
A R K I V  F O R  MATEMATIK Band 2 nr 16 

Communicated  4 June  1952 by FRXTZ CARLSON and  O. A. FROSTMA~" 

Retraction and extension of  mappings of metric and non- 

metric spaces 

By OLOF HANNER 

Introduction 

1. The two kinds of topological spaces that are called absolute retracts and 
absolute neighborhood retracts, were originally defined by BO~SUK ([5], [6]) 
for compact metric spaces. Later on these concepts were extended to several 
other classes of spaces. 

A closed subset X of a space Z is called a retract of Z if there is a map- 
ping r:Z-+X such that  r(x)=x for each x EX. The mapping,r  itself is called 
a retraction of Z onto X. By an absolute retract we mean a space X, such 
that  whenever X is imbedded as a closed subset  of a space Z, X is a retract 
of Z. However, if this definition is to have a meaning, we have to determine 
which spaces Z are allowed. There is, for instance, an example (example 17.7) 
of a separable metric space X, which is a retract of any separable metric space 
in which it is imbedded as a closed subset, but which can be imbedded as a 
closed subset of a normal space Z in such a way that it is not a retract of Z. 

A closed subset X of a space Z is called a neighborhood retract of Z, if 
there is an open set O in Z, such that X c O ,  and a retraction r : O ~ X .  The 
mapping r itself is called a neighborhood retraction. By an absolute neighbor- 
hood retract we mean a space X such that whenever X is imbedded as a closed 
subset of a space Z, X is a neighborhood retract of Z. Agaip we must know 
which spaces Z are allowed. In order to give a simple example let X be the 
Hausdorff space consisting of only two points. This is a neighborhood retract 
of any Hausdorff space Z in which it is imbedded. However, it is not neces- 
sarily a neighborhood retract .when imbedded in a Tl-space. 
�9 Thus when changing the class of spaces from which Z shall be taken, we get 

different concepts absolute retract and absolute neighborhood retract. The purpose 
of this paper  is to study the properties of these concepts and the relationships 
between them. 

We will mainly concentrate on some special classes of spaces. These classes 
are listed in w 2. In  w167 3-7  we have gathered together some facts about these 
spaces that  will be useful in the sequel. 

In w 2 we also define two other kinds of spaces, called extension spaces 
and neighborhood extension spaces. We will show in w167 8-11 that they are 
closely related to absolute retracts and absolute neighborhood retracts. We 
study in w 12 our four concepts for contractible spaces. 
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In  w167 13-17 we take up the relationships between our concepts for different 
classes of spaces. The main results are collected in theorems 17.1 and 17.2. 

Under certain conditions the property of a space to be a neighborhood ex- 
tension space (or an absolute neighborhood retract) is a local property. This 
is proved in w167 18-23. In  w167 24-27 we prove that  certain infinite polyhedra 
are neighborhood extension spaces. Finally in w 28 we give some homotopy 
theorems. 

Definitions and general preliminaries 

2. All topological spaces considered in this paper will be Hausdor f f  spaces. 
Let  X be a topological space and A a subset. By a neighborhood of A in 

X we mean a set U ~ X such that  there is an open set 0 satisfying A c 0 ~ U. 
Thus a neighborhood is not necessarily open. 

We leave the proof of the following lemma to the reader. 

L e m m a  2.1. Let A c U ~ V c X .  I /  U is a neighborhood o~ A in V and V 
is a neighborhood o/ A in X ;  then U is a neighborhood o] A in X .  

A space X is normal if any two disjoint closed subsets have disjoint neigh- 
borhoods. This can also be formulated thus: A space X is normal if for any 
closed set A c X and any neighborhood U of A, there is a closed neighborhood 
V of A contained in U. By a pair (Y, B) we mean a space Y and a closed 
subset B of Y. I f  (Y, B) is a pair a n d  F :  Y-->X and / : B - ~ X  are two map- 
pings into a space X such that  F ( y ) = ] ( y )  for y EB, we call F an extension 
of / to 3 z and / the restriction of F to B, denoted ] = F I B .  I f  F is on lyde-  
fined on some neighborhood of B in Y, F is called a neighborhood extension 
of / in Y. 

Let  Q be a class of topological spaces. We require: 

2.2. I /  X E Q and i/ A is a closed subset o/ X ,  then A E Q. 
A space that  belongs to Q will often be called a Q-space, and a pair (Y, B) 

for which Y E Q will be called a Q-pair. 
The classes Q, in which we shall be principally interested, are the following: 

:r Tychonoff spaces (=comple te ly  regular spaces), 

fl) normal spaces, 

~) eollectionwise normal spaces (see w 4), 

(~) fully normal spaces (see w 5), 

e) LindelSf spaces (see w 6), 

$) compact spaces, 

~) metric spaces, 

v~) separable metric spaces, 

t) compact metric spaces. 

These classes of spaces will often be referred to by  Greek letters given in this 
list. I t  may be natural to order them in a diagram: .. 
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Tychonoff 

normal 

coll. normal 

fully normal 

metric LindelSf 

sep. metr. compact 

comp. metr. 

In this diagram each arrow goes from a class to a subclass. We have to 
verify this fact and the fact that  all classes ~-e satisfy 2.2. This will be 
done in w167 4 - 6  for some cases. The remaining cases are all well known. 

Defini t ion 2.3. A space X is called an absolute retract relative to the class Q 
(abbreviated AR(Q)) if 

a) XeQ, 
b) whenever X is topologically imbedded as a closed subset of a Q-space Z, 

then X is a retract  of Z. 

Defini t ion 2.4. A space X is called an absolute neighborhood retract relative 
to the class Q (abbreviated ANR(Q)) if 

a) X e Q ,  
b) whenever X is topologically imbedded as a closed subset of a Q-space Z, 

then X is a retract  of some neighborhood U of X in Z. 

Defini t ion 2.5. A space X is called an extension space /or the class Q (ab- 
breviated ES(Q)) if, for any  Q-pair (Y, B ) a n d  any mapping / :B->X, there 
exists an extension F :  ~ - > X  of / to Y. 

Defini t ion 2.6. A space X is called a neighborhood extension space /or the 
class Q (abbreviated NES(Q)) if, for any Q-pair and any mapping  ~:B->X, 
there exists an extension F :  U ~ X  of / to a neighborhood U of B in Y. 

Let  us point out tha t  in the last two definitions we do not assume that  X 
belongs to the class Q. 

I f  all spaces in Q are normal, we can in the definitions 2.4 and 2.6 let the 
neighborhood U be closed in Z and Y respectively. Then U is a Q-space. 

L e m m a  2.7. Let Q cantain a space which is not normal. Then an NES(Q) 
(or an ES(Q)) is never Hausdor// unless it consists merely o~ one single point. 

Proof .  Let  X be an NES(Q) with more than one point. Take two different 
points xl, x2 E X. I f  X is t tausdorff  there are disjoint neighborhoods U1 and 
Us of xl and x2 respectively. There is a space Y EQ, which is not normal. 
Take in this space Y two disjoint closed sets B 1 and B~ which do not have 
disjoint neighborhoods. Define / :  B1 u B2 ->X by 

/ (B1)=x ~ and /(B1)=x~. 

