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Retraction and extension of mappings of metric and non-

metric spaces

By Oror HANNER

Introduction

1. The two kinds of topological spaces that are called absolute retracts and
absolute neighborhood retracts, were originally defined by Borsuk ([5], [6])
for compact metric spaces. Later on these concepts were extended to several
other classes of spaces.

A closed subset X of a space Z is called a retract of Z if there is a map-
ping 7:Z—>X such that r(z)== for each z € X. The mapping:r itself is called
a retraction of Z onto X. By an absolute retract we mean a space X, such
that whenever X is imbedded as a closed subset of a space Z, X is a retract
of Z. However, if this definition is to have a meaning, we have to determine
which spaces Z are allowed. There is, for instance, an example (example 17.7)
of a separable metric space X, which is a retract of any separable metric space
in which it is imbedded as a closed subset, but which can be imbedded as a
closed subset of a normal space Z in such a way that it is not a retract of Z.

A closed subset X of a space Z is called a neighborhood retract of Z, if

there is an open set O in Z, such that X cO, and a retraction r:0—>X. The
mapping 7 itself is called a neighborhood retraction. By an absolute neighbor-
hood retract we mean a space X such that whenever X is imbedded as a closed
subset of a space Z, X is a neighborhood retract of Z. Agair we must know
which spaces Z are allowed. In order to give a simple example let X be the
Hausdorff space consisting of only two points. This is a neighborhood retract
of any Hausdorff space Z in which it is imbedded. However, it is not neces-
sarily a neighborhood retract when imbedded in a T-space. ,
. Thus when changing the class of spaces from which Z shall be taken, we get
different concepts absolute retract and absolute neighborhood retract. The purpose
of this paper is to study the properties of these concepts and the relationships
between them.

We will mainly concentrate on some special classes of spaces. These classes
are listed in § 2. In §§ 3-7 we have gathered together some facts about these
spaces that will be useful in the sequel.

In § 2 we also define two other kinds of spaces, called extension. spaces
and neighborhood extension spaces. We will show in §§ 811 that they are
closely related to absolute retracts and absolute neighborhood retracts. We
study in § 12 our four concepts for contractible spaces.
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0. HANNER, Mappings of metric and non-metric spaces

In §§ 13—17 we take up the relationships between our concepts for different
classes of spaces. The main results are collected in theorems 17.1 and 17.2.

Under certain conditions the property of a space to be a neighborhood ex-
tension space (or an absolute neighborhood retract) is a local property. This
is proved in §§ 18-23. In §§ 24—27 we prove that certain infinite polyhedra
are neighborhood extension spaces. Finally in § 28 we give some homotopy
theorems.

Definitions and general preliminaries

2. All topological spaces comsidered in this paper will be Hausdorff spaces.

Let X be a topological space and 4 a subset. By a neighborhood of 4 in
X we mean a set Uc X such that there is an open set O satisfying 4AcOcU.
Thus a neighborhood is not necessarily open.

We leave the proof of the following lemma to the reader.

Lemma 241. Let AcUcVeX. If U is a neighborhood of A in V and V
15 a neighborhood of A in X, then U 1is a neighborhood of A in X.

A space X is normal if any two disjoint closed subsets have disjoint neigh-
borhoods. This can also be formulated thus: A space X is normal if for any
closed set 4 € X and any neighborhood U of A, there is a closed neighborhood
V of 4 contained in U, By a pair (Y, B) we mean a space Y and a closed
subset B of Y. If (Y, B) is a pair and F:Y—X and f: B—X are two map-
pings into a space X such that F(y)=f(y) for y € B, we call F an extension
of f to Y and f the restriction of F to B, denoted f=F|B. If F is only de-
fined on some neighborhood of B in Y, F is called a neighborhood extension
of fin Y.

Let @ be a class of topological spaces. We require:

22 If X€Q and if A is a closed subset of X, then A € Q.

A space that belongs to @ will often be called a @-space, and a pa,lr (Y, B)
for which Y € Q will be called a @Q-pair.
The classes @, in which we shall be principally interested, are the following:

o) Tychonoff spaces (=completely regular spaces),
f) normal spaces,

y) collectionwise normal spaces (see § 4),

d) fully normal spaces (see § 5),

¢) Lindel6f spaces (see § 6),

£)

n)
#) separable metric spaces,

compact spaces,

metric spaces,

t) compact metric spaces.

These classes of spaces will often be referred to by Greek letters given in this
list. It may be natural to order them in a diagram.
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Tychonoff
normal
coll. normal
J

¥
fully normal

metric Lindelsf

Y PR

sep. metr. compact

comp. metr.

In this diagram each arrow goes from a class to a subclass. We have to
verify this fact and the fact that all classes a—t satisfy 2.2. This will be
done in §§ 4-6 for some cases. The remaining cases are all well known.

Definition 2.3. A space X is called an absolute retract relative to the class @
(abbreviated AR(Q)) if

a) X€0Q,

b) whenever X is topologically imbedded as a closed subset of a Q-space Z,
.then X is a retract of Z.

Definition 2.4. A space X is called an absolute neighborhood retract relative
to the class @ (abbreviated ANR(Q)) if

a) X€gQ, '

b) whenever X is topologically imbedded as a closed subset of a Q-space Z,
then X is a retract of some neighborhood U of X in Z.

Definition 2.5. A space X is called an extension space for the class Q (ab-
breviated ES(Q)) if, for any @-pair (Y, B) and any mapping /: B— X, there
exists an extension F: ¥ —X of f to Y.

Definition 2.6. A space X is called a neighborhood extension space for the
class @ (abbreviated NES(Q)) if, for any @-pair and any mapping f:B->X,
there exists an extension F:U—>X of f to a neighborhood U of B in Y.

Let us point out that in the last two definitions we do not assume that X
belongs to the class Q.

If all spaces in @ are normal, we can in the definitions 2.4 and 2.6 let the
neighborhood U be closed in Z and Y respectively. Then U is a Q-space.

Lemma 2.7. Let @ contain a space which 1s not normal. Then an NES(Q)
(or an ES(Q)) s never Hausdorff unless it consists merely of one single point.

Proof. Let X be an NES(Q) with more than one point. Take two different
points z;, 7, € X. If X is Hausdorff there are disjoint neighborhoods U, and
U, of z, and z, respectively. There is a space Y €, which is not normal.
Take in this space Y two disjoint closed sets B, and B, which do not have
disjoint neighborhoods. Define f:B, v B,—~X by

f(By)== and [(B))=x,.

Clearly f is continuous. Now B, u B, is closed in ¥, ¥ € Q, and X is an NES(Q).
Hence there exists an extension F:U X, U being a neighborhood of B, u B,
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in Y. But then F*(U,) and F'(U,) are disjoint neighborhoods of B, and B,
respectively. This is a contradiction, which proves lemma 2.7. ‘

To avoid this case we shall always assume that @ in definitions 2.5 and 2.6
only consists of normal spaces. We mainly use the classes f§—t.

There are several immediate relationships between the four concepts AR(Q),
ANR(Q), ES(Q), and NES(Q). We give them without proofs.

2.8. Any AR(Q) s an ANER(Q).

2.9. Any ES(Q) 1s an NES(Q).

2.10. Any ES(Q) belonging to @ is an AR(Q).
2.11. Any NES(Q) belonging to § is an ANR(Q).

If Q and Q, are two classes both satisfying condition 2.2, then

212. Qc@Q, implies that any ES(Q,) is an ES(Q) and that any NES(Q,) s
an NES(Q).

213. QcQ, implies that any AR(Q,) belonging to Q is an AR(Q) and that
any ANR(Q,) belonging to Q s an ANR(Q).

Easy to prove are the following statements:

2.14. A retract of an ES(Q) is an ES(Q) (cf. [14] p. 375).

215. A neighborhood retract of an NES(Q) (or an ES(Q)) is an NES(Q).
2.16. Any open subset of an NES(Q) 7s an NES(Q) (cf. [15] p. 391).
2.17. Any topological product of ES(Q)s is an ES(Q) (cf. [14] p. 375).
2.18. Any topological product of a finite number of NES(Q)s is an NES(Q).

Example 2.19. In our terminology TiETZE'S extension theorem says that a
closed interval is an ES(normal). Hence by 2.17 any cube, i.e. a product of
closed intervals, is an S (normal). Such a space is compact.

Example 2.20. It is known that TIETZE’S extension theorem is true even if
the closed interval is replaced by a real line, i.e. a real line is an ES(normal).
(Cf. also 2.16 and theorem 12.3 below.) Hence also the product of any number
of real lines is an ES(normal). The real line itself is locally compact. The
product of a countable number of real lines is a metric space which 1s not
locally compdct The product of uncountably many real lines is a Tychonoff
space which is not normal (cf. [29] p. 981). The last space is an example
of an ES(normal) which is not normal. Hence it is not an AR (normal). We
return to this example in example 17.8.

Let us compare our notations with the notations used earlier in the litera-
ture on this subject. This we will do first for the concept ANR. All notations
for the concept AR are similar.

The original concept ANR defined by Borsuk [6] is in our notation ANR
(comp. metr.). KuraTowskr generalized this to separable metric spaces thus
introducing ANR (sep. metr.). In a recent paper Ducunpir [12] considered
arbitrary metric spaces and obtained what is here called ANR (metric).

Other generalizations of Borsuk’s original concept are obtained by consider-
ing non-metric spaces. Thus SAALFRANK [26] considered ANR (compact) and
Hu [17] considered ANR (Tychonoff), by him called ANR*.

The author considered ANR (normal) ([14], there called ANRN), and in a
recent paper C. H. Dowker considered ANR (coll. normal) ([11], by him called
ANRcp).
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Thus all classes of spaces a—¢ have been used except the two classes of
fully normal spaces and of Lindeléf spaces. The class of fully normal spaces
seems natural to introduce when analyzing the concept local ANR(Q) (and lo-
cal NES(Q)) and the class of Lindel6f spaces is proposed by theorems 14.5
and 19.4.

We shall see below (§§ 8—10) that for any of the classes f— an ANR(@Q)
15 an NES(Q) belonging to @, and conversely. Thus if we only considered Q-
spaces the special notation NES(Q) would be superfluous. However, in §§ 25
and 28 we have to consider some NES(Q)’s which do not belong to @, and in
example 2.20 we already saw an ES(Q) not belonging to @.

STEENROD ([28] p. 54) and the author [14] have considered ES(normal) under
the name solid space.

3. We shall often have to consider collections of subsets of a space X. Let
o={U;} be such a collection, indexed by a set A={1}. To avoid some trivial
exceptions we assume that the index set A is never void. If all sets U, are
open we call « an open collection; if all sets U, are closed we call « a closed
collection.

A collection a={U,} is called a covering of X if the union of the sets
.Uz 13 X. We shall often have to do with open coverings and sometimes with
closed coverings. In § 6 we need some coverings which are neither open nor
closed. Notice that if 4 is a subset of X and a={U,} is an open covering of
A4 then the sets U, are subsets of 4 which are open in A but in general not
in X.

Tet a={U,;} be a covering of X and 4 any subset of X. By the star of
A with respect to oo we mean the union of all sets U, intersecting A, i.e.

St (A, (X)= U Ug

UlnAq:Q

(O denotes the void set). By the star of the covering « we mean the covering

St o= {8t (U, o)}

If o is open, the star of any set is open and the covering St « is open.

Let a={U,;} and B={V,} be two open coverings of X. Then f§ is called a
refinement of « if for each u there is a A such that V,cU;. Thus e.g. g is
a refinement of StB. If .St B is a refinement of «, § is called a star-refine-
ment of a.

A collection « is locally finite, if for each point z € X there is a neigh-
borhood of z meeting U, for at most a finite number of A’s. (Two sets are
said to meet if they have a non-void intersection.) When we want to point
out the space X in this definition we say that « is locally finite in X. Let 4
be a closed subset of X and « a collection of subsets of 4 such that « is
locally finite in 4. Then « is also locally finite in X. This is not necessarily
true if 4 is not closed in X.

The proofs of the following two lemmas are omitted.

Lemma 3.1. Let {U;} be a locally finite collection. Then {U,} is also locally
finate.
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Lemma 3.2. Let {U;} be a locally finite closed collection. Then the set

uU;

ica
18 closed.

