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Convex i ty  and  n o r m  in t o p o l o g i c a l  g r o u p s  

B y  HANS R.I.DSTROM 

W i t h  2 f igures  in t he  t e x t  

w 1. Introduction and preliminaries 

t . t .  This work originated in a simple observation on the behaviour of sets 
of points in the euclidean plane when a certain operation of taking powers is 

per formed on them. Let  A and B be two sets in the plane. We define A + B 
to be the set of all points which can be expressed in the form a + b  where 
aeA,  beB and a+b is the usual vectorial addition of points. The expression 
A + A ~ :  . . .  A will be denoted by  A n if the repeated sum contains n terms, 
and we shall call A n the n:th power of A. The reason for choosing the symbol 
A n instead of nA is tha t  for real )t the symbol 2A has already a universally 
accepted meaning. 

The observation mentioned above may be formulated as follows: The higher 
the power is, the higher is the degree of convexity. (At present we shall make 
no a t tempt  to give this statement a precise meaning.) An inspection of Fig. 1 
and 2 may make the meaning of this vague statement more clear. 
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H. RADSTROM, Convexity and norm in topological groups 

In  the example of figure 1, it is clear that  the sets 1 A~ fill up more and 
n 

more of the convex hull of A as n increases. In  fact, for sufficiently large n 
any given interior point of the convex hull of A will be an element of 

1_ An" The corresponding s ta tement  is not true for the example given in figure 2 
n 
but  it is clear tha t  any point of the convex hull of A in this case also is the 

limit as n --> oo of points belonging to - 1 A~" In  fact, we shall see later that  
n 

the convex hull of A .in a certain sense, to be defined in section 1.4, is the 

limit of the sets 1 An" 

1.2. These examples seem to suggest tha t  high powers of small sets are in 
some sense almost convex. Paragraph 3 will be devoted to giving these notions 
a precise meaning. As a result we obtain a characterization of compact convex 
sets in a euclidean space in terms of the operation of taking powers. The 
usual definition of convexity involves the use of the operation of multiplication 
with scalars. The characterization of compact convex sets which we obtain in 
w 3 does not involve this operation but  only the addition. This fact is im- 
portant,  since it indicates the possibility of defining convexity in arbi t rary  
topological groups with the aid of an analogue for groups of the characterization 
produced for sets in a euclidean space. 

When one tries to work out such a program, it turns out tha t  it is practical 
not to study the analogues of convex sets directly, but  ra ther  the analogues 
of a certain type of families of convex sets, namely those families which 
consist of all sets of the type 2K,  where K is a given convex set and ~ a 
non-negative real number. In  an arbi t rary group the analogous concept is 
a family A~ of subsets depending on a non-negative real number 2 and satis- 
fying: A~,+~2=A~I A~2. (We use multiplicative notation so that  AB denotes 
the analogue of A + B . )  I t  is a well known fact tha t  if K is a convex set 
in euclidean space and ;t 1 22 ~ 0 then (~1 + ~2) K = ~1 K + ~2 K. I f  certain 
further conditions of a topological nature are satisfied by  such a family of 
sets Aa, we call this family (or rather the mapping s a one-parameter 
semigroup of subsets of the group. In  particular, if the group is a euclidean 
space with addition as group operation, we see from the characterization of 
compact convex sets mentioned above tha t  a one-parameter semigroup of com- 
pact  sets is of the form A~ =]tK where K is convex. 

GLEASO:~ (0) has used the concept of a one-parameter semigroup of subsets 
of a group to establish the existence of an arc in any locally compact group 
which is not totally disconnected. Some of his results are important  for the 
present investigation and will therefore be summarized in the proper place 
(see section 2.8). 

We give now a short summary  of the contents of the present pape r. Para-  
graph 2 is devoted to the definition of one-parameter  semigroups and to the 
deduction of some consequences of this definition. After the discussion of one- 
parameter  semigroups in euclidean space in w 3, we turn to  Lie groups in w 4. 
The main result (theorem 4.12) states tha t  any one-parameter  semigroup in a 
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Lie group has an infinitesimal generator which is a convex set. Here of course 
the term "infinitesimal generator" has to be given a precise meaning (defini- 
tion 4.12). 

Paragraph 5 is devoted to the introduction of the concept of a normed 
group. A metric on a group is a norm if it is left invariant and if the spheres 
S~ of radius ~ around the identi ty of the group constitute a one-parameter  
semigroup. I t  turns out tha t  a normed group is metrically convex in the sense 
of MENGER (9). From this result it follows tha t  a locally compact  normed 
group is separable, metric, connected and locally connected. I t  seems to be a 
very plausible conjecture tha t  for locally compact  groups these conditions are 
also sufficient in order tha t  it be possible to remetrize the group so as to 
make it a normed group. In  w 6 we collect some theorems on normabili ty in 
this sense and prove the conjecture for commutat ive  and essentially also for 
compact  groups. 

i .3.  As a continuity axiom for topological groups we postulate continuity of 
x -1 and of x y simultaneously in both variables. 

As a continuity axiom for linear spaces we postulate tha t  the space be a to- 
pological group if addition is u s e d a s  group operation. We  shall say tha t  the 
group thus defined is the additive group of the linear space or tha t  the linear 
space is a group under addition. We also require tha t  multiplication with 
scalars be continuous in both variables simultaneously. 

In  general, we shall use mu]tiplicative notation for groups. Exceptions will 
be pointed out whenever they occur. The identity will be denoted by e in multi- 
plicative notation (with indices if necessary) and in additive notat ion by  0. 

Let A and B be two subsets of a group. By A B  we mean the set of all 
products ab where a e A  and b e B .  This is an associative operation. I t  is com- 
muta t ive  if the group is commutat ive.  Repeated multiplication of a set A with 
itself is denoted by A n. We have 

(1) A (U B . ) =  U (ABe)  
a a 

(2) A (n Bo): n (A B.). 
a a 

In  particular, if B,  is a fundamental  system of neighborhbods of e, then the 
lett side of (2) is A and the right side is the closure fi_ of A. Multiplication 
is monotone: 

(3) A t m B 1 and A 2 c B 2 imply A 1 A 2 c B1 B 2 . 

I f  A contains e then B c A B  and B e - B A .  
From the definition o f  A n it is obvious tha t  

(4) A ~ A m = A n+m . 

We shall let A ~ be defined as {e} and for positive n we put  A -~ = the set of 
all inverses of elements in A ~. Then (4) is valid for m n > O  but  not in general 
for n and m of different signs. 
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If at  least one of the sets A and B is compact and the other closed then 
A B is closed. If both are compact then A B is compact (see WElL 12, p. 16). 

We have 

(5) f I  B c A B .  

Proof: Each of the following three conditions: 

x e U A for all neighborhoods U of e 

x e A g ,) ,) ~ g ,) e 

x e U A V  ~) ,> )> U and V of e 

is equivalent to x s A. Let  a b e A/~.  Then for all U and V we have a b 
e ( U A ) ( B V ) .  Thus a b e U ( A B ) V  which shows that  a b s A B .  

We denote the set with the elements a, b . . . .  by {a, b . . . .  }. The set 
of all those x which have a certain property P is denoted by {x[P}. 

If a is a point we shall write a B  or B a  instead of {a} B or B {a} re- 
spectively. 

i .4.  In order to make it possible to define one-parameter semigroups of 
subsets of a group in a concise form, we need a method to topologize the 
set of all closed subsets of the group. One such method is the well known 
method of HAUSDORFF (7, p. 143), which applies to arbitrary metric spaces. 
Hausdorffs method is easy to extend to any uniform space. (BouRBAKI, 4, p. 
97, exercise 7.) In the case of a topological group, G, the procedure is the 
following: Let K denote the set of all closed subsets of G, let N be a neigh- 
borhood of the identity in G and let H 0 be an element of K. By N we denote 
the set of all those H s K for which the following two inequalities hold: H o c N H 
and H c N H  o. Now let Na be the elements of a fundamental system of 
neighborhoods of the identity of G. The corresponding sets Na* will then form 
a fundamental system of neighborhoods of H o. The topology thus defined will 
be called " the Hausdorff topology for K" .  I t  is easily verified that  this to- 
pology is unique, i.e. that  it is independent of the choice of the fundamental 
system N~. 

I t  is well-known that ,  topologized in this manner, the space K satisfies 
Hausdorffs separation axiom. 

Let  H '  be a closed subset of G. Th~n the set K '  of all subsets of G which 
are also subsets of H'  is a certain subset of K. I t  is known that  if H'  is 
compact then K '  is also compact in the sense defined by the Itausdorff 
topology for K. 

From the method originally used by HAUSDORFF in the metric case it follows 
that  if G is metrizable then K is metrizable. This means that  in this case we 
may describe the topology of K in terms of convergence of sequences. Haus- 
dorffs method applied to groups gives a metric defined on K. We shall call 
this metric the Hausdorff metric for K. If S~ denotes the closed sphere of 
radius ~ in a given metric for G then the corresponding Hausdorff metric for 
K is defined by d (Ho, H) = inf ~ where ~ is a non-negative number such that  
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HocS~ H 
and 

H cS6 H o. 

In the metric case it has advantages to use sequential compactness instead 
of compactness. Since in this case the two notions are equivalent we have the 
following proposition. If A is a compact subset of G and A, ,  v =  1, 2, 3 . . .  a 
sequence of closed subsets of A, then A~ contains a subsequenee which is con- 
vergent in the sense of Hausdorff topology. 

t .5  Since the product A B of two closed sets A and B is not necessarily 
closed, the function (A, B)-+ A B from K x K  into the set of subsets of G is 
not necessarily into K. Let  us therefore consider the function (A, B)-+ A B 
from K x K  into K and inquire whether this function is continuous in the 
sense of the Hausdorff topology for K. 

We shall say that  a closed subset A of G has property P if to any given 
neighborhood U1 of e it is possible to find another, Us, so that  A Us c U1A. 

We have the following proposition: 
If the mapping (A, B) -+ A-B is continuous at  the point (A 0, {e}) then A o 

has property P. 

If A o has property P and B o is arbitrary,  then the mapping ( A B ) ~  A B 
is continuous at (A0, Bo). 

Proof:  Suppose first tha t  A B  is continuous at  (A o , {e}). Then it is con- 
tinuous in B separately. This means that  given a neighborhood U 1 of e there 
exists another, Us, such that  

and 

together imply 

and 

1. "~ {e}cU2B 

2. B c U 2 { e } = U  2 

3. A o { e } c U 1 A o B  

4. Ao B c U1 Ao {e} = U1 Ao. 

In particular the choice B.= U S makes 1. and 2. hold true. Leaving 3. to one 
side we obtain from 4.: 

Ao Us c U1 Ao 

.which proves property P. 
Conversely, suppose that  A o has property P. The continuity at (Ao, Bo) is 

equivalent to the following statement: Given a neighborhood, U, of e there 
exists another, V, such that  if A, B e  K and satisfy 

(~): A o c VA, (fl): A c VAo, (?): B o c VB, (~): B c VBo, 

then A o B o c U A B and. A B c UA o B o . 
Therefore suppose that  U is given. Choose first Ux with U~ c U, secondly U s 
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such that  A 0 U s c U~ A o and then V c U 1 0 U s . Multiplying (~) with (7) and 
(fl) with (~) we obtain: 

matrices [ l + all als 
asl 1 + ass 

matrices of the type 

Ao Bo c V A V B and A B e  VA o V B o . 

Thus the proposition will be proved if we show that  V A V c  U A  and V A  o V c  
U A o . Since A o ~ V A  o it is enough to prove the first of these two inequalities 
for all A which satisfy (~) and (fl): 

V A  V ~ VS Ao V c U~ A o U s e  U~ Ao ~ U~ V A  ~ U~ A c U A.  

This proves the proposition. 

L6. The following example shows that  there are groups G containing sub- 
sets A which do not have property P. 

Let G be the group consisting of all regular two by two matrices, topologized 

in the natural way. The identity is the matrix . Let A be the set of 

all matrices of the form , n =  2, 3 . . .  Let V (el be the set of those 

for which IcJ[ < Then U A. consists of all (ell L 

(:r (n (1 + a l l ) a l s  / 
n az~ 1 + a~21 

and A U (ss) consists of all matrices of the type 

[a~j[<=el, n = 1 , 2 , 3 . . .  

m (1 + bxl) mbl~ 
(~) b~ 1 + b~! 

[b~s[<es, m = 1 , 2 , 3 . . .  

A comparison between the matrix elements a12 and m b n shows tha t  not every 
matrix of type (/~) can be of type (:r Let namely bls # 0 .  Then m bls is 
unbounded as m ~ oo. But if the matrix were of type (,) [mbxs I would have 
to be _-<e 1. This shows that  A does not have property P. 

1.7. We remark that  the subset of 'K consisting of those sets which have 
property P is closed under the operation A B.  Let namely U 1 be given. Then 
there exist U2 with A U s ~ U 1 A  and U 3 with B U s ~ U s B .  Thus U l A B  
A U  2 B ~ A B U  3. But U I A B ~ U i A B  and A B U  3~AB~U4 if U 4 is chosen 
sufficiently small, for example so that  U~c Us. 