Clearly / is continuous. Now B 1 u B~ is closed in Y, Y E Q, and X is an NES (Q). 
Hence there exists an extension F :  U->X, U being a neighborhood of B 1 u B2 
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in Y. But then F-I(U1) and F -1(U2) are disjoint neighborhoods of B1 and B2 
respectively. This is a contradiction, which proves lemma 2.7. 

To avoid this case we shall always assume that  Q in definitions 2.5 and 2.6 
only consists of normal spaces. We mainly use the classes f l -  t. 

There are several immediate relationships between the four concepts AR(Q), 
ANR(Q), ES(Q), and NES(Q). We give them without proofs. 

2.8. Any AR(Q) is an ANR(Q). 
2.9. Any ES(Q) is an NES(Q). 
2.10. Any ES(Q) belonging to Q is an AR(Q). 
2.11. Any NES(Q) belonging to Q is an ANR(Q). 

If Q and Q1 are two classes both satisfying condition 2.2, then 

2.12. QcQ1 implies that any ES(Q1) is an ES(Q) and that any NES(Q1) is 
an NES(Q). 

2.i3.  QcQI implies that any AR(Q1) belonging to Q is an AR(Q) and that 
any ANR(Q1) belonging to Q is an ANR(Q). 

Easy to prove are the following statements: 

2.14. A retract o/ an ES(Q) is an ES(Q) (cf. [14] p. 375). 
2.15. A neighborhood retract o/ an NES(Q) (or an ES(Q)) is an NES(Q). 
2.16. Any open subset of an NES(Q) is an NES(Q) (cf. [15] p. 391). 
2. i7.  Any topological product o~ ES(Q)'s is an ES(Q) (cf. [14] p. 375). 
2.18. Any topological product of a finite number o/ NES(Q)'s is an NES(Q). 

Example 2.19. In our terminology TIETZE'S extension theorem says that 
closed interval is an ES(normal). Hence by 2.17 any cube, i.e. a product of 
closed intervals, is an ES(normal). Such a space is compa.ct. 

E x a m p l e  2.20. I t  is known that  TIETZE'S extension theorem is true even if 
the closed interval is replaced by a real line, i.e. a real line is an ES(normal). 
(Cf. also 2.]6 and theorem 12.3 below.) Hence also the product of any number 
of real lines is an ES(normal). The real line itself is locally compact. The 
product of a countable number of real lines is a metric space which is not 
locally compact. The product of uncountably many real lines is a Tychonoff 
space which is not normal (cf. [29] p. 981). The last space is an example 
of an ES(normal) which is not normal. Hence it is not an AR(normal).  We 
return to this example in example 17.8. 

Let  us compare our notations with the notations used earlier in the litera- 
ture on this subject. This we will do first for the concept ANR. All notations 
for the concept AR are similar. 

The original concept ANR defined by BORSUK [6] is in our notation ANR 
(comp. metr.). KURATOWSKI generalized this to separable metric spaces thus 
introducing ANR(sep. metr.). In a recent paper  DUGUNDJI [12] considered 
arbitrary metric spaces and obtained what is here called ANR (metric). 

Other generalizations of BORSUK'S original concept are obtained by consider- 
ing non-metric spaces. Thus SAALFRANK [26] considered ANR(compact) and 
Hu  [17] considered ANR (Tychonoff), by him called ANR*. 

The author considered ANR(normal) ([14], there called ANRN), and in a 
recent paper C. H. DOWKER considered ANR(coll. normal) ([11], by him called 
ANRen). 
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Thus all classes of spaces a--t have been used except the two classes of 
fully normal spaces and of LindelSf spaces. The class of fully normal spaces 
seems natural to introduce when analyzing the concept local ANR(Q) (and lo- 
cal NES(Q)) and the class of LindelSf spaces is proposed by theorems 14.5 
and 19.4. 

We shall see below (w167 8-10) that for any of the classes fl-t  an ANR(Q) 
is an NES(Q) belonging to Q, and conversely. Thus if we only considered Q- 
spaces the special notation NES(Q) would be superfluous. However, in w167 25 
and 28 we have to consider some NES(Q)'s which do not belong to Q, and in 
example 2.20 we already saw an ES(Q) not belonging to Q. 

STEENROD ([28] p. 54) and the author [14] have considered ES(uorma]) under 
the name solid space. 

3. We shall often have to consider collections of subsets of a space X. Let 
~. = {U~} be such a collection, indexed by a set A = {X}. To avoid some trivial 
exceptions we assume that the index set A is never void. If  all sets U;. are 
open we call ~ an open collection; if all sets U~ are closed we call ~ a closed 
collection. 

A collection :r is called a covering of X if the union of the sets 
�9 U~ is X. We shall often have to do with open coverings and sometimes with 
closed coverings. In w 6 we need some coverings which are neither open nor 
closed. Notice that if A is a subset of X and ~ = {U~} is an open covering of 
A then the sets U~ are subsets of A which are open in A but in general not 
in X. 

Let ~-{U~} be a covering of X and. A any subset of X. By the star of 
A with respect to ~ we mean the union of all sets Ux intersecting A, i.e. 

(0 denotes the void set). 

S t ( A , ~ ) =  tJ U~ 
U) nA+O 

By the star of the covering ~ we mean the covering 

s t  ~ = { s t  (cA,  ~)}.  

If ~ is open, the star of any set is open and the covering St ~ is open. 
Let ~={U~} and fl={V~} be two open coverings of X. Then fl is called a 

refinement of ~ if for each # there is a 2 such that  V,c-U~. Thus e.g. fl is 
a refinement of St ft. If : .St  fl is a refinement of ~, fl is called a star-refine- 
ment of ~r 

A collection ~ is locally finite, if for each point x E X there is a neigh- 
borhood of x meeting U~ for at  most a finite number of )l's. (Two sets are 
said to meet if they have a non-void intersection.) When we want to point 
out the space X in this definition we say that ~ is locally finite in X. Let A 
be a closed subset of X and ~ a collection of subsets of A such that  ~ is 
locally finite in A. Then ~ is also locally finite in X. This is not necessarily 
true if A is not closed in X. 

The proofs of the following two lemmas are omitted. 

L e m m a  3.1. Let {U~} be a locally /inite collection. Then {U~} is also locally 
]inite. 
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Lem,vna 3.2. Let {U~} be a locally finite closed collection. Then the set 

u U~ 2(A 
is closed. 

Using the last lemma we can prove 

Ler~rna  3.3. Let {U~} be a locally finite closed covering o/ Y and let 

I: Y-+X 

be a /unction such that each /I Ua is continuous. Then / is continuous. 

Proof .  Let A be any closed set in X. We have to prove that  / :1 (A) is 
closed in Y. Since /~=/IUx is continuous the set 

!~ (A) = U~. 1-~ (A) 

is closed in U~ and hence closed in Y, so that  

/-1 (A)=).UA(U). f//-1 (A)) 

is a union of a locally finite collection of closed sets. Hence,  by  lemma 3.2, 
/-1 (A) is closed. This proves tha t  [ is continuous. 

