# A generalization of a theorem of Nagell 

By Gösta Bergman

1. As is well known, the coordinates of the curve

$$
\begin{equation*}
y^{2}=x^{3}-A x-B \quad\left(4 A^{3}-27 B^{2} \neq 0\right) \tag{1}
\end{equation*}
$$

can be represented by Weierstrass's $\wp$-function with the invariants $4 A$ and $4 B$ :

$$
\left\{\begin{array}{l}
x=\wp(u ; \quad 4 A, 4 B) \\
y=\frac{1}{2} \wp^{\prime}(u ; \quad 4 A, 4 B) .
\end{array}\right.
$$

If $u$ is commensurable with a period, the point $(x, y)$ is called exceptional. In this case there is a natural number $n$, which makes $n u$ a period, while $n^{\prime} u$ is not a period, if $0<n^{\prime}<n$. This number $n$ is called the order of the point $(x, y)$. The point of order 1 , corresponding to $u=0$, is the infinite point of inflexion on the curve.

If $A$ and $B$ belong to a field $\Omega$ and if $(x, y)$ is a point on (1), whose coordinates belong to $\Omega$, we shall say that $(x, y)$ is a point in $\Omega$.

In 1935 T. Nagell ([3], p. 8-15) proved the following theorem:
Theorem 1. - If $A$ and $B$ are integers in $k(1)$ and if $(x, y)$ is a finite exceptional point in $k(1)$ on the curve (1), then $x$ and $y$ are integers. If $y \neq 0$, then $y^{2}$ divides $4 A^{3}-27 B^{2}$.

According to G. Billing ([1], p. 120) this theorem remains true, if $k(1)$ is replaced by a quadratic or cubic field, but Billing's proof is incomplete, since his lemmas do not say anything, if the order of the point ( $x, y$ ) is a prime. Billing's theorem is, however, contained in a generalization of theorem 1, which will be given in this paper.
2. We begin with a lemma on the function

$$
x=\wp(u ; 4 A, 4 B) .
$$

It is known that if $n$ is a natural number $>1$ and if $n u$ is a period but $u$ is not, then

$$
\Psi_{n}(u)=0
$$

where

$$
\Psi_{n}(u)=\frac{\sigma(n u)}{[\sigma(u)]^{n^{2}}}
$$

For the function $\Psi_{n}(u)$ we have the following expression:

$$
\Psi_{n}(u)= \begin{cases}P_{n}[\wp(u)] & \text { if } n \text { is odd }, \\ \wp^{\prime}(u) Q_{n}[\wp(u)] & \text { if } n \text { is even } .\end{cases}
$$

Here $P_{n}$ and $Q_{n}$ denote polynomials, whose coefficients are polynomials in $A$ and $B$ with integral rational coefficients. For $n=3$ we have

$$
P_{3}(x)=3 x^{4}-6 A x^{2}-12 B x-A^{2} .
$$

If we write

$$
P_{n}(x)=\alpha_{n, 0} x^{\frac{1}{2}\left(n^{2}-1\right)}+\alpha_{n, 1} x^{\frac{1}{2}\left(n^{2}-1\right)-1}+\cdots+\alpha_{n, \frac{1}{2}\left(n^{2}-1\right)},
$$

it is known that $\alpha_{n, 0}=n$ and $\alpha_{n, 1}=0$.
Now we shall prove that the polynomials $\alpha_{n, m}$ have the following property:
Lemma. - If $p$ is a prime $>5$, every coefficient of the polynomial $\alpha_{p . m}$ is divisible by $p$ for $m=2,3, \ldots, \frac{1}{2}(p-3)$.

Proof. -- If $u$ is absolutely smaller than the shortest period, the function $\varphi(u)$ can be expanded in the following series:

$$
\wp(u)=\frac{1}{u^{2}}\left(1+c_{2} u^{4}+c_{3} u^{6}+\cdots+c_{m} u^{2 m}+\cdots\right),
$$

where $c_{2}=\frac{1}{5} A, c_{3}=\frac{1}{7} B$ and

$$
c_{m}=\frac{3}{(m-3)(2 m+1)}\left(c_{2} c_{m-2}+c_{3} c_{m-3}+\cdots+c_{m-2} c_{2}\right)
$$

if $m>3$. (See, for example, Graeser [2], p. 25). Thus $c_{m}$ is a polynomial in $A$ and $B$ with rational coefficients, and if $p$ is a prime and $m \leqq \frac{1}{2}(p-3)$, the coefficients of $c_{m}$ do not contain $p$ in their denominators.

