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O n  t h e  D i o p h a n t i n e  e q u a t i o n  u 2 - D 2 = _+ 4 N 

By B E N G T  STOLT 

Part  II  

w 1. In~oduction. 

Consider the Diophantine equation 

(1) u 2 -  D v  ~ = _ 4 N ,  

where D and N are integers and D is not a perfect square. In  Par t  I of this 
investigation 1 it was shown that  it is possible to determine all the solutions 
of (1) by elementary methods z. 

Suppose tha t  (1) is solvable, and let u and v be two integers satisfying (1). 
u + v V D .  x + yVD . 

Then is called a solution of (1). If  2 is a solution of the Din- 
2 

phantine equation 
(2) 
the  number  

x ~ - -  D y z = 4, 

2 2 2 

is also a solution of (1). This solution is said to be associated with the solu- 
u + v V D  

tion �9 The set of all solutions associated with each other forms a 
2 

class o/ solutions of (1). 
u + v V D  u' + v ' l / i )  

A necessary and sufficient condition for the two solutions 
2 2 

to belong to the same class is tha t  the number 

V U  I _ _  ~ l  V 

2 N  

be an integer. 

1 See [1]. 
z These m e t h o d s  were deve loped  b y  T. I~TAGELL, who used  t h e m  for de t e rmin ing  all  the  

so lu t ions  of the  I ) i ophau t ine  equa t ion  

u S - D v ~ ~ _ h r. 

Nage l l  also proposed t he  no t ions  used  in  th i s  sect ion.  See [2], [3], [4], [5]. 
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Let K be a class which consists of the numbers u~ + vi l /D,  i = 1, 2, 3 , . . .  
2 

Then the numbers 2 , i = 1, 2, 3 . . . .  form another class, which is de- 

noted by  K. K and K are said to be coniugates of one another. Conjugate 
classes are in general distinct but  may  sometimes coincide; in the lat ter  case 
the class is called ambiguous. 

Among the solutions of K, a fundamental solution o/ the class is defined in 
u* +v*Vi )  

the follwing way. 2 is the fundamental solution of K, if v* is the 

smallest non-negative value of v* of any solution belonging to the class. I f  
- u *  + v*Vi) 

the class in not ambiguous, u* is also uniquely determined, because 2 

belongs to the conjugate class; if the class is ambiguous, u* is uniquely deter- 
mined by supposing u * _  > - 0. u * =  0 or v * =  0 only occurs when the class is 
ambiguous. 

I f  N = 1, there is only one class of solutions, and this class is ambiguous. 
For the fundamental solution of a class the following theorems were deduced 

(D and N are natural  numbers, and D is not a perfect square). 

u + v Vf)  is the /undamental solution o] the class K o~ the Dio- Theorem.  I /  2 

phantine equation 

(3) u S --  Dv 2 = 4N, 

and i/ x l  ~- Yl V1) 
2 

is .the /undamental solution o] (2), we have the inequalities 

(4) 

(5) 

Theorem.  I /  

Yl 
o ~v ~ V - ~ - ~ ,  

0<lu[_-< (V~IxI+2)N. 

u + v V1) is the /undamental solution o/ the class K o~ the Dio- 
2 

phantine equation 

(6) u S - -  D v  ~ = - -  4 N ,  

and i / x l  + Yl V1) is the ]undamental solution o/ (2), we have the inequalities" 
2 

Yl V-N, 
(7) 0 < v  < V x l - 2  

(8) 0 < lul ~_ V ( x l - -  2) N. 
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Theorem.  The Diophantine equations (3) and (6) have a finite number o~ 
classes o] solutions. The /undamental solution o~ all the classes can be ]ound al- 
ter a finite number o/ trials by means o~ the inequalities in the preceding theorems. 

I/ + VD 2 is the /undamental solution o/ the class K, we obtain all the 

u + 
solutions 2 o/ K by the ]ormula 

u + v V i )  ul+viV  
2 2 2 

where ~ 2  runs through all the solutions o/(2), including +__ 1. The Diophan- 

tine equations (3) and (6) have no solutions at all when they have no solutions 
satis/ying inequalities (d) and (5), or (7) and (8) respectively. 

For the Diophantine equation 

u s -  Dv s = +_ N, 

corresponding theorems were deduced by NAGELL. In a review published in 
the 'Zentralblatt fiir Mathematik' 36, (1951), p. 303, CASSELS declares that  
NAGELL'S results were substantially known by TCHEBYCHEF (J. Math. 16, (1851), 
pp. 257--282). This is not quite correct. In fact, TCHEBYCHEF showed that  
when the Diophantine equation 

u s -  Dv s = • N 

is solvable, there is at least one solution satisfying t h e  inequalities, and two 
solutions when N is not a prime. Thus he obtained a criterion for the solva- 
bility of the equation; but  he could not solve it completely in this way. To 
obtain the complete solution of the equation it is necessary to introduce the con- 
cep~t of class o/ solutions, as was done by NAGELL. 

In part  I the maximum number of classes corresponding to square-free N 
was determined. The main subject of this paper is the determination of the 
maximum number of classes corresponding to an arbitrarily given N. We shall 
also prove tha t  a given equation has at  most one ambiguous class. 

w 2. Generalit ies.  