L e m m a  3.4. Let {U~} be a locally ./inite open covering o~ a normal space X.  
Then there is an open covering {V~}, such that /or each 2 we have V~ c U~. 

For the proof see LEFSCHETZ ([23] p. 26) or DIEUDONN~ ([8] p. 71). 

L e m m a  3.5. Let {U~} be a locally /inite closed covering o/ a space X.  Then 
/or each point x E X there is a neighborhood V such that 

U~n V ~ O  

is true only /or those 2 (/inite in number) /or which x E Ua. 

Proof .  Since {Ua} is locally finite there is a neighborhood U of x which 
meets U~ for only a finite number of indices 2, say 21, . . . ,  2n. Suppose x E U~ 
for 2=21 . . . . .  2~ and x r  U~ for )~=2~+1, . . . ,  2n. Then, since each U~ is 
closed, 

n 

V = U -  O Uai 
i = m + l  

is a neighborhood of x. Let  U~ meet V. Then, since V r  U, ~ is one of 
2 i , . . . ,  2n. But  V is disjoint to U~ for 2=2m+1 . . . . .  ~ , .  Hence 2 is one of 
2 1 , . . . ,  ,t~ so tha t  x E Ux. This proves the lemma. 

We call a covering ~ = {U~} of X star-finite if, for fixed 21, Ua meets-U~ for 
at  most a finite number of 2's. 

A star-finite open covering is certainly locally finite. 

L o m m a  3.6. Let {Ua} be a star-finite open covering o/ X .  Then {Ua} is 
star-/inite. 

]?roof. Suppose Ux meets U.a~. Choose a point 

x~ U~n Ua,. 
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{Ua} is a covering of X, 
implies 

(1) 

(2) 

But, for fixed 2~, 

hence x E Ux~ for some 2~. Since U~ is open this 

U ~ ,  U~ ~ O, 

U ~ . n U ~ O .  

(1) is true only for a finite number of 22's and, for each 
of these ~2's, (2) is true only for a finite number of ,~'s. Hence, for fixed ~1, 
ff~ meets U~ only for a finite number of 2's, i.e. {ff~} is star-finite. 

4. Defini t ion 4.1. A Hausdorff space X is called collectionwise normal if, 
for every locally finite collection {An} of mutually disjoint closed subsets of X, 
there is a collection (Uz} of mutually disjoint open sets such that  A ~  Ua for 
each 2. (BIN~ [4] p. 176.) 

Every collectionwise normal space is certainly normal. BINo ([4] p. 184)has 
given an example of a normal space which is not collectionwise normal. 

A closed subset A of a coUectionwise normal space X is collectionwise nor- 
mal. For if {An} is a locally finite closed collection in A it is also a locally 
finite closed collection in X. 

L e m m a  4.2 (C. H. DOWKER). Let X be a collectionwise normal space and 
{A~) a locally finite collection o/ mutually disjoint closed subsets o/ XI Then 
there are open subsets U~ o/ X such that Aa ~ Ua /or each 2 and such that {U a) 
is a locally finite collection o~ mutually disjoint sets. 

For the proof see [11]. 

5. Defini t ion 5.1. A Hausdorff space is called /ully normal if every open 
covering has an open star-refinement (TuKEY [30] p. 53). 

Definit ion 5.2. A Hausdorff space is called paracompact if every open cov- 
ering has a locally finite open refinement (DIEUDONN~ [8]). 

L e m m a  5.3 (A. H. STO~E). Every ]ully normal space is paracompact and 
every paracompact space is ]ully normal. 

For the proof see [29]. 
Hence the two concepts are equivalent and the class of fully normal spaces 

is the same as the class of paracompact spaces. We will in the sequel only 
use the name fully normal spaces for these spaces. 

We see immediately that  a closed subset of a fully normal space is fully 
normal. 

I t  is known that  every fully normal space is normal. We also have 

L e m m a  5.4. Every /ully normal space is collectionwise normal. 
For the proof see [4] p. 183, As was pointed out by BING, an example 

given bY DmUDONNk, of a normal space which is not fully normal is coIlec- 
tionwise normal. 

Lemxna 5.5 (TUKEY). Every metric space is /uUy normal. 
For the proof see [30] p. 53. 

Lema~a 5.6. Every compact space is /ully normal. 

Proof .  A compact space is obviously paracompact. 

321 



o. HAr~r~ER, Mappings of metric and non-metric spaces 

Let ~ be an open covering of a fully normal space X. Then we can obtain 
some new coverings by the following methods: 

a) We can take an open star-refinement of ~. This is the definition of full 
normality. 

b) We can take a locally finite open refinement of 0r For a fully normal 
space is paracompact. 

c) I f  ~={U~} is locally finite we can take an open covering ~ ' =  {U~,} such 
f that  each Uu meets Ux for only a finite number of 2's. This is essentially the 

definition of local finiteness. Since any refinement of ~' has the same property 
as ~', we can assume ~' to be locally finite. T h e n  we can repeat the process 
and take an open covering ~" such that  each element of ~" meets only a 
finite number of elements of ~'. 

d) I f  ~={Ua} is locally finite we can take a covering fl={Va} such that  
for each ~ we have V~.~ U~. For, since a fully normal space is normal, we 
can apply lemma 3.4. 

6. Defini t ion 6A. A space is said to have the Lindel6] property if from 
each open covering there can be selected a countable covering. A regular space 
having the Lindelhf property is called a Lindel6/ space. 

The name is suggested by the Lindelhf covering theorem, which in our ter- 
minology says that  a s~parable metric space has the Lindelhf property (cf. 
[23] p. 6). 

An immediate consequence is: 

L e m m a  6.2. A regular space is a Lindel6/ space i/ and only i/every open 
covering has a countable re]inement. 

Any Lindelhf space is normal. For we can apply TYenONOFF'S well-known 
proof of the fact that  a regular space with a countable base is normal ([31], 
cf. [34] p. 6). 

S. KArLAY proved ([19] p. 249) that  any open covering of a separable 
metric space has a star-finite open refinement. A slightly different proof of 
this was used hy the au thor  in [15] p. 393. Our main interest in Lindelhf 
spaces in this paper .depends upon the fact that  KAPLA~'S result extends to 
Lindelhf spaces. 

L e n a  6.3. Any open covering o/ a Lindel6/ space has a countable star-/inite 
open re/inement. 

This lemma has been proved by MOmTA ([25] p. 66). Note that  any star- 
finite (or locally finite) open covering of a Lindelhf space is countable. 

L e m m a  6.4. Any Lindel6[ space is /ully normal. 

Prooi .  This follows from lemma 6.3, since a star-finite open refinement is 
locally finite. 

Since obviously all compact spaces are Lindelhf spaces, the class of Lindelhf 
spaces is a class between the class of compact spaces and the class of fully 
normal spaces. 

L e m m a  6.5. A metric space is a Lindel6] space if and only i~ it is separable. 