Using the last lemma we can prove
Lemma 3.3. Let {U;} be a locally finite closed covering of Y and let

[ Y=-X
be a function such that eack f|U, ts continuous. Then [ is continuous.
Proof. Let A4 be any closed set in X. We have to prove that /' (d) is
closed in Y. Since f;=f| U, is continuous the set
i1 A)=U;nf7(4)
is closed in U, and hence closed in Y, so that

)= U (U ()

is a union of a locally finite collection of closed sets. Hence, by lemma 3.2,
f71(A4) is closed. This proves that / is continuous.

Lemma 3.4. Let {U;} be a locally finite open covering of a normal space X.
Then there is an open covering {V;}, such that for each A we have Vi< U,.
For the proof see LervscHETZ ([23] p. 26) or DieUDONNE ([8] p. 71).

Lemma 3.5. Let {U;} be a locally finite closed covering of a space X. Then
for each point x € X there is a meighborhood V such that

U,n V%Q
is true only for those A (limite in mumber) for which x € U;.
Proof. Since {U,} is locally finite there is a neighborhood U of x which

meets U; for only a finite number of indices 4, say 4, ..., 4». Suppose x € U;
for A=24,,...,An and x¢ U; for A=2Aui1, ..., 4n. Then, since each U, is
closed,
V: U— U Uli
i=m+1

is a neighborhood of z. Let U, meet V. Then, since V< U, A is one of
A, .-y An. But V is disjoint to U, for A=2Amy1, ..., An. Hence 4 is one of
Ais -+ -5 Am so that z € U,;. This proves the lemma. -

We call a covering a={U;} of X star-finite if, for fixed 4,, U; meets U;, for
at most a finite number of A’s.

A star-finite open covering is certainly locally finite.

Lemma 3.6. Let {U,} be a star-finite open covering of X. Then {Uj} is
star-finite.

Proof. Suppose U; meets U, . Choose a point
x € I—]z n ﬁlx .
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{U;} is a covering of X, hence z€U;, for some A,. Since U,, is open this
implies

1) Uy, 0 Uz, # 0,
2 L U,n U, #0.

But, for fixed 4;, (1) is true only for a finite number of 4,’s and, for each
of these A,’s, (2) is true only for a finite number of A’s. Hence, for fixed 4,,
U, meets U 5, only for a finite number of A’s, i.e. {U,} is star-finite.

4. Definition 4.1. A Hausdorff space X is called collectionwise normal if,
for every locally finite collection {A4;} of mutually disjoint closed subsets of X,
there is a collection {U;} of mutually dls]omt open sets such that 4,< U; for
each 1. (Bmve [4] p. 176.)

Every collectionwise normal space is certainly normal. Bine ([4] p. 184) has
given an example of a normal space which is not collectionwise normal.

A closed subset 4 of a collectionwise normal space X is collectionwise nor-
mal. For if {A4,} is a locally finite closed collection in A it is also a locally
Enite closed collection in X.

Lemma 4.2 (C. H. DowkERr). Let X be a collectionwise normal space and
{4;} a locally finite collection of mutually disjoint closed subsets of X. Then
there are open subsets U, of X such that A;c U, for each A and such that { U}
18 a locally finite collection of mutually disjoint sets.

For the proof see [11].

5. Definition 5.1. A Hausdorff space is called jfully normal if every open
covering has an open star-refinement (Tukey [30] p. 53).

Definition 5.2. A Hausdorff space is called paracompact if every open cov-
ering has a locally finite open refinement (DirUDONNE [8]).

Lemma 5.3 (A. H. StonE). Every fully normal space is paracompact and
every paracompact space 1s [ully normal.

For the proof see [29].

Hence the two concepts are equivalent and the class of fully normal spaces
is the same as the class of paracompact spaces. We will in the sequel only
use the name fully normal spaces for these spaces.

We see immediately that a closed subset of a fully normal space is fully
normal.

It is known that every fully normal space is normal. We also have

Lemma 5.4. Every fully normal space is collectionwise normal.

For the proof see [4] p. 183. As was pointed out by Bine, an example
given by DIieuDONNE of a normal space which is not fully normal is collec-
tionwise normal.

Lemma 5.5 (Tukey). Every metric space is fuily normal.
For the proof see [30] p. 53.

Lemma 5.6. Ewvery compact space is fully normal.
Proof. A compact space is obviously paracompact.
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Let « be an open covering of a fully normal space X. Then we can obtain
some new coverings by the following methods: ’

a) We can take an open star-refinement of «. This is the definition of full
normality.

b) We can take a locally finite open refinement of x. For a fully normal
space 1s paracompact.

¢) If «a={U,} is locally finite we can take an open covering o’ ={U,} such
that each U, meets U, for only a finite number of A’s. This is essentially the
definition of local finiteness. Since any refinement of «’ has the same property
as o', we can assume «' to be locally finite. Then we can repeat the process
and take an open covering o'’ such that each element of «” meets only a
finite number of elements of o',

d) If «a={U;} is locally finite we can take a covering f={V,} such that
for each 4 we have V,cU;. For, since a fully normal space is normal, we
can apply lemma 3.4. ’

6. Definition 6.4. A space is said to have the Lindelof property if from
each open covering there can be selected a countable covering. A regular space
having the Lindel6f property is called a Lindelof space.

The name is suggested by the Lindeldf covering theorem, which in our ter-
minology says that a separable metric space has the Lindeléf property (cf.
[23] p. 6).

An immediate consequence is:

Lemma 6.2. A regular space is a Lindeléf space if and only if every open
covering has a countable refinement.

Any Lindeléf space is normal. For we can apply TycHonoFF’s well-known
proof of the fact that a regular space with a countable base is normal ([31],
cf. [34] p. 6).

8. Karran proved ([19] p. 249) that any open covering of a separable
metric space has a star-finite open refinement. A slightly different proof of
this was used by the -author in [15] p. 393. Our main interest in Lindelof
spaces in this paper -depends upon the fact that KapLan’s result extends to
Lindelof spaces. '

Lemma 6.3. Any open covering of & Lindelof space has a countable star-finate
open refinement. :

This lemma has been proved by Morita ([25] p. 66). Note that any star-
finite (or locally finite) open covering of a Lindel6f space is countable.

Lemma 6.4. Any Lindelof space is fully normal.

Proof. This follows from lemma 6.3, since a star-finite open refinement is
locally finite.

Since obviously all compact spaces are Lindelof spaces, the class of Lindelof
spaces is a class between the class of compact spaces and the class of fully
normal spaces.

Lemma 6.5. A metric space is a Lindeléf space if and only if it is separable.

Proof. The sufficiency is just the Lindelof covering theorem. To prove the
necessity we select for each integer n >0 a countable covering out of the
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. 1 ..
covering by " -spheres. This gives a countable base for the space. Hence the

space 1s separable. This proves lemma 6.5.

Thus any non-separable metric space gives an example of a fully normal
space which is not a Lindeléf space, and any non-compact separable metric
space gives an example of a Lindeléf space which is not compact.

We see easily that a closed subset of a Lindeléf space is a Lindelof space.
However an arbitrary subset of a Lindelof space need not be a Lindeldf space,
since any Tychonoff space can be imbedded as a subset of a compact space.

We leave the proof of the following lemma to the reader.

Lemma 6.6. A regular space which is the union of a countable number of
subsets with the Lindeléf property is a Lindeléf space.

Thus any regular space which is the union of a countable number of com-
pact sets is a Lindelof space. Hence such a space is also fully normal. That
this is true when the space is also locally compact was proved by DIEuDONNE
([8] p. 68).

Exemple 6.7. Let X be the set of real numbers, — oo <<z < oco. Define a
topology on X by taking as a base for open sets all intervals of the form
a=z<'b. This gives us a Lindelof space, which is not metrizable. That each
open covering of this space has a star-finite open refinement follows from
lemama 6.3. See also BrcLE ([3] p. 579). SorGENFREY [27] proved that the
topological product of this space with itself is not normal.

7. In this paragraph we give some lemmas which will be used in the sequel.

Lemma 7.1. Let (Y, B) be a pair and let U be an open subset of B. If O
18 an open set in Y and UcO then

is open in Y.

Proof. U is open in B. Hence there is an open subset W of Y such that

U=WnB.
Then

I

V=(Un0)u(0-B)
(WnBnO)u(0-B)

-(WnO)u(0-B)

[

and V, being the union of two open sets, is open. This proves lemma 7.1.

Lemma 7.2. Let (Y, B) be a normal pair and a={U,} a countable star-
finite open covering of B. Then there is an open covering f=1{V.} of Y such that

a) U,=V,.nB for each n,
b) B s locally finste.

Proot. By lemma 3.6 {U,} is star-finite. Therefore, for fixed m
(1) Um n Un =0
for all indices n except a finite number. We want to define for each integer n

323



0. HANNER, Mappings of metric and non-metric spaces

an open set W, in Y such that W, o U, and such that for each pair (m,n)
satisfying (1) we have L
(2) WanW,=0.

The definition of the sets W, will proceed by induction. Let m = 1. If m>1
suppose that W, is already defined for n <<m. Let W, D U, be chosen such
that for (m, n) satisfying (1) we have

WanW,=0 for n<<m,
(3) _
WpalU, =0 for n>m.

Since Y is normal this is possible, because the union of all the sets that W
have, by (3), to avoid is a closed set (cf. lemma 3.2) which is disjoint to Up.
By (3) the sets W, satisfy (2).

Now put

Then, since {U.} covers B, W is an open neighborhood of B. By (2), {W,} is
star-finite, hence locally finite in W. Choose an open set V such that

BcV and VW
and put
V1=U1U(Y—B),

Va=Uu[(W,nV)—B] for n>1.

Then ={V.} is a covering of Y. By lemma 7.1 each ¥, is open. Since
"< W for n>1, {Va., n> 1} is locally finite in W, and since ¥V, €V, which
is closed in ¥, {Vn, n>1} is locally finite in Y. Thus 8 is locally finite.

Lemma 7.3 (C. H. Dowker). Let (Y, B) be a collectionwise normal pair and

{U;} a locally finite open covering of B. Then there is an open covering f=1{V1}
of Y such that

a) VunB < U, for each 2,

b) B is locally findte.
For the proof see [11].

Lemma 7.4. Let (Y, B) be a fully normal pair and a={U,} a locally finite
open covering of B. Then there is an open covering B=1{Vi} of Y such that

a) U,=V;nB for each A,

b) B s locally finite.

Proof. Since « is locally finite in B it is locally finite in Y. Hence there-
is an open covering 8 ={V,} of Y such that each V, meets only a finite
number of elements of x. Since Y is fully normal we can take an open star-

refinement y={W,} of B’
Choose some Ay € {1} and define

Vi=Us,v(Y—B),
N V;z UAU[St(U;,, ‘)/)—B] for l;é}uo
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Then ﬂ={V;}'is a covering of Y. Clearly a) is satisfied. Since each St (U;, y)
is open we obtain from lemma 7.1 that V; is open. To prove b) it will be
sufficient to show, that each W, €y meets only a finite number of sets V,.
But if 11,,
w.nV,#0
implies
anSt(U).’ }/) 7é @,

or, what is the same,
(4) St (W,, y)n U, # 0.
Since y={W,} is a star-refinement of {V,}, there is a ¥, such that

(5) St(W,, y)eV,.

By (4) and (5): VT
,un 2 ]

which for fixed u is true for at most a finite number of A’s.
This proves lemma 7.4.

For the case of a metric space Y, another proof has been given by (. H.
Dowker ([10] p. 643).

Retraction and extension of mappings

8. We shall show in §§ 8-10 that if @ is any one of the classes -t the
only difference between the two concepts ANR(Q) and NES(Q) is that an
ANR(@Q) belongs to . Among @-spaces the two concepts are identical.

. By definition any ANR(Q) belongs to . Therefore let X be a @Q-space.
Then if X is an NES(Q) it is an ANR(Q) (cf. 2.11). We want to prove the
converse. .

Theorem 8.1. Let @ be any of the classes f—. Then any ANR(Q) is an
NES(Q).