If G has the property that  given any neighborhood U of e there exists 
another, V, such that  for all a e G  we have a V a - l ~ U ,  then every subset of 
G has property P. Conversely, it can be shown that  if G is not of the type 
mentioned, then there exist sets Ao and B o so that  A B  is not continuous at 

_(A0, Bo). We deduce that  if G is abelian, then A B is continuous everywhere. 
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The same conclusion holds if G is compact ,  since it is well known tha t  every 
compact  set has proper ty  P.  I n  an arb i t rary  group it is therefore also t rue 
tha t  A B  is continuous at  (A0, B0) if A o is compact.  

Thus for compact  sets A and B we have: A B is compact  and is a con- 
t inuous function in both  variables simultaneously. 

1.8. We shall need the  following proposition later. Let  A be a compact  
set, and let A,  and m+, v= 1, 2, 3 . . .  be sequences of compact  sets and posi- 
t ive integers respectively guch tha t  Am c A for all m < m~. Let  r,, i =  1, 2, 3 . . .  
be an enumerat ion of the rat ional  numbers  between 0 and 1. We denote the 
largest integer < 7 by  [7]- Then it is possible to find a sequence of integers 
n~ so tha t  each of the following sequences converges to a compact  subset of 
A a s  ?)---~ ~ :  

A[rl m n ] Air2 mn v] A[ra ran v] 

P r o o f  : Since r, < 1 we have [r, 
and v. By a remark in section 1.4 
tha t  

converges. [From this sequence we 

converges, and so on. A diagonal 
desired properties. 

m~] < mr and therefore A~*'~J r  for all i 
it follows tha t  there is a sequence n(~ ~) such 

A[r• m(1)] 
( i )  ,,v 

nv 

m a y  select a subsequence n~ ) such tha t  

procedure now yields a sequence n, with the 

w 2. One-parameter semigroups 

2.1. De f in i t i on :  By  a one-parameter semigroup o/ subsets o~ a topological 
group G (/or short: one-parameter semigroup in G) i s  meant a mapping q): (~-~Ao 
o] the non-negative reals into the set o/ subsets o] G, satis/ying the conditions: 

1. A~  1 A ~  = AOl +~ 2 . 

2. There exists o~ > 0 such that A~ is clgsed i] 0 <~ <o~ and such that the 
restriction o/ ~ to the interval 0 < ~ <= o~ is continuous in the Hausdvr]] topology 
sense. 

E x a m p l e s  : 

1. Le t  a~ be a one-parameter  subgroup of G, i.e. a continuous mapping of 
the  real interval  - -  ~ -< (~ _-< cr in to  G, which satisfies a~l a~2 = a~l.~. Then 
A6 = {a~}, B~ = {a ~} and C~ ~ {a~ I 0 _-< 2 _-< (~} for 0 < c~ < ~ are the restrictions to 
0 < (~ _-< 0r of three one-parameter  semigroups in G. 

In  connection with these examples, we remark tha t  whereas it is common to 
assume t ha t  a one-parameter  subgroup is a non-cons tant  mapping,  the corre- 
sponding assumption is not  made in the above definition of one-parameter  
semigroups in G. 
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2. Let G be the additive group of a linear space and let K be a closed 
bounded convex set. Then the mapping ~ taking 5 into ~K is a one-para- 
meter semigroup in G. 

Proof: (We use additive notation.) I t  is a well known fact in the theory 
of convex sets that  for 51 52 => 0 and K convex the distributive law 51 K + 53 K -  
= (51 + 52) K holds. 

The continuity follows from the boundedness of K. Let U be any symmetric 
neighborhood of 0. Then there is a f l ( U ) > O  such that  5 K c U  for all S<fl. 
Let 6o<~-<~o+fl (U ). Thus 5 K = 5 o K + ( 5 - - 5 o ) K ~ 5 o K + U .  I t  also follows 
that  g0 K r 5 K + U 1 = ~ K + U. Similarly the two inequalities just proved follow 
if ~ lies in the range 50_- > 5_->5o--fl (U). This establishes continuity. 

The necessity of some condition like the boundedness condition is seen from 
the following counter-example: Let K be the closed convex set in the cartesian 
xy-plane bounded by the parabola y~=x. Then 5K for 5 ~ 0 is bounded by 
the parabola y2 = ~ x. I t  is easily verified that  this is not a continuous family 
of sets. In fact, considered as a set of points in the space of all closed sub- 
sets of the plane, the family 5 K is discrete, i.e. all its points are isolated 
points. 

3. Let A be a closed subgroup of G or, more generally, any closed subset 
of G satisfying A A = A. Then the constant mapping 5-+ A for all 5 is a one- 
parameter semigroup in G. 

2.2. If  A~ is a one-parameter semigroup we have AoAo=Ao+o=Ao �9 Any 
set A satisfying A A c A  is a subsemigroup of G. if  moreover A contains the 
identity then A A = A .  Is it always true that, conversely, A A = A  implies" 
e t A ?  The answer is no, even if A is supposed to be closed as is seen from 
the example: G is the group of the rational numbers under addition and with 
discrete topology. A is the set of all positive rational n u m b e r s . -  If  G is a 
euclidean space it seems likely that  the answer is affirmative for closed sets A 
but I have not succeeded in proving this. This question is important for the 
theory of diophantine approximations. 

The following remark concerns the case in which A is compact and non- 
empty and the group G arbitrary. In this case we may even weaken the 
assumption A A = A to A A c A and still obtain not only the result e e A but 
even A -1 c A  which shows that  A is a subgroup of G. 

Proof:  Let a e A .  Consider the set S =  {a'~l n = 1, 2 . . . } .  We have a S c S c A .  
Thus a S c S c ' A .  Suppose e r Then there is an open neighborhood U of e 
disjoint from ~. Obviously ~ is contained in the union of the sets a N U. But 

is compact since it is closed and c A .  Thus S is covered by a finite 
number of sets a N U. Let m be the largest of the exponents n employed, and 
let 1 > m and k =< m. Then a t ~ a k U since otherwise a z-~ ~ U contrary to the as- 
sumption. But, therefore, a z is in no one of the sets covering S and so not 
in S. Contradiction. Thus ee,~. Hence S is the closure of T = { e , a , a  ~ . . . } .  
But a T = S .  Thus a ~ = S  or ~ = a - l ~ .  Since e e ~  we obtain a - l e e ~ .  We have 
shown not only that  A contains e but also that  with any a t A  we have a -~ eA, 
which proves that A is a subgroup of G. 

This shows that  in general there are restrictions on the sets which a re  
possible to use as A o for some one-parameter semigroup.~ The problem of 
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characterizing these sets is difficult even in the euclidean case. We shall 
therefore concentrate on the simplest case, namely the one in which Ao= {e}. 

If 6 is a one-parameter semigroup in a group G and if A is a subset of G 
satisfying A A = A and commuting with all the sets 6 (6), then the mapping 
~:(~-+ A 6 (6) is also a one-parameter semigroup in G provided the sets ~ (6) 
are closed and the mapping y; is continuous for sufficiently small 8. We have 
yJ (0 )=A 6 (0). Conversely, if a given semigroup yJ can be expressed in this 
way and if 6 (0)= {e}, we can thus reduce the study of yJ to the study of the 
simpler case of 6. A theorem stating sufficient conditions under which such 
a reduction is possible is given in section 2.6. 

Is this reduction possible for any given one-parameter semigroup ? If this 
were the case then every problem on the structure of one-parameter semi- 
groups 6 could be transferred to the case when 6 (0)= {e}. However, this is 
not so. We shall give two examples, in the first, of which the above reduc- 
tion is possible, whereas it is impossible in the second one. 

Example 1. Let  in the cartesian xy-plane be given the convex set K de- 
fined by 0=<y <1,  x_->0. Put  y ; ( 6 ) = 6 K  for 6 > 0  and ~f(0) = the non-nega- 
tive x-axis. Then yJ is a one-parameter semigroup. Put  6 (6) = 6 L, where L is 
the segment 0 < y < 1 on the y-axis, Tt~l~=~v ((~) = yJ (0) + ~b (6) (additive nota- 
tion) and ~ (0)= {0}. 

Example 2. Let  K denote the convex set in the x y-plane bounded by the 

x f o r x > 0 .  P e t ~ ( 6 ) = 6 K  positive x-axis and the graph of the function y =  1 + x  

for 6 ~ 0 and ~v (0) = the non-negative x-axis. 
Suppose now that  it is possible to find a one-parameter semigroup ~ with 

(0) = 0 such that  yJ (6)=~ (6)+yJ (0). We use a fact which will be proved in 
w 3, namely that  ~ (0)= {0} implies tha t  q~ (6) is a bounded set for every 6, in 
particular for (~= 1. Therefore there would exist a number y so that  ~ (1) is 
contained in the strip 0-<x<~,. From the assumption made it follows that  
~v(1)=~(1)+~o(0). But ~v(0) contains 0. Thus ~ ( 1 ) c ~ ( 1 )  which shows that  

(1) is contained in the rectangle, R, : 

0 < x < y ,  0 < y <  Y 
l + y  

Hence 
(1) = ~b (1) +~v (0) CR+~v (0). 

But R + yJ (0) is the half strip: x > 0, 0 < y < ~ Now this is a contradic- 
= l + y "  

tion, since ~ (1) contains points whose y-coordinates are arbitrarily close to 1 and 

Y is less than 1. 
l + y  

2 . 3  T h e o r e m :  I /  a one-parameter semigroup, ~ : 6--> A~ is a non-constant 
mapping, then there is a f l ~  0 such that the restriction o/ ~ to the interval 
0 <-_ 6 <= fl is a homeomorphism into the space K o/ closed subsets o~ G. 

P r o o f :  Let  l~ denote the interval 0 =< 6 <A and let ~ be the number men- 
tioned in definition 2.1. We observe that  the restriction of ~ to any interval 
I~ with A ~ 0 is a non-constant mapping. Suppose namely that  A ~ = A  = const. 
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for 8 s I ~ .  Then A A = A  and A 2 ~ = A ~ A ~ - - A A = A  so tha t  6 is constant also 
on I2~. I terating this we see that  ~ would be constant everywhere, contrary 
to hypothesis. 

We now define a function ~v (8) of the real variable 6, taking real values or 
the value oo. I f  there is no s > 0  with A~+~=A~, then 9o (8)=oo.  In  other 
cases we let ~v(0) be the infimum of those e >  0 for which A~+~=A~. This 
function is monotonic non-increasing. Namely, let 8~_-> 8. I f  99 (8) = co there is 
nothing to prove. I f  Ae+~ = Ae, then A~I+~ = A61 ~ A o + e  = Ae~_e Ao = Ae 1, so tha t  

(81) _-< ~ (8). 
Our next step will be to show that  either there exists a y >  0 such tha t  

0 < 8 _-< ~ implies 8 + ~o (8) > ~, or ~v (8) = 0 for all 8 > 0. Suppose tha t  the first 
alternative does not hold. Then given a n y ' ~  > 0, there exists a 8 in the in- 
terval  0 < 8 < $  for which 8 + 90 (8) =< $. Now let 8 1 > 0  be given. Thus there 
exists a 8~ in the interval 0 < 8~ < 81 for which 8~ + 9o (8~) < 81. I terat ing this 
procedure we construct a sequence 8~ of real numbers satisfying: 

0 < 8~+~ =< ($, and 8~+~ + ~ (8~+~) < 8~. 

Since 8~ .is monotonic, non-increasing and positive it has a limit. Thus 
8,--8,+~ ~ 0. But ~0(8,+x)<8,--&+1. On the other hand, by  the monotonicity 
of~4P, we have q (81) < ~0 (8,+1). Since, by definition, q is non-negative we obtain: 

Thus 
0 ~ q) (81) ~ (~ (8~+1) ~ 8v--Sv+l --~ O. 

(a~)  = o.  

Let  A~+~=A~ with ~ >  0. Then it is easy  to see tha t  A~+k~ =A~ for 
k= O, l, 2, 3 . . . .  Suppose now 9 (6)=0.  Then there exist sn > 0 with sn-+ 0 
and Ao+,n = A~. Thus A~+g,~ = A~. But  the numbers ken are dense in the non- 
negative real axis. Let  C(8) denote the set of those 2 for which A~=A~. 
Since the restriction of ~ to I ,  is continuous, the set I ,  fl C (8) is closed. We 
obtain the result: I f  8 < ,r then r is constant on the interval with endpoints 
8 and :r This result shows tha t  the alternative: 9 (8 )=0  for all 8 > 0 is im- 
possible for then ~ would be constant on I ,  contrary to hypothesis. 

There remains only the alternative that  there exists a y such tha t  0 < 8 < 7 
implies 8 +  ~ ( 8 ) >  ~ which shows tha t  it is possible to have both 81 < 02 < 
and A~,=A~ only if 81=0. I t  is clear tha t  in this case 8~ has to be equal 
to ~, (9 (8) is non-increasing). Thus ~ is certainly one-to-one on every Ir~ with 

~x < 7 -  
Therefore choose /3 < rain (:r y). Then the restriction of r to Iz is one-to- 

one and continuous. Observing that  I~ is compact and using a remark in sec- 
tion 1.4, we obtain the desired result. 