Proof .  The sufficiency is just the Lindelhf covering theorem. To prove the 
necessity we select for each integer n >  0 a countable covering out of the 
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1 
covering by ~.-spheres. This gives a countable base for the space. Hence the 

space is separable. This proves lemma 6.5. 
Thus any non-separable metric space gives an example of a fully normal 

space which is not a LindelSf space, and any non-compact separable metric 
space gives an example of a LindelSf space which is not compact. 

We see easily that a closed subset of a LindelSf space is a Lindel6f space. 
However an arbitrary subset of a Lindel6f space need not be a LindelSf space, 
since any Tychonoff space can be imbedded as a subset of a compact space. 

We leave the proof of the following lemma to the reader. 

L e m m a  6.6. A regular space which is the union o/ a countable number o~ 
subsets with the Lindel6/ property is a Lindel6/ space. 

Thus any regular space which is the union of a countable number of com- 
pact sets is a LindelSf space. Hence such a space is also fully normal. That 
this is true when the space is also locally compact wo~s proved by DIEUDONN~ 
([8] p. 68). 

Exemple  6.7. Let X be the set of real numbers, - c ~  < x <  ~ .  Define a 
topology on X by taking as a base for open sets all intervals of the form 
a < x  < b. This gives us a LindelSf space, which is not metrizable. That each 
open covering of this space has a star-finite open refinement follows from 
lemma 6.3. See also BEGLE ([3] p. 579). SORGENFREY [27] proved that  the 
topological product of this space with itself is not normal. 

7. In this paragraph we give some lemmas which will be used in the sequel. 

L e m m a  7.1. Let ( Y , B )  be a pair and let U be an open subset o/ B. I] 0 
is an open set in Y and U c O then 

is open in Y. 

Proof.  V is open in B. 

Then 

V = U u ( O - B )  

Hence there is an open subset W of Y such that 

U = W n B .  

V = ( U n O ) o ( O - B )  

= (Wn Bn  O) u ( O - B )  

= (W n O) u ( 0 -  B) 

and V, being the union of two open sets, is open. This proves lemma 7.1. 

L e m m a  7.2. Let (Y,  B) be a normal pair and ~={Un} a countable star- 
/inite open covering o/ B. Then there is an open covering fl = {V~} o/ Y such that 

a) Un = Vn n B /or each n, 
b) fl is locally /inite. 

Proof.  By  lemma 3.6 {Un} is star-finite. Therefore, for fixed m 

(1) Finn F~=O 

for all indices n except a finite number. We want to define for each integer n 
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an open set W~ in Y such that  W~ ~ U~ and such that  for each pair (m,n) 
satisfying (1) we have 
(2) Wm " Wn  = 0 .  

The definition of the sets W~ will proceed by induction. 
suppose that  W~ is already defined for n < m. Let Wm 
that  for (m, n) satisfying (1) we have 

W ~ n W ~ = O  for n<m,  
(3) 

W ~ n U ~ - ~ O  for n>m.  

Let m >  1. I f m > l  
Um be chosen such 

Since Y is normal this is possible, because the union of all the sets that  Wm 
have, by (3), to avoid is a closed set (cf. lemma 3.2) which is disjoint to Urn. 
By (3) the sets W~ satisfy (2). 

Now put 
W= O W~. 

n 

Then, since {Un} covers B, W is an open neighborhood of B. By (2), {W~} is 
star-finite, hence locally finite in W. Choose an open set V such that  

B c V  and V ~ W  
and put 

V1 = U1 u ( Y - B ) ,  

V ~ = U ~ o [ ( W ~ n V ) - B ]  for n > l .  

Then fl={Vn} is a covering of Y. B y  lemma 7.1 each Vn is open. Since 
V~ c W~ for n > 1, { V~, n > 1} is locally finite in W, and since V~ r V, which 
is closed in Y, {V~, n > l }  is locally finite in Y. Thus fl is locally finite. 

L e m m a  7.3 (C. H. DOWKER). Let ( Y, B) be a collectionwise normal pair and 
{U~) a locally /inite open covering o/ B. Then there is an open covering fl = {Va} 
o~ Y such that 

a) VanB c U~ /or each ), 
b) fl is locally finite. 

For the proof see [11]. 

L e r n m a  7.4. Let (Y, B) be a /ully normal pair and a = {Ua} a locally /inite 
open covering o/ B. Then there is an open covering fl = {V~} o/ Y such that 

a) U~=VanB /or each 2, 
b) fl is locally /inite. 

Proof .  Since :r is locally finite iu B it is localiy finite in Y. Hence t h e r e  
t is an open covering f l '={V,}  of Y such that  each V' meets on137 a finite 

number of elements of a. Since Y is fully normal we can take an open star- 
refinement y =  {W~} of fl'. 

Choose some 20 E {~} and define 

V~o= U~ou ( Y -  B), 

V~= U~u[St(U~, y ) - B ]  for 4#20. 
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Then fl=(V~} is a covering of Y. Clearly a) is satisfied. Since each St(U~, ~) 
is open we obtain from lemma 7.1 that  V~ is open. To prove b) it will be 
sufficient to show, that  each W~ E~, meets only a finite number of sets V~. 
But if 2 # 2 0 ,  

W~n V~ ~ O 
implies 

W, n s t  (u~., y ) # O ,  
or, what is the same, 

(4) St (W~, y) n U~ # O. 

f 

Since y={W~} is a star-refinement of {V~}, there is a V~ such that 

r (5) St (W,, y) ~ V~. 

By (4) and (5): 
t 

V, n U~ ~ O, 

which for fixed # is true for at most a finite number of 2's. 
This proves lemma 7.4. 
For the case of a metric space Y, another proof has been given by C. H. 

DOWKER ([10] p. 643). 

Retract ion  and extension o f  mappings  

8. We shall show in w167 8-10 that  if Q is any one of the classes fl-i the 
only difference between the two concepts ANR(Q) and NES(Q) is that an 
ANR(Q) belongs to Q. Among Q-spaces the two concepts are identical. 

By definition any ANR(Q) belongs to Q. Therefore let X be a Q-space. 
Then if X is an NES(Q) it is an ANR(Q) (cf. 2.11). We want to prove the 
converse. 

T h e o r e m  8.1. Let Q be any o/ the classes fl-e. Then any ANR(Q) is an 
N E S  (Q). 

The analogous theorem on AR(Q) and ES(Q) is also true. 

T h e o r e m  8.2. Let Q be any o/ the classes fl--t. Then any AR(Q) is an 
E~(Q). 

We only prove theorem 8.1. The proof pf theorem 8.2 is similar. 

P r o o f  of  t h e o r e m  8.1. We have to consider all classes fl-t. For many of 
these classes the theorem has already been proved by other authors. 

The theorem was first proved by P~ORSUK ([6] p. 224)in the compact metric 
case. The separable metric case was proved by KURATOWSKI ([21] p. 276). 
For a simple proof of this case see [13] p. 273. The case of all metric spaces 
is proved in a recent paper by DUGUNDJI ([12] p. 363). 