In the usual way we get

$$
\zeta(u)=\frac{1}{u}-\left(\frac{1}{3} c_{2} u^{3}+\frac{1}{5} c_{3} u^{5}+\cdots+\frac{1}{2 m-1} c_{m} u^{2 m-1}+\cdots\right)
$$

and

$$
\begin{align*}
\sigma(u) & =u e^{-\left(\frac{1}{3.4} c_{2} u^{4}+\frac{1}{5.6} c_{3} u^{6}+\ldots+\frac{1}{2 m(2 m-1)} c_{m} u^{2 m}+\ldots\right)}= \\
& =u\left(1-\frac{1}{60} A u^{4}+d_{3} u^{6}+\cdots+d_{m} u^{2 m}+\cdots\right) . \tag{2}
\end{align*}
$$

Here $d_{m}$ is a polynomial in $A$ and $B$ with rational coefficients, which do not. contain $p$ in their denominators, if $m \leqq \frac{1}{2}(p-3)$.

We put $x=\wp(u)$ in the polynomial

$$
P_{p}(x)=p x^{N}+\alpha_{p, 2} x^{N-2}+\cdots+\alpha_{p, N}
$$

where $N=\frac{1}{2}\left(p^{2}-1\right)$, and find

$$
\begin{gather*}
u^{2 N} P_{p}[\wp(u)]=p\left(1+c_{2} u^{4}+c_{3} u^{6}+\cdots\right)^{N}+\alpha_{p, 2} u^{4}\left(1+c_{2} u^{4}+\cdots\right)^{N-2}+\cdots+ \\
+\alpha_{p, m} u^{2 m}\left(1+c_{2} u^{4}+\cdots\right)^{N-m}+\cdots+\alpha_{p, N} u^{2 N}=p+\left(\alpha_{p, 2}+\frac{1}{5} A p N\right) u^{4}+\cdots \tag{3}
\end{gather*}
$$

If we remember the identity

$$
P_{p}[\wp(u)][\sigma(u)]^{p^{2}}=\sigma(p u),
$$

we get by (2) and (3)

$$
\begin{equation*}
\left[p+\left(\alpha_{p, 2}+\frac{1}{5} A p N\right) u^{4}+\cdots\right]\left[1-\frac{1}{60} A p^{2} u^{4}+\cdots\right]=p-\frac{1}{60} A p^{5} u^{4}+\cdots \tag{4}
\end{equation*}
$$

By this identity we get

$$
\alpha_{p, 2}=-\frac{1}{60} A p\left(p^{2}-1\right)\left(p^{2}+6\right)
$$

and thus the lemma holds for $m=2$.
Now suppose that the lemma is true for $\alpha_{p, 2}, \alpha_{p, 3}, \ldots, \alpha_{p, m-1}$, where $m \leqq \frac{1}{2}(p-3)$. Then the coefficient of $u^{2 m}$ in the left member of (4) may be written

$$
\alpha_{p, m}+p \varphi
$$

Here $\varphi$ is a polynomial in $A$ and $B$, where $p$ does not appear in the denominator of any coefficient. If we compare the coefficients of $u^{2 m}$ in the two members of (4), we get

$$
\alpha_{p, m}=p\left(p^{2 m} d_{m}-\varphi\right)=p \varphi_{1}
$$

where the coefficients of $\varphi_{1}$ do not contain $p$ in their denominators. It follows that they are integral, since $\alpha_{p, m}$ has integral coefficients, and the lemma is proved.
3. Now we suppose that $A$ and $B$ are integers in $\partial \mathrm{q} 7$ algebraic number field $\Omega$. If $n u$ is not a period, it is known that

$$
\begin{equation*}
\wp(n u)=\wp(u)-\frac{\Psi_{n+1}(u) \Psi_{n-1}(u)}{\left[\Psi_{n}(u)\right]^{2}}=\frac{x^{n^{2}}+\cdots}{\dot{n}^{2} x^{n^{2-1}}+\cdots} \tag{5}
\end{equation*}
$$

where both the numerator and the denominator of the last member have integral coefficients. Thus if $\wp(n u)$ is an integer in some algebraic field, $x$ is also an integer.

## c. bergman, A generalization of a theorem of Nagell

First let the order of the point $(x, y)$ be even and equal to $2 n$. Then the number $\wp(n u)$ satisfies the equation

$$
[\wp(n u)]^{3}-A \wp(n u)-B=0 .
$$

Thus $\varphi(n u)$ is integral, and consequently $x$ is integral.
Next let the order of $(x, y)$ be divisible by the odd prime $p$ and equal to $p n$. Then the number $\wp(n u)$ satisfies the equation

$$
P_{p}[\varphi(n u)]=0 .
$$

Thus $p_{\varphi}(n u)$ is integral, and by (5) we see that the same is true of $p x$.
If the order of $(x, y)$ is divisible by the two odd primes $p$ and $q, p x$ and $q x$ are integral, and consequently $x$ is integral.