2.4. Let  ~ : 8 --> A~ be a continuous mapping of some interval 0 < 6 < :r with 
r162 > 0 into the set K of closed subsets of the topological group G. Suppose 
also tha t  A ~ A ~ = A ~ + ~  for 0 <81, 0_-<82 and 81+~2--<~-. Then ~0 can be 
extended to a one-parameter semigroup ~b in G. 

Proof: i f  ~ is any non-negative real number put  ~ (8)= (Ao/n) ~ where n is 

any natural  number  satisfying ~ < :r I t  is necessary to justify this definition 
fb 
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by proving that  if nl and n 2 are two different numbers satisfying this condi- 
t ion then 

(At/.,) "1= (At/.2) "' 

but this is quite trivial since both sets are equal to 

(At/.1 .)"1 "~. 
(For example : 

Further  it is clear tha t  • ((~1 + ~.2) = ~ (~1) ~ (&.) since 

t,~.) = ( ~ . )  ( ~ . )  = + (~ )  + (6~). " A " A " 

(Observe that  if 0, +O~ <:< then t$~ <:r and 0~ <cr 
n n n 

This completes the proof. 
This proposition shows that  a one-parameter semigroup in G is completely 

determined by its behaviour in an arbitrarily small neighborhood of zero. 

2.5. Let  L be a given set. If there are two sets M and N with L = M N ,  
we shall call M and N (left- and right-)factors of L and the above equality a 
~actorization of L. If  L = M N  is a faetorization of L, then to every l s L  there 
can be found an m s M  and an h e n  with l = m n .  If m and n are uniquely 
determined by 1 we say that  the 'factorization is a decomposition of L. 

If L = M N  is a decomposition, then there is an obvious natural one-to-one 
correspondence between L and the set M •  namely the correspondence de- 
fined by m n ~-~ (m, n ) .  

The next  theorem shbws that  under certain circumstances, the study of the 
structure of a one-parameter semigroup may be reduced to the study of semi- 
groups ~ --* At where A o = {e}. A detailed study of such semigroups in.euclidean 
space and in Lie groups will be carried out in w 3 and w 4 respectively. 

2.{}. T h e o r e m :  Let ~ : (~---> At  be a one-parameter semigroup in a topological 
group G. Suppose that A o is a discrete subgroup o] G and that to every neigh- 
borhood U o] the identity there exists a neighborhood V, such that /or all a e A o 
the inequality aVa-~c"U holds. Then there exists a one-parameter semigroup 
y~:~-+B~, in G with Bo=>{e} and such that A ~ = A o B t - - B t A  o /or all O. More- 
over any element in A t  commutes with every set Bt ,  and there exists a ~ ~ 0 such 
that i~ ~ < ~ the " ]actorization At  = A o Bt is a decomposition. 

Proof :  Since A 0 is discrete there is a neighborhood of e which contains no 
other elements of A o than e. This neighborhood contains the square of another 
neighborhood U of e with the properties: U is closed and U -~= U. I t  follows 
that  if x . ~ y  but  both are e a t ,  then x U  and y U  are disjoint and also U x  
and U y  are disjoint. 

Since q~ is continuous at  zero, there exists a ~ > 0 such that  for all ~ _-< ~, 
we have A t e  U A  o. Thus At (for ~_-<~) is contained in the union of all sets 
of the type U x  where x e A  o. Since these sets are pairwise disjoint, the set 
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A~ is split up into parts of the form Uxfl A~. We see that  these parts are 
right translates of one single set B0, defined (for 6 < ?) by B~= U fi A0. We 
have indeed Box=Uxf lAox ,  but  since A o is a group, Aox=A~. The sets Bo 
are so far defined only for 6 < ?. We shall extend the definition to all non- 
negative values of 6 and show that  the mapping 6-~ B0 is a semigroup satis- 
fying the requirements of the theorem. First we verify that  B~ satisfies the 
hypothesis of proposition 2.4. 

Since U is closed and A~ is closed, their intersection B~ is closed. Also the 
continuity of the mapping 6-+ B0 for 0--< 6 < ? is easy to verify. I t  remains 
to prove that  for sufficiently small 6t, we have Bo~Bo~=Bo~+~,. Let  U 1 be 
a neighborhood of e with U~c U. Since Bo= {e} and the mapping 6-+B0 is 
continuous at zero there exists a number 7 1 > 0  such that  Boo  U x for all 
6<71 .  Let  61 <?1 and 6 s_-<?l. Then B ~ . B ~ , c U ~ c U .  On the other hand 
B~,. B0~ c A~,. A0, = A0,+~,. Thus B0," Bo~ c B0,+~, if 6, < 71. 

The reverse inequality is more difficult. We start  by proving that  any 
element of A, commutes with every set Be. Let  V be the neighborhood de- 
termined by U according to the hypothesis of the theorem. Since 6-+ B0 is 
continuous at  zero there is a number 72 > 0 such that  B0 c V for all 6 < ?2- 
Now let aeA  o and 6<?~ .  Then 

a B~a-l c Ao B~ Ao c Ao Ao Ao= Ae . 
Further  

a Boa-l c a g a - l  c U. 
Thus 

aBoa- lcBo.  

for 6~_- < min(~ 

By the use 
6-+B0 to the 
be proved. 

The same argument applied to a -1 instead of a gives the reverse inequality 
and we obtain the desired result a Boa -1= Bo (proved for 6 <?s). 

Now let xeBec+o, where 6t-< min {9~, 71, 72). ThusxeA~+o=AolAo~. There- 

fore there  exist yleA01 and YseA0, with x = y  lye.  Since 61 < ? there is one 
a l e  A o such that  Yl e B0, al and similarly for y~. Thus x e B~ 1 al B~ a2. But  
elements of "A o commute with the sets B0 if 6<72 which means that  
x e B~, B~ a 1 as c U~ a 1 a~ c U a 1 a s . On the other hand x ~ B~+~ where 6 i + 6~ < ? 
so that  xe  U, which shows that  Uaxa s and Ue are not disjoint and so alas=e. 

/ 

Thus x e Bo~ Bo, and this ends the proof of the relation B~,Bo,= Bo,+~, (proved 
X 

of proposition 2.4 we are now able to-extend the mapping 
entire non-negative real axis. Only a few details remain to 

We have seen that  for 6 _---? the set A0 is the union of mutually disjoint 
sets Box where x runs through Ao. This means that  given a eA0 there is 
exactly one x e A o with a ~ Bo~. If follows that  A~ = B0 Ao and that  this is a 
decomposition of A~ (for 6 < ?). 

Next we verify that  a e A o imphes a B0 = Boa for arbi trary 6. If n is suf- 
ficiently large, we know that  a Bot, = Bolna. Thus 
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a(B~m)"=Bola.a(B~l.)n-l=:..=(Bol.)"a. 

We observe finally tha t  this implies B~Ao=AoB~ and that  we can extend 
the relation Ao=B~A o to arbitrary 6. This completes the proof. 

2.7. Let  6 : 6 - + A ]  be a one-parameter semigroup in a group G' and ] a 
homomorphism of another group G onto G'. Put  ~p=/ 16, i.e. for every 6 let 
Ao be the inverse image under / of A~ and put  ~ (6 )=A~.  Then ~ is a one- 
parameter semigroup in G. 

Proof :  We denote by  K the kernel of ], i.e. the inverse image of e ' r  
K is a closed normal subgroup of G. Let  M be any subset of G. Then the 
inverse image of /(M) is equal to M K = K M .  This shows that  if M is the 
inverse image of some set M'cG'  then M = M K .  - -  Let  M and N be the 
inverse images of the sets M'  and N'.  Then M N is the inverse image of 
M'N'. 

The last remark proves that  the relation A~,A~=A61+~2 holds. Since all 
A~ for 6 ~ ~ are inverse images of closed sets they are closed sets too. The 
continuity remains to be proved. Let  U be a given neighborhood of e eG. 
Since / is open the set U ' = / ( U )  is a neighborhood of e'. Thus for a given 

~o there exists e (U) > 0 such that  if 6o--~ (U) < 6 < 6 o + ~ (U) then A~ ~ U' A~o 
and A~oC U' A~. Taking the inverse images of both members in the two in- 
equalities a n d  using the remarks made above we obtain: A ~ U K . A ~ ~  and 
A~, c UK'Ae.  But KAeo=A~, and KAe=A~. Thus A ~  UA~o and A~,~ UA~ 
which proves the continuity at 6 0 . 

2.8. In the paper (6) mentioned in section 1.2 Gleason has considered 
one-parameter semigrops ~ of compact sets containing e and with ~ (0 ) -{e} .  
He outlines a proof (1.c. Lemma 4) that  non-constant semigroups of this type 
exist in any locally cbmpact group which is not totally disconnected. From 
this result he deduces the important  consequence that  there exists an arc in 
such a group. 

Also several other results obtained by Gleason (1.c.) are of intergst in the 
present connection. Thus it follows from one of the laminas (1.c. Lamina 1) 
tha t  if ~ is a one-parameter semigroup in a locally compact group and ~b (6) 
is a compact set containing e for every 6, then ~ (6) i s  connected for every 6. 

Gleason's ]emma 3 implies our theorem 2.2 in the special case when the 
semigroup ~ has  the properties mentioned above. Gleason also mentions the 
problem to which w w 5 ~'and 6 of the present work are devoted, namely to 
find those groups in which the topology can be defined by giving a one-para- 
meter semigroup ~ such that  the sets ~ ((~) for 6 > 0 constitute a fundamental 
system of neighborhoods of the identity, l ie  states a result which is essen- 
tially equivalent to theorem 6.4 of the present paper. 

I t  should be pointed out tha t  those of Gleason's results which have been 
mentioned here concern semigroups of sets which are linearly ordered by in- 

clusion. In our terminology this corresponds to the assumptipn that  ~ (6) 
contains e for every 6. I t  might also be worth mentioning that  the result on 
connectedness wich follows from Gleason's lamina 1 is true also in the general 
case (i.e. assuming only ~ (0)= {e} and ~ (6) compact). 
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w 3. One-parameter semigroups in euclidean space. 

3.1. The present paragraph is devoted to a s t udy  of one-parameter  semi- 
groups (~-~ A~ in euclidean space. The problem of determining all such semi- 
groups with Ao= {0} is completely solved (Theorem 3.5). 

In  this paragraph, we do not assume tha t  any metric a t  all is defined on 
the space under consideration. I t  might therefore be more accurate to use one of 
the terms "finite-dimensional linear space" or "affine space" instead of 
"euclidean space." Since a euclidean metric (not intrinsically defined) can be 
imposed on any finite-dimensional linear space, however, we shall not insist on 
this point, but  continue to use the term "euclidean space." 

In  this paragraph, when the group G under consideration is a linear space 
under addition, we shall use additive notation and terminology except for one 
case: for repeated addition of a set to itself multiplicative notation will be 
used. Thus, for example, A + A + A  is denoted by  A 3 whereas 3A denotes 
the set homothetic to A with respect to the origin and enlarged three times. 

We have n A c A  n and, if A is convex, n A = A  n. 
Proof: Every  element of nA  is of the form nx, where xeA.  But  

n x = x + x + . . . + x e A L  

On the other hand if A is convex, then any element of A n is of the  form 

~ x ,  where  x, eA. But  since A is convex, - x, eA. Thus 
~ = 1  n 1 

n 

~ x ~ e n A ,  
1 

Conversely, if A is closed and for some n = 2, 3, 4 . . .  we have n A = A n then 
A is convex. . (This  holds in  afiy linear space.) 

Proof: Let x and y be elements of A. Then m x + ( n - - m ) y  is eA n, 

(m-- -0 ,1 ,2  n). Since i r i s  also enA,  the points m ( ~ )  . . .  - x +  1 - -  y are eA. 
n 

I f  n > 2, at  least one of these points is different from both x and y, and they 
all lie on the segment joining these two points. The rest of the argument  
follows familiar lines. 

3.2. If  A is any set in a linear space, we denote the convex hull of A by  
the symbol H (A), tha t  is, the intersection of all convex sets containing A. 
(This definition does not coincide with tha t  of Bonnesen-Fenchel (3, p. 5).) We 
denote the set of all finite subsets of A by  F(A) ,  and the set of all those 
subsets of A which contain a t  most d +  1 points by Fd (A). I t  is easy to see 
tha t  H(A) is equa l  to the uLion o; nil sets H(S), where S runs through F(A)" 
or in symbols (this holds in any linear space): 

H (A) = U H (S). 
,~BF(A) 
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Proof :  First observe tha t  the right member  is a convex set. To see this 
let a and b be e O H ( S ) .  Then a ~ s o m e H ( S a )  andbCH(S~) .  T h u s H ( S a u S b )  
contains both a and b and therefore contains the segment joining them. This 
shows tha t  the right member  is convex and since it contains A we see tha t  
H (A) c U H (S). Secondly, observe tha t  S r A implies H (S) ~ H (A) and there- 
fore U H (S) ~ H(A). 