Consider now the non-metric cases. The compact case can be proved by 
BORSUK'S method for the compact metric case (cf. SAALFRANK [26] p. 97). 
However all our non-metric cases can be proved by one method. This method 

325 



o. tIAr~r~ER, Mappings of metric and non-metric spaces 

was used by the author ([14] p. 376) to prove the normal case. The method 
is as follows. 

Let X be an ANR(Q), (Y, B) any Q-pair and /:B-->X any mapping. We 
want to find a neighborhood extension of /. In order to use the retract prop- 
erty of X we construct a new space Z containing X as a closed subset. 

The space Z is the identification space (cf. [1] p. 64) obtained from the free 
union X u Y of X and Y by identifying each y e B with/(y).6 X. There are two 
natural mappings ] : X -+Z and k : Y -+Z. A set 0 is open in Z if and only if ]-~(0) 
and k 1(O) are open. Since ] is a homeomorphism into Z, we can identify X 
with ](X) c Z  so that X is a subset of Z. The mapping kl Y - B  is a home- 
omorphism onto Z - X .  X is closed in Z. 

The mapping k:Y--+Z is an extension of ] : B ~ X  to Y relative to Z. If  
we prove that Z is a Q-space, it would follow, since X is an ANR(Q), that  X 
is a neighborhood retract of Z. Let r:  U-+X be the neighborhood retraction. 
Then the function F:k-~(U)--->X, defined by 

F(y)=rk(y)  for y6k- l (U) ,  

is a neighborhood extension of /. 
Hence, in order to complete the proof of theorem 8.1, we shall show that the 

space Z constructed above is a Q-space. This will be done in the following 
two paragraphs. 

9. We need some open sets in Z. They will be constructed in the following way. 

Lenanaa 9.1. _Let U'be an open set in X. Hence k-l(U) is open in B. _Let 
V be some open set in Y such that VnB=k- I (U) .  Then 

is open in Z. 

P r o o f .  Since 

we have 

w=uok(V) 

k ( V a B ) = k k - l ( ~ ) c U ,  

W = U o k ( V - B ) .  

Therefore, since k l Y - B  is a 1 -  1-mapping, 

�9 (1) k I ( W ) = k - ' ( U ) u ( V - B ) = V ,  

and, since k (V - B) r- Z - X, 

(2) i I ( W ) = W n X = U n X = U .  

But U is open in X and V is open in Y. Hence (1) and (2) imply that W 
is open. This proves lemma 9.1. 

Now let us start with the case of all normal spaces. The proof of this case 
was made by the author in [14] p. 376. (We do not need to repeat the proof 
here since the methods used in it will be found below in the proof of the 
coUectionwise normal case.) Hence theorem 8.1 is proved for normal spaces. 
This also shows that, in the remaining cases, Z is a t l e a s t  normal. 
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Let us use this last remark. Suppose X and Y are Lindel6f spaces. Then 
X u  Y is also a Lindel6f space. Z is the image of X u  Y under a continuous 
mapping. Hence, as is easily shown, Z has the Lindel6f property. But we 
know that  Z is normal, hence also regular. Thus Z is a LindelSf space. 

Similarly, when X and Y are compzet, Z is compact. 
There now remains two eases: the eolleetionwise normal case and the fully 

normal case. 
Let X and Y be colleetionwise normal and let {Aa} be any locally finite 

collection of mutually disjoint closed sets in Z. Then using lamina 4.2 we can 
find open subsets Ua of X such that  

A x ,  X c  U~, 

{U~} is locally finite, 

the sets Ua are mutually disjoint. 

Then {k -1 (Aa u U~)} is a locally finite collection of mutually disjoint dosed sets 
in Y. Hence we can find mutually disjoint open sets Oz in Y such that  

O~ = k -1 (A~ u U~). 

By lemma 7.1 we have, since Oa ~ k -a (Ua), that  the set 

Va =/c -1 (Ua) u (0~.-B) 
is open in Y. We have 

k -1 (Aa) = k -1 (Ua) u (k -1 ( A ) , ) - B )  c:: 

= k - i  (U~)  u (0~. - B )  = Va. 
Hence 

W~ = Uz u k (V~.) 

contains Aa. By lemma 9.1, Wa is open, Finally the sets Wz are mutually 
disjoint. For let 2 # 2 i . Then if 

WanWa nX #O, 
we have 

U~ n U h # O, 

which is impossible, since the sets Ua are mutually disjoint, and if 

Wan Wa, n ( Z - X )  # O, 
we have  

( k ( V 2 - x )  a (k (V~,)-X) ~ 0 
and therefore 

Van Vzl # 0 

which is impossible, since the sets Vz are mutually disjoint. 
Thus the collection {Wa} shows tha t  Z is eollectionwise normal. 
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t 0  Finally we consider the fully normal c~se. We need the following 
lemma. 

L e m m a  lO.l .  Let X and Y be /ully normal spaces and let {U~} be any 
locally /inite open covering o/ X.  Then there is in Z a locally /inite open collec- 
tion {W~,} such that 

Ua=W~nX. 

I f  we already knew that  Z is fully normal this would be a consequence of 
lemma 7.4. 

Proof .  The given covering ~ = {U~} is locally finite in X. Hence there is 
an open covering ~ ' =  {U',} of X such t h a t  each U'~, meets only a finite number 
of elements of ~. We may assume that  ~' is locally finite. 

Once more, since ~' is locally finite, there is an open covering : r  of 
X such that  each U:' meets only a finite number of elements of a'. 

Since B = k - I ( X ) ,  we have that  {k-~(U~)}, {k-l(U'~)}, and {k-~(U,")} are 
! 

open coverings of B. Each set k -1 (U,) meets only a finite number of sets 
- 1  ~ - p l .  - 1  v k -I(U~`), and each set k (U~) meets only a finite number of sets k (Ug). 

! 

Each k -I(U~) is open in B. Put  

! ! 

V. =k -1 (U.) u ( Y - B ) .  

r 
Then f l={V,}  is an open covering of the fully normal space Y. Let  us take 
an open star-refinement 7 =  {G,} of ft. Set 

V~ = k - '  (U~) u [St (k -1 (U~), 7) - B]. 

Since St(k -1 (U~.),7) is open in Y and contains k -1 (U~), w e  obtain from lemma 
7.1 that  V~ is open. Hence by lemma 9.1, the set 

Wa = U~ o k (Va) 

is open in Z. Since U~ = W~ n X, our lcmma is proved when we have shown 
that  {W~} is locally finite. Hence for each z e Z  we want to find a neigh-  
borhood meeting only a finite number of sets W~. There will be two cases. 

I f  z e Z - X ,  it will be sufficient to prove that  {V~} is locally finite in Y. 
Take some G~ e 7. Then 

(1) G~n V ~ O  

implies 

so that  
G~. St (k -1 (U~), 7) ~ O, 

(2) St (G~, 7 ) .  k-1 (U~) ~ 0 .  

But 7 is a star-refinement of ft. Thus 

t 

St (G~, 7) c V. 
for some /x. Then (2) implies 
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[k (U,) u ( Y -  B)] n k- '  (Ua) # 0 

and, since k:i(Ua)cB, 
t 

k -~ (U.) n k -1 (f~) # O. 

