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On a theorem of  Hanner  

B y  C. H. DOWKER 

0LOF HANNER (See reference [4]) has shown that  a separable metric space is 
an absolute neighborhood retract (ANR) for normal spaces if and only if it  is 
both an ANR for separable metric spaces and an absolute G~. Using an example 
given in a recent paper of R. H. BING [1] we show (theorem 1) tha t  if a metric 
space is an ANR for normal spaces it  is separable, and that  hence the hypoth- 
esis of separability in Itanner 's theorem can be dropped. In the same paper 
Bing defined a class of spaces more restricted than normal called collectionwise 
normal. We show (theorem 2) that  Hanner's theorem extends to non-separable 
metric spaces if normal is replaced by collectionwise normal. Moreover (corollary 
1) this form of t tanner 's  theorem characterizes collectionwise normal spaces in 
the same way as Tietze's extension theorem characterizes normal spaces. 

1. Given a class v of spaces, a space Y belonging to v is called an ANR~ 
[respectively AR~] if YEv  and if every map ] of a closed set A of a space 
X of class v into the space Y can be extended to a map [1 of an open set 
U, such that  A c  U c X ,  into Y [respectively, to a map /1 of X into Y]. In 
particular ANRn, ANRc,, ANRm and ANRsm will mean absolute neighborhood 
retract for normal, collectionwise normal, metric and separable metric spaces 
respectively. If a class a of spaces is contained in % if YEa and if Y is ANR~ 
then clearly Y is also ANRo. (The above definition of ANR is equivalent in 
all cases considered below to the usual definition terms of retraction (See for 
example [4], theorem 3.2) but  we make no use of this equivalence.) 

T h e o r e m  t .  A metric space Y is ANRn [respectively AR,] i] and only i/ it 
is ANR,,  [respectively ARm], separable and absolute Go. 

Proof. Sufficiency. If  Y is separable and ANR~ it is ANR, z. If it is also 
absolute G~ then, by [4] theorem 4. 2, it is ANR,.  

Necessity. Let  Y be metric and ARNn. Suppose if possible that  Y is not 
separable. Then there exists E > 0 and a non-countable subset B of Y such 
that  each pair of points of B have distance >E.  Bing ([1], page 184, example G) has 
shown that  there exists a normal space X with a closed subset A of arbitrary 
non-countable cardinal number such that  the subspace A has the discrete 
topology but  no collection of mutually non-intersecting neighborhoods of the 
points of A exists. Choose for A the cardinal number of B and let / be a 1-1 
map of A on B. Then ] : A ~ Y  is continuous and, since Y is ANRn, can be 
extended to a map ]1: U->Y o f  a neighborhood U of A. The inverse images by 
[~ of the (E/2)-neighborhoods of the points of B ~orm a collection of non-in- 
tersecting neighborhoods in X of the points of A, which is impossible. Therefore 
Y is separable. ' 
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Since Y is metric and ANR~, i t . is  ANRm. Since Y is separable metric and 
ANRn, by [4], theorem 4.2, it is a]~solute Go. 

The proof for absolute retracts is similar and is omitted. 

2. A set which is the union of a countable number of closed sets is called 
an F ,  set and its complement is called a Gt set. If X is a normal space, a 
subset U of X is an open Fo set if and only if there exists a continuous 
real valued function ] defined on X such that  / (x)~O for x E U and /(x)= 0 
for x E X - - U .  If A is a closed subset of a normal space and if U is an open 
set containing A there exists an open F ,  set V with A c V c U. A normal 
space is called perfectly normal if every open set is an /va set, 

A collection {Aa} Of sets of X is called locally finite in X if every point 
of X has a neighborhood meeting at most a finite number  of the sets Aa. 
Clearly any subcollection of a locally finite collection is locally finite. The 
closure of the union of a locally finite collection of sets is the union of the 
closures; 

UaAa = Ua A~. 

The union of a locally finite collection of closed sets is closed, the union of 
a locally finite collection of Fo sets is an F ,  set and the union of a locally 
finite collection of open Fa sets is an open F ,  set. 

A space is called collectionwise normal [1] if for every locally finite collection 
{Fa} of mutually non-intersecting closed sets there is a collection {Ga} of mu- 
tually non-intersecting open sets with F a c  Ga. Metric spaces are collectionwise 
normal and collectionwise normal spaces are normal. The collection {Ga} of open sets 
may be assumed to be locally finite. For, if it is not, let E be the set of points of X 
every neighborhood of which meets an  infinite number of the sets Ga. Then E is 
closed, no point of any Ga is in E and hence E and (Ja Fa are non-intersecting 
closed sets. Since X is normal there exist open sets U and V with 

E c U ,  O, F a ~ V  

and UV=O. Let tta=GaV. Then {Ha} is a collection of mutually non-inter- 
secting open sets with Fa t-Ha. Every point of X - E  has a neighborhood 
meeting at most a finite number of G~ and hence at most a finite number 
of Ha. Every point of E has a neighborhood, namely U, meeting none of the 
sets Ha. Hence {Ha} is locally finite. 