Suppose that  u + v ]/D and ul + v I Wn 2 " 2 are to solutions of the Diophantine 

equation 

(1) u 2 -  Dv s = +_ 4N, 

where u, U l  and v, v 1 satisfy inequalities (4) and (5), or (7) and (8) respec- 
tively. Then, as easily seen, 

(9) 0 < ]uv 1 ~ ulv[ < 2 y l N ,  
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where the equality signs only hold if u = u,, v = vx. 
Eliminating D from the expressions 

ug- -  Dv2 = + 4N,  u~--  D ~  = + 4 N  (10) 

we obtain 

(11) (UV 1 -~ U lv) (UV 1 - • l v )  = + 4N(?)12-v2). 

From (10) we also get 

(12) (uul  -+ DVVl) ~ - -  D ( u v l  T Ul V) ~ = 16N 2, 

or, dividing by 4N 9, 

[UUl + DVVl~ 2 / V 1 "~ UlV~ 2 
2 N  I - -  D ~ u -2N ] 

(13) 4. 

Thus all the prime factors of N are divisors of either of the expressions 

UV 1 -.~ UlV 
2 

as is apparent from (11). If all the prime factors of N are divisors of the same 
expression, the squares of the left-hand side of (13) are integers. Then 

uv  1 T u l v = 0  or uv l ~ u  l v = 2 y l N .  

But then u = Ul, v = vl, and the two solutions coincide. 

Let  u h + v h V D ,  u~+vi~/D.,  u i + v ~ V D ,  u k + v k V D  . . .  be a n u m b e r o f s o -  
2 2 2 2 ' 

lutions of the Diophantine equation 

(1) u s - D r  2= + 4 N  

in which every u and v satisfy inequalities (4) and (5), or (7) and (8) respec- 
tively, provided u is non-negative. 

For the sake of brevity we introduce the notions 

(i, i)  + = �89 (u iv j  + ujv l ) ,  

(i,  i)  - = �89 (u~vj - -  ujv~), 

(i, i )  + = �89 (u~vj + ujv~). 

Suppose that  

N = ~ l p 2  " ' ' ~  , 

where 7r are positive integers, 1 _-< r < n. If p~ is one of the prime powers 
which divide N, it is apparent from (11) that  (i, j)+ is divisible by p~ and 
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t h a t  (i, i ) -  is divisible b y  p~r, where ar and fir are non-negat ive  integers which 
sa t i s fy  the  condition at + fir > 7r. Then we m a y  suppose t h a t  (i, i) + is divis- 
ible b y  

alp; ' " p:n 
P l  "" 

and  tha t  (i, ] ) -  is divisible by  

& & pt~n, 
Pl  P2 " ' "  n 

where p~  is the  greatest  divisor of p r~ which divides (i, i) + and  p~r is the  
grea tes t  divisor of p~r which divides (i, i )% 1 < r < n. F r o m  (11) it  is appa-  
r en t  t h a t  

We express this fact  b y  the symbol  

(i ,  i )  e p x  P2 "'" P ~ ,  ep~ p2 . . .  Pn  " 

We call this symbol  the distribution corresponding to the solutions ui + v i V D ,  
2 

uj + vjVD 
, or shor ter  the  distr ibution corresponding to (i, i) +. 

2 
I f  a~ = 7r holds for every  r, 1 < r < n, or if fir = ~r holds for every  r, 1 < r < n, 

i t  is appa ren t  f rom (13) t h a t  the  solutions u~ + v~VD__ and uj + viV]9 coincide. 
2 2 

Le t  the  distr ibutions corresponding to (i, i) + and  (h, k) + be 

( i , i )  �9 p l  p ; '  . . .  ~ - p' ~' p ~ ' ,  a~ P n '  ~ P l  P2 " ' "  

(h,k), ... py', ... W. 

Suppose t h a t  a and  b be two non-negat ive  integers, and  let rain (a, b) be the  
least  one of the  two numbers  a and  b. I f  

rain (at, a~) + rain (fir, fl~) _-> 7, 

holds for every  r, 1 < r < n, the  distr ibutions corresponding to  (i, i) + and (h, k) + 
are said to  be positive-equivalent to each other. I f  

rain (a~, ~ )  + rain (fir, a~) > ~r 

holds for every  r, 1 < r < n, the  distr ibutions corresponding to  (i, j)+ and (h, k) + 
are said to be negative-equivalent to each other.  

The definitions of distribution corresponding to the solutions ui + vi V D u1 + v1 l / f )  
2 ' 2 ' 
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positive-equivalent distributions and negative-equivalent distributions given above 
include the definitions given in Par t  I, which hold for  ~1 = ~ 2  . . . . .  ~ n  = 1. 

When proving Theorem 7 in Pa r t  I we proved the following results. 

If  pr divides (i, i) + and (i,k) +, it  also divides 0", k ) - .  
If pr divides (i, j)+ and (i, k ) - ,  i t  also divides 0", k) +. 
If p~ divides (i, ] ) -  and (i, k) - ,  it also divides (i, k ) - .  

Let  the distr ibution corresponding to (j, k)-+ be 

t t  ir a t t  tl tr tl ( j ,k )  . . . .  ~ ~' P~ . . p ~ .  
$ P l  P2 " ' ' . P ,  ' ~ p l  P2 �9 , 

If the distributions corresponding to (i, i) + and (i, k)-+ are posit ive-equivalent  
to each other, it is apparent  t ha t  

holds for every  r, l < r < n .  Thus 
fi~' = rr 

holds for every  r, 1 < r < n. In the same way, if the distributions correspond- 
ing to  (i, j)-+ and (i, k)+- are negative-equivalent ,  it  is apparent  tha t  

holds for every  r, 1 < r < n. 

uk + Vk V D  
coincide. 

