  

V~ 

(N z) n e -  N ~. 

An(I )  -~ 1. 
We mus t  also have  An(z)~ x. 

n N n--1 N (~V x) ~ N N 
A n ( x ) =  _N~=~oV_( ~ ,x ) '  e_N~ Z ' - -  x x An( l )  

n ! ,=o n v! n n 

B u t  
(N x) n 

n! e ~ \  n ] V2~n 
where 

gn(x)=logN + l o g x + l  N 
n n 

g;~(x) 1 N 
x n 

For  sufficiently large n is N < n  a s - -  

T h e n  

and hence 

n - - N  + o% and e;, (x) > 0 for 0 --< x --< 1. 
V ~  

N _ + I _ _ N < 0  gn(x) <-- gn(1 )= log  n n 

1 
e ngn(z )~O for O - - < x - - < l .  

V 2 ~  

Thus a necessary condition for An(x)~ x is t h a t  N 
~b 

Final ly  we have to  prove  t ha t  An(x 2) ~ x 2. 

~=o(V) ~ ~ v ( v - - 1 , + v  (Nx, '_  An (z z) = e ~lv (N  x)~= e - iv~  . . . .  
v ! ,=0 n 2 v ! 

( ~ (N)  ~ n~; 2(Nx)" 1An,x, + . x~e -N~ __ 
=~ ~ ~o ~! 
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But 
,~-2 (Nx)~ (Nx)n-1 " (Nx)n 

e-XX ~" -vi An (1 ) - - e -N X-  e-2~x 
,=0 (n - -  1) ! n ! 

and this expression tends to 1 as n tends to infinity, provided that  N --  -+ 1 and 
n 

n - - N  . . . .  --+ + c<). 

Thus we have proved that  if ---~IN and n - - N  
/ 

An(x ) ->x  and An(x2)-->x ~. Hence the system {~; 
k -  

approximation problem. 

- - - - - .  + c~ then An(l) --+ 1, 

e_ZCx (Nx) v] ~ - j .  solves the 

5) Convergence for complex values of x 

In the previous section we have found that  the system 

(Nx)q 

solves the approximation problem. We shall now see whether for this same 
system it is possible to extend the region of convergence to complex values 
of x. We begin with the simplest case, ] (x)= 1, for which 

n (Nz)~ 

v = 0  

where z = x + i y = o e  iv. 
Let  us denote by co the function 

r ~-  Z e 1 - z  

and consider the curve leo I= 1: The equation of this curve is 

~) e l - e  cos ~ = 1 

and it is easily seen that  it divides the z-plane into three different parts. 

In /21 is [ e o ] < l  and Q < I  

In /23 is [~o1<1 and ~ > 1  

In /23 is [o~l>l. 

In accordance with this definition, each region /2 is an open set. 
If we put 

-n~  r (nZ)" j.  
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t 

.t'l.~ 

Fig. 1. 

have jn(~)=An(1)and if in(Z)tends to a l imit ,  uni formly  in a w e  
\ .v ! 

region D, then also A,~(1) tends to the same limit, uniformly in every bounded, 
closed region, interior to D. For  we know from the previous section 

tha t  N 
n 

~qow 
i~  (z)  = e - ~  

(n 
~=o v! 

- -  ~ s v  j - - ~ Z  ~ - e  y_. n! 1 
�9 n ;~-~ z~--~ n .  ~=0  ~ l  

con n n n n ! 1 

but  
n !  n ( n - - 1 )  . . .  ( n - - v  § l )  

( n - - v ) !  n" n" 
< 1 and tends to 1 for every fixed v as 

n -+ c~. Hence 
n!  1 ~ 1  z 

�9 =o (n - v) ! n" z" ,=0z" z - - 1  

uniformly f o r  ] z [ > 1 + ~ for every ~ > O. 
Also 

~b n __ 
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Thus 

i.(z) 
(On Z 

V2-un z -  1 

for I z [ > 1. From this we obtain that  in the region where I z l >  1 and I (O ] < 1, 
i.e. in D2, j~(z)-~ 0. 

Again, in the region where [z I >  1 and I(Ol > 1, IJ.(~)l  ~ ~ .  We s~all 
prove that  ]j~(z) J-+ c~ in ~Q3- This is now proved for the part of Da where 
I zl > 1. I t  is easily seen that in the part where [z]--< 1 is R{z} < 1. We 
shall make use of this fact. 