The analogous theorem on AR(Q) and ES(Q) is also true.

Theorem 8.2. Let Q be any of the classes S—i. Then any AR(Q) is an.
ES(Q).

We only prove theorem 8.1. The proof of theorem 8.2 is similar.

Proof of theorem 8.1. We have to consider all classes f—. For many of
these classes the theorem has already been proved by other authors.

The theorem was first proved by Rorsuk ([6] p. 224) in the compact metric
case. The separable metric case was proved by KuraTowskr ([21] p. 276).
For a simple proof of this case see [13] p. 273. The case of all metric spaces
is proved in a recent paper by Ducunpsi ([12] p. 363).

Consider now the non-metric cases. The compact case can be proved by
Borsuk’s method for the compact metric case (cf. SaaLFrRank [26] p. 97).
However all our non-metric cases can be proved by one method. This method
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was used by the author ([14] p. 376) to prove the normal case. The method
18 as follows.

Let X be an ANR(Q), (Y, B) any @-pair and f:B-—+X any mapping. We
want to find a neighborhood extension of /. In order to use the retract prop-
erty of X we construct a new space Z containing X as a closed subset.

The space Z is the identification space (cf. [1] p. 64) obtained from the free
union Xu Y of X and Y by identifying each y € B with f(y)€ X. There are two
natural mappings j: X —Z and k:Y —Z. A set O is open in Z if and only if j7}(0)
and %k '(0) are open. Since j is a homeomorphism into Z, we can identify X
with j(X)SZ so that X is a subset of Z. The mapping k| Y — B is a home-
omorphism onto Z—X. X is closed in Z.

The mapping k:Y —Z is an extension of j:B—=X to Y relative to Z. If
we prove that Z is a Q-space, it would follow, since X is an ANR(Q), that X
is a neighborhood retract of Z. Let r:U->X be the neighborhood retraction.
Then the function F:%k (U)X, defined by

F(y)=rk(y) for yek (),

18 a neighborhood extension of f.

Hence, in order to complete the proof of theorem 8.1, we shall show that the
space Z constructed above is a Q-space. This will be done in the following
two paragraphs.

9. We need some open sets in Z. They will be constructed in the following way.

Lemma 9.1. Let U'be an open set in X. Hence k' (U) is open in B. Let
V be some open set in Y such that Vo B=k ' (U). Then

W=Uuk(V)
18 open m Z.
Proof. Since
k(VaB)y=kk " (U)<cU,
we have
W=Uvuk(V—B).

Therefore, since k| Y — B is a 1— 1-mapping,

(1) (W)=Y (U)u(V-B)=1,
and, since £ (V-B)c Z-X,
(2) FTW)=WnX=UnX=U.

But U is open in X and V is open in Y. Hence (1) and (2) imply that W
is open. This proves lemma 9.1.

Now let us start with the case of all normal spaces. The proof of this case
was made by the author in [14] p. 376. (We do not need to repeat the proof
here since the methods used in it will be found below in the proof of the
collectionwise normal case.) Hence theorem 8.1 is proved for normal spaces.
This also shows that, in the remaining cases, Z is at least normal.
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Let us use this last remark. Suppose X and Y are Lindelof spaces. Then
XuY is also a Lindelof space. Z is the image of XU Y under a continuous
mapping. Hence, as is easily shown, Z has the Lindelof property. But we
know that Z is normal, hence also regular. Thus Z is a Lindelsf space.

Similarly, when X and Y are compzct, Z is compact.

There now remains two cases: the collectionwise normal case and the fully
normal case.

Let X and Y be collectionwise normal and let {4;} be any locally finite
collection of mutually disjoint closed sets in Z. Then using lemma 4.2 we can
find open subsets U; of X such that

4,0 Xcl;,
{U;} is locally finite,
the sets U, are mutually disjoint.

Then {k™*(4,u U )} is a locally finite collection of mutually disjoint closed sets
in Y. Hence we can find mutually disjoint open sets 0; in Y such that

| 0,2 k7 (4,0 7).
By lemma 7.1 we have, since O; 2 27" (U,), that the set
Va=k"(Uyu(0,— B)
is open in ¥. We have : q
K (A) € R (U () - B) ©
c kY (Uy)u(0,— B)=V;.

Hence

W;f—‘ Ul vk (V})

contains A4;. By lemma 9.1, W, is open. Finally the sets W; are mutually
disjoint. For let A5¢2,. Then if '

W;nWAIQ‘Y #“0,
we have

UnlU, #0,
which is impossible, since the sets U; are mutually disjoint, and if

Wia W, n(Z-X)+#0,
we have ]
(B(V)—X)0(k(V,)-X)#0
and therefore
VanV, =0

which is impossible, since the sets V; are mutually disjoint.
Thus the collection {W;} shows that Z is collectionwise normal.
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10. Finally we consider the fully normal case. We need the following
lemma.

Lemma 10.4. Let X and Y be fully mormal spaces and let {U,;} be any
locally finite open covering of X. Then there is in Z a locally finite open collec-
tion {W,} such that

U,=W,nX,.

If we already knew that Z is fully normal this would be a consequence of
lemma 7.4.

Proof. The given covering a={U,;} is locally finite in X. Hence there is
an open covering o’ ={U,} of X such that each U ., meets only a finite number
of elements of . We may assume that o’ is locally finite.

Once more, since o is locally finite, there is an open covering o’ ={U,’} of
X such that each U,” meets only a finite number of elements of o'

Since B=%"'(X), we have that {k"2(Uy}, {,*(U,)}, and {k*(U,)} are
open coverings of B. Each set k™'(U,) meets only a finite number of sets
k™' (U,), and each set k' (U,") meets only a finite number of sets &7 (U,).

Each k7' (U,) is open in B. Put

V,=k"(U,)u(Y—B).

Then f={V,} is an open covering of the fully normal space Y. Let us take
an open star-refinement y={G,} of f. Set

Vi=k~Y (U u[St (1 (U, y)— B).

Since St (k7' (U,),y) is open in Y and contains k' (U,), we obtain from lemma
7.1 that V, is open. Hence by lemma 9.1, the set

W;,ZUzUk(VA)

is open in Z. Since U,=W,;nX, our lemma is proved when we have shown
that {W,} is locallv finite. Hence for each z€Z we want to find a neigh-
borhood meeting only a finite number of sets W;. There will be two cases.

If zeZ—X, it will be sufficient to prove that {V;} is locally finite in Y.
Take some G, €yp. Then

(1) | GOV, 0
implies

G. 0S8t (k1 (Ua),y) # 0,
so that
(2) St (G, )0 kT (U2) # 0.

But y is a star-refinement of 8. Thus

St (G, )= Vs
for some u. Then (2) implies
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[ U (Y —B)Ink " (Uy) # 0

and, since k' (U,) < B, >
EY(U)n k™ (U;) # 0.

But for fixed u this is possible only for a finite number of A’s. Hence for
fixed », (1) is true for at most a finite number of A’s. Hence, since {G.}
covers Y, {V,} is locally finite in Y.

If ze X, we construct a neighborhood of z in Z as follows. Starting with
some U, containing z we put

V) =k (U)o [St (k7 (U)), y)— B]
and

W, =k(V))u UL
Then W,’ is a neighborhood of z (by lemmas 7.1 and 9.1). Now let

(3) W,l,/ nWw,=#£4d.
If
W,/,I nW,cX,
we have
U nU, 0.

But U,” only meets a finite number of sets U,, each meeting only a finite
number of sets U,. Hence, since » is fixed, 4 is by (3) restricted to a finite
number of values. 4

Therefore suppose that there is a point z; such that

% € W n W, and z€Z-X.
Then .

h=k" () €L (W)Y n kN (W) =V, 0 V,eSt(k™(U,"), y) 0 St (k™ (Uy), ).

This implies
St ({s}, ) n k7(U)) # O,

St({n}, y) N & (U;) # 0.

But y is a star-refinement of f. Hence
| St ({n}, 7) V=K (Uj) u (Y~ B)
for some u. We obtain
U0 BT, # 0,
EYU)n kN (U) # 0.

Again we see that since » is fixed, 4 is by (3) restricted to a finite number
of values.

Hence {W,} is locally finite. This proves lemma 10.1.
Now we use lemma 10.1 to prove the fully normal case of theorem 8.1.
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Suppose X and Y are fully normal. Let a={0,} be any open covering of
Z. We want to show that there is a locally finite open refinement of «

Consider the open covering {0, n X} of X. Since X is fully normal there is
a locally finite open refinement {U,} of {0,n X}. For each U; choose some.
0., such that U,c0,,. By lemma 10.1 there is a locally finite open collection
{Wi} in Z such that U;=W,n X. We may assume that W;cO,, otherwise
replacing W, by W;nO,,.

Put

W= l}J W,.

This is an open set in Z containing X. Hence £ (W) is open in Y and contains
B. Y is normal. Hence we can take an open set V* in Y such that

V*o Y-k (W),
V*nB=0.

Since V* is a closed subset of ¥, V* is fully normal. Hence there is a locally
finite open refinement {V,} of the open covering

{00 V"
of V*. V, is open in V*, hence Vﬂn V* is open in Y—B. Put
Wi=k(V,aV*.

Since k| Y —B is topologlcal onto the open subset Z— X of Z, Wy 18 open in
Z. The collection {V,n V*} is locally finite in V*. Hence {W} is locally
finite in &(V*), which is clcsed in Z. Thus {W,} is locally finite in Z.

Now consider the collection S consisting of all the sets W, and all the sets
W,. B is a covering of Z. For

u W =k( u (Voo V) =k(VY 2 k(Y -k (W)=2Z—-W.

Since all the sets W, and all the sets W) are open in Z, § is an open
covering. Finally B is locally finite, for {W;} and {W}} are locally finite col-
lections in Z.

As is easily verified, B is a refinement of «. Hence § is a locally finite
refinement of «. This proves that Z is fully normal.

This completes the proof of theorem '8.1.

Remark 10.2. In the metric (but not compact) cases the above method
cannot be used since in general the space Z will not be metrizable. However,
Havusporrr ([16], cf. also [2] p. 16) has shown that there is a metric on Z,
giving Z another topology, and a mapping k:Y — Z such that:

a) X is imbedded as a closed subset of Z.
b) % is an extension of f: B— X relative to Z.
¢) k| Y—B is a topological mapping onto Z—X.

If we use this metrizable topology on Z our method works also in the metric
cases.
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A simple proof of this theorem of Hausporrr for the separable metric case
was given by Kuratowskr [22].

11. For Tychonoff spaces theorems 8.1 and 8.2 cannot be true, since there
is no NES(Tychonoff) (or ES(Tychonoff)) which is Hausdorff, except the space
consisting of a single point (cf. lemma 2.7). However we have the following
theorems, proved by Hu ([17] p. 1052).

Theorem 11.1. Any ANR(Tychonoff) is an NES(normal).

Theorem 11.2. Any AR(Tychonoff) s an ES(normal).

These theorems can also be proved by the method used above. For if X is
an ANR(Tychonoff) and (Y, B) is a normal pair we can define the space Z as
in §8. Then we only have to prove that Z is a Tychonoff space. But this
is easily done.

Contractibility

12. For compact spaces Borsuk ([6] p. 229) proved that any AR is con-
tractible and that conversely any contractible ANR is an AR. In this paragraph
we shall take up the study of the corresponding relationships between AR(Q),
ANR(Q), and contractibility for other classes Q.

We need the following lemma. Let I denote the closed interval 0 <¢=<1,
and denote by X X I the topological product of a space X and I.

Lemma 12.1. Let @ be any of the classes 6—i. Then, if X is a Q-space,
X XTI 15 a Q-space.

In fact, this is well-known if @ is any of the classes {—. It was proved
for fully normal spaces by Diruponxg ([8] p. 70) and is proved for Lindelof
spaces in an analogous way.

Remark 12.2. This lemma also holds for Tychonoff spaces. Whether it
holds for normal spaces ‘or for collectionwise normal spaces is still an open
question.

Theorem 12.3. Let all Q-spaces be normal. Then any contractible NES(Q) is
an ES(Q).