A covering of a space X is a collection {U,} of ope n sets whose union is 
X. If the collection {U~} is locally finite it is called a locally finite covering. 
For each locally finite covering {U a} of a normal space there exists ([6] page 
26, proposition 33.4) a covering {V,} with V a t  U~; hence there is a covering 
{W,} of X by open F ,  sets Wa with V ~ r 1 6 2  U,. 

L e m m a  t .  Let A be a closed subset o~ a collectionwise normal space X and let 
{ U,} be a locally /inite covering o/ A. Then there exists a locally /inite covering 
{Va} o/ X such that, /or each ~r VaA c Ua. 

Proof. Since A is normal there is a covering {W a} of A by open F~ sets 
such that W , ~  U~. Assume the indices ~ vcell ordered and let 

Ca=Wa(A - U~<,W~); 
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then Ca, being the intersection of an F~ set with a closed set in an Fa set. Let 

Ca= IJ~C~,T, r = l ,  2 . . . . .  

where C~r is closed in A and hence also in X. The sets C. are mutually non- 
intersecting and 

o ~ o =  uoWa=A. 

Since the collection {U a} is locally finite in the closed set A it is locally 
finite in X. Hence, since 

Co, cCacWacUo, 

{C~} for fixed r is a locally finite collection of mutually non-intersecting closed 
sets of X. Hence, since X is collectionwise normal, there exists for each r a 
locally finite collection {Gar} of mutually non-intersecting open sets of X such 
that  Ca~ c Gar There exists an open F ,  set H~r containing Co/ and contained 
in the open set 

ca, ( x -  (A - Uo)). 

Let  H = fla. ~Ha~; then H is open and 

A c tla t l~C~cH.  

Hence there exists an open P ,  set H0 such that  

X - H c H o c X - A .  

Adding H0 to art arbitrary one of the sets Hat we get a family {Lar} of 
open F ,  sets with 

Ua, ~ L~ = X,  

C a ~ c L a ~ c X - ( A -  Ua) 

and, for each r, {La~} is locally finite. L~= 0aLar; then L, is an open F ,  set 
and {L~} is a covering of X. For each LT there is a continuous real function 
r 0 _< ~T (x) _< l, such that  Cr(X)>0 if and only if xEL~. Let  F~n be the 
set of points x of X for which ~r (x)_> 1/n, and let 

V~=L~(X- us<r P~r). 

Then {Vr} is a locally finite covering ([3] proof of proposition (e)) of X and 
L o L l .  

Let  V~=L~rV~ and let V,=t l~Var .  Each point x of X is in some Vr and 
hence, since V~ c tl, Lo~, in some L,~ and hence in La~ V~ = V,~. Hence x is in 
some Va. Since L~ and Vr are open,. Va is open. Thus {V~} is a covering of 
X. Each point of X has a neighborhood meeting only a finite number of the sets Vr 
and has a smaller neighborhood meeting at most a finite number of the sets L,r for 
each such r. Thus there is a neighborhood meeting only a finite number of 
V ~  and hence only a finite number of V,. Thus {V~} is a locally finite covering 
of X. Since 
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therefore 
V . c  u~Lo~c X - ( A - U o ) ,  

V a A = U . .  

This completes the proof of the lemma. 

3. A covering 93 = { V~} is called a refinement of a covering 11 = { U~} if each 
V, is contained in some U~. A space X is called paracompact i f  every covering 
of X has a refinement which is locally finite. A generalized Hilbert space (or 
generalized Euclidean space) is a space having all properties of Hilbert space 
except separ~ability. A generalized Hilbert space is paracompact ([3] lemma 2 
or [7] corollary 1). 

L e m m a  2. Let A be a closed subset o~ a collectionwise normal space X 
and let ] be a map o] A into a generalized Hilbert space H. Then ] can be ex- 
tended to a map g o/ X into H. 

Proof. I t  is sufficient to construct a sequence of maps gn : X-->H for n = 1, 2 , . . . ,  
such that  (1) if n > 1, the distance 

e (gn (x), gn-1 (x)) < 2-n§ 
and (2) if xEA,  

e (g~ (x), / (x)) < 2-~.  