Integrating by parts we obtain the formula 

Now 

n 

n! .! ezt 1--  dt=enZ--~=o ~ (nz)"v! 
0 

n 

(nz)  e 
1--i,~(z) n! z e ~t 1--  dt 

0 

n 

(On(_] z feZt 1 
1 -  i"(z) =U.'  ~e /  a 

0 

f ( : ) ~  f e ~t 1--  dt---, e t (~- l )d t=l_  z 
0 0 

uniformly for R {z}--< 1 - - 7  for every ~/> 0. 
Hence 

(O n Z 

l - - in(z)  V ~  1 - z  

i.e. for R { z } < l  and ]w > 1 ,  [ j , (z)]-+c~.  
Finally we shall study the convergence in ~1. 

(n 
in (Z) = e -n ~ 

~,=0 'P! 

oo / n  z)n+~, 

= ( ~ ) . e _ . ~  Z (nz)" 
.=~ (n + v) ! 

1 - - A n ( 1 ) = l - - i n  =(Nz)ne_S. ~ (Nz)" . 
�9 =1 (n + ~,)! 
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Now in s [ 1 - - A . ( 1 ) [  is less than its maximum value on the boundary; 

I I ~, (Nz)" < 

, ~ l  ( n  + 1:)! - -  , ~ l  ( n  + ~) ! 

and [ z d - " [ =  1 on the boundary, so tha t  

N" N" IN.z.e-N:l=~lz]n-N<__-- 
e N 

as N < n for n sufficiently large. 
Hence 

[1 - -A, (1) [ - -<  el v ~=l(n + v)! 
oo Nn+, 

. . . .  - -N  _ = 
- - e  ,=~1 (n + ~)t 

i v  
- - - - = 1 - - e  - ~  ~ ~. 

and as we have proved in section 4 that 

n N, 
e-~V~ ~-.-~ 1 

Y=O �9 

i t  follows that  A~(1)-> 1 uniformly in s and on the boundary. 
Summing up our results we have thus found 

A~(1)-+ 1 uniformly' in s and on the boundary. 
A , ( 1 ) - + 0  in s and the convergence is uniform in every bounded, closed 

region interior to g22. 
[ A . ( 1 ) [ ~ o o  in s and the convergence is uniform in every bounded, 

closed region interior to s 

In particular it  follows that if / (z)  is an arbitrary analytic function, the 
region of convergence where A , ( / ) - +  [ is at most equal to s 

We shall now prove the following theorem. 
Let ](z) be regular inside s and continuous up to and on its contour. Sup- 

/urther that / ( 1 ) = 0  and that I/(Z)zl  is bounded on the contour. Then Tose 

A.  (/) = e - ~  ~ / : ;~ 
Y=0 

tends to ](z) as n -+ 0% uni/ormly in every closed region interior to s 
In the proof we shall frequently use the flmction log z of a complex number 

z = r e ~ v. We define this function as log r + iv, where 0 -- v < 2 ~. 
Let us first notice that  the function 

n ?) 
B.=o , ,  

is equal to A , ( / )  at the point N z - -  . As N < n  for n sufficiently large and 
n 
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N 
- - - ~  1, it follows that  if B , -+  ], the same is true .of An(~)..Bn is more easy 
n 

to handle than An (/), and therefore we choose to prove the convergence for Bn. 
We begin by cutting off the part of ~21 which lies to the right of the straight 

line R {z} = 1 - - 1  2n" We obtain a suite of new regions, which are part  of g21, 
t , t  t , t  

with the contours Cn + C,, where Cn denotes the straight line and Gn the con- 
tour to the left of C~. The contour of ~21 is denoted by C. 

Consider now the integral 

ne-nz f �9 n - - 1  / ~  
e -nz 1 -  ~ = B n  2~i ](:)e-~inr162 ~'=o (n) . 

r ,,, 
Cn +C n 

where z n r = e n ~ log z. 

The scheme of our proof is a follows. 
We prove first that  the integral along C~ tends to zero, then that  the inte- 

gral along C~ is bounded for z on C. We know that  Bn--~/ on the real axis. : 
for 0 - - < z < l .  Hence B ~ ]  inside g21. 