Proof. Let X be an NES(Q) which is contractible. Then there is a homotopy

R XXI—->X
such that for any z€ X

h(z, 0) =z,

hiz, 1)=u,,

where z, is some point in X. Let (Y, B) be any @-pair and f: B— X any given
mapping. Since X is an NES(Q) we have a neighborhood extension ¢:0— X
of f to some open set O>B. Since Y is normal we can take a mapping
e¢: Y — I such that

e(y)=0 for y€B,
e(y)=1 for y€ some open set containing ¥ — O.
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Define F:Y—+X by
F(y)=h(g(y), e(y)) for y€O,

F(y)y=2x, for ye Y -0.

Then F is easily proved to be continuous. Since F|B=f, we conclude that X
is an ES(Q).

Theorem 12.4. Let Q be any of the classes d—1. Then any AR(Q) vs con-
tractible.

Proof. Let X be an AR(Q). By lemma 12.1, X X I is a ¢-space. Consider
the closed set B=X X {0} u X X {1} of X X I. Define {:B—X by

f(z, 0)=2,
f(x, 1)=x0’

where z, is some point of X. Since, by theorem 8.2, X is an ES(Q) there is
an extension h:X X I —X of f. The existence'of » shows that X is contractible.

Theorem 12.5. Let @ be the class of nmormal spaces or the class of collec-
tionwise normal spaces. Then any fully normal AR(Q) is contractible.

Proof. For such a space is an AR(fully normal) and hence contractible.
Let us sum up the main results in this paragraph in

Theorem 12.6. Let @ be any of the classes f—. Then a fully normal space
is an AR(Q) if and only if it is a contractible ANR(Q).

Remark 12.7. This is not true for the class of Tychonoff spaces. For we
shall see in example 17.4 that a real line is a contractible ANR(Tychonoff}
which is not an AR(Tychonoff).

Different classes Q

13. Let, for a while, Q and @, be two classes out of a—t, such that Qc@,.

Let X be an ANR(Q). Under what conditions is it true that X is also an
ANR(Q,)? And, if X is an AR(Q), when is it an AR(¢;)? We shall solve
this problem for some classes @ and ¢,. In particular the problem will be
solved when € is any of the metric classes (i.e. %#—t) and @, is any of the
classes that contains all metric spaces (1.e. x—8). For the solution see theorems
17.1 and 17.2. .

If X is an ANR(Q) then X €@ and hence X €¢,. Thus, if all ¢;-spaces are
normal, X is an ANR(Q,) if and only if X is an NES(Q,) (see theorem 8.1).

Theorem 13.1. Let all Q-spaces be fully normal, and let all Q,-spaces be
normal. Then an AR(Q) +s an AR(Q,) if and only if it is an ANR(Q,).

Prcof. For, by theorem 12.4, an AR(Q) is contractible. Hence theorem 13.1
follows from theorem 12.6.

Therefore, if we know which ANR(Q)’s are ANR(Q,)’s, we also know which
AR(Q)’s are AR(Q,)’s.
- When €, is the class of Tychonoff spaces the problems for ANR’s and for
AR’s are different and will be treated separately.
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Theorem 13.2. Any ANR(comp. metr.) is an ANER(normnal).

Proof. For an ANR(comp. metr.) is a neighborhood retract of the Hilbert
cube I,, and I, is an ES(normal). (Cf. 2.15 and example 2.19.)

Theorem 13.3. Any ANR(compact) is an ANR(normal) ([26] p. 95).

Proof. For an ANR(compact) is a neighborhood retract of a Tychonoff cube,
and any cube is an ES(normal). (We mean by a Tychonoff cube the topological
product of uncountably many closed intervals.)

Thus, for these two classes @, any ANR(Q) is an ANR(¢,) for any ¢, 2@
such that all Q,-spaces are normal. In fact, this is true even if @, is the class
of Tychonoff spaces (see theorem 16.2).

Theorem 13.4. Any ANR(sep. metr.) is an ANR(metric).

Proof. Fox ([13] p. 273) proved that an ANR(sep. metr.) X is an NES(sep.
metr.). His proof can be trivially changed so that it shows that X is also an
NES(metric). :

Thus for metric spaces there is essentially one concept: ANR(metric). An
ANR(sep. metr.) is a separable ANR(metric) and an ANR{comp. metr.) is a
compact ANR(metric).

14. In all cases considered so far any ANR(Q) is an ANR(Q,). However
this is not in general true. The author proved in [14] p. 378 that a necessary
and sufficient condition for an ANR(sep. metr.) to be an ANR(normal) is that
it 1s an absolute G5. This result can be strengthened in various ways. Several
of these are due to C. H. Dowxker [11].

By an absolute G5 we mean a metric space which, whenever imbedded in a
metric space, is a G5, i.e. a countable intersection of open sets. All locally
compact metric spaces are absolute Gs’s (cf. lemma 16.4). The class of all
absolute Gs’s is known to be the same as the class of all topologically complete
spaces, i.e. spaces which can be given a complete metric. (Cf. [20] Chapter 3.)

Theorem 14.1. Any metric ANR(fully normal) ¢s an absolute Gs.

Proof. This proof will be a modification of the proof of theorem 4.2 of
[14] p. 378. Let X be a metric ANR(fully normal) and let X be a subset of
any metric space Y. We have to prove that X is a G5 in Y.

We construct a new space Z. The points of Z shall be in 1—1-correspondence
with the points of Y. Let A(z) € Y be the point corresponding to z€Z under
this 1-1-correspondence. Let X’=£4""(X). We define a topology on Z by taking
as its open sets all sets of the form

r(0)u 4,

where O is any open subset of Y and 4 any subéet of Z—X’. Then Z is
Hausdorff. Let us show that it is fully normal.

Let «a={U;} be an open covering of Z. Each U, is of the form
U=k (0;) v 4, \
where 0, is an open subset of ¥ and 4;cZ—X’. The set
U= l,il 0,
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is open in Y and XcU. U is a metric space, hence fully normal. Thus we
can take an open star-refinement {V,} of {O;}. Then {A7'(V,)} is an open
collection in Z, covering A~ '(U)> X’. Complete this collection to an open
covering B of Z by adding the collection of points of Z—#%""(U), each such
point being an open set. That f is a star-refinement of « is easily verified.
Since « is arbitrary, this proves that Z is fully normal.

Now X’ is homeomorphic to X, hence an ANR(fully normal). Since X’ is
closed in Z and Z is fully normal, X’ is a neighborhood retract of Z.

That X is a G5 in Y now follows as in [14] p. 379. A simplification of the
arguments has been given in [11].

Theorem 14.2 (C. H. DowkEgr). dny ANR(metric) which is an absolute Gs
is an ANR(coll. normal).
For the proof see [11]. We mention at the same time the following fact.

Theorem 14.3. Any Banach space is an AR(coll. normal).

Proof. This follows here from theorem 14.2. For it is known that a Banach
space is an AR(metric) (cf. [12] p. 357), and a Banach space has a complete
metric and is therefore an absolute G5. However, when proving theorem 14.2,
(. H. Dowker needs theorem 14.3 for the case of a generalized (i.e. not
necessarily separable) Hilbert space, and he gives a direct proof for this case.
This proof can be applied to an arbitrary Banach space.

Theorem 14.4. A collection of mon-void mutually disjoint open sets in an
NES(normal) is at most countable. »

Proof. Let {0;} be a collection of non-void disjoint open sets in the NES
(normal) X. Suppose A={A} is uncountable.

Bine ([4] p. 184) has shown that for every uncountable set /A ={A} there is
a normal space Y with a locally finite collection {y;} of disjoint points which
do not have disjoint neighborhoods. The space Y is therefore not collectionwise
normal.

Let now B be the subset of this space Y comsisting of all the points y;.
Then, since {y;} is locally finite, B is closed in Y. Define a function f: B —+X
by selecting for each y; some point f(y,) €0;. Since {y;} is locally finite, f is
continuous. Hence there is a neighborhood extension of f, say F:0—~X. But
the sets F~'(0;) are disjoint neighborhoods of the points y;. This is a con-
tradiction, which proves theorem 14.4.

Theorem 14.5. Any fully normal NES(normal) is a Lindelof space.

Proof. Let X be a fully normal NES(normal) and a={U;} an open covering
of X. Let f={V,} be an open star-refinement of «. We may assume that no
V, is void. Using Zorw’s lemma (cf. [23] p. 5) we take a collection y={V,}
of disjoint elements of B such that for each V,€f there is an element of y

meeting V,. Then
6= {8t (Vs,, A)}

is an open covering of X. But from theorem 14.4 we have that y is countable.
Now 6, which is also countable, is a refinement of «. This proves that X is
a Lindelsf space (cf. lemma 6.2).

' That any Banach space is an AR(fully normal) was known to AreNs ([2] p. 18).
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Theorem 14.6 (C. H. DowkeRr). Any metric NES(normal) 1s separable.

Proof. For by theorem 14.5 it is a metric Lindeldf space. Hence by lemma,
6.5 1t 1s separable.

Theorem 14.7. Any ANR(sep. metr.) which s an absolute Gs is an ANR
(normal).
For the proof see [14] p. 380.

15. Now let ¢, be the class of Tychonoff spaces. Then we cannot apply the-
orem 12.6, but have to consider ANR(Tychonoff) and AR(Tychonoff) separately.

We need some preliminaries on Tychonoff spaces. As is well-known (cf. [23]
p. 29) the Tychonoff spaces are those spaces which can be imbedded in a
suitable Tychonoff cube. By a Tychonoff cube we mean the topological product
of uncountably many closed intervals. Let 4 ={A} be the uncountable index
set, and choose for each A a closed interval I;={£;|0<¢=<1}. Then a point
of the Tychonoff cube I’, which is the topological product of the intervals I,
can be written in the form {t;}, where for each 1, ¢; is a number of the interval
I;. Let o denote the point of I’ having #=0 for all A’s, and denote for each
A by I, the set of all points in I’ for which #; is arbitrary but ¢ =0 for
Ay #%A. I, is a closed line segment in 1.

Lemma 15.1. Let O, be a sequence of neighborhoods of o. Then
n O
n=1

contains oll segments I except for at most a countable number of indices A. Hence,
since A 1s uncountable, there s a A such that

I,c 0, for every n.

Proof. This follows from the fact that each neighborhood of ¢ contains all
segments I; except for at most a finite number of indices A.
Lemma 15.2. The space I'—{o} is not normal.

Proof. Let us change the notations slightly. Denote the Tychonoff cube by
I XTI where I={t|0<¢<1} and I’ is a Tychonoff cube. Let o € I’ be as above.
We want to show that the space '

I XTI —{0} X {o}
15 not normal.
Consider the two closed subsets

A=(I—-{0}) X {o} and B={0} X (I~ {o}).
They are disjoint. Let us show that for any neighborhood U of 4 we have

that U meets B.
. 1
In fact let ¢,—~0 be a sequence of positive numbers in I (e.g. t":;z)' Then,

since U is a neighborhood of {t,} X {0}, U contains a set of the form {¢,} X Or,
where O, is a neighborhood of o in I’. Using lemma 15.1, we get an I; such
that I;c O, for each n. Then
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{ta.} X I;c U for each n.
Hence

{0} X (Li—{o}) e T,
so that U meets B. This proves lemma 15.2.

Remark 15.3. The arguments of this proof are essentially the same as those
used by TycuHoNOFF in [32] p. 553. Instead of the product I X I’ he considers
the product of two spaces in which the points are some ordinals. (Cf. [18]p. 154.)

Now let us take up the question: which metric spaces are ANR(Tychonoff)?
This is answered by theorems 15.4 and 16.6. The corresponding problem for
AR(Tychonoff) is solved by theorems 15.5 and 16.3.

Theorem 15.4. Any metric ANR(Tychonoff) is separable and locally compact.

Proof. Let X be a metric ANR(Tychonoff). Then, by theorem 11.1, X is
an NES(normal) and therefore, by theorem 14.6, separable.
Imbed X in a Hilbert cube I,. Let I' be a Tychonoff cube. In the product

I, X1,
which is again a Tychonoff cube, we consider the set
T=XX{o}vI, X (I'—{o}).

T is a Tychonoff space and X X {o} is a closed subset of 7. Since X X {o}
is homeomorphic to X and X is an ANR(Tychonoff), there is an open set O
in T containing X X {0} and a retraction r:0—~X X {o}.