But for fixed /~ this is possible only for a finite number of 2's. Hence for 
fixed ~, (1) is true for at most a finite number of/Us. Hence, since {G~} 
covers Y, {Vx} is locally finite in Y. 

If z E X, we construct a neighborhood of z in Z as follows. Starting with 
some U~' containing z we put  

V:t=k-l(V H) u [St (]~-I(U:'), ~ / ) -B]  
and 

w : ' :  k ( v " )  u u : ' .  

Then W,' is a neighborhood of z (by lemmas 7.1 and 9.1:). Now let 

(3) 

If 

we have 

W " n W a # O .  

W" n Wa~X, 

U:' n Ua#O. 

But U:' only meets a finite number of sets U~, each meeting only a finite 
number of sets U~. Hence, since v is fixed, A is by (3) restricted to a finite 
number of values. 

Therefore suppose that  there is a point z 1 such that  

z lEW~"n Wz and z ~ E Z - X .  
Then 

yl=]C-l(Zl) E~-l(W; ') n k-l(W~.)= V:' n V~cSt(k-I(U"), Y) n St (k-l(Ua), y). 

This implies 
St ({yl}, y) n k-~ (U: ') # O ,  

But  y is a s tar-refinement 'of  ft. Hence 

St ({y~}, y ) c  V'~=k-~(V',) u (Y -B)  

for some #. We obtain 
t t f  k-~(u.) n k-'(u~ ) # o, 

k -~ ( v ' . ) .  k-" (u~) ~ o. 

Again we see tha t  since v is fixed, 2 is by (3) restricted to a finite number" 
of values. 

Hence {Wa} is locally finite. This proves lemma 10.1. 
Now we use lemma 10.1 to prove the fully normal case of theorem 8.1. 
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Suppose X and Y are fully normal. Let  ~={ 0 ,}  be any open covering of 
Z. We want to show that  there is a locally finite open refinement of ~. 

Consider the open covering {0, o X} of X. Since X is fully normal there is 
a locally finite open refinement {U~} of {0, n X}. For each U~ choose some. 
0,~. such that  U~c 0,~. By lemma 10.1 there is a locally finite open collection 
{W~} in Z such that  U~=W~n X. We may assume that  W ~ O ~  otherwise 
replacing W~ by Wz n 0,~. 

Pu t  
W=uW~.  

3. 

This is an open set in Z containing X. Hence k-~(W) is open in Y and contains 
B. Y is normal. Hence we can take an open set V* in Y such that  

V* ~ Y -  k -~ (W), 

V* n B = O .  

Since V* is a closed subset of Y, V* is fully normal. Hence there is a locally 
finite open refinement {V~} of the open covering 

{k-l(o~).  W} 

of V*. V* is open in -*  * V* V , hence V~ n is open in Y - B .  Pu t  

w ; = k ( v ;  n v*). 

Since ]~ I Y - B  is topological onto the open subset Z , - X  of Z, W~ is open in 
Z. The collection {V~o V*} is locally finite in V -  Hence {W,} is locally 
finite in k(V*), which is clcsed in Z. Thus {W*} is locally finite in Z. ;t 

Now consider the collection fl consisting of all 'the sets Wz and all the sets 
W* ,. fl is a covering of Z. For 

o W , , = k ( o  (V~ n V*) )=k(V*)~k (Y -k - I (W) )=Z  - W. 

Since all the sets Wa and all the sets W~ are open in Z, fl is an open 
covering. Finally fl is locally finite, for {Wa} and {W*} are locally finite col- 
lections in Z. 

As is easily verified, fl is a refinement of ~. Hence fl is a locally finite 
refinement of u. This proves that  Z is fully normal. 

This completes the proof of theorem '8.1. 

R e m a r k  ~10.2. In the metric (but not compact) cases the above method 
cannot be used since in general the space Z will not be metrizable. However, 
HAUSDORFF ([16], cf. also [2] p. 16) has shown that  there is a metric on Z, 
giving Z another topology, and a mapping k : Y ~  Z such tha t :  

a) X is imbedded as a closed subset of Z. 
b) k is an extension of /:B--+X relative to Z. 
c) k i Y - B  is a topological mapping onto Z - X .  

I f  we use this metrizable topology on Z our method works also in the metric 
cases. 
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A simple proof of this theorem of HAUSDORFF for the separable metric case 
was given by  KURATOWSKI [22]. 

1 t .  For Tychonoff spaces theorems 8.1 and 8.2 cannot be true, since there 
is no NES(Tychonoff) (or ES(Tychonoff)) which is Hausdorff, except the space 
consisting of a single point (cf. lemma 2.7). However  we have the following 
theorems, proved by Hu  ([17] p. ]052). 

T h e o r e m  i i . i .  Any ANR(Tychono][) is an NES(normal). 

T h e o r e m  t l . 2 .  Any AR(Tychono]]) is an ES(normal). 
These theorems can also be proved by the method used above. For if X is 

an ANR(Tychonoff) and (Y, B) is a normal pair we can define the space Z as 
in w 8. Then we only have to prove tha t  Z is a Tychonoff space. But  this 
is easily done. 

Contrac t ib i l i ty  

12. For compact spaces BORSUK ([6] p. 229) proved tha t  any AR is con- 
tractible and tha t  conversely any contractible ANR is an AR. In  this paragraph 
we shall take up the s tudy of the corresponding relationships between AR(Q), 
ANR(Q), and contractibili ty for other classes Q. 

We need the following lemma. Let  I denote the closed interval 0 < t < l ,  
and  denote by X X I the topological product of a space X and I .  

L e m m a  t2.1.  Let Q be any o/ the classes ~-t. Then, i[ X is a Q-space, 
X x I is a Q-space. 

In fact, this is well-known if Q is any of the classes ~-t.  I t  was proved 
for fully normal spaces by DIEUDONNI~ ([8] p. 70) a n d  is proved for LindelSf 
spaces in an analogous way. , 

R e m a r k  12.2. This lemma also holds for Tychonoff spaces. Whether  it 
holds for normal spaces "~)r for collectionwise normal spaces is still an open 
question. 

T h e o r e m  i2.3.  Let all Q-spaces be normal. Then any contractible NES(Q) is 
an ES(Q). 

Proof .  Let  X be an NES(Q) which is contractible. Then there is a homotopy 

such tha t  for any  x E X  
h : X •  

h (x, O)=x, 

h(z, 1) =z0, 

where x o is some point in X. Let  (Y, B )be  any Q-pair a n d / : B - +  X any given 
mapping. Since X is an NES(Q) we have a neighborhood extension g:O-->X 
of ] to some open set O ~ B .  Since Y is normal we can take a mapping 
e : Y-+ I such tha t  

e ( y ) = 0  for yEB,  

e(y) = 1 for y e some open set containing Y -  O. 
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Define F :  Y--->X by 
F(y)=h(g(y) ,  e(y)) for yE 0, 

F ( y ) = x  o for y e  Y - O .  