I t  is well known (Bonnesen-Fenchel (3, p. 9)) tha t  if the linear space is of 
finite dimension d, then H (S) = U H (T) where S is any compact set (in particular 
for S finite) and T runs through all sets e Fd (S). Together with the previous 
result, this gives the formula (valid in all linear spaces of dimension d): 

H ( A ) =  U H (S). 
SeFa(A) 

Besides these more or less well-known facts about  the convex hull, we shall 
need the following facts from the theory of convex sets: The sum of two 
convex sets is convex, the intersection of any number  of convex sets is con- 
vex, the union of an increasing sequence of convex sets is convex and 4, 
/~ > 0, A convex, imply 4 A + # A = (4 +/~) A. 

3.3. After the above preliminaries, we return to the problem of charac- 
terizing one-parameter semigroups in euclidean space. Lemma 1 below is the 
basic result which makes such a characterization possible. This lemma, which 
has interesting consequences other than those we are presently interested in, 
contains the solution of the following problem. For a given set A in a 
euclidean space, is it possible to find another set B (A) so tha t  A + B  (A) is 
convex ? Stated in this vague form, the problem has a trivial solution, we 
can take B equal to the entire space. This shows tha t  some supplementary 
requirement is necessary to make the problem interesting; we may, for example, 
require that  B be bounded if A is bounded or tha t  B be small in some sense 
if A is small. Lemma 2 solves the problem in both of these forms. 

Lolxirria t.  Let A be any set o/ points in a d-dimensional euclidean space, 
and let ~>d. Then A+~H(A)=(o:+ I)H(A).  

Proof :  We observe tha t  if the equality in question holds for a certain set, 
then it  holds for all translates of thaV set: 

implies 
A + ~ H ( A ) = ( ~ +  1)H (A) 

A +x+~tH (A +x )=A  + x + ~ H  (_4)+~x = 

=(r I )H (A)+(~+ I )x=(~+ I)H (A +x). 

Our. first step is to prove the result for a set S containing at  most d + 1 
points. By the above remark, it is enough to prove it under the assumption 
tha t  one ' o f  these points is the origin. Therefore let S =  {% ql . . .q~},  where 
qo = 0 and the q~ are not necessarily different. Then H (S) consists of all points 

d d 

which can be written in the form ~ 2, q~, where 4~>0 and ~ 4~ <1.  The 
t,~l v =i 
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set S + 05 H (S) consists of all points x for which there exist ~ satisfying the 
above conditions and an integer k such tha t  

d 

V--1 

d 

Similarly x e (05 + 1) H (S) implies t ha t  there exist /~ > 0 with ~ ju, -< 1 and 

d 

(2) 

Suppose now tha t  x e (05+ I ) H  (S), i.e., t ha t  x can be expressed in the form (2). 
~ 0 5 + 1  

There are two eases�9 Suppose first tha t  ~ / , ,  < ~ Then x =  05 - - / ~ ,  q, 
~z+l" 05 

05+1 
expresses x in the form (1) with k = 0  and ~ = - - # , .  Suppose then t h a t  

05 

This implies ~ j u , >  d . Thus for one value a t  least of the  
05 

1 
index v we must  have /~, > -  Denote tha t  value by  k. Then 

05+1" 

d d 

x =  (~r 1 ) ~ # ~  q,,=qk+05~,Z~q~, 
v=l v=l 

where 2k - (~ + 1 ) / ~ - -  1 and 2, = ~ + 1 - - / ~ ,  for v # k. Then 2, > 0 for all v and 
05 

a ~ + 1 ~ .  1 05+1 1 
2, - z ,  / ~ - -  - < - -  - = 1. We have thus shown t h a t  if x can be 

~=I 05 v = l  ~ 05 05 

writ ten in the form (2),  then it can be wri t ten in the form (,1), which means 
tha t  (05 + 1) H (S) c S + 05 H (S). Conversely, we clearly have S + 05 H (S) c H (S) + 
+ 05 H (S) = (05 + 1) H (S). Thus the lamina is proved for S. 

Now let A be any  set of points of the d-dimensionM euclidean space. Then 
if SeFa(A) ,  we have A ~ S  and hence A + e H ( A ) ~ S + 0 5 H ( S ) = ( 0 5 + l ) H ( S ) .  
Thus A + 0 5 H ( A ) ~  U ( a c + I ) H ( S ) = ( e + I ) H ( A ) .  Conversely, we h a v e A + 0 5 -  

�9 H (A) c H (A) + e H (A) = (05 + 1) H (A), which proves the  lemma. 

The following slight generalisation will also be needed. 
L e r ~ a a  2. Let A be any set o/ points in d-dimensional euclidean space, and 

let ~>d. Then A"+~cH(A)=(05+n)H(A) (n=l ,  2 , 3 . . . ) .  

P r o o f :  We apply  finite induct ion to lemma 1: 

An+I+05H ( A ) = A " + A  +05H (A) = A" + (05+ 1 ) H  ( A ) =  ( n + ~ +  1 ) H  (A). 

This shows tha t  not  only does every bounded set A admit  a bounded set B 
such tha t  A + B is convex bu t  the same B will do for all powers of A. 
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3.4. T h e o r e m  : Let A and A~, ~, = 1, 2, 3 . . . .  be closed subsets o/a euclidean 
space and suppose that they satis]y the relations lim A~ =A and lim A~={0}, 

where n~ are positive integers. The limits are talcen in the Hausdor// metric /or 
the set o/ closed subsets o~ the space. Then A is a convex set. 

Proof :  Let  d be the dimension of the space. Let U be a convex symmet-  
ric neighborhood of the origin�9 For all sufficiently large v we have A = A~ + U 
and A ~ c A + U .  Since A,-+{0},  we have also dH(A~)~{O},  which im- 
plies tha t  the set dH (A~) is contained in U for sufficiently large v. Let  a~ 
be an element of dH(A~). Since the set dH(A~)--a~ contains 0, the set 
A+dH(A~)--a~ contains A. Suppose now tha t  N(U) is a number so large 
tha t  A c A ~ + U ,  A n ~ c A + U  and d H ( A ~ ) c U  for all v>N(U).  Then, for 
v > N (U), we have 

A=A+dH(A~) - -a~=A~+dH(A~)+U- -a~  ~ =A~ + U + U + U = A + U  4. 

Write C~(U) for the set A ~  +dH(A,)+U--a~.  By lemma 2 of the preceding 
section, C, (U) is convex�9 

Since A = C~ (U) r A + U 4 for all ~ > N (U), we have 

A c C  (U)=A + U 4, 
where 

c(u)= N c,(v). 
r>=N(U) 

Being the intersection of convex sets, the set C (U) is convex. Now let U run 
through a fundamental system of neighborhoods of 0. Then U 4 also runs 
through such a system. Let  C be the intersection of the corresponding sets 
C(U). Thus A=C=N(A+U4)=f i~ .  Since A is closed, we have A = A  and 
therefore A = C. Since C is defined as the intersection of convex sets, it is 
itself convex. Thus A is convex. 

We remark that  the hypothesis of the theorem implies tha t  A is compact. 
Namely, let U be a compact neighborhood of 0. Then for all sufficiently 
large ~, ~the relatiop A~ = U holds. Further A =A~,  + U for sufficiently large ~. 
Let  /~ be a value of v for which both these inequalities hold. Since A ,  is a 
closed subset of the compact set U, the set A ,  is compact. Thus A ~  + U is 
compact and contains A as a closed subset, which shows tha t  A is compact.  

We remark also tha t  it follows from the theorem tha t  if A is any closed 
set to which there exist arbitrarily small closed sets A, each having a power 
A~, equal to A, then A is a convex set .  This gives rise to the following 
suggestive formulation of a characterization of compact convex sets: We say 
tha t  the point set A has a square root if there exists a set B with B 2=A.  
Then a necessary and sufficient condition tha t  a compact set A be convex is 
tha t  it have an infinite sequence of successive square roots, i.e., tha t  there 
exist sets A~ with Ao=A and 2 A~+I=A~, v=O, 1, 2 . . . .  We omit the proof 
of this statement.  

3.5. The following theorem contains the characterization of one-parameter 
semigroups ~ with ~ (0)= {0} in euclidean space. 
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T h e o r e m :  To any one-parameter semigroup ~b with d? ( 0 ) -  {0} in euclidean 
space, there exists a compact convex set A such that r (5)= ~A.  Conversely, i / A  
is a compact convex set in euclidean space, then the mapping ~ : 5--> 5 A is a 
one-parameter semigroup with ~b (0)= {0}. 

Proof: Let ~ be given. By the definition of one-parameter semigroups, 
there exists a real number fl ~ 0 such that  ~ (5)is closed for 0 < ~ < ft. Observe 

[ that  ~ (fl)~ ~ and that,  because of continuity, 

~ (~ )  ~{0}  as ~-~oo.  

Apply theorem 3.4. This shows that  ~ (fl) is convex, and the remark following 
the same theorem shows that  ~ (fl) is compact. Since the same argument can 
be used for any non-negative number 5 < fl, we see that  ~b (5) is convex and 
compact for all 5<ft .  By the extension procedure of section 2.4, the same 
result is shown to hold for all 5 > 0. Put  ~ (5) = A~. Thus A I=  (A1) n = n AI (the 

n n 

last equality sign since A1 is convex). Further 

m 
mAI=(A1)  m=n(A1) m=nAm or Am= - A1. 

n ~ ~ n 

Putting A I = A  , we see that  A o = S A  for rational 5. The general result follows 
by continuity. This proves the first part  of the theorem. 

The second part  is easy. (Cf. section 2.1 example 2. The result ~ (0)= {0} 
follows from the fact that  A, being compact, is bounded.) 

w 4. One-parameter semigroups in Lie groups 

g.l .  The results of the preceding paragraph make it possible to characterize 
those one-parameter semigroups in an arbitrary Lie group for which ~b (0)= {e}. 
I t  will turn out that  these semigroups in a certain sense (see definition 4.12) 
are generated by infinitesimal, compact, convex sets and that,  conversely, any 
compact, convex infinitesimal set generates a one-parameter semigroup ~ with 
~ (0)= {e}. 

We shall need only the following simple fact from the theory of Lie groups: 
Let  there be given a Lie group G. Then the re  exists a euclidean space g, a 
neighborhood U of the origin in g and a m a p p i n g ]  of U into G so that  

1. ] is a homeomorphism of U onto a neighborhood of the identity in G. 

2. There exists a neighborhood F of the origin in g such that  ~(V)]~c ' / (U)  
and such that  if x e V  and yeV then ] ( x ) / ( y ) = ] ( x + y + r ( x ,  y)) is  a continuous 
mapping of V • V into g satisfying 

lit (x, Y)Ei --< kljxli'lFYil. 
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Here k is a real number and ItzLI denotes the euclidean distance from z to the 
origin of g. Moreover, V may  be assumed to be the closed euclidean sphere 
of radius one. 

P r o o f :  We choose a sufficiently many  times differentiable coordinate system 
(see PONTRJAGIN 11, p. 181) for a neighborhood of esG. Thus to any point in 
this neighborhood there is assigned an n-tuple of real numbers where n is the 
dimension of G. We let g be the n-dimensional linear space consisting of all 
n-tuples of real numbers, U the neighborhood of the origin in g consisting of 
those n-tuples whose elements are the n coordinates for a point in the above- 
mentioned neighborhood of e e G, and we let / be the mapping of U into G 
taking any n-tuple into the corresponding point of G. Then / is a homeo- 
morphism on [7. Let U' be a neighborhood of 0 in g such that  ~(U' )]2c / (U) .  
Thus if x, y e U', we have / (x) / (y) e [ (U) so tha t  ]-1 (/(x) / (y)) is defined. From 
the fact tha t  the coordinate system is differentiable and t h a t  ]1 ( / (x) / (O))=x 
and / q  (/(0) / (y)) = y, it follows that  

1-1 (1 (x) l (u)) = x + u + r (x, u), 

where r (x, y) is defined on U ' x  U' and takes values from g. I t  follows also 
tha t  the coordinates r~ (x, y) (i = 1, 2 . . . .  n) of r (x, y) are sufficiently many  
times differentiable. Furthermore,  ri (x, O)=r~ (0, y) - -0 .  Now let V be a com- 
pact  neighborhood of 0 with V c U' bounded by  a second-degree hypersurface. 
We may  then make g a euclidean space by introducing a euclidean metric in 
which V is the closed unit sphere. We denote the distance from z e g to 0 e r 
by il z il. 