Suppose that X is not locally compact. We assert that then there is a point
u€l, and a neighborhood O’ of o in I’ satisfying

1) u€X (closure in I,),
(2) u¢ X,
(3) ‘ {u} X (0'—{o}) = 0.

We shall prove below that (1), (2), and (3) lead to a contradiction.

Since X is not locally compact there is a point z, € X such that no neigh-
borhood of x, in X is compact. We have {z,} X {0} 0. Since O is open in
T, there is therefore a closed neighborhood U of z, in I, and a neighborhood
O’ of o in I’ such that

{zo} X {0} (U X O0')nTcO.

We intend to choose x € U. Then (3) is immediately. satisfied.

The set UnX is a neighborhood of z, in X, hence it .is not compact.
Therefore Un X cannot be closed in U, since U is compact. Thus we can
take a u€ U —X for which we UnX. This point therefore satisfies (1) and (2).

Now to get a contradiction out of (1), (2), and (3) take for each n=1, 2, ...

Un=S(u, })nX,
n
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where S‘(u, %) stands for the i—sphere of w in 7,. From (2) we have
() nU,=0

and from (1) we see that no U, is void. Hence let us take z, € U,. Then
Zn—u. The set U, is open in X, so that (U, X {o}) is open in T. Hence,
since

{xn} X {o}cr (U, X {o}),

we have a neighborhood O, of o in I’ such that

{x,} X Opcr (U, X {0}),

or
5) 7({xa} X On) €Uy X {0}.
Now apply lemma 15.1 to the sequence O', 01, Os, ... We get an I; con-
tained in all sets 0, 0y, Oy, ... By (3) and (5) we obtain
®) {u} X (I~ {o}) <0,
) r({zn} X I;) U, X {o}.

For any m>n we have by (7), since U,cU,,
7 ({xm} X I})) € U, X {0}.

Thus, since r is continuous and by (6) defined on {u} X (I;—{o}), and since
Tm = U,

(8) r ({u} X (I1—{o})) e Uy X {0} for every n

(closure in X). But U,cU,_;, so that (8) contradicts (4). Thus theorem 15.4
1s proved. -

Theorem 13.5. Any metric AR(Tychonoff) 1s compact.

Proof. Let X be a metric AR(Tychonoff). As in the previous proof we see
that X is separable. Imbed X in I, and consider the spaces I, X I' and T
as above. Since X is an AR(Tychonoff) we have a retraction r:7 —>X X {o}.

If X is not compact, X is not closed in I,. Take any point « satisfying
(1) and (2). Then (3) is true for instance for O’ =1I" (since O=7T). The same
contradiction as above now proves theorem 15.5.

16. ‘Theorem 16.1. Any AR(compact) is an AR(Tychonoff).

Proof. Suppose X is any AR(compact). Let X be a closed subset of a Tycho-
noff space Z. Imbed Z in a Tychonoff cube I'. Then X, being compact, is
closed in I’. But X is an AR(compact) and I’ is compact. Therefore X is a
retract of I’. Hence X is also a retract of Z.

Theorem 16.2. Any ANR(compact) is an ANR(Tychonoff).
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Proof. This is proved in an analogous way.
Theorem 16.3 (Hu). Any AR(comp. metr.) is an AR(Tychonoff) ([17] p. 1053).

Proof. This follows from theorem 16.1. For by theorems 13.1 and 13.2 an
AR(comp. metr.) is an AR(compact).

Lemma 16.4. Let a locally compact space X be imbedded in a Hausdorff
space X'. Let X denote the closure of X in X'. Then X s open in X. (Cf. [7]
p. 69.)

Proof. Let x€X and let I/ be a compact neighborhood of z in X. That U
is a neighborhood of x can be expressed by

(1) foX~—U

(closure in X’). Now, since U/ is compact, U =U. Hence

X=(X-DvwU=X-UuUl,
so that

(2) X-XcX-U.

From (1) and (2):
r¢ X—X.

Since z is arbitrary this implies that X — X is closed. Hence X is open in X.

Remark 16.5. Among Tychonoff spaces this property characterizes the locally
compact spaces. For then X’ can be chosen compact, hence X is an open
subset of the compact space X.

Theorem 16.6. Any separable, locally compact AN R(metric) is an ANR
(T'ychonoff).

Proof. Let X be a separable ANR(metric). If X is compact it is an ANR
(Tychonoff) by theorems 13.2 and 16.2. Let X be locally compact but not
compact. Suppose X 1is a closed subset of any Tychonoff space Z.

We need the following spaces and sets:

a) A Tychonoff cube I’, three subsets Z, X, X.
b) A Hilbert cube I,, two subsets Y, Y.

They are defined as follows. Imbed Z in a Tychonoff cube I'. Let X denote
the closure of X in I'. Then X is compact. Let further ¥ be a space homeo-
morphic to X. Use the well-known fact that a locally compact space Y can

be imbedded in a compact space Y, such that Y — Y consists of a single point,

say y (cf. [23] p. 23). Since Y is separable metric, Y is separable metric and
can therefore be imbedded in a Hilbert cube I,.

Let 2:X—Y be a homeomorphism. Our theorem is proved, when we have
"shown that there is an extension of % to some neighborhood of X in Z.

First, extend % relative to Y to a mapping j: X -y defined by
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j()=h(z) for z€X,
@)=y for ze X —X.

To prove that j is continuous let U be open in Y. Then if 7€ U, Y-U is
a compact subset of Y. Hence

Y - U)=h(Y - D)

is compact. Thus j7'(U) is the complement of a compact subset of X, hence
open in X. If y4U, ;7" (U)=h""(U) is open in X. But X is open in X by
lemma 16.4. Hence j7'(U) is open in X. Thus j is continuous.

Secondly, extend j relative to I, to a mapping k:I'— I,. This is always
possible since X is closed in I’ and I, is an ES(normal) (cf. example 2.19).

Now Y, being homeomorphic to X, is an ANR(metric). The set Y=Y u {y}
is closed in I, so that Y is closed in I,— {y}. Therefore we have a retraction
r:0—->Y of a set O, which is open in I,—{y}, hence also in I,. The set
k7' (0) is therefore open in I'. It contains X. Hence

rk|k(0)n Z: K (0)n Z>Y

1s a neighborhood extension in Z of rk|X=h. This proves theorem 16.6.

Remark 16.7. The fact that X is closed in Z was never used in this proof.
That this assumption is_superfluous can be seen directly from lemma 16.4.
For since X is open in X (closure in Z), X is closed in some open set in Z,
i.e. in a neighborhood of X in Z.

17. Now let us sum up the results about ANR(metric) and AR(metric) obtained
in §§ 13—16.

Theorem 17.1. Let X be an ANR(metric).

a) If X 4 an ANR(fully normal) (in particular if X is an ANR(coll. normal)),
then X s an absolute G5. (See 14.1.)

b) If X s an absolute G5, X is an ANR(coll. normal) (hence also an AN R(fully
normal)). (See 14.2.)

c) X is an ANR(normal) 1if and only if X is a separable absolute Gs. (See
14.1, 14.6, 14.7.)

d) X @ an ANR(Tychonoff) if and only if X is separable and locally compact.
(See 15.4, 16.6.) ’

Theorem 17.2. Let X be an AR(metric).

a) If X 4s an AR(fully normal) (in particular of X 2s an AR(coll. normal)),
then X is an absolute Gs. (See 14.1.)

b) If X is an absolute G5, X is an AR(coll. normal) (hence also an AR(fully
normal)). (See 13.1, 14.2.)

c) X 45 an AR(normal) if and only if X is a separable absolute G5. (See 13.1,
14.1, 14.6, 14.7.)

d) X ds an AR(Tychonoff) if and only if X is compact. (See 15.5, 16.3.)

Example 17.3. A closed interval is a compact AR(metric) and so it is an
AR(Tychonoff). Also a Tychonoff cube is an AR(Tychonoff) (by theorem 16.1).
(Cf. example 2.19.) '
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Example 17.4. A real line is a separable locally compact AR(metric). Hence
it is also an absolute @, and therefore an AR(normal). It is an ANR(Tychonoff)
and contractible. But it is not an AR(Tychonoff) since it is not compact.

Example 17.5. The topological product of a countable number of real lines
is an AR(normal) (cf. 2.17). Hence it is an absolute G5. It is not locally
compact, however, and therefore it is not an ANR(Tychonoff).

Example 17.6. Any Banach space is an AR(coll. normal). If it is not
separable 1t is not an AR(normal).

Example 17.7. The author gave in [14] p. 381 an example of a space which
is an AR(sep. metr.) but not an absolute Gs. This is therefore not an AR(fully
normal). Whether it is an AR(Lindelof) is still an unsolved problem.

Example 17.8. It is easy to prove that if a product X = X, X X, of Tycho-
noff spaces X; and X, is an ANR(Tychonoff) then so are also X; and X,.
Thus we see from example 17.5 that the product of uncountably many real
lines is not an ANR(Tychonoff). This space is a Tychonoff space which is not
normal ([29] p. 981). It is an ES(normal). (Cf. example 2.20.)

Example 17.9. Let X be the space I' — {0} of lemma 15.2. It is not normal.
It is an open subset of I’ which is an ES(normal). Hence X is an NES(normal)
{¢f. 2.16). Since X is contractible it is an ES(normal) by theorem 12.3.

We assert that X is an ANR(Tychonoff). In fact this can be proved by
the method used in the proof of 16.6. For X is locally compact, and adding
the single point 0o to X we get the compact space I’ which is an ES(normal).
We leave the details to the reader. (Cf. example 23.3.)

Local NES (Q)

18. We now take up the following problem: Is the property of a space X
to be an NES(@) a local property? The answer is yes if all ¢)-spaces are fully
normal. If @ is the class of collectionwise normal spaces or the class of normal
spaces 1t is true when X satisfies some conditions. This problem has been
studied for compact metric spaces by Yasima [35] and for separable metric
spaces by the author ([15] p. 392).

First we need some facts on coverings and their nerves. Let o= {U,} be a
covering of a space X. By the nerve of « we mean the abstract simplicial
complex whose vertices are the sets U; and in which

{Uss oo Uy}
is a simplex if and only if
nU;#0.
-1

This simplex will often be denoted by
(A5 < - o An)e
If ¢ and o, are simplices of nerve « we mean by
g <0, OL 0,0
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that ¢ is a proper face of ¢,. Let Sto denote the star of ¢, i.e. the set of
simplices ¢, such that g,%0.

Some properties of the covering « correspond to certain properties of nerve
«. Thus a is star-finite if and only if nerve « is locally finite, i.e. the star of
each vertex is a finite complex.

Now suppose that in nerve a the star of each vertex is finite dimensional.
Then for each U, €« there is an integer n; such that each point of U, belongs
to at most n; elements of «. We call such a covering elementwise uniformly
point-finite.

C. H. Dowkgr ([9] p. 209) has proved the following lemma.

Lemma 18.1. Let a be a locally finite open covering of a normal space X.
Then o has a locally fimite open refinement which is elementwise uniformly point-
Jinate.

19. Definition 19.1. A space X is called a local NES(Q) if each point of
X has a neighborhood which is an NES(Q).

This terminology is justified by 2.16. A local NES(Q) has an open covering
by NES(Q)’s. ‘

We give in §§ 21 and 22 the proofs of the following three theorems.

Theorem 19.2. Let all Q-spaces be fully normal. Then any local NES(Q) s
an NES(Q).

Theorem 19.3. Let all Q-spaces be collectionwise normal. Then any fully
normal local NES(Q) is an NES(Q). ’

Theorem 19.4. Let all Q-spaces be normal. Then any Lindeléf space which
s a local NES(Q) vs an NES(Q).

The proofs will be essentially the same for all three theorems. Since they
are technically a little complicated, let us first give the main ideas.

Consider the simple case when X is the union of two open NES(@)’s, say
X=0,v0, Let (¥, B) be a Qpair and /:B—~X a mapping. Then we shall
prove that f has a neighborhood extension (cf. [15] p. 392). This proof will be
divided into two parts. '

The first part consists of some preliminaries, which in this simple case are
rather trivial. B is covered by the two open sets

17(0y) and f71(0y),
and Y is covered by the two open sets
F10,) u(Y—B) and {1(0,) u (Y —B).