There remains the case where the order of the point $(x, y)$ is a power of an odd prime.

First let $(x, y)$ be a point in $\Omega$ of order 3 . We may suppose $x \neq 0$. Then $3 x$ and, by (1), $9 y$ are integral, and if we put

$$
3 x=\xi, \quad 9 y=\eta
$$

the equation (1) takes the form

$$
\begin{equation*}
\eta^{2}=3\left(\xi^{3}-9 A \xi-27 B\right) . \tag{6}
\end{equation*}
$$

The number $\xi$ also satisfies the equation

$$
\begin{equation*}
27 P_{3}\left(\frac{\xi}{3}\right)=\xi^{4}-18 A \xi^{2}-108 B \xi-27 A^{2}=0 \tag{7}
\end{equation*}
$$

Let $\mathfrak{p}$ be a prime ideal which divides 3 , and suppose that 3 is divisible by $\mathfrak{p}^{h}$ but not by $\mathfrak{p}^{h+1}$ and that $\xi$ is divisible by $\mathfrak{p}^{k}$ but not by $\mathfrak{p}^{k+1}$.

Suppose $k<h<8$. Then (6) shows that

$$
k \equiv h \quad(\bmod 2)
$$

and consequently $h \geqq 2$ and $k \leqq h-2$. In (7) the first term is not divisible by $\mathfrak{p}^{4 k+1}$, while the other terms are divisible by

$$
\mathfrak{p}^{2 n+2 k}, \quad \mathfrak{p}^{3 n+k} \text { and } \mathfrak{p}^{3 n}
$$

respectively. But

$$
2 h+2 k>4 k, \quad 3 h+k>4 k \text { and } 3 h>4 k,
$$

because we have supposed $k \leqq h-2 \leqq 5$. Since this is impossible, we have $k \geqq h$, if $h<8$. It follows that if 3 is not divisible by the eighth power of any prime ideal in $\Omega$, then $x$ and $y$ are integral, if $(x, y)$ is a point in $\Omega$ of order 3. If ( $x, y$ ) has the order $3^{y}, y>1$, we put $n=3^{v-1}$ in (5) and conclude that $x$ is integral in this case too, since $\varphi\left(3^{\nu-1} u\right)$ is integral.

Next let $(x, y)$ be a point in $\Omega$ of order $p$, where $p$ is a prime $>3$, and suppose $x \neq 0$. If we put $p x=\xi$ and $p^{2} y=\eta$, the equation (1) take the form

$$
\begin{equation*}
\eta^{2}=p\left(\xi^{3}-A p^{2} \xi-B p^{3}\right) \tag{8}
\end{equation*}
$$

The number $\xi$ also satisfies the equation
$p^{N-1} P_{p}\left(\frac{\xi}{p}\right)=\xi^{N}+\alpha_{p, 2} p \xi^{N-2}+\cdots+\alpha_{p, m} p^{m-1} \xi^{N-m}+\cdots+\alpha_{p, N} p^{N-1}=0$,
where $N=\frac{1}{2}\left(p^{2}-1\right)$. Let $\mathfrak{p}$ be a prime ideal which divides $p$, and let $p$ and $\xi$ be divisible by $\mathfrak{p}^{h}$ and $\mathfrak{p}^{k}$ respectively, but not by $\mathfrak{p}^{h+1}$ and $\mathfrak{p}^{k+1}$.

Suppose $k<h<p-1$. By (8) we conclude

$$
k \equiv h \quad(\bmod 2)
$$

and consequently $h \geqq 2$ and $k \leqq h-2$. The number
is divisible by

$$
\begin{equation*}
\alpha_{p, m} p^{m-1} \xi^{N-m} \tag{10}
\end{equation*}
$$

and a fortiori by

$$
p^{k N+(h-k) m-h}
$$

$$
\mathfrak{p}^{k N+2 m-h}
$$

If $m>\frac{1}{2}(p-3)$, the last exponent is $>k N$. But if $m \leqq \frac{1}{2}(p-3)$, our lemma shows that $\alpha_{p, m}$ is divisible by $\mathfrak{p}^{h}$, and thus (10) is divisible by
and a fortiori by

$$
\mathfrak{p}^{k N+2 m}
$$

$$
\mathfrak{p}^{k N+4}
$$

Since the first term of (9) is not divisible by

$$
\mathfrak{p}^{k N+1}
$$

we have reached a contradiction. Thus $k \geqq h$, if $h<p-1$. As in the case $p=3$ we find that a point $(x, y)$ in $\Omega$ of order $p^{\nu}, \nu \geqq 1$, has integral coordinates, if $p$ is not divisible by the $(p-1)$ :th power of any prime ideal in $\Omega$.