Now ve have 
ern~  

F ( - n O  = -  

1 
As I x -  ~ - iy l> - I1 -~  I it is clear that  on C;~ where ( =  1--2nn + i y 

I r ( - ~ o l  -<lr(�89 
and as 

I r (�89 - n) F( �89 + n) I = 
Stirlings formula gives 

I r ( � 8 9  n) l -  ~ �9 

On C is [ z d - ~ [ = l  so that  for $ on C~ 

- -  e n _ 

11\ 
and as the length of C~=O~..~ the integral along C~ tends to zero. 

x . v !  

For the investigation of the integral along C;~ we need an asymptotic ex- 
pression for F(--n~)  on C~. Stirlings formula for complex values of ~ gives us 

log I ' ( - -nO=(n  ~ + �89 log nr + n~ + �89 log 2~ + 

valid for 0 < arg {~} < 2g. 

f [ u ] - u  + �89 
J u--n~ 
0 
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The function 

~ ( x ) = / ( [ u ] - - u  + � 8 9  
0 

is evidently bounded, so tha t  we can write the "remainder t e rm"  in the fol- 
lowing form. 

= l [ u l : u +  ~ f v'(u) du-~ f i  v(u) gn(r .] u - - n ~  " d u = . ]  u - - n ~  . U - - h e )  2 

0 0 0 

o o  

n J (u - r 
0 

i.e. for any ~ > 0, [g,(r -~ 0 uniformly in the region ~ < arg {~} < 2 ~ - -  ~. 
I f  we put  ~ = ~  + i T we have in the neigbourhood of r  

~2 + ~2 = e 2 (~-~) 

~2 = e2(~-1)-  1 - -  2 (~ - -  1) - -  (~ - -  1) 2 

7 2 = (~ - -  1) ~ ~ . . . .  

1 
~ + 1 as ~ ->1  along C, i.e. if 1 - - ~ n = 2 n  so that  1 -- ~ -- 

12n~.l+x; 

hence there is a constant a such . tha t  I n~n] ~ a >  O. 
Now for ~ on C~ and ~ > 0 we get the following inequality 

or -I-or +r  

J ( u - - n r  J ] u - - n r  2 < M .  u 2 §  u 2 §  a2-~cx~. 
0 0 --c~ --or 

Thus there is an upper bound N, independent of n, such tha t  [g.(r 
t l  

less than N on C,. 
We now replace F ( - - n  r by the obtained expression in the integral I~ 

is 

w h e r e  

I,~ = _ _  ~e--Z f /  2~i  J (r162162 l/(r162 
pP p !  

Cn Cn 

h ,~( r162  § nr log nz + 

+ (n~ + � 8 9  nr + nr  + �89 log 2~  + gn(r = 

n ( r  + r log z - -  ~ log r + ~ - - - � 8 9  log n ~  + 

+ �89 log 2 .~ + On (r 
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i.e. 

where 

and 

Now 

which 

V~ f / (r 
I,~ = l / ~  c j  ~ -~ e'. (c, e n (c-z +c l~ z-: '~ c) d : 

2 n--d n 

- V 2 ~  ](r -ean(r162162176176 

dn 

$ = p e  i~ and ~ , = d ~ .  
dq~ 

$ ' = i ~  + ~ ' d ~ ~  ( i  + ~ )  

Thus we have 

log ~=Q cos ~ - -  1 

~" = 5' cos ~0- -5  sin qo 
5 

Q' = ~) sin ~0 
Q l - - 5  cos q~ 

is bounded,  because the only critical point  is . q=O,  and we know tha~ 

1 - - ~  cos- = --> 1 as r ~ 1 along C. 

was supposed to be bounded on C. Hence  ] ] (5 ei~) I is bounded.  
(2 ~- -  ~) 

27t 

II. ]<  MVnf~ (2~-- ~)e" R ( ~ - z + ~ ' ~  z - : ' ~  ~ d q~. 
o 

Now we pu t  z = r d  v, and so 

R { $ - - z +  ~ l o g z - - $ 1 o g ~ } =  

= ~ cos ~o - -  r cos v + Q cos ~0 (log r - -  log 5) + 5 sin ~0 (q~ - -  v) = yJ (~, v). 