Then the Cauchy sequence {gn(x)} converges to a point g(x) of the complete 
space H and, since the sequence {g=} is uniformly convergent, the limit function 
g is continuous. For each x, 

e (gn (z), g(~)) < 2 -~§ 
If x q A ,  

e (/(~), g (x)) < e (/(x), g. (~)) + e (gn (~), g (x)) < 2-" + 2 -"+5 < 2 -"§ 

for each n;  hence ~(/ (x) ,g(x) )=O and g(x)=/.(x).  Thus g is an extension o f / .  
We construct the sequence {g,} by recursion. Since H is paracompaet the 

covering of H by all open sets of diameter less than 2-" has a locally finite 
refinement 11,. Then /=1 11=, the collection of inverse images of ,the open sets 
of 11~, is a locally finite covering of A. Hence by lemma 1, there is a locally 
finite covering !~, of X such that ,  for each VE~8,, V A  is contained in some 
element of /-1'1I=. When n > 1 we assume that  g , _ I : X - + H  has already been 
defined. Then g;~-111, is a locally finite covering of X. Let  ~ ,  be a locally 
finite common refinement of 93, and g;~-111,. When n =  1 let !~1= !81. 

Let  K ,  be the nerve of ~ , - a n d  let 6 ,  be a canonical map ([2] page 202) 
of X into K , .  For x E X let a ,  (x) be the closed simplex of K ,  whose vertices 
correspond to the open sets of W= containing x. Then 6 ,  (x)fi 5 ,  (x). Let  ~,  : 
K , - + H  be the linear map (linear on each simplex) of K ,  into H defined for the 
vertices of K ,  as follows. Let  W q ~  and let w be the corresponding vertex 
of K , .  If W A = O  and n >  1 choose a point y e W  and let ~ , (w)=g ,_ l (y ) .  If 
n = 1 and W A = 0 choose ~pl (w) arbitrarily in H. If  W A # 0 choose y 6. W A  
and let yJ, (w) =/(y) .  Let  g, : X ~ H  be defined by gn (x) = ~,, 6- (x) ; then g, is a c o n -  
tinuous ([2] lemma 1.2) map of X into H. 
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When n ~ l ,  if x EW then, 
diameter less than 2- ' ,  

e (g.-~ (x), g._~ (y)) < 2-".  

If  WA~O, y E A  and hence 

(g~-i (y), / (y)) < 2 -"§ 

(by the induction hypothesis) and, since ~,  (w) - / (y ) ,  

~) (g._~ (x), ~o,, (w)) << 2-" + 2 -"+1 < 2 -n~2. 

If  WA =0,  7 ' - (w)=g .  ~(y) and hence 

(o.-1 (~), v,. (w)) < 2-" < 2 -"+~. 

Thus yJ, maps each vertex 
g~-l(x) of radius 
in particular, 

Thus 

since y is also in W and since gn-l(W) has 

of d=(x) within a spherical neighborhood of 
2 -"+2. Hence ~= maps a , (x)  within this neighborhood and, 

(g._~ (x), ~ .  + .  (x)) < 2 -"§ 

e (g.-l(Z),  g.  (~)) < 2-" +2. 

W contains x then WA~O and y~.(w)=/(y) with y e W A .  When xEA,  if 
Since x and y are both points of WA and since /(WA) has diameter less than 
2-' ,  e(](x),/(y)) < 2 -n. Thus 

(/(x), ~,. (w)) < 2-". 

Thus v2. maps ~.(x) into the 2 -~ neighborhood of /(x). Hence 

e(/(x), ~.  ~ .  (x)) < 2 -" ;  
tha t  is, 

Q (/(x), g.  (x)) < 2-". 

Thus g. has the required properties (1) and (2). This completes the proof of 
the lemma. 

4.  For non-separable Hilbert spaces our lemma 2 replaces the Tietze extension 
theorem. Similarly, for non-separable metric spaces, Hanner's theorem may be 
replaced by the following: 

T h e o r e m  2. A metric space Y is ANRcn [respectively ARc,] i] and only i] 
it is ANRm [respectively ARm] and absolute G~. 

Proof. Necessity. Let  Y be metric and ANRcn. Let  M be a metric space 
with a subset ]11 homeomorphic to Y and let g : ]11 -> Y be a homeomorphism. 
Let  the space X be defined thus: the points of X are the points of M and 
a set U of X is open if it is the union of an open set of M and a subset 
of M--Y1.  Let  h : X - ~  M map each point of X on the same point of M; then 
h is continuous. Let  A = h  -1 Y1; then A is closed in X. 
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Let {F,} be a locally finite set of disjoint closed sets of X. Then, if 
B~=h(F,,A), {B,} is a locally finite collection of closed sets of Y1. Let  G, be 
the set of points of M which are nearer to B,  than to tJ~,B~;  then BacGa, 
G, is open and, if :r ~ fl, G~ B~ = 0. Then the sets h -1G~ are mutually non-intersecting. 
Since {F,} is locally finite, t J ~ F ~  is closed. Then the sets 

u o = F o +  (h-lGo - v~oRp)  

are open mutually non-intersecting sets and F , c  U~. Hence X is collectionwise 
normal. 