Since Y is normal there is a closed refinement of this covering, say Y=Y, u Y,.
Put
B,=Y,nB and B,=Y,nB.

To avoid a trivial case, let B, n B, % @J. We have
[(B) <0, and {(B,})<=0,.

In the second part we use the faet that O, and O, are NES(Q)s. We extend
/| B, relative to O, to a mapping F,:U,~ O,, where U, is a neighborhood of
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B, in Y,. Similarly we take a neighborhood extension F,:U,— O, of f| B,
relative to O,.
Now if

(1) Fy(u)=F,(u) for ueU;n U,,

we could define a mapping F:U, u U,~X uniquely by
F(u)=F;(u) for ueU,,
F(u)y=F,(u) for u€U,.

Then F would be the sought-for neighborhood extension of f.

However, in order to get the equality (1) we have to start by taking a
neighborhood extension of f|B,n B, in Y, n Y, relative to O, n 0,. The whole
process can be described as follows.

The nerve of the covering {Y.} consists of three elements, the 1l-simplex
(1, 2) and the O-simplices (1) and (2). Starting with the set Y, n ¥,, which
corresponds to the 1-simplex (1, 2) we take a neighborhood extension of f| B, n B,
in ¥, nY, relative to O, n 0,. Thereafter define neighborhood extensions in the
two sets

Y,=(Y,nY,) and Y, — (Y, 0 7)),

which correspond to the O-simplices (1) and (2). This will be done in such a
way that the final function defined by the three extensions, is continuous.

In the general case we shall have instead of the two sets Y, and Y, a
closed covering {Y;} of a closed neighborhood Y of B in Y. This covering
{Y:} will be locally finite and elementwise uniformly point-finite. The first part
of the proofs of theorems 19.2, 19.3, and 19.4 will be to construct this covering.
This will be done in § 21.

The second part will be an induction. For each o € nerve {Y;} we will make
a neighborhood extension. These extensions will be taken in such an order
that the extension corresponding to a simplex ¢ is taken before the extension
corresponding to any face of o. Since {Y,} is elementwise uniformly point-
finite, Sto is finite dimensional for each ¢ € nerve {Y;}. Because of this the
induction will work.

This second part will be found in § 22. In § 20 we prove some lemmas,
used in §§ 21 and 22.

20. Lemma 20.1. Let (Y, B) be a normal pair, {U;} a locally finite open
covering of B and {V;} a locally finite open covering of Y such that

V;_ nBcU 1.
Then there is a closed meighborhood ¥ of B in Y and a closed covering {¥;}

of Y such that

a) {Y;} s locally finite,

b) Y;' nBc U;_ s

¢) Yyn...nY, #0 implies Uyn...nU, #0 for any finite collection of
indices. ‘
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Proof. We shall take Y, as a subset of ¥;. Then a) and b) are satisfied.
Y is normal and {V;} is locally finite. Apply lemma 3.4. We get an open
covering {W;} of Y such that

W,cV;.
Take any point y€ Y. Since LW 25 1s locally finite, y is contained in only a
finite number of sets W;, say W, , ..., W; . Let us call y admissible if for
the corresponding sets U, , ..., U;, we have

Ulln...nU;_n#@.

Evidently all points of B are admissible.

Let us prove that the set of all admissible points is open in Y. In fact, by
lemma 3.5, an admissible point y has a neighborhood meeting only the sets
Wi, ..., W,, that contains y. But then all points of this neighborhood are

admissible. N
Since Y is normal we can take a closed neighborhood Y of B in Y such
that all points of Y are admissible. Put

Y;=WinY,

Then {Y;} is a closed covering of Y and Y,cV;. We still have to prove c).
Suppose
Yyn...nY, #0.
Take a point
yeY,n... 0¥, .

Then y€ Y, so that y is admissible. But this implies

Uyn...nU,, #0.

Lemma 20.2. Let B be a subset of the space Y and {Y;} a locally finite
closed covering of Y. Suppose that for each A there is a neighborhood C; of Y;n B
i Y;. Then

1

C=uC(C;
i
28 a merghborhood of B in Y.

Proof. Let b€ B. We want to show that & is an interior point of C. Since
{Y3} is locally finite & belongs to a finite number of sets ¥, say Ya, o Ya,

Then by lemma 3.5 there is an open neighborhood O’ of b in Y such that
YinO' 540 only for A=4,, ..., An.

Since €3, (i=1, ..., n) is a neighborhood of b in Y;, there is an open set
O3, in Y for which
bEO,ii n Y;,ico;,i.
Then
0=O’00,11n. . 'nOln
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is open in Y and contains b. Finally we shall show
(1) 0ecC.

But if y€0, yeY, for some A. From y€0' we obtain that 4 is one of
Ais ..o, A, say 4. Then y €0; implies

y € 0,110 Y;_xCC;,lcC.
This proves (1).
Lemma 20.3. Let (Y, B) be a normal pawr and Y’ a closed subset of Y.

Put B'=Y'nB. Suppose there is given a closed neighborhood C' of B in Y'.
Then there exists a closed neighborhood C of B in Y such that

(2) C'=Y'nC.
Hence we can write

C=C'v(C",
where

C*ecY-Y.

Proof. Let U’ be an open neighborhood of B’ in Y’ contained in C’. Then
Y — U’ and B are two disjoint closed sets in the normal space Y. Therefore
we can take a closed neighborhood V of B in Y such that

VoY -U)=0.
Hence
(3) VaYcl'c(.
Put
C=CvV7.

Since V is a neighborhood of Bin Y, C is'a nelghborhood of Bin Y, and
since €' and V are closed in Y, C is closed in Y. That (2) holds, follows
from (3).

21. Proof of theorem 19.2 (first part). Suppose that all @-spaces are
fully normal. Let X be a local NES(Q), and let (Y, B) be any ¢-pair and
f:B—X any mapping. We want to find a neighborhood extension of f.-

Let oz={0,',} be a covering of X by open NES(Q)'s. Then {f (0} is an
open covering of B. Slnce B is fully normal there is a locally finite open
refinement {U,} of {f*(0,)}. Because of lemma 18.1 we may assume that
{U,} is elementwise umformly point-finite. For each A choose an element of «,
say O,, such that f(U;)c0;. By lemma 7.4 there is a locally finite open
covering {V;} of Y such that V;nB="U,. _

Apply lemma 20.1. We get a closed neighborhood Y of B in Y and a lo-

cally finite closed covering {¥Y;} of Y. Since Y;nBc U, we have
- }(Y:n B)<O;.
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Finally {Y,} is elementwise uniformly point-finite. For this follows from 20.1
c) and from the fact that {U,} is elementwise uniformly point-finite.

Proof of theorem 19.3 (first part). Suppose that all ¢-spaces are collec-
tionwise normal. Let X be a fully normal local NES(Q), and let (Y, B) be
any @-pair and /:B->X any mapping. We want to find a neighborhood exten-
sion of f.

Let {0;} be a zovering of X by open NES(Q)s. Since X is fully normal
we may assume that {0;} is locally finite (cf. 2.16), ard because of lemma
18.1, we may assume that {0;} is elementwise uniformly point-finite. Put
F71(0)=U,. Then {U;} is a locally finite and elementwise uniformly point-
finite open covering of B. By lemma 7.3 there is a locally finite open covering
{V1} of Y such that V;nBcU,. .

Apply lemma 20.1. We get a closed neighborhood ¥ of B in Y and a lo-
cally finite and elementwise uniformly point-finite closed covering {¥;} of Y.
We have

/ (II;L n B) c 01 .

Proof of theorem 19.4 (first part). Suppose that all @-spaces are normal.
Let X be a Lindeldf space which is a local NES(Q) and let (Y, B) be any -
pair and f: B—~X any mapping. We want to find a neighborhood extension of f.

Let {0;} be a covering of X by open NES(Q)’s. Since X is a Lindelf space
we may assume that {0,} is countable and star-finite (see lemma 6.3). Put.
f(0;)=U,. Then {U;} is a countable star-finite open covering of B. By
lemma 7.2 we have a locally finite open covering {V;} of Y such that V;nB=U,.
Since {U,} is star-finite it is also elementwise uniformly point-finite.

Apply lemma 20.1. We get a closed neighborhood Y of B in Y and a
locally finite and elementwise uniformly point-finite closed covering {Y,}
of Y. We have

HY.:nB)cO,.

22. Proof of theorems 19.2, 19.3, and 19.4 (second parts). We have
the following set-up:

A class @ such that all @-spaces are normal;

A space X;

Some open subsets O; of X, each 0; being an NES(Q);

A Qpair (Y, B);

A locally finite and elementwise uniformly point-finite closed covering
{Ya} of ¥;

A mapping f:B—>X such that f(Y;nB)<0;. B _

We want to find a neighborhood extension of f:B—~X in ¥ (for Y is a
neighborhood of B in Y, cf. lemma 2.1).

Let X be the nerve of the covering {¥,}. ¥ is a simplicial complex. Since
{Y,} is elementwise uniformly point-finite the star of each vertex of X is finite
dimensional. Hence for each simplex ¢€X there is an upper bound for the
dimension of those simplices o; which have ¢ as a face. Thus if we define
I (o) by

I(g) = max (dim ¢, —dim g¢),
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I (o) is a finite non-negative integer. Notice that

(1) o,+ ¢ 1implies I {oy) <I (o).
We need some sets in Y. Put N
D=Y,
Do= A Yy = UY, for o=y, ..., i),
ie1 Ay
B,=D,nB,

Then {D,} is a covering of D by sets which are mutually disjoint, and {B,}
is the corresponding covering of B. D is a @-space and B is closed in D.

Furthermore put
Dgyo = U D,,1 and Bg; = U Ba1~

0, €8to ;€8¢
Then we have :

(2) Dgio = n Y, for o=(4;, ..., An).
i=1

Hence {Ds.,} is a closed covering of D. Let us show that {Dg;,} is locally
finite. In fact {Y,} is locally finite so that if y €D there is a neighborhood

W of y in D meeting only a finite number of sets Y;, say Yu , ..., Y .
Then, because of (2), W meets Dg;, only if each 4; is one of 41, ..., An. But
this is possible only for a finite number of o’s.
Put, for o=(4, ..., 4a),
00-= n Oli'
i=1

Then O, is an NES(Q) (cf. 2.16). We have

(3) oy - o implies 0, €O,
and
(4) {(B:)<O,.

We want to define an extension F:C —>X of f to a neighborhood C of B
in D. Suppose for a moment that this has been done. Then if we set C,=
=D,nC we have
(®) c-ug.,
and if we put

(6) ’F6=FICU;

F,:C,—>X is an extension of f|B,.

However we shall do the converse. We shall for each ¢ €X define a set
C, and a mapping F,;:C,—~X and so define ' and F by (5) and (6). We
shall do this succesively by an induction on increasing I (¢). C, and F,:C,—>X
have to satisfy
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(7) B,c(Csc D,
(8) F,|B,={|B.,
9 F,(Cy)cO,.
Put
Csm = U Oal’
d;€8to

and define a function Fgio:Csie =X by
FStG ‘ 061 =1"”1 fOI' (] € St ag.

Since C; €D, and the sets D, are mutually disjoint, Fs:, is uniquely deter-
mined. We now also require

(10) Css 18 a neighborhood of Bsi, in Dgie,
(11) Cs¢e 18 closed in D,
12) Fg s 1s continuous.

Let o be any simplex of % with 7 (¢)=n». Then #=0. If >0 we assume,
when defining C; and F,, that C, and F,, are already defined for all o, with
I (o)) <m, in particular for all 6, > ¢ (see (1)).

Put
Dc’r:‘DSta‘Dz:: UDO'I:
o130
Co=U Cy,
013—0'
B;:BStG_Bo'Z U‘Bal-
. 0y >0
Then
B.,c(C,cD,.