2 

L e t  U l  + v l  V D  u 2 + v 2 V D  

2 2 

In both  these cases the solutions us § v i V a ,  ~ 
2 

u3 + v3 V ~  u~ + v~V5 uj + v j V ~  
�9 . ,~ ~ 

2 2 2 

uk + v k V D  u,~ + vmV1) be the solutions of (1) in which u and v satisfy ~ , - *  
2 2 

inequalities (4) and (5), or (7) and (8) respectively, provided u is non-negative.  
If  we know the distributions corresponding to (1, 2) + and (1, 3) -+, we may  

determine the distr ibution corresponding to (2, 3) +- . If we also know the dis- 
t r ibut ion corresponding to  (1, 4) +, we m a y  determine the distributions Corresponding 

t o  (2, 4)+- and (3, 4) -+, and so forth. 

We now determine the conditions for all the  solutions to  be distinct. 
Le t  the distribution corresponding to  (1, i) + be 

al a2 a n ~1 ~2 p ~  (1, i) e P l p ~  . . . p , ~ ,  o p ~  P2 " "  ,,: 

If  a r  = rr, r = 1 ,  2, 3 . . . .  , n, or if fir = ?r, r = 1, 2, 3, . . . ,  n, it  is apparent  

t ha t  the solutions ul + vl V D ,  ui + v iVD coincide. Thus these possibilities 
2 2 

have to  be excluded. Fur ther ,  if the distributions corresponding to  (1, i) -+ and 
(1, j)+ are posi t ive-equivalent  or negative-equivalent,  it  is apparent  t ha t  the 
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solutions ui + v iVD,  us + v iVD coincide. Thus the  number  of distinct solu- 
2 2 

t ions sat isfying inequalities (4) and (5), or (7) and (8) respectively,  and where u 
is non-negative,  depends on the  number  of distr ibutions corresponding to  (1, 2) +, 
(1, 3 ) -  + . . . . .  (1, i)-+ . . . .  any  two of which are nei ther  posi t ive-equivalent  nor 
negat ive-equivalent .  

Le t  
a~ az an ~ &~& ~n 

(1, i )  E) p l  Ps  " ' ' P n ,  u P l F 2  " ' "  Pn 

be a distr ibution in which 

holds for one or more r, 1 < r < n. I f  

ax' a.' ~ #x' &' ~n' (1, j)~)p~ p~ . . . p ~  , @p~ P2 " ' "  P~ 

is a dis t r ibut ion in which 

t 
~ _-> ~ ,  ~ _-> f , ,  ~; + ~; = ~ 

holds for every  r, 1 =< r = n, the distr ibutions corresponding to  (1, i) -+ and  (1, j)+ 
are posi t ive-equivalent .  

w 3. The m~mher o f  classes for an arbitrarily given N. 

Theorem 9. 1) ,~uppose that 

2al 2a2 2am q2b~+l 2b2§ 2bn+l 
N = p l  PS " ' ' P r o  1 q2 " ' "  qn ' 

where a~ are positive integers and bj are non-negative integers and pi and qs are 
v t imes  all o/ which are di]/erent. 

Suppose that  n ~ O. Then the Diophantine equation 

2 aa 2a2 2a m 2bx + l 2b~-H1 2b #t r l 
(14) uS - -  Dvg = +- q'Pl P2 " " P~ ql q2 " " q,~ 

has at most 2 n - l ( 2 a  1 + 1) (2 as + l)  . . . (2 am + 1 ) ( b l + l ) ( b , + l ) . . . ( b n + l )  

solutions u~ + v~VD in which ui and vl satis]y inequalities (4) and (5), or (7) 
2 

and (8)respectively,  provided ui is non-negative. 
Suppose that n = 0 or that n > 0 and the greatest power o/ qi which divides D 

.Sflj+ l 
is q ~  or qj , ~ > b~, ~s > 0, i = 1, 2 . . . . .  n. x / q s ' =  ~ h o ~ / o ,  i = ~' , /o~ i '  
it is su//icient that D = 22~ ' 1)1 holds, bi' >= as' > O, Dx ~ 3 (rood. 4). Then (14) 

has at most �89 ( (2a l  + 1 ) ( 2 a s + l )  (2a~ + 1 ) + 1 )  solutions ur + v~V-D in 
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which ui and Vi satis]y inequalities (4) and (5), or (7) and (8) resqectively, pro- 
vided u~ is non-negative. 

2) Suppose that n > 0 and that all p~ and qj are odd primes. I /  solvable, the 
equation has at most 
2n(2al .1. 1)(2a~ .1. 1) . . .  (2am + 1) (bl .1, 1)(b~ + 1) . . .  (b, + 1) classes when N 
and D are relatively prime ; 

2n-n'(2 (avl--arl) .1.  1)(2 (ar~--ar~ ) .1. 1 ) . . .  (2 (a~_~,--arm_m, ) .1. 1)(b~,--flr , .1,1)" 