Then F is easily proved to be continuous. Since F I B = / ,  we conclude that  X 
is an ES(Q). 

T h e o r e m  12/, .  Let Q be any o/ the classes (~-t. Then any AR(Q) ia con- 
tractible. 

Proof .  Let  X be an AR(Q). By lemma 12.1, X • I is a Q-space. Consider 
the closed set B = X • 2 1 5  of X •  Define / :B-->X by 

/(x, O)=x, 

/(x, 1) =x0, 

where x 0 is some point of X. Since, by theorem 8.2, X is an ES(Q) there is 
an extension h : X  • I - + X  o f / .  The existence'of h shows that  X is contractible. 

T h e o r e m  t2.5.  Let Q be the class o/ normal spaces or the class o/ collec- 
tionwise normal spaces. Then any /ully normal AR(Q) is contractible. 

Proof .  For such a space is an AR(fully normal) and hence contractible. 
Let  us sum up the main results in this paragraph in 

T h e o r e m  12.6. Let Q be any o] the classes fl-t. Then a /ully normal space 
is an AR(Q) i/ and only i] it is a contractible ANR(Q). 

R e m a r k  12.7. This is not true for the class of Tychonoff spaces. For we 
shall see in example 17.4 that  a real line is a contractible ANR(Tychonoff) 
which is not an AR(Tychonoff). 

Different classes Q 

13. Let, for a while, Q and Q1 be two classes out o~ ~-t ,  such that  Q ~ Q1. 
Let  X be an ANR(Q). Under what conditions is it  true that  X is also an 

ANR(Q1)? And, if X is an AR(Q), when is it an AR(Q1)? We shall solve 
this problem for some classes Q and Q~. In particular the problem will be 
solved when Q is any of t h e  metric classes (i.e. T-t)  and Q1 is any of the 
classes that  contains all metric spaces (i.e. ~-(~). For the solution see theorems 
17.1 and 17.2. 

If X is an ANR(Q) then X E Q and hence X e Q1- Thus, if all Ql-spaces are 
normal, X is an ANR(Q1) if and only if X is an hIES(Q1) (see theorem 8.1). 

T h e o r e m  13.t .  Let all Q-spaces be /ully normal, and let all Ql-Spaces be 
normal. Then an AR(Q) is an AR(Q1) i/ and only i/ it is an ANR(Q1). 

Prcof .  For, by theorem 12.4, an AR(Q) is contractible. Hence theorem 13.1 
follows from theorem 12.6. 

Therefore, if we know which ANR(Q)'s are ANR(Q1)'s , we also know which 
AR(Q)'s are AR(Q1)'s. 

When Q1 is the class of Tychonoff spaces the problems for ANR's and for 
AR's are different and will be treated separately. 
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T h e o r e m  t3.2.  Any ANR(comp. metr.) is an ANR(normal). 

proof .  For an ANR(comp. metr.) is a neighborhood retract  of the Hilbert  
cube I~,  and I,~ is an ES(norma]). (Cf. 2.15 and example 2.19.) 

T h e o r e m  13.3 .  Any ANR(compact) is an ANR(normal) ([26] p. 95). 

P rooL  For an ANR(compact) is a neighborhood retract  of a Tychonoff cube, 
and any cube is an ES(normal). (We mean by a Tychonoff cube the topological 
product of uncountably many closed intervals.) 

Thus, for these two classes Q, any ANR(Q) is an ANR(Q1) for any Q I ~ Q  
such that  all Ql-spaces are normal. In fact, this is true even if Q1 is the class 
of Tychonoff spaces (see theorem 16.2). 

T h e o r e m  13.4. Any ANR(sep. metr.) is an ANR(metric). 

Proof .  Fox  ([13] p. 273) proved that  an ANR(sep. metr.) X is an NES(sep. 
metr.). His proof can be trivially changed so that  it shows that  X is also an 
NES(metric). 

Thus for metric spaces there is essentially one concept: ANR(metric). An 
ANR(sep. metr.) is a separable ANR(metric) and an ANR(comp. metr.) is a 
compact ANR(metric). 

t 4 .  In all cases considered so far any ANR(Q) is an ANR(Q1). However 
this is not in general true. The author proved in [14] p. 378 that  a necessary 
and sufficient condition for an ANR(sep. metr.) to be an ANR(normal)is  tha t  
it  is an absolute G~. This result can be strengthened in various ways. Several 
of these are due to C. H. DOWKER [11]. 

By an absolute G~ we mean a metric space which, whenever imbedded in a 
metric space, is a G~, i.e. a countable intersection of open sets. All locally 
compact metric spaces are absolute G~'s (cf. lemma 16.4). The class of all 
absolute G~'s is known ,to be the same as the class of all topologically complete 
spaces, i.e. spaces which can be given a complete metric. (Cf. [20] Chapter 3.) 

T h e o r e m  14.1. Any metric ANR(/ully normal) is an absolute G~. 

ProoL  This proof will be a modification of the proof of theorem 4.2 of 
[14] p. 378. Let X be a metric ANR(fully normal) and let X be a subset of 
any  m.etric space Y. We have to prove that  X is a G~ in Y. 

We construct a new space Z. The points of Z shall be in 1-1-correspondence 
with t h e  points of Y .  Let  h(z)E Y be the point corresponding to z E Z under 
this 1-1-correspondence. I~et X ' = h  -l(i). We define a topology on Z by taking 
as its open sets all sets o~ the form 

h -1 (0) o A, 

where 0 is any open subset of Y and A any subset of Z - X ' .  Then Z is 
Hausdorff. Let  us show that  it is fully normal. 

Let  ~=(U~} be an open covering of Z. Each U~ is of the form 

U~ = h -~ (0~) u A~, 

where Oa is an open subset of Y and A ~ = Z - X ' .  The set 

U=uO~ 
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is open in Y and X c  U. U is a metric space, hence fully normal. Thus we 
can take an open star-refinement {Vt, } of {Ok}. Then {h-l(V,)} is an open 
collection in Z ,  covering h - I ( U ) ~ X  '. Complete this collection to an open 
covering fl of Z by adding the collection of points of Z - h - I ( U ) ,  each such 
point being an open set. That  fl is a star-refinement of ~ is easily verified. 
Since ~ is arbitrary,  this proves tha t  Z is fully normal. 

Now X '  is homeomorphic to X, hence an ANR(fully normal). Since X '  is 
closed in Z and Z is fully normal, X '  is a neighborhood retract  of Z. 

That  X is a G~ in Y now follows as in [14] t). 379. A simplification of the 
arguments has been given in [11]. 

T h e o r e m  14.2 (C. H. DOWKER). Any ANR(metric) which is an absolute G~ 
is an ANR(coll. normal). 

For the proof see [11]. We mention at the same time the following fact. 
T h e o r e m  14.3. Any Banach space is an AR(coll. normal), x 

Proof .  This follows here from theorem 14.2, For it is known tha t  a Banach 
space is an AR(metric) (cf. [12] p. 357), and a Banach space has a complete 
metric and is therefore an absolute Gs. However, when proving theorem 14.2, 
C. H. DOWKER needs theorem 14.3 for the case of a generalized (i.e. not 
necessarily separable) Hilbert  space, and he gives a direct proof for this case. 
This proof can be applied to an arbi trary Banach space. 