Let  ] : A ~ Y  be defined by /(x)=gh(x). Then, since Y is ANRcn, there is 
a neighborhood U of A ill X and an extension fl: U-+Y of [. For xEU let 

(~) L e (h (~), g-1/1 (~)); 

then 6 is continuous and ~ ( x ) = 0  if and only if xEA.  Therefore A is a Ga 
set in U. Let  A =  fin Un, n = l ,  2 , . . . ,  with Un open in U and hence open in X. 
Then h(Un)= Vn+C, where 'V~ is open in M and C ~ c M -  Y1. Then YI~ Va 
and YI= fln(Vn+C~); hence YI= fl~V~ and Y1 is a G~ set i n M .  Hence Y i s  
an absolute G~. 

Since metric spaces are collectionwise normal, Y is ANRm. 

Sufficiency. Let  Y be ANRm and absolute G~. Replacing Y by a homeomorphic 
space if necessary we may assume ([7] corollary 1 and [3] lemma 1) that  Y 
is a subspace of a generalized Hilbert space H. Let X be a collectionwise 
normal space, A a closed subset of X and / ; A - ~ Y  a map of A into Y. By 
lemma 2 there exists an extension / I : X ~ H  of /. 

Since Y is an absolute G~ there exist open sets Wn, n = l ,  2 . . . .  , of H such 
that  Y = fl~ W~. Let h~ be a real continuous function on X such thas 0 _< h~ (x)--< 1, 
h~(x)=O if xEA and h ~ ( x ) = l  if 

and let 
xe  X -  /~ 1W,~, 

h (x) = ~ 2-" h. (x). 
n = l  

Then h is continuous, h(x)=O if x e A  and h ( x ) > 0  if ] l ( x ) e H - Y .  Let I 
be the closed segment [0, 1] and let 

] 2 : X ~ H •  Y) x0  

be defined by ]2(x)=(/l(x),h(x)). Let g : Y •  the homeomorphism for 
which g(y, 0 )=y .  Since Y x 0  is closed in the metric space H •  
and since Y is ANRm there is an extension o l : V ~  Y of g to a neighborhood 
V of Y• Let  U=]~ 1 V; then U is a neighborhood of A in X and gl]2: U--->Y 
is an extension of /. Hence Y is ANRc,.  

The proof for absolute retracts is similar and is omitted. 

Corollary 1. A space X is collectionwise normal i / a n d  only i] /or each 
closed set A o/ X, each map / o/ A into a complete ANR,~ can be extended over 
a neighborhood o/ A in X. .~ 
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Proof. Necessity follows immediately from theorem 2 and the fact that  a 
complete metric space an absolute Go. 

Sufficiency. Let  {F~} be a locally finite set of disjoint closed sets of X. Let" 
Y be a metric space whose points ya are in 1 -  1 correspondence with the sets 
Fa and let each pair of distinct points of Y have distance 1. Then Y is ANRm and 
complete. Let  A =  ttaF, and let / : A - + Y  be defined by / (x)=y,  for all x e F , .  
Then / is continuous and hence can be extended to a map g:U---> Y where 
U is a neighborhood of A in X. Then the inverse images g-l(y(~)form a 
collection of mutual ly  non-intersecting open sets of X with Fa c g-1 (y~). Hence 
X is collectionwise normal. 

Remark .  The above space Y can be imbedded as a neighborhood retract 
in a suitable generalized Hilbert  space H. I f  each map of a closed set A of 
X into a generalized Hilbert  space H can be extended over X then each map 
of A into Y can be extended over a neighborhood of A and hence, as above, 
X is collectionwise normal. This is the converse of lemma 2. I t  follows tha t  
the converse of lemma 1 is also true. 

Let ANRcnp= mean absolute neighborhood retract  for collectionwise normal 
perfectly normal spaces. 

Corollary 2. A metric space Y is ANRcn~n i/ and only i/ it is ANRm. 

Proof. Necessity follows from the fact that  metric spaces are collectionwise 
normal and perfectly normal. 

Sufficiency. Let  Y be ANRm. I f  A is a closed set of a perfectly normal 
space X, there exists a continuous function k defined on X, 0 < k ( x ) <  l, 
such that  k (x )=  0 if and only if x E A. In  the proof of sufficiency in theorem 
2 above one may replace the function h(x), whose existence depended on Y 
being an absolute G~, by this function k(x). The details are omitted. 
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