�9 (br~-- flr~ .1, 1) . . .  (brn• - -  flrn-,'  "1" 1) classes when p ~  is the greatest power o/ 
2a h �9 2fib+ 1 p~ which divides D, a i>ai>=O,  i - ! ,  2 . . . . .  m - - r e ' ,  and when Pa or Pa 

is the greatest power o / p a  which divides D, aa >= aa, fla >= O, h = m - - m "  + 1, 
m - -  m" .1. 2 . . . . .  m, 0 <= m" < m, and further, when q ~ a1 is the greatest power 

o~ qi which divides D, bj >= ai > O, j = 1, 2 . . . . .  n - - n ' ,  and when q~" or q~,+l 

is the greatest power o~ qr which divides D, ar > br, fir > O, r = n - - n '  .1. 1, n - - n '  .1. 
-t-2 . . . . .  n, O < n '  <=n; 

one class when N is a divisor o/ D. 
Suppose that n > 0 and that pr~ = 2, or q, = 2 respectively. I] solvable, the equa- 

tion has at most 

the same number o/ classes as i] all primes were odd, when D = 22~ D1, a _-> 0, 
D 1 ~ 1  (mod. 4) ;  
the same number o] classes as i~ there were only m - - 1  primes pi, or n - - 1  
primes qs respectively, and i/ all primes were odd, 

when D = 2 ~ n l ,  a > O, D 1 ~ 3 (mod. 4 ) ;  
when D = 22~+1 n l ,  fl > O. 

Suppose that n = 0 or that n > 0 and the greatest power o/ qj which divides D 
2flj § l is q~i or qj , ~j > bi, fli >= O, j = 1, 2 . . . . .  n. I /  qi" = 2 holds ]or j = i ' , / o r  

i '  it is su]/icient that D = 22~1 ' D 1 holds, bj, > o~ i, > 0,'D~ ~ 3 (mod. 4). I] solvable, 
the equation has at most  

(2a 1 + 1) (2a~ .1. 1) . . . (2am .1. 1) classes when all pi are odd primes which are prime 
to D; 

(2(ar~--~r~) .1. 1) (2(ar~--~r~) .1. 1) . . .  (2(arm_~,--~r~_m,) .1, 1) classes when .~2~i 

is the greatest power o] pi which divides D, a i ~  ~i > 0, i  = 1, 2 . . . . .  m - - m ' ,  and 
when p~-h or p~  h+l is the greatest power o] ph which divides D, och > ah, flh > O, 

h = m - - m ' §  1, m - - r e ' §  2 . . . . .  m, 0 < m" < m; 

the same number o/ classes as i] all pi were odd, when pm = 2 and when D = 
=22"D1,  ~ > 0 ,  D 1 = 1  (rood. 4); 

the same number o] classes as i~ there were only m -  1 primes p~ all o] which 
were odd, when p m =  2 and 

when D = 2 ~ D 1 ,  ~ > 0, DI ~ 3 (mod. 4); 
when D = 2~+1 D1, fl > 0. 

Proof:  Suppose tha t  all primes are odd and tha t  N and D are relatively prime, 

and consider the solutions U l + V l V - D ,  u ~ + v 2 V D , . . . ,  ~ + v t V D , . . .  in 
2 2 2 
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which u and v satisfy the conditions of the first part  of the theorem. I t  is 
apparent  from Section 2 tha t  the number of distinct solutions satisfying these 
conditions depends on the number of distributions corresponding to (1,2) +- , 
(1, 3 ) - + , . . . ,  (1, t )+- , . . ,  any two of which are neither positive-equivalent nor 
negative-equivalent. 

We first suppose that  m = 0, n = 1. Consider the following distributions. 

(1, 2) �9 

(1, 3) �9 q~', o ql, 

2b~ -- 1 2 
(1, 4) r qt , e ql, 
. . .  

2b1+1 (1, 2 bl + 3 )  O q  1 . 

I t  is apparent  tha t  any two of these distributions are not positive-equivalent 
and that  every other distribution is positive-equivalent to at least one of these 
distributions. Moreover, it is apparent  tha t  these distributions are negative- 
equivalent in pairs and tha t  two distributions of different pairs are not nega- 
tive-equivalent. Thus the maximum number of distributions any two of which 
are neither positive-equivalent nor negative-equivalent is bl + 1. I f  we exclude 
the distribution 

2b1+1 (1,2)r or ( 1 , 2 b l + 3 )  e q i  

there remains bl distributions. Then it  is apparent tha t  there are at most 
bl + 1 solutions satisfying the conditions of the first part  of the theorem. 

We now suppose tha t  m = 0, n = 2. From the preceding case it is apparent  
tha t  there are the following number of distributions any two of which are 
neither ~ositive-equivalent nor negative-equivalent. 

(1,  2 )  ~ q l  2bl+l 2bz+l 
q2 , 

(1, 3) �9 q~,+l 2b, q2 , e q2 , 

, . .  

2 ~ + I  2bz+l 
(1,2[b z + 1] + 1 )$q~  , e q 2  , 

(1, 2 [b z + 1] + 2) �9 q~bl 2b,+l q2 , e q l ,  

. ~ o 

262+1 
( 1 , 4 [ b 2 +  1] + 1 ) e q ~ h ,  e q l  q2 , 

bt+ l  bl 2bz+l 
( 1 , 2 [ b  l + l ] [ b ~ +  1 ] +  1) e q l  , e q l  q9 �9 

I t  is easily seen tha t  any two of these distributions are neither positive- 
equivalent nor negative-equivalent and tha t  every other distribution is positive- 
equivalent or negative-equivalent to one of these distributions at  least. I f  we 
exclude the distribution 
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(1, 2) $ ql 2bl+1 q2 2b'+l 

there remains 2 (bl + 1) (b2 + 1) - -  1 distributions. Then it is apparent  t h a t  
there are at  most  2 (bl + 1)(b2 + l) solutions satisfying the conditions of the 
first par t  of the theorem. 