As 

this m a y  also be wri t ten 

l o g r = r  c o s y - - 1  

log 5 = 5  cos ~ - -  1 

(~,  v) = (1 - -  5 cos  ~ )  (5 cos  ~ - -  r cos  v)  + 5 s in  ~ {~  - -  v) .  
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I n  p a r t i c u l a r  ~p (q ,  q~) = 0 

OvO~=(1--~ cos  ~ )  ( r  s i n  v - - r '  cos  v ) - - Q  s i n  

dr r 2 s i n  v 
o r  a s  r ' = - - - - - -  

dv  1 - - r  cos  v 

0•=(1 r s i n  v 
cos ~) 1 ~ cos v 

O~p 
so  t h a t  a l so  Ovv = 0 f o r  v = ~  

Q s i n  

0 2 ~p ( r '  s i n  v + r cos  v) (1 - -  r cos  v) + ( r '  cos  v - -  r s i n  v) r s i n  v 
Ov 2 = (1 - -  ~ cos  q~) 

( 1 - - r  cos  v) 2 

r '  s i n  v + r cos  v - -  r 2 
= (1 - -  e cos  ~ )  

(1 - -  r cos  v) 2 

(1 - - r  cos  v) ( r  cos  v -  r 2) - - r  2 s i n  2 v 
= (1 - -  ~ co s  q~) (1 - -  r co s  v) 3 

r 2 - -  ( r  + r 3) co s  v 
= - ( 1 - ~  c~ ~12 (~ - - ;  cV~ @ 

T h e  f u n c t i o n  2 r 2 - -  ( r  + r a) c o s  v . 
( 1 - - r c o s v )  a is  > 0  f o r  a l l  v a l u e s  of  v. T o  p r o v e  t h i s  we  

p u t  1 - - r  co s  v = t ,  r = e  - t .  T h e  f u n c t i o n  m a y  t h e n  b e  w r i t t e n  

2 e - U t - - ( e  -2 t  + 1 ) ( l - - t )  
s (t) t3 

e-2t  (1 + t ) - -  l + t 
- - ,  

t a 

( 1 - - 2 t + 2 t 2 - - ~ t  a + . . . ) ( l  + t ) - l  + t 
t 3 

~t  a + . . .  2 

t a 3 

W h e n  t -+  0 is  

s(t)  = 

�9 1 + 2 t  

e2 t 

f o r  t > 0 w e  c o n s i d e r  

d .  2t 
a / e -  ( l + t ) - - l + t ] = l - - e - U t ( l + 2 t ) = l  > 0  

a n d  so  e - 2 t  (1 + t) - -  1 + t > 0 f o r  t > 0.  H e n c e  t h e r e  i s  a c o n s t a n t  a s u c h  t h a t  

2 r  2 -  ( r  + r 3) co s  v >  a > 0.  

(1 - - r  cos v f  
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Now we expand ~v (q, v), considered as a function of v, in its Taylor ' s  series, 
using the first three te rms  only. Then for some v~ between v and ~ we have  

(% v) = ~ (~i ~) + (v - ~) 
0 ~v (~,  q)  + (v - -  ~)2 08 ~ (~v, v~) 

Ov 2 Ov ~ 

_ (v - -  q~)2 02y~ (q~, v~) < __ a (v - -  T) ~ (1 - -  ~ cos ~o). 
2 Ov 2 2 

Again there is a constant  b such t h a t  

1 - - ~ c ~  2 b > O  
2 q~ (2 J r - -  q~) 

and  so 
~v (~o, v) < - -  a b (~o - -  v) 2 ~ (2 ~ - -  q~). 

I f  we make  use of this inequali ty in the expression for I In  ] we obtain 

2 ~  

II.[ <MV;~ f q~(2=--~) 
0 

e -nab(ep-v)~ef(2zt-qO dq9 

2 ~  

" q ( 2 = - q )  
< M V n  1 + nab(ef--v)2q~(2~--q~) 

7) 

dq, 

and  as ~ 0 ( 2 ~ - - q ) _ < ~ 2  for 0 < ~ < 2  

2~t 
:71:2 

0 

t 
Put t ing  ~o=v + ~  this becomes 

f M:~2 t 2 d t < o o .  l ln[  < 1 + ab:r 2 

The theorem is t h u s  p roved  and I conclude this paper  by  expressing m y  
gra t i tude  to Professor F. Carlson who suggested the  problem. 

Matemat i ska  inst i tutet ,  Stockholms H5gskola.  
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