Now let x and y be two elements of V. Put  s =  ]]xI] and t=llyll , and let 

x Y Thus x 0 and Yo lie on the boundary of V. Let  Q (x, y ) b e  any Xo= s ,  Yo= t 

twice continuously differentiable real valued function defined on V • V satis- 
fying ~ (x, 0) = ~ (0, y) = 0. We have then 

i f  ~ e (x, u) =. . ~ (5 (~ Zo, ~ yo)) d ~ d 7. 
0 0 

Since the integrand is a continuous function of a, 7, x o and Yo and V is com- 
pact, it follows tha t  there exists a constant k greater than the modulus of the 
integrand for all relevant values of the variables. We obtain therefore 

8 

I~(x, y)[ <= ~f fd,~d~=lvst. 
0 0 

Applying this result to the functions r, (x, y), we obtain lr, (x, y) l<=k, Ilxll ilYlI- 

Put  k = ! ~  k~) �89 Thus H r (x, y)]] < k I] x ][ i] Y ]l, which proves the proposition. 

4.2. Most of the arguments in the rest of this paragraph are based on the 
proposition just proved. Although it will never be necessary in order to carry 
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the arguments through to specialize the mapping ], wo shall nevertheless as- 
sume that  ] is the exponential mapping (see CtIEVALLEY 5, p. 116). This assumption 
will simplify the proof of lemma 4.7. I t  corresponds to choosing the coordi- 
nates as canonical of the first kind (PONTRJAGIN 11, p. 187). The space g will 
therefore be the underlying linear space of the Lie algebra of G. We shall denote 
also the Lie algebra of G by g (but we shall not have to deal with the com- 
mutation operation). The reason for choosing ] in this special way is that  the 
exponential mapping is intrinsically defined, which gives intrinsic meaning also 
to the term "generate" defined below (definition 4.12). The choice of the 
exponential mapping for / is admissible, since it corresponds to the choice of 
an analytic system of coordinates which is therefore certainly sufficiently many 
times differentiable, an assumption made in the above proof. 

The natural methods to use when dealing with Lie groups are based on the 
theory of differential equations. For example, it is possible to obtain the one- 
parameter subgroups of a Lie group as solutions of certain differential equa- 
tions. Unfortunately, analogous methods for dealing with problems concerning 
one-parameter semigroups in a Lie group have not yet  come to light. Such 
methods would have to be based on a new type of differential calculus where 
the dependent variables are not points in a euclidean space, as in classical 
calculus, but rather sets of points. I t  is no doubt possible to construct such 
a theory which would then be applicable to our present problems. Judging 
from attempts in this direction which I have undertaken, it seems clear that  the 
concept of convexity will occupy a central position in such a theory. The main 
theorem (4.12) of this paragraph also supports this view. I t  may be formulated 
as follows in terms of a calculus for sets: The differential of a one-parameter 
semigroup is a convex set. 

4.3. ~ut  JlAII = sup llall for any A ~ g .  
a e A  

Let  A and B be subsets of V, or in other words 

Then 
IIAll and tlB[I both _-< 1. 

(1) 

(2) 

/-1 ( ] (A) / (B) )cA  + B+d  V 

A + B ~ I - I ( / ( A ) / ( B ) ) + S  V 

provided d > k l[ A If" II B I!. 

Proof :  Ally element of the left member of (1)Can be expressed in the form 
/-1 (/(x)] (y)), where x and y are e V. According to section 4.1 we have, 

/ - l ( l ( x ) t ( y ) )=x+y+r(x ,  y) eA + B + k  IIAX['IIBNV, 

which proves (1). Similarly (2) follows from 

x + y = / -1  (1 (x) 1 ( y ) ) - r  (x, y) 

upon observing that  V = - - V .  
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4.4. L e m m a :  There exists a number ~ > 0 and a finite number h such that 
i] K c V, ~ and e < :r and m, n are integers with m <n, then 

(1) 

and 

e h(~I+~1)- 1 m m ~. 
where (in (3)) the number 7 is defined as ~1 h (~1 + (~1) ' ~1 = ~, (~1 = 

n 

R e m a r k :  The pair of formulas (1) and (2) expresses the fact that  two of 
the sets involved have a Hausdorff distance of infinitesimal order two in 5 as 

-+ 0. Similarly (3) can be put  together with another formula (4) in a pair 
expressing the fact tha t  two sets have a Hausdorff distance <7-  The formula 

(4): / - l ( [ ] ( ~ - ) ] m ) c [ - ~ ( I ] ( ~ K + ~ V ) l m ) n  is not incorporated in the lemma 

since it is trivially true (observe tha t  ~ K c ~$ K + e V). The exact expression 
for ? does not mat te r  in applying (3) as we shall do. We need only the fact 
tha t  ? - ~  0 as e-~ 0 and ~ is kept  small. 

We note also that  the symbol K is meant  to denote an m times re- 

peated sum - K + - K +  . . .  - K, according to the convention of section 3.1. 
n n n 

Proof of (1):  By formula (1) of section 4.3, we have 

[ (al K1) ] (02 K2) c / ( a l  KI  + 0,, K2 + k ol ~ V), 

provided tha t  01, 02 < 1. Using this, we can establish the formula 

(a) [/(o K)F c / ((0 K) ~ + k (o m)~ V), 

valid if a m  < rain 1, . We observe, tha t  if d_-<min 1, then we obtain (1) 

for a =  - .  We prove (a) by induction. I t  is trivially true for m = l .  I f  (a) 
n 

is true for the value m, then 

[j (o K)] m+1 = [[ (o K)] m / (0 K) c / ((0 K)= + k (0 m) ~ V) / (0 K), 

and the above mentioned formula gives 
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[/(G K)] m+l c / ((G K)  m + k (a m) 2 V -? o" K + k a ((r m + k a 2 m s) V) = 

= .[ ((a K) m+l + k (a s n s + (r (a m + k a s m2)) V). 

1 
Since a m < ( r ( m + l ) < ] r  we have k a m  < 1 which gives 

a 2m s + a ( a m + k a  sm  s )=<a2m s + 2 ( r  2 m < c r  s ( m + l )  ~. 

This proves (a). 

Proof of (2): The proof is similar to tha t  of (1). We first show tha t  if 

(r m < min ( 1 , ; ) t h e n  

(a K) m = / - '  ([/(a K)]~) + k (a m)s V. 

This is trivial for m =  1. Suppose tha t  it is t rue for m. Then 

((r K)  m+l = (c; K)  m + (~ K c ] -1 ([1 (a K)] ~) + k (a m) a V + a K. 

Observe tha t  according to formula (a) in the proof of (1), we have 

[] 1-1 ([t (a k)] m) iI =< ~ m + k a s .+. 

Thus formula (2) of section 4.3 gives 

(a K) m+l c / - 1  ( [ / (~ K)]~ ] ((r K)  ) + k c; (a m + k a 2 m s) V + k (~2 m s V.  

The proof now ends exact ly  as the proof of (1). 

P roof  of [3): Le t  fl > 0 be a number  so small t ha t  for Xl, xs, Yl, Y2 eft V, 
the expressions /-1 (/(Xl) / (x2)), /-1 ((/(YI) ] (Y2)'), a n d / - 1  ( / (x  1 + Yl) ] (x2 + Y2)) are 
defined. We put  

e (x,, zs, yl ,  y~) = t- '  (1 (x, + y,) l (xs + y ~ ) ) - t - '  (1 (x.,) 1 (xs))-1-1 (t (y,) 1 (y~)). 

The function e obviously satisfies the re la t ions  

e (0, 0, Yi, Y2) = e (XI, X$, 0, 0) = O (0, XS, 0, Y2) = e (XI, 0, Yl, 0) = 0. 

By an argument  similar t o  the one used to obtain an est imate of the function 
r in Section 4.1, we prove the existence of a constant  k' such tha t  

ile (~,, xs, y,,  y~)li--< k' (fix, II Ilysll + l l~l[/ ly, ll). 

We have also seen (section 4.1) tha t  1-1 (/(Yl) ] (Y2)) = Yl + Ys + r (Yl Ys) where 
lit (yl, y2)Ii < k l[ Yl II II Ys II. Combining these results, we obtain the  following. If  
xl ,  x~, Yl, Y~ --< fl, then  
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/-1 (] (x 1 + Yl) / (x2 + Y2)) = / - 1  (] (Xl) ] (x2)) + Yl + Y2 + r (Yl, Y2) + ~ (x~, x2, Yl, Y2), 

where ]]r]l < k]ly~! [ ]lY~li and ][~][ < ]~' (][xi[ ] ]]y2~[+]Ix21] ][Yl][). 

Now let K '  and K "  be subsets of V and let a', a" ,  ~', ~" be numbers <ft. 
By using the estimates for r and ~, we easily verify (cf. section 4.3) tha t  

(b) / - ~ ( / ( a ' K ' + ~ ' V ) / ( a " K " + ~ " V ) ) c / - I ( / ( a ' K ' ) / ( a " K " ) ) +  

+ [~'+ ~ " + k ~ ' ~ " + k '  (a' ~ " +  a"~ ' ) ]  V. 

We shall now establish the formula 

Cta- - I  
(c) i -~ ([ i ( '~K + ~ V)]m)~/-~([/(c~K)]'~)+ r ~ - - 1  V, 

where c = l + k ~ + 3 k ' a .  This can be done if m a  and m~ are sufficiently 
small (_-< a number ~ to be determined later). We prove this by induction. 
The statement is obviously true for m = l .  Let  it be assumed for m. Then 

/-~ ([/(~ K + ~ V)] m+~) c / -~  (/(~' B + ~' V) / (a g + v V)), 
where 

Cm--1  
( ~ ' = a m + k a 2 m  2 and ~ ' = ~  ~ and a' B =  /-l  ([/ (a K)]'~). 

From formula (a) of the above proof of (1), it follows tha t  [] a '  B l[ < a'  so that  

( ~ )  B c V .  We note that  (a) is valid if a m < m i n  1,1 . T h e n ( ~ m + k a 2 m  2<= 

< 2 a m ,  so that  if a m < � 8 9  we have a '< f l .  I t  is also clear tha t  if ~m is 
small, then ~' is small, so th/~t there exists a number a > 0 such that  if a m 
and vm are both < :r then we can apply (b). We find that  

] 1  ([ /(a g + ~ v)m+l)] c / - 1  ([ / (a  K)] ~+1) + (v + ~' + k v ~' + k' (a' ~ + a ~')) V. 

The coefficient for V is 

c m -  1 c ~ -  1 c ~ -  1 
v + v  c--1--1 + k v ~  c ~  + k ' a ' v + l ~ ' a r  c - - ~ "  

We observe that  a ' ~ < 2 m a ~  < 2 a v -  

for V is not larger than 

C m -  1 

c - - l "  

cm--1 ( 
"r+7: c ~  ~ ( l + k r + 3 k ' ( ~ ) = v  1 + - -  

Thus (c) is proved. 

This shows that  the coefficient 

cm--1 ) cm+l--- 1 
c- -1  c = ~ - -  c - - i  

Putt ing h = max (k, 3 k') and ~ = n- ' ~ = n '  and observing that  1 +'h (a + ~)_-< 

< e hr we obtain formula (3). 
This proves the lemma. 
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4.5. L e m m a :  Let ~4~ and B~ be two sequences o/ compact sets in g such that 
d (A , ,  B~)--> O, where d denotes the Hausdor// distance (see 1.4). Suppose also 
that there exists a number fl so that A v ~ fl V and B~ c fl V /or all ~, = 1, 2, 3 . . . .  
Let mr and n,  be sequences o/ integers with m~<=n~ and n , ~  c~ as ~--> oo. 

Then either the two sequences o/ sets in G r|/"--'~/A'~/my and r|] , ,~ ~ | ,  b both con- 
" L \ n , / j  L \ m l J  

verge to the same limit or they both diverge. 

Proof  : Put  d (A,, B,) = e~. Then we have for all r : A, c B, + e, V and 
B~ c A, + ~, V, and we know by  the hypothesis tha t  e~-> 0. 

tha t  ~ - -~/ /~A~l/~eonverges to a set C : G .  We assume first tha t  Suppose 
L - - - \n , l . l  

A , c ~ V  where ~ is the number in lemma 4.4. We have 

\ n,  l J n, \ -n-~ �9 

Since the first expression converges to C, (3) of lemma 4.4 shows tha t  the 
last expression also tends to C. We see therefore tha t  the expression in the 
middle tends to C. 

= c / . Since the right side tends to C, 
\ n, I 3  n, i 

the sets C, are contained in an arbitrari ly small neighborhood of C for suffi- 
ciently large v, in particular in some compact neighborhood of C. Thus every 
subsequence of the sequence C, contains a convergent subsequence. Let  C~, be 
a sequence converging to D c G. Then again by (3) of lemma 4.4, the. sequence 

] p~ + e~ converges to D. But  this is a subsequence of a sequence 
n P  v 

converging to C. Therefore D = C. We see tha t  every convergent subsequence 
of C, converges to C. This means, however tha t  C, converges to C. 