We now consider the case when m = 0. F rom the preceding case it is appa- 
rent  how to  determine a set of distributions any two  of which are neither 
posit ive-equivalent nor  negative-equivalent.  In  fact there are 

2 "-1 (bl + 1)(b2 + 1) . . .  (b~ + 1) 

such distributions. I f  we exclude the distribution 

(1, 2) $ ql ~1+1 q~+12 �9 �9 �9 qn2bn+l 

there remains 2 n-1 (bl + 1)(b2 + 1) . . .  (bn + 1) - 1 distributions. Then it is 
apparen t  t ha t  there are at  most  2 n-l(bx + 1)(b2 + 1) . . .  (bn + 1) solutions 
satisfying the conditions o~ the first par t  of the theorem. 

We now suppose tha t  m = 1, n = 0. Then we have to  consider the following 
distributions. 

(1, 2) ~ '  $ ~ 1  , 

(1, 3 ) - -  2a1--1 

. .  o 

2 a l  
( 1 , 2 a x +  2) O p l  �9 

I t  is apparent  t ha t  any  two of these distributions are not  positive-equivalent 
and t h a t  every other distr ibution is positive-equivalent to at  least one of these 
distributions.  Moreover, i t  is apparent  t h a t  all distributions except 

a l  a l  (1, al + 2 ) $ ~  1, e ~  1 

are negative-equivalent in pairs and tha t  two distributions of different pairs 
are no t  negative-equivalent.  Nor  is 

a x  

negative-equivalent to  any  other  distribution. Thus the max imum number  of 
distributions any  two of which are neither positive-equivalent nor  negative- 
equivalent  is al + I .  I f  we exclude the distribution 

(1, 2) $ p ~ '  or (1, 2 a l  + 2) e V~' 

there remains as distributions. Then it is apparent  t ha t  there are at  most  

a~ + 1  = �89 + 1 ) +  1) 

solutions satisfying the conditions of the first par t  of the theorem. 
We next  consider the case when m ~ 2, n = 0. Then it is apparen t  t h a t  

there are the following distributions any  two of which are neither positive- 
equivalent  nor negative-equivalent.  
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(1. 2) v 

(1, 3) �9 P2 , 0 T2, 
, o , 

(1, a~ + 1) $ P ~  V2~'+l, 0 P2a'-l' 

(1, a s + 2) (9 p ~ , - 1  2a, ~2 ' 0 P l ,  

. . .  

_ a 2 - 4 - I  a l - - 1  a2--1 (1, a las  + 1 ) r  1+1 72 , OPl  P2 , 

(1, a la2 + 2 ) $ ~ 1  , 
�9 , ~ 

. t h + l  ~--I ~ a l - - 1  a s + l  

( l ' 2 a l a s + l ) r  ~2 , ~ P l  P2 

(1, 2al  a2 + 2) r ~ p~2 a', 0 pal~ , 
�9 ~  

a 2 + l  a l  a h - - 1  
(1 ,2a las  + a s  + 1)r 92 , e p l  Ps , 
, , , 

a a  V?. e V , .  
~ ~ . 

_ a l + l  tt~ a 1 - - 1  

( 1 , 2 a l a s  + al + a2 + l ) ~ , p  1 ~ ,  e p ~  P2, 

(1 ,2a la2  + a l  + a 2 +  2 ) r  P~s, ep~l  P2" 

I t  is apparent tha t  any two of these distributions are neither positive-equi- 
valent nor negative-equivalent and that  every other distribution is positive- 
equivalent either to one of these distributions or to a distribution which is 
negative-equivalent to one of these distributions. If we exclude the distribution 

(1, 2) * ~' TP 
there remains 2 a 1 as + al + as distributions. Then it is apparent that  there are 
a t  most 

2axas  + a~ + a~ + 1 = �89 ((2a~ + 1) (2a~ + 1) + 1) 

solutions satisfying the conditions of the first part  of the theorem. 
We next consider the case when ra = 3, n = 0. From the preceding case it 

is easily seen that  we get 4a la2aa  distributions in which (1, t) + and (1, t ) -  are 
not divisible by  any ~ i  on the same time, 2 al as distributions in which (1, t) + 

and (1, t ) -  are only divisible by  ~ '  by  the same time, al distributions in which 
as (1, t) + and (1, t ) -  are divisible by p~ i~a on the same time and one distribu- 

a ~  a s  t ion in which both (1, t) + a n d  (1, t ) -  are divisible by p~' Ps Pa" Then it is ap- 
parent that  there are 
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4 al a~ a a -4- 2 al a~ + 2 az aa + 2 ~ al  + al + a~ + aa + 1 

distributions any two of which are neither positive-equivalent nor negative- 
equivalent. Then there are at  most 

�89 1 + 1)(2a2 + 1) (2a3 + 1) + 1) 

solutions satisfying the conditions of the first part  of the theorem. 
We now consider the case when n = 0 and m is arbitrary.  From the preced-  

ing cases it is apparent how to find the maximum number of distributions 
any two of which are neither positive-equivalent nor negative-equivalent. 