Define a function F,:C,uB,~X by
- Fo|Cy,=F,, for ¢, >0,
F;IBu:f{ Ba-
Then we have
F;lcstaleStal for o, > o,

F;IBSta :leStc-

But Fg,, is continuous (see (12)) and f|Bs;, 18 continuous. Hence, since the
sets ,C’sm, and the set Bgi, together make up a locally finite closed covering
of C;u B,, F, is continuous by lemma 3.3. By (3), (4), and (9) we get

(13) » F,(C,u B,)<O,.
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We can write
Dv =U Dstu1 .

g, %0

Since {Dssq,} is locally finite and since each Dgo, is closed we see by lemma
3.2 that

(14) D, is closed in D.
Similarly, since (11) is true for each o, > o,

(15) C, is closed in D.
Furthermore lemma 20.2 proves that

(16) C, is a neighborhood of B, in Dj.

For B, is a subset of Dy, {Dss,; 0y >0} Is a locally finite closed covering of
D,, and Csto, 1s a nelghborhood of Bgio, —Dsw n B, in Dg,, (see (10)).

The function F, is the part of Fg, that is already defined. We want to
extend it in order to get Fgio.

Apply lemma 20.3 on the normal palr (DSW, Bs:,), the closed subset D, (see
(14)), and the closed neighborhood C, of B, (see (15) and (16)). Then we get
a closed neighborhood of Bgi, in Dgis of the form

C,u (3,
where
C;CDsta—D:v:Dv-
Now, O, is an NES(Q). The set
C:, U Ba‘ == C:, U Bstg

is closed in C,u C; (see (15)), and C,u (; is a @-space, since it is closed in
Dsw and therefore in D. Because of (13) we can find a neighborhood exten-
sion of F. in C.u (, relative to O, of the form

9s:CouCy—~ O,

where C,c(C% and C,UC, is closed in C,u (5, hence also in D. This defines
C;. TFinally let F,:Cy,—X be defined by

Fy(y)= g;, (y) for yeCs,

i.e. F, and g,| C, are the same mappings except that F, is into X and 9:]Cs
is into O,. Let us verify that (7)—(12) are satisfied.
We already know that C,cC,cD,. Since

C.uC,o20,uB,>B,
and
C.nB,=0,
we have B,c(C,. This shows (7). From
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F,|B,=F;|Bs=f| B,
we get (8). (9) is immediate. Since
Csto=0su Cy

we see that (11) is true. (10) follows by lemma 2.1 from the fact that Cg;, is
a neighborhood of Bg, in C,uC,, and C,u(} is a neighborhood of Bg;s in
Dgio. Finally

- Fsio:Csio—~X and g,:Csio— Oy

take the same values for each y€(g,. Since g, is continnous so 158 Fg;,.
This proves (12).
Hence we have shown that we can define C, and F,:C,—X satisfying
(7)-(12). By the induction on increasing I (¢) we can do this for all simplices o.
Now let C and ¥:C—+X be defined by (5) and (6). We have

C: U Ostq.
c€X

Hence, since {Dg,} is a locally finite closed covering of D, (10) and lemma
20.2 show that C is a neighborhood of B in D. From {6) we get

Flosta=FSta,

which is continuous by (12). Since Cgyo € Dsys, {Csio} 15 locally finite, and (11)
and lemma 3.3 show that F is continuous.
Now F|B=f. For we have

FlBodelBo:f,Bo

and {B,} covers B. Hence F is an extension of f to a neighborhood C of
B in D.
Thus theorems 19.2, 19.3, and 19.4 are completely proved.

23. Theorem 23.1. Let all Q-spaces be normal. Then any finite union of
open NES(Q)Ys s an NES(Q).

Proof. This theorem is proved as theorem 19.4. We do not need now to
have the assumption that the space be a Lindelséf space. For this was used
only to get the countable, star-finite covering {0;}. However we already have
a finite covering.

Example 23.2. Let X be a space with the discrete topology. Then X is
a local NES(Q) for any . Therefore if X has a countable number of points
X is an NES (normal) by theorem 19.4. However if X has uncountably many
points it is not an NES(normal), for then by theorem 14.5 it would be a
Lindelsf space, which it is not. But it is an NES (coll. normal) by theorem 19.3.

Example 23.3. As in the proof of lemma 15.2, we consider in the space
Z=1XI~-{0} X {o}
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the two closed subsets

= —{0}) X {0} and B={0} X (I’ —{0}).
Put
X=AuB.

Then X is a locally compact space and 4 and B are two open subsets of X.
4 is known to be an ES (normal) and an ANR (Tychonoff) (cf. theorems 17.1
and 17.2). The same facts are known about B (cf. example 17.9). Then, by
theorem 23.1, X is an NES (normal). However, it is not an ANR (Tychonoff).
For it is closed in the Tychonoff space Z and it is not a neighborhood retract
of Z, since 4 and B do not have disjoint neighborhoods in Z (cf. lemma 15.2).

Example 23.4. Borsuk ([6] p. 226) proved that if X =X, u X,, where each
of X;, X,, and X,nX, is an ANR (comp. metr.), then X is an ANR (comp.
metr.). This is not true, however, even for the class of all compact spaces.
For take in the topological product I X I’ the sets

X, =1 X {0},
X,={0} X I',
X =X,uX,.

Then X, is a closed interval, X, a Tychonoff cube, and X, n X, a single point.
Hence each of them is an AR (compact). However, X is not a neighborhood
retract of I X I’, since X —{0} X {0} is not a neighborhood retract of I X I’ -

—{0} X {o}.

Infinite polyhedra

24. It 1s known that a finite simplicial polyhedron with the usual Euclidean
topology is an ANR (comp. metr.) (cf. [6] p. 227). Hence, by theorems 13.2
and 16.2, it is also an ANR (Tychonoff). Let us now turn to infinite simpli-
cial polybedra.

All our polyhedra will be simplicial polyhedra and we shall therefore usually
drop the word simplicial. A polyhedron is infinite if it has an infinite number
of simplices or, what is the same, an infinite number of vertices.

By a subpolyhedron of a polyhedron X we mean any union of closed sim-
plices of the simplicial decomposition of X.

We shall give an infinite polyhedron two, in general different, topologies.
They both satisty the following two conditions:

a) Any subpolyhedron is a closed subset.
b) Any finite subpolyhedron has, considered as a subspace, the Euclidean
topology.

First, let the polyhedron X be locally finite (i.e. the star of each vertex is
a finite polybhedron). Then a) and b) determine a unique topology for X. It
can be proved that this topology makes X into a metrizable locally compact
space. Each point of X has a neighborhood which is a finite subpelyhedron
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and therefore an NES (coll. normal). Hence, by theorem 19.3, X is an NES
(coll. normal). If X has a countable number of vertices (cf. lemma 27.1) it is
an ANR (Tychonoff) by theorem 16.6.

However, if the polyhedron is not locally finite, we can define two different
topologies satisfying a) and b). We call them the weak topology and the
metric topology.

The weak topology is defined as follows. Let X be the polyhedron. A set
AcX is closed if and only if for each simplex o= X the set Ano is closed
m ¢ in the Fuclidean topology for ¢. As is easily verified, conditions a) and
b) are satisfied. A set Oc X is open if and only if for each o the set Ong
1s open in o¢. This topology makes X into a (W-complex in the sence of
J. H. C. WaITEREAD ([33] p. 223). It is known to be a normal space (133]
p. 225). (It can also be proved to be fully normal, but we do not need this
fact.)

In order to define the metric topology we need the following notations.
Let the vertices of X be {p;}. A point z€X is determined by its barycentric
coordinates {z;}. They satisfy

0=z;=1 for each 4,

x; 7% 0 only for a finite number of 2’5,
Sw=1.
.7
Now for two points x, 2’ € X put
d(x,2') = 2/1:|x,1—z,'1|

Then d(x, z) is a metric. The topology defined by this metric is the same as
the one defined by the metric

d (2, 2) =V 3 (22— z)?,
called by LerscHETZ ([24] p. 9) the natural metric. In this topology a se-
quence of points z"={a}} converges to z={z;} if and only if, for each
A, Zi—=x;. A function f:Y X is comtinuous when each coordinate (f (w))a of
f(y) is continuous in y. The topology satisfies conditions a) and b).

When the polyhedron is not locally finite these two topologies do not coin-
cide. For we see that the weak topology is not metrizable since it does not
satisfy the first countability axiom (cf. [23] p. 6). Note that in both topologies
the open star of the vertex p;, i.e. the set .

Stp,1={x|xz> 0},

is open. For its complement in X is a subpolyhedron and hence closed in X
by a). (Conversely: that all sets St p, are open implies a).)

The purpose of the next two parvagraphs will be to show that a polyhedron
with either of the two topologies is an NES (metric). In the case of the metric
topalogy we can use this and our previous results in order to determine when
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the polyhedron is an ANR(Q) for the classes a—d. This will be done in § 27
(see theorem 27.4). The corresponding problems in the case of the weak to-
pology are unsolved.

It is a standard trick within the theory of finite polyhedra to imbed the
polyhedron in a simplex having the same vertices as the polyhedron. In order
to use this trick in our case we need the following definition.

Definition 24.1. A polyhedron is called full if each finite subcollection of
its vertices spans a simplex.

Any polyhedron X can be imbedded in a full polyhedron Z with the same
vertices. We give Z the same kind of topology as X. Since X is a subpoly-
hedron of Z, X is a closed subset of Z. We shall see below that, in either
topology, X is a neighborhood retract of Z.

25. Theorem 25.1. Any simplicial polyhedron with the weak topology s an
NES (metric).

Theorem 25.2. Any full simplicial polyhedron with the weak topology is an
ES (metric).

Proof of theorem 25.1. Any polyhedron X can be imbedded in a full
polyhedron. Hence, because of 2.15, the theorem follows from theorem 25.2
and the following lemma.

For the proof of theorem 25.2 see after lemma 25.4 below.

Lemma 25.3. Any subpolyhedron X of a simplicial polyhedron Z with the
weak topology is a meighborhood retract of Z.

Proof. The main trick will be to consider the barycentric subdivision Z’ of
Z (cf. [24] p. 8). We give to Z' the weak topology. The spaces Z and Z’
are defined on the same set. Their topologies coincide. For this is true on each
simplex ¢ of Z and follows in general from the definition of the weak topology.

By subdividing Z we get from X its subdivision X', which is a subpoly-
hedron of Z’. We claim that X’ and Z’ satisfy:

a) Let p1, ..., pn be vertices of a simplex o’ ©Z’, and let them all belong
to X'. Then o'cX’.

For since the points {p/} are vertices of a simplex of Z’ they all lie in a
simplex o of Z having one of {p/} as its barycenter, say p;. But p;€X’, ie.
p1€X. Hence ocX and {p/} are certain vertices of the subdivision of o.
Therefore o' < X',

Let {p,} be all vertices of Z’, indexed by a set M={u}. A point z€Z’ is
determined by its barycentric coordinates z={z,}, where

>z.=1.

HeM

Let MycM be the set of all indices for which p, € X’. Consider the real-
valued function defined by

a(2) jGZM Zy-

We have:
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(1) a(z) is continuous,
(2) U={z]a(z) >0} is open in Z’,
(3) UsX'.

Here (3) is trivial since a(z)=1 for z€X’, and (2) is a consequence of (1).
A function on a polyhedron with the weak topology is continuous if it is con-
tinuous on each simplex. But on a simplex the function a is a finite sum of
continuous functions. Hence a is continuous.

Now define a retraction r:U—>X' by taking as the image point r(z) of a
point z € U the point whose barycentric coordinates are

(r @)= o for ue M,,
a(?) #

(7 (2))=0 for peM—M,.

These formulas determine a point r(z) of Z’ lying in X'. For let ¢'cZ’ be
the simplex of lowest dimension such that z€¢’. Then z,>0 if and only if
p, 1s a vertex of ¢’. Hence, since

g (r@)=1,

there is a point 7(z)={(r(2)).} of ¢’. Since (r(z)).,=0 for p¢M,, r(z) is a
point of a simplex Wlth all vertices in X'. Hence, by a), r(z)€X".

We want to prove that r is oontmuous Then we have to show that r|o’ n U
is continuous for each simplex ¢’. But this is true since each coordinate
(7 (2)), 1s continuous.

Finally, for z€ X’ we have a(z)=1 and hence 7(z)==.