In  order to prove the lemma, we have left only to show tha t  the restric- 

tion A , c ~ V  is inessential�9 Choose the integer p so large tha t  fl- <~.  Pu t  
P 

', n ' =  and m ' , =  . Let  A" and B" be defined by - -  A~ = 1 A, and 
n~ n v  

correspondingly for B ' .  Since A, c fl V and n" p =< n, we have A" = n, A~ c n~. 
nv n~ 

�9 fl V c fl- V ~ a V and similarly B" c aV. 
P 

We assume again tha t  [ / ( 1 A , ) ] ~ "  converges to a set C o G .  But l 
nv 

" A ' =  l~A"n, Thus [ / ( ~ A ' ) ]  m'-+C.  N ~  m ~ = p m ; + O ' P '  where 0 < 0 " ~ 1 "  

Since ~,A:-- tends to {0}, it follows that tends to {e}. Hence 
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[ I 1 \1 ~ 'v  
it. g A , / /  converges to C. From the result already obtained, it is easy to 

see that the sequence [ ~ B' converges to C. Again using .the equality 

m,=pm;+O,p, we conclude that also / 1 B" " , =  [ 1 B, converges 

to C, which proves the lemma. 

�9 .6. We shall now develop two procedures of construction which we shall 
call "procedure I" and "procedure II." Procedure I applied to any given 
compact subset K of g produces a one-parameter semigroup ~ in G satisfying 
~ (0)= {e}. Conversely, given such a semigroup in G, procedure II when ap- 
plied to this semigroup, gives rise to a compact subset of g. We shall describe 
procedure I in this section. 

Let K ~ g be giv.en. We assume first that K is small enough to be contained 
in e V ,  where e is the number given by lemma 4.4. By formula (1) of that 
lemma, we have, for all m and n satisfying m _-<n the inclusion 

[,(: ~ 
)]m 

Thus l K c I (~ V + k ~2 V). Denote the right member of this inequality 

and put A,=](! K). This makes it possible to apply proposition 1.8 by A, 
] 

(with m,=v). We find that there exists a sequence n~ of positive integers 
such that for every rational number r between 0 and 1, the sequence 

[ 1 ( 1  K)]t'"~lconverges. We\shall denote the mapping r - + l i m [ i  ( 1 K ) ]  ['~'l 

by ~*. 

Using (1) of lemma 4.4 again .we obtain an estimate of ~* (r): 

. .  

so that 

V +k(~162 
\ n, I 1 

c t ( ~ r  V + k ~ 2 r  = V), 

This shows that r (r)-~ {e} as r-+ 0. 
Now let rl and r 2 be given rational numbers between 0 and 1 and satisfying 

r 1 + r~ _-__ 1. Then we have: 

[r ln.  ] +-[r2n. ]+0, A[rlr t~  �9 A[r2nu]  �9 A ~  , 

where Or for each v denotes one of the numbers 0 and 1. A passage to the 
limit as v-> oo gives 

(b) r (r~ + r , )= r (tO r (r,). 
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I t  is now easy to see that  uniform continuity of the mapping r follows 
from (a) and (b). Thus ~* can be extended to a mapping defined for all real 
numbers between 0 and 1. I t  then follows from proposition 2.4 that  this new 
mapping can be extended to a one-parameter semigroup ~ in G. I t  follows 
from (a) that  ~b (0 )=  {e}. 

We shall also show that  the relation ~ (8)= lim / n~ K holds for all 

positive real numbers 8 and not only for those which are rational and less 

than one. From the formula ~ n = ~ (8) we see that  it is enough to prove 

this for 8_-<1. Let  therefore r~-~8 as i - ~ o %  ( i = 1 , 2 . . . ) .  We have 

(8)=l im lim 4 [r~,] n ~  o 

With the aid of (a), it is easy to justify an inversion of the order of the 
limits, which gives the result. 

We finally remove the restriction K ~ V  by the following device. Let  K 

be any compact subset of g. Choose the integer p so large that  1 K ~  ~r 
P 

Apply the above procedure to the set 1 K. This gives a one-parameter semi- 
P 

group 6'. We see also that  6 (8) = (6' (8)) v defines a semigroup 6 in G and that  

i f n ,  is the sequence for which ~ , ( 8 ) = l i m [ / ( 1  1 )][~n~l ~ r  P K  , then p n~ is a 

sequence for which q~ (8 )=  lira ~ K This requires proof tha t  

the difference between [8 pn,]  and p[8 n,] is inessential, which is easy (cf the 
end of the proof of lemma 4.5.) 

Summarizing these considerations, we describe procedure I as follows. Given 
a compact set K ~ g, the procedure consists in choosing a sequence n~ of in- 
tegers such that  

~(8)=l im [ ] ( 1 K ) ]  [~n'] 

exists for each non-negative 8 and such that  ~ is a one-parameter semigroup 
with ~ (0) = {e}. 

The above results show that  such a choice is always possible. 
We conclude with the remark that  with some easy and inessential changes 

the above argument can be adapted to show that  given any sequence of po- 
sitive integers tending to infinity, the sequence n~ can be chosen as a subse- 
quence of the given sequence. 

4.7. Before describing procedure II  we shall prove a lemma which is useful 
in the existence proof which will accompany the description of procedure II. 
The proof of this lemma is the only place in the proof of theorem 4.12 where 
we use the fact tha t  ] is the exponential mapping. We need the fact that  if 
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m is an integer and x e G is sufficiently close to e then  [I/-1 (x m) [1 = m []/-1 (X) i I 
(see CnEVALLEY 5, p. 116). 

L e m m a :  Let ~ be a one-parameter semigroup in G satidying ~ (0)= {e}. 
Then there exist constants fl and I so that ]-1~ (d)c d I g /or all 8 < ft. 

Proof:  Pu t  ~0 (8) = il/-1 ~b (8)If. If  8 is sufficiently small, say < fl, then  ~ (8) : / (V), 
which shows tha t  ~0 (d) is defined for all 8_-< ft. Since ~ is a continuous func- 
t ion  of 6, and /-1 and I[1[ are continuous functions of the sets ~ ( 8 ) a n d / - 1 +  (8) 
respectively,  we see tha t  ~ (8) is continuous. In  part icular  ~ (8)-~ 0 as 8-+ 0. 

Now consider a f ixed d ~ 0  and _-</~. Then ~ ( 6 ) i s  a c o m p a c t s e t .  L e t x  
\ , t v /  

be an element  of this set for which [I/-1 (x)[ I is a maximum. Then 9~ (m ~ )  = 

[ (:) = m II/-1 (X)[] = [I i -1 ( x m )  [I" B u t  x m ~ (~ = + (8). T h u s  m ~ < ~0 (8). 

This has been established under  the assumption 8 < ft. Changing variables, we 
may  also say t h a t  if m is any  integer and 8 any  real number  such tha t  
(~ m _-< fl, then 

(m 8) > m ~ (8). 

Now suppose tha t  there  exists a sequence 8,--> 0 and a sequence l , -+ oo of 
real  numbers  such tha t  ~0 (8,)=8~ l;. We observe tha t  the numbers  in the in- 
terval  between 0 and fl which can be expressed in the form m 8v are dense in 
t ha t  interval.  We have also ~0 (m 8,) > m 8~ l~. Le t  (a, b) be any interval  con- 
tained in the interval  (0, fl). Then if m & e (a, b), we have ~o (m 8~) > m 8~ l, > a lv. 
But  since l, -+ oo we see tha t  the function ~0 is unbounded on (a, b), which is 
inconsistent with its continuity.  

Thus there  exists a number  1 so ~hat ~o (8) < 8 l, which proves the lemma. 

4.8. We now proceed to describe procedure II .  
Suppose t ha t  ~ with ~b (0 )=  {e} is a one-parameter  semigroup in G. We note 

t ha t  then  ~ (8) is compact  for every  8. We shall consider the sets Ke c g de- 

( ~ ) ,  fined by  Ko =,,~olim n, ] -1~  n,  where n, is a sequence of integers such tha t  

the limit exists. Our first step will be to prove the existence of such se- 
quences n, .  

B y  ]emma 4.7, we have, for all d < fl and all n the equality n / - l  ~ ( ~ ) ~ S l V .  

By a procedure analogous to the one used" in section 4.6, we construct  a se- 

such tha t  K ~ . - l i m  n ~ / - l ~ ( O )  exists for those ~ which are rat ional  quenee n, 

numbers  between 0 and ft. Since K e c S 1 V ,  we have Ko-->{0} as 8 - + 0 .  If  
8 t and 8~ are two non-negative rat ional  numbers with 81 + 8~ _-< fl, we have 

Ke~+0,=l im n , ] - 1 r  \ n, l ~ ~ r n,  . U s i n ' g l e m m a 4 . 7 a g a i n ,  
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�9 (01)n~ 01 I]'=1 \m![0~ ]] 02 we see that  [-1~ _ _-<--l, and s imi la r ly l !  ~ / - - !  --<--l- Therefore for- 
n~ nv 

mula (1) of section 4.3 gives 

[ ,_i ] K~+e c l i m n ~  /:l ~ ~ + ~ ~ _~ = K~ + K~,. 

Similarly formula (2) of the same section gives 

K~+K~2=]imn,[[-i@(~ni) +]-i+(~)] 
C lim nv - 2 V  = K~,+~. 

/-1@\ m ! n~ 

Thus K~+~ 2 = K~, + K~.  
From these results, it follows that  the mapping 8-+ K~ is uniformly contin- 

uous, so that  the mapping can be extended to the entire non-negative real 
&axis. I t  also follows that  the sets K~, thus defined for all 0 > 0, satisfy 

K ~ = l i m m / - l @ ( - ~  -)  for all sufficiently small & Indeed l e t r l ,  r2 . . . .  b e a  

sequence of rational numbers tending to & For each ~, we have n , / - i  @ ~ = 

(I =l im n,]-l~, r~ , and the result follows since lim lira = lira lim. 

From the fact tha t  g is a euclidean space and that  the mapping 0-+ K~ is 
a one-parameter ~semigroup in g, we deduce (theorem 3.5) the important fact 
that  there exists a compact convex set K such that  K~ = 0 K. 

Thus procedure II  may be described as follows: 
Given a one-parame%r semigroup @ in G with 6 (0) = {e}, procedure II  con- 

sists in choosing a sequence n, of integers so that  lira n, [-1@ 0 exists for 

all non-negative real numbers 0. 
The above results show that  such a choice is always possible and that  the 

limit is of the form 0 K, where K is a compact, convex subset of g. 

++.9. The last steps to be taken before we can formulate a structure theorem 
for one-parameter semigroups in Lie groups consist in investigating the results 
of the successive application of our two procedures. We consider here the case 
when procedure II  is followed by proeedure I. 

Let  @ be a given semigroup in G satisfying ~ (0) = {e}. We suppose that  
procedure II  has been applied to ~b, so that  we have formed a compact convex 

( ~ )  set K and a sequence n, with 0 K  = lira n , / - 1 ~  ~ for all non-negative & 

Put  A , = n , / - i ~  ~ and B , =  0 K for ~,= l, 2 , . . . .  Then we can apply lemma 

4.5 with m, = [y n,], where y is a non-negative real number. Since 
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[/ (A'II It''l= [~ ( s I] [rnA ( [yn'] 8) 

is a convergent sequence with limit ~ (X 8), we see by the lemma that  

also converges to + (~ ($). 
/ \  n~ / j  

In particular, we obtain for ~ = 1 the result that  if procedure II  takes a 
semigroup ~ into a set K then this set K again gives us back the semigroup 
~b if procedure I is applied to K with the same sequence n~ as in procedure II. 

The result also tells us what happens if we start  procedure I with ~K 
instead of with K. Instead of ~, we then obtain the semigroup which maps 

on ~(~y) .  This may be ~ expressed by saying that  we obtain ~ with a 
change of scale. 

4.10. We now consider the result of applying the procedures in the order 
I, II.  Starting from a set K we obtain a semigroup ~ by I. We should 
expect to g e t - K  back by applying II  to r This is not true unless K is 
convex, In fact, we always get the convex hull of K .  

Thus let K be given and suppose that  ~ (y) = lim / 1 K for all non- 

negative y. Suppose first that  K c ~ V, where e is the number described in 
lemma 4.4. By (1) and (2) of tha t  lemma, we have 

(a) 

and 

We shall show first that  ~ K tends to y H (K), where H (K) denotes 

the convex hull of K. We have obviously 

V 

We know too that  every sequence of sets 1 K contains a convergent 

subsequence. By theorem 3.4, the limit of every convergent sequence of these 
sets must be convex. I t  is also clear that  any such limit contains y K. Since 

the '  limit of [y n,_] H (K) exists and is y H (K), we see that  every limit of a con- 
n~ 

vergent sequence of sets ~ K contains y K, is contained in F H (K), and 

127 



H. RADSTROM, Convexity and norm in topological groups 

is convex. This shows tha t  every such limit coincides with y H (K), in other 

words that  lim 1 K = ~ , H ( K ) .  

Thus we know tha t  every term in (a) or (b) converges as ~ ~ oo. In the 
limit, we obtain 

(a') 

and 

(b') 

/-1 + (r) c r H (K) + k r "~ V 

H (K) c: ]:1 ~ (r) ~' k ~2 V. 