If  S} is the k-th elementary symmetric function of the numbers al, 12 . . . . .  
an, 1 =<k_-<m, we get 
2 m-1 Sm distributions in which (1, t) + and (1, t ) -  are not divisible by any  
pai on the same time, 
2 m-~ Sin-1 distributions in which (1, t) + and (1, t ) -  are divisible by just one 

~a.~ on the same time, 

2/r S} distributions in which (1, t) + and (1, t ) -  are divisible by  m -  } of the  

powers p:  ~ on the same time, 

$1 distributions in which (1, t) + and (1, t ) -  are divisible by  all the powers p ~  
except one on the same time. 

I f  we add the distribution 
12 a m (1,2) r p~' V ~2 " ' "  V~ m, e ~1 P2 " ' "  Pm 

and exclude the distribution in which any of (1, t) + and (1, t ) -  is divisible by  
p~, p ~ . . .  ~ m  there remains 

�89 + 1) (2a~ + 1) . . .  (2am + 1) + 1 ) - - 1  

distributions any two of which are neither positive-equivalent nor negative-equi- 
valent. I t  is easily seen that  every other distribution is positive-equivalent either 
to one of these distributions or to a distribution which is negative-equivalen~ 
to one of them. Then it is apparent  tha t  there are a t  most 

�89 + 1) (2a2 + 1) . . .  (2a~ + 1) + 1) 

solutions satisfying the conditions of the first part  of the theorem. 
We next consider the case when m = 1, n = 1. Then it  is clear tha t  any two 

of the following distributions are not positive-equivalent and tha t  every other 
distribution is positive-equivalent to one of these distributions. 

(1,2) + vi 

(1, 3) r p~ '  q~ ' ,  e q , ,  

~ 1 7 6 1 7 6  

211 q12blA "1. 
(1,[2al  + 1][2b1+ 2 ] +  1) e ~1 
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I t  is apparent that  these distributions are negative-equivalent in pairs and that  
two distributions of different pairs are not negative-equivalent. Thus there are 

(2al + 1) (bl + 1) 

distributions any two of which are neither positive-equivalent nor negative- 
equivalent. If we exclude the distribution 

(1, 2) �9 p~'  q~b,+l or (1, [2al + 1] [2bl + 2] + 1) o p~a, q~b~+l 

there remains (2 al + 1) (bl + 1 ) -  1 distributions. Then there are at most 
(2th + 1) (bl + 1) solutions satisfying the conditions of the first part  of the 
theorem. 

Finally, we consider the case when both m and n are arbitrary. From the 
preceding case it is apparent that  there are at most 

2 n-x (2ax + 1) (2a2 + 1 ) . . .  (2a~ + 1) (bl + 1) (b2 +1)  . . .  (bn + 1) 

distributions any two of which are neither positive-equivalent nor negative-equi- 
valent, and at most the same number of solutions satisfying the conditions of 
the first part  of the theorem. Hence this part  of the theorem is proved. 

Suppose that  n > 0 and that  all ~i and qj are odd primes. If N and D are 
relatively prime, there are at most 

2~(2al  + 1) (2a2 + 1) . . .  (2am + 1) (bl + 1) (b~ + 1) . . .  (b~ + 1) 

classes, since i t  is apparent that  every solution satisfying the conditions of the 
first part  of the theorem may correspond to two classes. When p~ai is the greatest 

power of pi which divides D, ai> r162 > O, every u is divisible by p:.i. If ul + vl VD 
= 2 

and u~ + vt V D  are two solutions satisfying the conditions of the first part  of 2 

the theorem, p~ divides both (1, t) + and (1, t)- .  In order to get the maximum 
number of distributions any two of which are neither positive-equivalent nor 
negative-equivalent, it is clear that  the factor (2 ai + 1) of the expression deduced 
above must be substituted by the factor (2 ( a i -  ai) + 1), and similarly in the 
number of classes. When p~ ah is the greatest power of pa which divides D, 

aa = aa, every u is divisible by p~a. When p~#a+l is the greatest power of pa 

which divides D, every u is also divisible by ah Ph" In fact, from (14) it  is seen 
2/~h+1 U 2 that  if N is divisible by p~a and D is divisible by Ph , is divisible by 

2flh+2 p ~ + l .  Then u is divisible by '=h~h+l" But then Dv 2 is divisible by Ph , and 
thus v 2 is divisible by  ph and v is divisible by ph. But then Dv ~ is divisible 

--2fib-l-3 
by Pa , and then u is divisible by ~a+2 I t  is apparent that  we may con- 

tinue, till u is divisible by p~a. In both these cases, the powers of ~ aa give 
no contribution to the number of distributions and the number of classes. 
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In  the  same way,  when q~i is the  greatest  power of qj which divides D, 
b1 > aj > 0, the  factor  (bi + 1) m a y  be subst i tu ted  b y  (bi - -  a1 + 1), and when 
q ~  or q~O~+l is the  greates t  power 'of q~ which divides D, a ~ >  b~, fl~ > 0, the  
powers of q~ give no contr ibut ion to  the  number  of distr ibutions and the number  
of classes. If  i = 1, 2 . . . . .  m - - r e ' ,  
< m ' < m ,  j = l ,  2 . . . . .  n - - n ' , r =  

the number  of classes is a t  mos t  

2 n - n '  (2  (av,  - -  av~) + 1 )  (2  ( a t , -  

h = m - - m ' + l ,  m - - m ' + 2 , . . . , m ,  0 <  
n - - n ' + l ,  n - - n ' + 2  . . . . .  n, 0 < n ' < n ,  

a~,~ + 1 ) . . .  (2 (aym_m: - -  a~m_m,) + 1)  �9 

�9 ( b e , - -  a t ,  + 1)  ( b r , - -  ae, + 1 )  . . .  ( b e . _  n, - -  a y . _ . ,  + 1 ) .  