Therefore 7:U —+ X' is a retraction of a neighborhood U of X' in Z’. This
proves lemma 25.3.

Lemma 25.4. Let X be a polyhedron with the weak topology and Y a metric
space. Suppose [: Y >X 1s a mapping. Then if {St pi} is the open covering of
X by the star of its vertices, a={f"" (St'ps)} ¢s a locally finite open covering of Y.

Proof. Clearly o is an open covering of ¥ so that we have to prove that
it is locally finite. ‘

Suppose o is not locally -finite. Then there is a point y,€Y such that
every neighborhood of y, meets an infinite number of elements of «. Since
f(y,) 18 a point of some simplex of X, the point y, itself only belongs to a
finite number of sets f~* (St py), say for A=1;1, ..., An.

Now we construct a sequence of points y, €Y and a sequence of indices
Zn such that (for n=1,2,..))

(4) yﬂ g yO’
(5) Yo €17 (St p3,),
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(6) An#A{ for each i=1,..., m,
(M An##An, for nstn,.

This is possible by induction. For when choosing 4, we have to avoid the
finite number of indices

Al ’
My ooy Amy Ay ooy Aty

and there are, for each neighborhood U of y,, infinitely many sets /= (St p2)
meeting U. Hence we can take y, in the intersection of a set f™' (St p;,) and

a suitable neighborhood U, of y,.
Note that (6) and the definition of the indices A imply

4o & f_l (St p},n)-
Hence, by (5),

(8) (o) # f (yn)-
Now, let O be the complement in X of the set which consists of all points
(), n=1,2,... By (8), O contains f(y,). By (5) and (7) each simplex'a of

X contains only a finite number of points f(y.). Therefore On o is openin o.
Hence O 1s open. ’
Finally, (4) and the continuity of f implies

f (yn) = 1 (o)

But this contradicts the fact that O is a neighborhood of f (y,) containing no
point f(y.). This proves lemma 25.4.

Proof of theorem 25.2. We use theorem 12.3 and prove that a full poly-
hedron X with the weak topology is a contractible NES (metric).

Let {x;} be the barycentric coordinates for a point z € X. Choose some
A€ A={2}. Define h: XxI— X by

(h(z, t)a=(1—1)z; for A2,
(h (@, £))z,= (1 =) 22, + 2.

For each (xz,t) these formulas define a point A (z, t) €X. In fact, the polyhe-
dron X is full, only a finite number of coordinates z; are #0, and

S (@ 0n=(1-0F i+ -1.

AcA

The continuity of A follows from the fact that k|o x I is continuous for each
o (cf. [33] p. 228). The homotopy % is a contraction of X into the vertex p;,.

In order to prove that X is an NES (metric) let (Y, B) be any metric pair
and f:B— X any mapping. Put

) U,1=f_1 (St m).
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Then {U,} is an open covering of B. It is locally finite by lemma 25.4. Ap-
plying lemma 7.4 we get a locally finite open covering {¥V,} of Y such that

U;,= V), n B

Each coordinate (/ ()2 of f(y) is a continuous function f;(y) of y defined
on B. Hence f;:B -1 is a mapping into the closed interval I. We have

U,={yly€B, f,(y)>0}.
Now extend f; to a mapping ¢;: Y - I by putting

gr(y)=0 for y¢V,

and applying Tietze’s extension theorem. Take the function

a(¥)=2 a:(y),

AcAa

which is finite and continuous since {V;} is locally finite. If y€B we have

a(y)=2/liy)=1.

2€4
Hence the set

_ 0={yla(y)>0}
1s a neighborhood of B.

Define F:0—~ X by

_9 (y) .
Fyh= a(y)

For each y €0 this formula defines a point F (y) € X. F is continuous, for so
i8 (F(y)), and {V;} is locally finite. Since F|B={, F is a neighborhood ex-
tension of f.

26. Theorem 26.1. Any simplicial polyhedron with the metric topology s an
NES (metric).

Theorem 26.2. Any full simplicial polyhedron with the metric topology s an
ES (metric). '
Theorem 26.1 is the consequence of theorem 26.2 and the following lemma.

Lemma 26.3. Any subpolyhedron X of a simplicial polyhedron Z with the
metric topology is a neighborhood retract of Z.

. Proof. We use the same method as in the proof of lemma 25.3 and only
need to point out the places where the argument depends upon the topology of Z.
First we need the fact that the metric topology of Z coincides with the
metric topology of Z’. However this has been proved by LerscurETz ([24]
p- 21). Next we shall prove the continuity of

a(x)=3z,.

# €M
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But this follows from

|4~ a ()] = 3]a- 5] = 4 2)

Finally each (r(2)), is continuous. Hence 7 (z) is continuous. Therefore r: U—X'
is a neighborhood retraction. This proves lemma 26.3.

x A

Proof of theorem 26.2. We want to use the fact (proved by DueunpJI
[12] p. 358) that any convex set of a Banach space is an ES (metric).

Let X be a full polyhedron with the metric topology. Let {p;} be its ver-
tices, A the index set. We imbed X in the Banach space S consisting of all
s={s;} where s; are real numbers and AZAl 51| is convergent. The norm of an

€

Isl=3)sil.

The imbedding of X in S is the obvious one: if z; are the barycentric coor-
dinates of z, {x;} denotes a point of S. If z is identified with this point, X
is imbedded in S. This imbedding is metric since

)= 3 |er=ail=llo= '],

where x and x' are two points of X and d is the metric on X.
Since the polyhedron X is full X is a convex set in S. Thus Dugundji’s
theorem completes the proof.

element of S is defined by

27. Now we shall combine theorem 26.1 with theorem 17.1. Therefore we
want to know when a polyhedron with the metric topology is separable, locally
compact, or an absolute Gs.

Lemma 27.1. A4 svmplicial polyhedron with the metric topology s separable tf
and only if it has a countable number of vertices.

Proof. If it has uncountably many vertices it is certainly not separable.
If it has a countable number of vertices it is the union of a countable num-
ber of simplices, hence separable.

Lemma 27.2. A simplicial polyhedron with the metric topology is locally com-
pact if and only of it s locally finite.

Proot. If it is locally finite it is certainly locally compact. If it is not
locally finite there is some vertex belonging to an infinite number of 1-sim-
plices. Hence this vertex has no compact neighborhood.

Lemma 27.3. A4 simplicial polyhedron with the metric topology ts an absolute
Gs of and only if it contains no infinite full subpolyhedron.

The condition is for instance satisfied if the star of each vertex is finite
dimensional. It is certainly not satisfied if the polyhedron itself is an infinite
full polyhedron.

Proof. Sufficiency. Suppose the polyhedron X with the metric topology
contains no infinite full subpolyhedron. I claim that the space X with the metric
d is complete.
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Let X be imbedded in the Banach space S as in the proof of theorem 26.2.
Let 2" = {z}} be a Cauchy sequence in X. Then, since S is a complete metric
space, " converges to a point s=1{s;} of . We shall show that s belongs to X.

From z™ - s we have, for each 4

(1) T; > 8,
so that, since 0<a7 =1,

@) 051
We also conclude from 2" — s that [[2" || —||s]| i.e., since ||z"|[=1,
o sl St

In A={A} let A’ be the set of all indices for which s; > 0. Let A, be any
finite subset of A’. Then, by (1), for some sufficiently large =

zz >0 for A€ A,.

Hence, since z" € X, the simplex o, spanned in S by the vertices p;, A€ 4, is
a face of a simplex in X, so that ¢, X.

From this we obtain that the vertices p;, A€ A’ span a full subpolyhedron
X' of X. But then A’ must be finite and X’ a simplex. By (2), (3), and
the definition of A’ we have s€ X’. Hence s€ X.

Therefore X is a complete metric space. As was previously remarked, this
means that X is an absolute Gs.

Necessity. Let X be a polyhedron with the metric topology. Suppose that
X is an absolute G5 containing an infinite full subpolyhedron 4. We shall
show that this is impossible.

Without loss of generality we may assume that 4 has a countable number
of vertices. A4 is a subpolyhedron of X and therefore closed in X. Hence,
since X is an absolute G5, 4 is also an absolute Gs. Therefore 4 can be
given a complete metric.

But in 4 the open stars of the vertices are a countable collection of open
dense sets with a void intersection. By Baire’s theorem (cf. [18] p. 160) this
18 impossible in a complete metric space. This completes the proof of lemma 27.3.

Now by lemmas 27.1, 27.2, and 27.3 and theorems 17.1 and 26.1:

Theorem 27.4. Let X be a simplicial polyhedron with the metric topology.
Then

a) X 4s an ANR (coll. normal) if and only if X contains no infinite full
subpolyhedron.

b) X is an ANR (normal) if and only +f X has a countable number of vertices
and contains no infimite full subpolyhedron.

c) X is an ANR (Tychonoff) if and only if X is locally Jinite and has a
countable number of wvertices.
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Example 27.5. Take in a full polyhedron the subpolyhedron X consisting
of all 1-simplices and all 0-simplices. Give to X the metric topology. Then
X is an ANR(coll. normal). Tt is an ANR (normal) if and only if it has a
countable number of vertices and it is an ANR (Tychonoff) if and only if it
has a finite number of vertices.

Homotopy theorems

28. In this final paragraph we shall study homotopy properties of ANR(@)’s.
They are all generalizations of theorems already known in the case when @ is
the class of separable metric spaces. Since many of the proofs are similar to
those given in the separable metric case we shall omit the details.

We need to use lemma 12.1. Since this lemma is proved only for the classes
6—t, we have to restrict ourselves to these classes.

Theorem 28.1. Let Q be any of the classes 6—1. Then any ANR(Q) is locally
contractible.
" This is proved by a method similar to the one proving theorem 12.4. (Cf.
[15] p. 397, the first half of the proof of theorem 4.2.)

Theorem 28.2. Let Q be any of the classes 6—1. Then the homotopy extension
theorem holds for mappings of Q-spaces into an NES(Q).

Explicitely this means that if X is an NES(Q), (Y, B) any @-pair, Fy: Y >X
any mapping and f;:B->X any homotopy such that f,=F,|B, then thece
exists a homotopy F,:Y —X such that F;|B=/,.

For the proof see [9] p. 205 or [18] p. 86.

Theorem 28.3. Let Q be any of the classes 6—t. Then a Q-space X s an
ANR(Q) o and only if for each point x € X there exists a neighborhood V of x
such that for any Q-pair (Y, B) any mapping {:B—V has an extension rela-
twve to X.

For the proof see [15] p. 398. For the sufficiency we need theorem 19.2.

Theorem 28.4. Let Q be any of the classes 6—i. If the homotopy extension
theorem holds for mappings of Q-spaces into a locally contractible space X then X
is an NES(Q).

For the proof see [15] p. 398.

Detinition 28.5. Let a={U;} be an open covering of X. We call a ho-
motopy f::¥Y—=X an o«-homotopy if for each y€Y there is a U, such that
ft(y)€U; for 0=t=1. A space Z is said to dominate a space X if there exists
two mappings ¢:X—~Z and y:Z->X such that y@:X->X is homotopic to the
identity mapping ¢: X—X. If this homotopy is an «-homotopy Z is said to
a-dominate X.

Dveunpir has proved a theorem ([12] p. 365) which can be reformulated thus:

Theorem 28.6. Let a be any open covering of an ANR (metricy X. Then X
is a-dominated by a polyhedron with the weak topology. -

He asks the question whether it is true that among metric spaces this prop-
erty characterizes ANR (metric)’s. That this is the case is proved by theo-
rem 28.8.
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Theorem 28.7. If for each open covering o of a metric space X there exists
an NES (metric) a-dominating X, then X is an ANR (metric).

The proof is essentially the same as in [15] (proof of theorems 7.1 and 7.2).

Theorem 28.8. If for each open covering o of a metric space X there exz}s*ts
a polyhedron with the weak topology a-dominating X, then X 1is an ANR (metric).

This 1s a consequence of theorems 25.1 and 28.7.

Remark 28.9. Instead of an «-dominating polyhedron for each covering o,
it is sufficient in theorem 28.8 to assume that there is a suitable sequence of
polyhedra dominating X, as in [15] p. 405.
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