Finally we shall use the identity

$$
\begin{equation*}
4 A^{3}-27 B^{2}=\left(6 A x^{2}-9 B x-4 A^{2}\right)\left(3 x^{2}-A\right)-9(2 A x-3 B)\left(x^{3}-A x-B\right) \tag{11}
\end{equation*}
$$

Suppose $y \neq 0$. In the right member of (11) $A$ and $B$ can be eliminated, if we put

$$
\frac{3 x^{2}-A}{2 y}=t
$$

and use the equation (1). Then (11) is transformed into

$$
\begin{equation*}
4 A^{3}-27 B^{2}=y^{2}\left[36 x^{2}\left(t^{2}-3 x\right)+108 x y t-32 y t^{3}-27 y^{2}\right] . \tag{12}
\end{equation*}
$$

## g. bergman, A generalization of a theorem of Nagell

Since

$$
2 x+\wp(2 u)=\left(\frac{3 x^{2}-A}{2 y}\right)^{2}
$$

the number $t$ is integral, if $x$ and $\wp(2 u)$ are integral. But then (12) shows that $y^{2}$ divides $4 A^{3}-27 B^{2}$.

We have proved the following theorem:
Theorem 2. - Let $A$ and $B$ be integers in the algebraic number field $\Omega$, and let $(x, y)$ be an exceptional point in $\Omega$ of order $n>1$ on the curve

$$
y^{2}=x^{3}-A x-B . \quad\left(4 A^{3}-27 B^{2} \neq 0\right)
$$

Then $x$ and $y$ are integers in the following cases:

1. If $n$ is not a power of an odd prime.
2. If $n$ is a power of 3 and the number 3 is not divisible by the eighth power of any prime ideal in $\Omega$.
3. If $n$ is a power of a prime $p>3$ and $p$ is not divisible by the $(p-1)$ :th power of any prime ideal in $\Omega$.

If $n$ is a power of the odd prime $p$, the number $p x$ is always integral.
If $n>2$ and the two numbers $\wp(u)=x$ and $\wp(2 u)$ are integral, then $y$ is an integer $\neq 0$, and $y^{2}$ divides $4 A^{3}-27 B^{2}$.

It is not possible to substitute " $p$ :th" for " $(p-1)$ :th" in the case 3. above, as is shown by the following examples:

Example 1. - In $\Omega=k(\sqrt[4]{5})$ the curve

$$
y^{2}=x^{3}-27 \cdot 269 x+54 \cdot 9481 V 5
$$

has the following points of order 5:

$$
\left[\frac{3 \cdot 97}{\sqrt{5}}, \pm \frac{2^{6} \cdot 3^{4}}{(\sqrt{5})^{3}}\right],\left[-\frac{3 \cdot 47}{\sqrt{5}}, \pm \frac{2^{4} \cdot 3^{5}}{(\sqrt{5})^{3}}\right]
$$

Example 2. - In $\Omega=k(\sqrt{7})$ the curve

$$
y^{2}=x^{3}-27 \cdot 967 \sqrt[3]{7} x+27 \cdot 165086
$$

has the following points of order 7:

$$
\left[-\frac{3 \cdot 71}{\sqrt[3]{7}}, \pm \frac{2^{5} \cdot 3^{5}}{\sqrt{7}}\right],\left[\frac{3 \cdot 73}{\sqrt[3]{7}}, \pm \frac{2^{4} \cdot 3^{4}}{\sqrt{7}}\right],\left[\frac{3 \cdot 145}{3}, \pm \frac{2^{3} \cdot 3^{6}}{\sqrt{7}}\right]
$$

In the case $p=3$ Nagell gives an example ([4], p. 12), where $\Omega$ has the degree 8 .

BIBLIOGRAPHY. [1]. Billing, G. Beiträge zur arithmetischen Theorie der ebenen kubischen Kurven vom Geschlecht Eins, Nova Acta Reg. Soc. Sci. Ups., ser. IV, t. 11, n:o 1, Uppsala 1938. - [2]. Graeser, E. Einführung in die Theorie der elliptischen Funktionen und deren Anwendungen, München 1950. - [3]. Nagell, T. Solution de quelques problèmes dans la théorie arithmétique des cubiques planes du premier genre, Skrifter utg. av det Norske Videnskaps-Akademi i Oslo, 1935, Mat.-Naturv. Kl., No. I. - [4]. --. Les points exceptionnels sur les cubiques planes du premier genre, I, Nova Acta Reg. Soc. Sci. Ups., ser. IV, t. 14, n:o 1, Uppsala 1946.