If  n > 0 and ~m = 2, or q. = 2 respectively,  (14) is only solvable in odd u 
and v when D ~ 1 (rood. 4). If  D = 2~D1, D1 ~ 1 (mod. 4), every  u is divisible 
b y  2% a < am, or a < b~ respectively,  or by  2am, or b y  2b- +1 respectively,  when 
a > am, or a > bn respectively�9 Thus the  equat ion has the  same n u m b e r  of classes 
as if all pr imes were odd. When  D = 2 ~ D , ,  a > 0, D,  ~ -3  (mod. 4), or when  
D = 2e~+1D1, fl > 0, every u is divisible b y  2 a~, or b y  2 b"+l respectively.  I n  
t ha t  case (14) has the same number  of classes a s  if there  were only m - -  1 pr imes 
pi ,  or n - - 1  pr imes qj respectively,  and if all pr imes were odd. 

We nex t  suppose t h a t  n = 0 or t ha t  n > 0 and the  greates t  power of qi which 
divides D is q~J or q~j+l, aj > bj, flj > 0, ~" = 1, 2, . . . ,  n. I f  qj ,= 2 holds for  

j = j ' ,  for j" i t  is sufficient t h a t  D = 2~1'D1 holds, bj, > a/, > 0, D1 - -  3 (mod. 4). 
Then it is apparen t  t h a t  every  u is divisible by  qb x' q ~ . . .  ~'~. In  t h a t  case  

(14) has a t  mos t  

�89 ( ( 2 a l + l ) ( 2 a ~ + l ) . . . ( 2 a m + l ) + l )  

solutions in which u and v sat isfy inequalities (4) and (5), or (7) and (8) re -  
spectively, provided u is non-negative.  When  all ~i are odd pr imes  which dcr 
not divide D ,  there  are a t  most  

�89 (2al  + 1) (2a~ + 1 ) . . .  (2am + 1) 

classes because one of the  solutions corresponds to only one class, and this class 
is ambiguous.  In  fact ,  suppose t ha t  

' ~d~ '  g b  ' 
D = ql ~ q2 " " qn ~ Dx 

holds, bj > b~ > 0. As D is divisible b y  q/~ or by  +1, a / >  bj, ~j > 0, i t  i s  

u + v V ~ .  
apparen t  t ha t  every  qj divides D1. Suppose t h a t ~  IS a solution of (14~ 

in which 
a~ at a m bl bz b n 

u = ~1 P2 . . . .  1~m ql q2 "'" qn u" 
2 (bz--bs') 2 (bn-b~')  ~l  V = q~ (bt-t~') ~/2 �9 �9 �9 qn .( 
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holds. Then (14) m a y  be wri t ten 
2ai 2a~ 2a m 261 2b2 2b n (Ut2 

P l  P 2  " �9 �9 P m  q l  q 2  " �9 " qn - -  D 1  v "2 = • 4 q t  q2 �9 �9 �9 qn).  

As D1 is divisible by  ql q~ �9 �9 �9 q-,  it is apparent  from Theorem 8 in Par t  I t h a t  

u "2 - -  D ~  v "~ = +_ 4 q~ q2 �9 �9 �9 q,* 

has one ambiguous class, if it is solvable. I t  is apparent  tha t  this class corresponds 
2a i to  an ambiguous class of (14). I f  Pi is the greatest  power ~ which divides D, 

2~a+I 
a~ > a i  > O, i = 1 ,  2 . . . .  , m - - r e ' ,  and when p~-h or Ph is the greatest  power 

of ph which divides D, ah > a h ,  flh > 0 ,  h = m - - m ' + l ,  m - - r e ' + 2  . . . .  , m ,  
0 < m ' <  m, i t  is apparen t  there are at  most  

(2(aye-- at,) + 1) (2(ar , - -  ay,) + 1) . . .  (2(arm_ m, - -  a~_m,) + 1) 

classes. When  pm = 2 and when D = 22~D1, a > 0, D1 ~ 1 (mod. 4), it is appar-  
ent  from the preceding cases t ha t  there is the same number  of classes as if 
all pi were odd. When p ~ = 2 ,  D = 2 2 " D I ,  a > 0 ,  D 1 - - 3  (rood. 4), or when 
~ = 2, D = 22~+1D1, fl > 0, there is the same number  of classes as if there 
were only m - - 1  primes p~. Hence the theorem is proved. 

w 4. The m,mher of  ambiguous classes. 

We shall prove 

T h e o r e m  10. T h e  D i o p h a n t i n e  e q u a t i o n  

(1) u 2 - D r  ~ =  •  

h a s  a t  m o s t  o n e  a m b i g u o u s  c l a s s .  