We are now ready to see what  the result of applying procedure I I  will be. 
/ \ 

A first, and very reassuring fact to observe is tha t  lim n ] - l ~ l ~ )  e x i s t s  
n ~ o o  \ t f ,  / 

( n = l ,  2 . . . .  ) and is equal to y H ( K ) .  This is impor tan t  since it shows tha t  
it is not necessary to use a subsequence nv in order to produce convergence. The 
proof is easy. The two formulas (a') and (b') give 

and 

This proves the result. 
1 

I t  is also clear tha t  the limit of ~ F 1 ~ ( ~ 6 )  as 6 - > 0  exists where 6 is a 

continuous variable instead of a sequence. 
Finally we note tha t  these results are true without the restriction K c :r V. 

This is easily proved by the use of a device similar to the vne used in sec- 
tions 4.5 and 4.6. We omit the details. 

4Ai .  Let ~b be a given semigroup in G with ~ (0)= {e}. By applying pro- 
cedure I I  while using a certain sequence nv of integers, we obtain a compact 
convex set K. We know tha t  procedure I and the same sequence of integers 
will give us back ~b. Thus ~ is obtained by an application of procedure I, 
and we know tha t  I I  can  be applied with any sequence of integers, or even 
with a continuous passage to the limit. Therefore we have the following pro- 

position. For any semigroup ~ i n  G with r  the limit lira -]-1~b(6) 
6 ~ 0  6 

exists and is a compact  convex set. 
Conversely, let K be a given compact set in g. By procedure I using a 

sequence n, ,  we obtain a semigroup ~b. Procedure I I  can now be applied to 
with any sequence of integers. I t  gives us H (K). We know tha t  if we apply 

procedure I to H (K) with any sequence of integers we get ~b again. This shows 
tha t  if K is convex, we could have used the sequence 1, 2, 3 . . .  in the f i rs t  
p lace . .  This is generally true. By the foregoing, it is clear tha t  any conver- 
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gent sequence of the type / 1 K converges to the same limit as 

/ 1 H (K) so that  all convergent sequences have the same limit. On 

the other hand, it follows from the last remark of section 4.6 that  any such 
sequence contains a convergent subsequenee. This shows tha t  every such se- 
quence is convergent. We therefore see tha t  for any given compact set 

[,(; K ," g the limit lim 1 K exists. 
n ~ c : , o  _ 

In this ease also we can substitute a continuous variable for - 1 The proof 
n 

is easily carried through by lemma 4.5. Thus we have: for any given compact 
set K e g  the limit lim [ / (dK)]  [~/~l exists and is equal to q~ (~), where q~ is a 

one-parameter semigroup in G with ~ (0)= {e}. 

4.12. We now summarize the results obtained so far in this paragraph. 

Defini t ion:  Given a one-parameter semigroup ~ in a Lie group G and a sub- 
set K o/ the Lie algebra g o/ G, we say that K generates ~ i/ ~or every y >0, 
we have ~ ( y ) =  lira [ / (5  K)] [~/~1, where / denotes the exponential mapping. 

~ 0  

T h e o r e m :  Let G be a Lie group, let g be the corresponding Lie algebra and 
/ be the exponential mapping. Then: 

(1) every compact subset o/ g generates a one-parameter semigroup ~ in G which 
satis/ies ~ (0)= {e}; 

(2) every compact subset o/ g generates the same semigroup as its convex hull; 

(3) every one-parameter semigroup dp in G which satis/ies ~ (0)= {e} is gener- 
ated by a unique compact convex set in g; 

(4) the compact convex set K which generates a given ~ is determined by 

K = lim 1 1 
, ,  ~0 ~ I -  ~ (a). 

4.13. I f  the Lie group i s  commutat ive it i s  known tha t  it is a homo- 
morphic map of a euclidean space. The homomorphism may  be considered as 
the exponential mapping. The kernel of the homomorphism is a discrete sub- 
group (submodule) of the euclidean space. We obtain 

T h e O r e m :  Let G be a commutative Lie group, g the corresponding Lie algebra 
and / the exponential mapping (or in other words G = g / N  where N is the kernel 
o/ the hom,omorphism /). Let the compact convex set K c g generate the one-para- 
meter semigroup ~ in G. Then ~ ((~)=/(~.K).  

Proof:  We first apply proposition 2.7. This gives us a one-parameter semi- 
group ~b* in g which satisfies ~* (0)= N and /~b*= ~. Then 'we apply theorem 
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2.6. to +*, which gives us a one-parameter semigroup ~ in g such that  ~* (5)= 
=~v(5)+N (we use additive notation since g is a linear space) and with 
~o(0)={0}. :Now ve apply theorem 3.5, which tells us tha t  v / (5 )=5 M,  where 
11/ is a compact convex set. Summing up, we obtain 

(5) = ] (5 i + N) = ] (5 U) .  

Using (4) of theorem 4.12, it  is now easy to verify tha t  ~b is generated by M. 
But since it is also generated by K and both K and M are convex, it follows 
from (3) of 4.12 that  K = M .  This proves the theorem. 

Remark:  We have not much general information about the structure of the 
s e t s 6  (5) defined by a one-parameter semigroup in a Lie group. The theorem 
just proved shows that  at least in the commutative case, these sets are con- 
tinuous open maps of compact convex sets, and that  if sufficiently small they are 
even homeomorphic to such sets. Although it seems plausible that  this is true 
in general Lie groups also, I have not succeeded in proving or disproving it. 

4.14. We conclude this paragraph with a theorem which throws some light 
on the problem just mentioned. For the validity of this theorem, it is essential 
that  / be the exponential mapping. 

T h e o r e m :  Let G be a Lie group and g the corresponding Lie algebra. Let 
be a one-parameter semigroup in G which is generated by a compact, convex subset 
K o ]  g, 

P r o o f :  

Then q~ (~)~ / (~ K), where / denotes the exponential mapping. 

We have the formula [/ (y)]m-:] (my). Therefore we see that  

[/(1 g)]m / K). 
m 1 

Indeed, let xe - K. Then x = my, where y s -  K. Thus 
n n 

t<X) : /<mY) :  ~<Y)] :~ [] (XnK)]m' 
which proves the inclusion. 

From the definition and theorem of section 4.12, we have 

(r) = lim [] (5 K)] [y/ol. 

In particular, let 5 tend to zero through the values-~, where m = 1, 2,~3 . . . .  
m 

Then 6 @)=l im / We can now apply the formula just proved. 

We see that  ] ~ [ ( ? K ) .  Thus the passage to the limit gives 6 (r) 

~ ]  ($ K), which proves the theorem. 

Remark.  Theorem 4.13 shows that  in the commutative case we have equal- 
i ty instead of inclusion in 6 ( ? ) ~ / ( 7  K). 
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w 5.  N o r m e d  groups 

5.i. Definition: A normed group G is a group on which there is defined a 
le/t-invariant metric with the ]ollowing properties: The metric de]ines a topology 
on G such that in this topology G is a topological group. I] S~ denotes the closed 
sphere o[ radius ~ around the identity o/ G, then the mapping (~--* So is a one- 
parameter semigroup. - -  I /  G is a normed group, the distance ] r o m e  to x s G is 
called the norm o] x and is denoted by][x[I. - -  A topological group G is said to 
be normable i] it is possible to de/ine its topology by a metric so as to make G 
a normed group. 

Remark:  The term "norm" has been used in connection with groups in 
several different ways. Some authors use the word to denote the distance 
from e to an element of the group in any metric group. ARONSZAJN (1) re- 
quires conditions on the metric which do not coincide with those of the above 
definition. If  the group is a linear space, then the term "norm" has a uni- 
versally accepted meaning. I t  seems very likely that  in this case cur defini- 
tion is equivalent with the usual one. 

Examples: 

1. If  G is a normed linear space in the usual sense, then it is also a normed 
group under addition. The proof is made by verifying conditions R 1-5  of 
the next section. This is easy, and we omit the details. The converse prob- 
lem, however, seems to be rather difficult. I t  can be formulated as  follows: 
Let G be a linear space on which is defined a function I[x]] so that  G becomes 
a normed group under addition. Is it true that  G is a normed linear space ? 
From theorem 3.5, it follows that the answer is affirmative if G is finite- 
dimensional. Such a space is therefore a Minkowski space (finite-dimensional 
Banach space). I do not know the answer to this problem in the genera] case .  

2. Let G be the group of all complex numbers ~ of unit modulus under 
multiplication. Putting I/~}[[ = I arg ~ ] where arg ~ is chosen between - -  ~ and 
z~, we see that II~[] is a norm for G. 

3. Let G be the direct product of a countable number of groups G~, i = 
= 1, 2, 3 . . .  isomorphic with and normed in the same way as the one of ex- 
ample 2. An x s G  can be written as /~=(~h, ~2 . . . .  ) where ~eG~. Then the 

function II x II = sup 1 IL , II is a norm for G. For the proof, which is easy, we 

refer to the more general formulation in theorem 6.1. 

5.2. Let G be a topological group the topology of which is defined by a 
left-invariant metric. Let r (x) denote the distance from e to x and So the 
set {x] r (x) < ~} (i.e. the closed sphere of radius ~ around e). Then the fol- 
lowing conditions are satisfied. 

R t .  r (x) is defined for all x e G and assumes non-negative real values. 
1~2. r ( x ) = 0  if and only if x = e .  
R 3.  (x)  = r 
R r (x y)  =< r (x) + r (y) .  
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R5.  Let  xeG and (~>0.  Then there exists e > 0  with r ( x y x  -1)<6 for 
all y such that  r(y)  < e. 

Correspondingly, the sets S0 satisfy the following conditions. 

s l .  U g o = G .  
O>>_o 

s2 .  go={e}.  
S3 .  So = S;  1. 
S 4*. g01 g0, ~ S0,+02. 
S5 .  Given x e G  and 8 ~ 0, there exists ~ 0 with xg~x -1CS0. 
s 6 .  n 

0> (~0 

The verifications are simple and are omitted. 

Suppose now in addition that  r is a norm for G. Then S 4* can be sharpened to 

The corresponding condition for r is: 

R 4 .  The condition R4*  and the following condition hold: given 61>0, 
62>0 and z e G  with r (z) =(~1 +(~2, there exist x and y with x y = z  and r (x)=61 
and r (y) = 62. 

5.3. Conversely, we shall show that  each of the sets of conditions R and S 
suffice to characterize normed groups. More precisely: Let  G be a group on 
which is defined a function r (x) satisfying R 1, 2, 3, 4", and 5. Then 
d(x, y)= r (x-ly) is a left-invariant metric on G in terms of which G is a 
topological group. Moreover, if the condition R 4 is satisfied, then r is a 
norm for G. 

Proof :  We define sets g~ by g0= {x] r  (x) <~}. it  is easy to verify that  
these sets satisfy S 1, 2, 3, 4*, 5 and 6. I t  follows from these conditions that  
the sets g0 for '~ > 0 constitute a fundamental system of neighborhoods of e 
in a topology for G which makes G a topological group (see axioms G T I - I V  
of WEIL, 12, p. 9). I t  is also trivial to verify that  d (x, y) is a ]eft-invariant 
metric. 

Now suppose that  condition R 4 also holds. Then S 4 holds. Further, since 
a metric is always a continuous function in the topology defined by it, the 
function r (x) is continuous. Since So is defined as the inverse image under 
r (x) of a closed interval of the real axis the set g~ is closed. I t  remains to 
show that  (~-> So is a continuous mapping, i.e., that  given a neighborhood U 
of e and a number (~0, there exists e > 0  with gocUg~o and g~ocUgo for 
all 8 in the interval 80--* < 8 <~o +e.  Since we lose no generality in assuming 
that  U belongs to a certain fundamental system of neighborhoods of e, we 
may choose U = S  r for some ~ > 0. By choosing e - 7  we obtain (~_-< 60 + ~ and 
(~o > 8 +~'. Since So varies monotonically with (~, these inequalities imply that  
g~o C S~+r= gr go= u go and go C Soo+y= S~ S~o= U goo, which proves continuity. 
This completes the proof of the proposition. 

5.4. The corresponding proposition obtained by starting from conditions g is: 
Let  G be a group in which is defined sets g~, where ~ is a non-negative 

parameter. Suppose that  the sets g0 satisfy conditions S 1, 2, 3, 4", 5 and 6. 

132 



ARKIV FOR MATEMATIK. B d  2 n r  7 

Then there exists a function r (x) satisfying R 1, 2, 3, 4* and 5 such that  
S~= {x[r (x) <8}. The sets S0 for ~ > 0 constitute a fundamental system of 
neighborhoods of G in a topology which makes G a topological group. If, 
furthermore, condition S 4 is satisfied, then r (x) is a norm for G. 

Proof : By S 3 and S 4* we have S~ ~ S~j2 SE~, and thus e e S~. Now let 
~2 > 61. Then by S 4* we have S0~ ~ S~ S0~ 0z. Since S~-0~ contains e, it  follows 
that  S0~ ~ S01- 

Now let r (x) be the infimum of those non-negative numbers for which x e So. 
By S 1, this infimum exists. From $ 6  it follows that  xeSr(x).  Let ~ be 
greater than or equal to r (x). Thus xeSr(x) cS 0 .  Conversely, if x eS~, then 
by the definition of r we have r ( x ) < &  This shows that  S0= {x [ r (x) <-- 6}- 
I t  is now easy to verify conditions R 1, 2, 3, 4* and 5. 