Proof: Suppose t h a t  

2a~ 2a m 2bi§ 2bft-1 2bn+l  
N = p~al  P2 " ' "  P m  q l  q 2  " "" qn ' 

where a~ are positive integers and bi are non-negative integers and pi and q i  
2a i are primes all of which are different. Fur ther  suppose tha t  Pi is the greatest 

2 ~ h + l ]  
power of p l  which divides D, a~ > a~ >___ 0, i = 1, 2 . . . . .  m' ,  t ha t  p~h or ~h 
is the greatest  power of ph which divides D, a h =  > ah, fib->-0, h = m ' §  1, 
m '  + 2 . . . . .  m, t ha t  q~aj is the greatest  power of qj which divides D, bi > aj > 0, 

j = 1, 2, . . . ,  n ' ,  and t h a t  q~ 2at or q 2~r+1 is the greates t  power of qr which divides 

D, a r > b r ,  fir->-0, r = n ' +  1, n ' §  . . . . .  n. Then (1) m a y  be divided by  

2al 2a2 2a~, ~n2am,_i_l 2am 2al 2aa 2a n' 2bn '+l  2b n 
T1 ~2 ' "  " ~m' h'm'+l "" � 9  q l  qo " "" qn' ~n'+l qn ' 

and we get  the Diophantine equation 

2 (a~--aO 2 (a m, -- am,) 
u '~ - -  qn~ qn '+2 �9 �9 �9 q n D l v  '~ = • 4 p~(a~-a~) P2 �9 " " Pro' " 

�9 q21(bl--al)+1 . . .  q2 !bn , -a  n ,+l )  q n ' + l  . . .  qn 
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This equation may  be written 

(15) u ' Z - - r D l V  , 2 =  +_ r s t  2, 

where st  2 and D 1 a r e  relatively prime. 
According to Theorem 4 in Par t  I, the necessary and sufficient condition for the 

solutions u + v V D  and ul + Vl ] /D of the Diophantine equation 
2 2 

u 2 - -  D v z = +_ 4 N 

to belong to the same class is tha t  

U V 1 - -  U l V  

2 N  

be an integer. 
Suppose tha t  (15) is solvable and has an ambiguous class the fundamental 

U t -~- v t V ~ I  
solution of which is �9 As the class is ambiguous, 

2 

2 u ~ V' 
2 N  

must be an integer. As s f  and D1 are relatively prime, s t  must divide v'. But 
then s also divides u" which is impossible. Thus a necessary condition for (15) to 
possess an ambiguous class is tha t  s = 1 holds. 

Suppose that  there is another ambiguous class the fundamental  solution of which is 

U'l + v ~ V ~ l  As the class is ambiguous, 
2 

u~ vl 
2 N  

is an integer. But  then t divides v~. The necessary and sufficient condition for 
the two ambiguous classes to coincide is tha t  

2 r t  ~ 

be an integer. I t  is apparent  tha t  r divides u '  as well as u~ and tha t  t divides 
�9 t Vp p 

u ,  Ul, and Vl. Hence the theorem is proved. 

w 5. Numerleal examples. 

Finally, we give some examples which illustrate the preceding theorems. 

E x a m p l e  t .  u s - -  17 v z = 128 = 4.25. 

The fundamental solution of the equation u s - - 1 7 v  ~ =  4 is �89 (66 + 16V1-7). 
For the fundamental solutions in which u and v are non-negative, according to 
inequalities (4) and (5) we get 
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0 < v < - ' / -~1/~N,  0 < u  < V ~ N .  
-- = V ~ V  = 

We find the fundamental  solutions 

� 8 9  � 8 9  k ( _ + 3 1 + 7 V ~ - ) .  

E x a m p l e  2. u 2 - 1 7 v  s = 2 5 6 = 4 . 2 6 .  

We find the fundamental solutions �89 16, �89 (_+ 18 + 2 ]/~-), �89 (_+ 33 + 7 ]/17), 
�89  + 12 V17-). 

E x a m p l e  3. u s -  7 v 2 = 128 = 4.25. 

The fundamental solution of the equation u2--7v  s= 4 is �89 (16 + 6V7). 
For the fundamental solutions in which u and v are non-negative, according to 
inequalities (4) and (5) we get 

O <v  < V2N, O < u <  V18N. 

We find the fundamental solution �89 (24 + 8 ]/7). As D - -  3 (rood. 4), the equa- 
tion has only one class. 

E x a m p l e  4. u 2 -  148v 2 = 78 732 = 4.39. 

The fundamental solution of the equation u 2 - -  148v 2 = 4 is �89 (146 + 12 ]/1-~). 
For the fundamental solutions in which u and v are non-negative, according to 
inequalities (4) and (5) we get 

0 < v _ _ < | / ~ - 6 N  = v 3 7 - '  0 < u <  V ~ h ' .  

We find the fundamental solutions �89 ( +  432 + 27 V148), ~ (_+ 1048 + 8 3 ~ ) .  
Thus the number  of classes is less than the maximum number. 

E x a m p l e  5. u 2 - -  6 v 2 = - -  180 = - -  4.45 = - -  4.5.39'. 
The fundamental solution of the equation u s - -  6 v s = 4 is �89 (10 + 4 V6). For the 

fundamental solutions in which u and v are non-negative, according to inequalities 
(7) and (8) we get 

0 < v _ - < 7 ,  0 <u-<_ 18. 

We find the fundamental  solutions �89 (_+ 6 + 6 1/6). As 3 divides 180 there are 
only two classes. 

E x a m p l e  6. u 2 - -  17 v z = 70 304 = 4.23.13 a. 

We find the fundamental  solutions 

�89 (_+269 + 1 1 V ~ ) ,  �89 (_+286 + 26 V ~ ) ,  �89 (_+326 + 46V17), �89 (_+377 + 65V~) ,  

�89 (__+ 473 + 951(1-7), �89 ( _+ 598 + 1301/17), �89 ( + 734 + 166 V ~ ) ,  

�89 ( +  949 + 221 V ~ ) .  
Thus the equation has the maximum number of classes. 
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