If we observe that  S 4 implies R 4, we can apply the proposition of the 
preceding section, which completes the proof. 

5.5. We have seen in the preceding sections that  each of the sets of con- 
ditions R and S can be used as an axiom system for normed groups. The 
theorem of the next  section gives still another characterization of normed 
groups. We need the following preliminaries. 

MENGER (9) has introduced the notion of a convex metric space. According 
to his definition, a' metric space is convex if for any two different points x 
and y in the space, there exists a third point z different from x and from y 
such that  z lies between x and y in the sense that  equality holds in the tri- 
angle inequality for the three points x, z and y : d (x, z) + d (z, y) = d (x, y), where 
d is the metric. By a slight abuse of language, it has become common to refer 
to the metric of a convex metric space as a convex metric. This has certain 
advantages when dealing with several different metrics defined on the same 
topological space, and we shall therefore adopt this usage. Our definition of 
a convex metric will, however, be slightly different from that  of Monger. 

Defini t ion:  A metric d (x, y) on a set M o] points will be called convex i] 
the ]ollowing condition is satisfied: Let 61 > O, ~2 > 0 and x, y be two points o] M, so 
that d (x, y)= ~1 + ~2. Then there exists z E M with d (x, z)= ~1 and d (z, y)= ~2. 

I t  follows from theorems of Menger that  if the set M is compact or even 
complete, considered as a metric space with the metric d, then this definition 
coincides with that  of Monger. I t  should also be pointed out that  if for 
two given points x and y we determine for each ~ between 0 and 1 a point 
z(~) with d ( x z ) = ~ d ( x y )  and d(zy)=(1--~c)d(xy) ,  then the set of these 
points z (~) does not necessarily form a segment in the sense of MENGER (1.e.). 
If  d makes M a complete metric space, it  is nevertheless true that  the points 
x and y can be joined by a segment consisting of points z (~) depending on 
as described above. This follows from one of the theorems of Menger referred 
to above. From this result, Menger deduces that  a complete convex metric 
space is connected and locally connected. 

Our deviation in terminology from that  of Monger simplifies the formula- 
tion of the following theorem. 

5.6. T h e o r e m :  A necessary and su//icient condition that a metric group G 
be a normed group is that the metric be le]t-invariant and convex. 

133 



H. R.~.DSTROM, Convexity and norm in topological groups 

Proof: I. Suppose that  G is normed. The necessity of left invariance lies 
in the definition of normed groups. The necessity of convexity follows directly 
from the fact tha t  condition R 4 must  be satisfied. In fact, let d (x, y )be  the 
given metric on G. Then d (x, y ) =  d (e, x -x y ) = r  (x -x y). Let  a and b be given 
points in G and ~ a number between 0 and 1. From R 4, we infer the exist- 
ence of a point c in G such tha t  r (a -x c) = ~ r (a -~ b) and r (c -~ b) = (1--~) r (a -1 b). 
(Observe that  a -~ c c -x b = a -~ b). This is just the condition for convexity of d. 

2. Suppose tha t  the given metric d is teft-invariant and convex. From sec- 
tion 5.2 it follows tha t  conditions R 1, 2, 3, 4* and  5 are satisfied. Retracing 
the argument of the first par t  of the proof, in the opposite direction, we see 
tha t  the convexity of d together with R 4* implies R 4. Applying proposition 
5.3, we see tha t  G is normed. The theorem is thus proved. 

We have seen already in paragraphs 3 and 4 tha t  there are many  connec- 
tions between the theory of convex sets and the theory of one-parameter semi- 
groups of sets. The above theorem establishes another such connection. 

5.7. T h e o r e m :  A complete normed group is metric, connected and locally con- 
nected. 

Proof :  The result follows immediately from theorem 5.6 and the theorem 
of Menger quoted at  the end of section 5.5. 

Theorem: A locally compact normed group is separable, metric, connected and 
locally connected. 

Proof: Since any normed group is metric and any locally compact group 
is complete we have only separability left to verify. But  this is an immediate 
consequence of connectedness and local compactness. 

According to a conjecture of Menger which was proved in 1949 by BISG (2) 
and Moi'sE (10), any compact, connected and locally connected, metrizable 
space can be given a convex metric. This fact suggests the following problem. 
Is every locally compact, separable, metrizable, connected and locally connected, 
topological group normable? Paragraph 6 .is devoted largely to a partial 
solution of this problem. 

w 6. Normability theorems 

In  this paragraph we collect theorems stating various sets of sufficient condi- 
tions for a group to be normable. The emphasis is on locally compact groups. 

6.1. T h e o r e m :  Let G be a [inite direct product o~ normed groups or a countable 
direct product o~ compact normed groups. Then G is normable. 

Proof: Let  G = G , • 2 1 5  • .where each G~ is normed. Let  N I~ denote 
the norm on G~. If  x=(x l ,  x 2 . . .  x ,)  is an element of G and x~eG~, we put  
I[xl] = max/Ix~]~. We easily verify conditions R 1, 2, 3 , 4 "  and 5 of section 5.2. 

i 
In  order to verify R4 ,  let z =  (zl . . .  z~ )eG and Ilzll=51 +~2. Thus for some 
value of i (say for i = i) the coordinate z~ of z satisfies IIz~l!~ = (~ + (~2. Since 
condition R 4 holds for Gj, there exist xj and. yj e Gj with xj yj = z  i ,  lixj I]J = (~, 
and N YJ II, = 62. For i ~ j ,  we have II z, ]!, _-< ~1 + &., and "therefor.~ there exist x~ and 

134 



ARKIV FOR MATEMATIK. B d  2 nr  7 

y, with x, y ,=z, ,  ilx, ~<~, ,  and [[y~I~_-<~. Putt ing x=(x~, x ~ . . .  x~) and y= 
=(Yl, Y2 . . -  yn), we have x y = z ,  Hx = ~ ,  and ][y][=02, which shows tha t  condi- 
tion R 4 holds for G. This proves the first part  of the theorem. 

Now let G be the direct product of a countable sequence of compact normed 
groups G,, i = 1, 2, 3 . . . .  Since the group G~ is compact, the norm H i!~ has 
a maximum on G~. We may  assume tha t  this maximum is equal to 1 by  
multiplying the norm with a suitable constant. Let  x=(x~,  x 2 . . . )  be an ele- 

, 1 
ment of G. We put II x II = max  : IIx~ II~. Because the I[ I[~ are bounded, the maxi- 

i 

mum exists and is assumed for some value i of the index i. Verification of 
conditions R 1 . . .  5 is carried out in the same way as in the previous part  of 
the proof. I t  is also clear tha t  the norm thus defined gives the correct topology 
on the group G. This proves the theorem. 

6.2. T h e o r e m :  A separable, metrizable, connected, locally connected and com- 
mutative locally compact group is normable. 

Proof: This follows directly from the above theorem and a weU-known struc- 
ture theorem for commutative groups which states tha t  a group with the prop- 
erties given in the hypothesis is the direct product of a finite number of real 
lines and a finite or countably infinite number of real lines modulo one. Since 
both the groups used as factors in the product are normable (c.f. examples 1 
and 2 of section 5.]) the theorem follows. 

This theorem shows tha t  for commutative,  locally compact groups the condi- 
tions given as necessary for normability in theorem 5.7 are also sufficient. 

6 . 3 .  T h e o r e m :  Every ]actor group G / K  o~ a locally compact normed group 
G with respect to a closed normal subgroup K is normable. 

P r o o f :  Let  l be the norm given on G and let z K  be a coset of K. Put  
r (z K) = min II z u Ii. Because G is locally compact, this minimum value is as- 

U ~ K  

sumed for some u eK.  Then the function r defined on the set of all cosets 
of K satisfies conditions R 1 . . .  5 of section 5.2. Since the t ruth  of this 
s ta tement  is a wetlknown fact for conditions R 1, 2, 3, 4* and 5 (which refer 
to the situation in an arbi trary metric group), we have only to verify condi- 
tion R4 .  Let  z~G be given with r(zK)=O~+~2, and let u be an element of 
K for which I[zui] is minimal. Thus zu = ~ 1 + ~ .  This implies tha t  x and y 
exist with x y = z u  and Ilx = ( ~  and !Y!/=~2-  Thus r(xK)<~Hxe]l=01 and 
r (y K) < II y e ![ = ~2. Since the triangle inequality ( =  condition R 4") holds for r, 
we also have 

r (x K) + r (y K) >= r ( xK  y K) = r (z K) = ~1 + ~2. 

This shows that  r ( x K ) =  01 and r ( y K ) =  ~2. This proves condition R 4, The 
function r is therefore a norm. Since it obviously also defines the correct 
topology for G/K, the theorem is proved. 

R e m a r k :  There may  of course exist other norms on G / K  defining the 
correct topology for this group. We shall call the norm defined by the pro- 
cedure used in the above proof, the natural  norm for G/K. 
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6.4. The o re m.  Any connected Lie group is normable. 

Proof :  Let K be a compact, convex, symmetric neighborhood of the origin 
in the Lie algebra of the group G. Let  K generate (definition 4.12) a one- 
p a r a m e t e r  semigroup 6 in G. From theorem 4.12, it follows that  6 (0 )=  {e} 
which means (since a one-parameter semigroup is a continuous mapping) that  
given any neighborhood U of e, there exists a ~ > 0  with 6 ( ~ ) c  U. From 
theorem 4.14, we know that  if K is chosen sufficiently small, we have 

(6) ~ / ((3 K), where / is the exponential mapping and 0 _-< (3 < 1. Since (~K 
for (~>0 is a neighborhood of the origin in the Lie algebra of G and / is 
open it follows that  / (~ K) is a neighborhood of e in G and therefore the same 
is true for 6 (5) for 5 > 0. This shows that  the sets ~ (8) for ~ > 0 constitute 
a fundamental system of neighborhoods for the topology of G. 

I t  is easy to see that  6 (5) is symmetric for all (~, since K is symmetric. 
This proves condition S 3 of section 5.2. We know also that  S 4 is satisfied, 
since 6 is a one-parameter semigroup. S 5 follows from the fact tha t  the sets 

(~), ~ > 0, constitute a fundamental system of neighborhoods of e. Since 
((~) contains e for all ~, S 2 holds. I t  follovs from S 4 that  6 (8) increases 

monotonically with (~. This verifies S 6. Finally S 1 follows from the fact that  
G is connected. We know already that  the system ~ (5), (~ > 0, defines the 
correct topology for G. This proves the theorem. 

Remark  : We could also have proved the theorem with differential geometric 
methods by introducing a left-invariant infinitesimal riemannian metric on 
the group. Then it is easy to see that  the length of the shortest arc joining 
two points is a convex metric on the group. The proof given is, however, 
more in the spirit of the present work and yields also a more general result 
than the other method. I t  shows namely that  the infinitesimal generator of 
the spheres in the metric can be chosen to be any symmetric convex set 
containing 0 in its interior, whereas for a metric deduced from an infinitesimal 
riemannian metric the corresponding generator has to be an ellipsoid. Of course 
also this more general statement can be proved by differential geometric meth- 
ods since the more general metric can be obtained by making the group a 
Finsler space rather than a riemannian space. 

6.5. In view of the result of Bing and Moise mentioned in section 5.7 it 
seems very hkely that  for compact groups the conditions (separabihty,) me- 
trizability, Connectedness and local connectedness should be sufficient to ~lar-  
antee normability. If this conjecture were true, it should be possible to verify 
it qui te  easily with the aid of the known structure theorems for compact groups. 
However, attempting to carry such verifications through, I have found that  
certain complications arise, which are due to difficulties in dealing with the 
property of local connectedness in the general case. The theorem below gives 
a partial solution of the problem. I t  follows easily from the results already 
obtained in this paragraph combined with known results on the structure of 
compact groups. 

T h e o r e m :  Let G be a separable, metrizable, connected and locally connected, 
compact group. Then G contains a totally disconnected dosed central subgrou~ K 
such that G/ K is normable. 

136 



ARKIV FOR MATEMATIK. B d  2 nr 7 

P r o o f :  Denote the center of G by C. It is known (see VAN KAMPEN (8), 
in particular theorems 1 and 3) that C contains a totally disconnected closed 
subgroup K such that G/K is isomorphic to the direct product of C/K with 
a finite or countably infinite number of simple Lie groups. The factor group 
C/K is connected, locally connected and abelian. By theorems 6.2 and 6.4 it 
follows that every factor of the direct product is normable. Thus the theorem 
follows from theorem 6.1. 

R e m a r k  The group K used in the above proof is defined as the centre of 
that subgroup of G which is generated by the totality of all normal simple 
Lie subgroups of G. 

C o r o l l a r y :  If K is finite, then G is normable. 

P r o o f :  Consider the natural homomorphism of G onto G/K and apply pro- 
position 2.7. The result then follows from theorem 2.6. 
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