T h e o r e m  14.4. A collection o/ non-void mutually disjoint open sets in an 
NES(normal) is at most countable. 

P r o o f .  Let {04} be a collection of non-void disjoint open sets in the NES 
(normal) X. Suppose A = {~t} is uncountable. 

BI~O ([4] p. 184) has shown tha t  for every uncountable set A =  {~t} there is 
a normal space Y with a locally finite collection {ys} of disjoint points which 
do not have disjoint neighborhoods. The space Y is therefore not  collectionwise 
normal. 

Let  now B be the subset of this space Y consisting of all the points yx. 
Then, since {y~} is locally finite, B is closed in Y. Define a function ] : B ~ X  
by selecting for each ya some point /(ya)eOk. Since {y~} is locally finite, / is 
continuous. Hence there is a neighborhood extension of [, say F :  0 - + X .  But  
the sets F-~(O~) are disjoint neighborhoods of the points yx. This is a con- 
tradiction, which proves theorem 14.4. 

T h e o r e m  14.5. Any ]ully normal NES(normal) is a Zindel6] space. 

Proof .  Let X be a fully normal NES(normal) and ~ = { Ux} an open covering 
of X. Let  f l={V,}  be an open star-refinement of ~. We may  assume tha t  no 
V, is void. Using ZORN'S lemma (cf. [23] p. 5) we take a collection y =  {V,~} 
of disjoint elements of fl such tha t  for each F , e f l  there is an element of y 
meeting F , .  Then 

= { s t  

is an open covering of X. But  from theorem 14.4 we have tha t  y is countable. 
Now 5, which is also countable, is a refinement of cr This proves that  X is 
a LindelSf space (cf. lemma 6.2). 

1 That any Banach space is an AR(fully normal) was known to AREAS ([2] p. 18). 
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T h e o r e m  1~.6 (C. H. DOWKER). Any  metric NES(normal) is separable. 

Proof .  For by theorem 14.5 it is a metric Lindel5f space. Hence by lemma 
6.5 it is separable. 

T h e o r e m  14.7. Any  ANR(sep. metr.) which is an absolute G~ is an A N R  
(normal). 

For the proof see [14] p. 380. 

i5 .  Now let Q1 be the class of Tychonoff spaces. Then we cannot apply the- 
orem 12.6, but have to consider ANR(Tychonoff) and AR(Tychonoff) separately. 

We need some preliminaries on Tychonoff spaces. As is well-known (cf. [23] 
p. 29) the Tychonoff spaces are those spaces which can be imbedded in a 
suitable Tychonoff cube. By a Tychonoff cube we mean the topological product 
of uncountably many closed intervals. Let  A = {2} be the uncountable index 
set, and choose for each ~ a closed interval I~={t~lO <t~< 1}. Then a point 
of the Tychonoff cube I ' ,  which is the topological product of the intervals I~, 
can be written in the form {t~}, where for each 2, t~ is a number of the interval 
I~. Let  o denote the point of I '  having t~ = 0 for all ~'s, and denote for each 
~t by I~ the set of all points in I '  for which t~ is arbitrary but t~l=O for 
21 ~ 2. I~ is a closed line segment in I ' .  

L e m m a  15.1. Let O'n be a sequence o/ neighborhoods o/ o. Tken 

o o  

n O" 
n = l  

contains all segments I'~ except /or at most a countable number o/indices ,~. Hence, 
since A is uncountable, there is a ~ such that 

t 

I'~ c On /or every n. 

Proof .  This follows from the fact that  each neighborhood of o contains all 
segments I~- except for at most a finite number of indices ~. 

L e m m a  t5.2.  The space I ' - { o }  is not normal. 

P r o o f .  Let us change the notations slightly. Denote the Tychonoff cube by 
I • I '  where I = { t l o < t <  1} and I '  is a Tychonoff cube. Let  o e I '  be as above. 
We want to show that  the space 

z x z ' - { o }  x {o} 
is not normal. 

Consider the two closed subsets 

A--  ( Z -  {0}) X {o} and B--  {0} X ( Z ' -  {o}). 

They _ are disjoint. Let  us show that  for any neighborhood U of A we have 
that  U meets B. 

In fact let tn-+0 be a sequence of positive numbers in I (e.g. t n = l )  �9 Then, 
\ 

since U is a neighborhood of {tn} X {o}, U contains a set of the form {tn} X O'n, 
where O~ is a neighborhood of o in I ' .  Using lemma 15.1, we get an I~ such 

t ! 
that  I ~ c On  for each n. Then 
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{tn} X I ~ c  U for each n. 
Hence 

{0} • (I5. - {o}) c U, 

so that  U meets B. This proves lemma 15.2. 

R e m a r k  15.3. The arguments of this proof are essentially the same as those 
used by TYCHONOFF in [32] p. 553. Instead of the product I X I '  he considers 
the product of two spaces in which tile points are some ordinals. (Cf. [18] p. 154.) 

Now let us take up the question: which metric spaces are ANR(Tychonoff)? 
This is answered by theorems 15.4 and 16.6. The corresponding problem for 
AR(Tychonoff) is solved by theorems 15.5 and 16.3. 

T h e o r e m  15.4. Any metric ANR(Tychono//) is separable and locally compact. 

Proof .  Let  X be a metric ANR(Tychonoff). Then, by theorem 11.1, X is 
an NES(normal) and therefore, by theorem 14.6, separable. 

Imbed X in a Hilbert cube I~. Let I '  be a Tychonoff cube. In the product 

I~ X I ' ,  

which is again a Tychonoff cube, we consider the set 

T=X X {o} v I~ X ( I ' -  {o}). 

T is a Tychonoff space and X X {o} is a closed subset of T. Since X X {o} 
is homeomorphic to X and X is an ANR(Tychonoff), there is an open set 0 
in T containing X X {o} and a retraction r:O-+X X {o}. 

Suppose that  X is not locally compact. We assert that  then there is a point 
u E I~ and a neighborhood O' of o in I '  satisfying 

(1) u E X: (closure in I~), 

(2) ueX, 

(3) {u} • ( o ' -  {o}) o. 

We shall prove below that  (1), (2), and (3) lead to a contradiction. 
Since X is not locally compact there is a point x0 E X such that  no neigh- 

borhood of Xo in X is compact. We have {x0} X {o}cO.  Since O is open in 
T, there is therefore a closed neighborhood U of x o in I~ and a neighborhood 
O" of o in I '  such that  

{x0} X {o} ~ (V • O') n T = O. 

We intend to choose u E U. Then (3) is immediately satisfied. 
The set U n X  is a neighborhood of x 0 in X, hence it is not compact. 

Therefore Un  X cannot be closed in U, since U is compact. Thus we can 
take a uE U - X  for which uE UnX. This point therefore satisfies (1)and  (2). 

Now to get a contradiction out of (1), (2), and (3) take for each n = 1, 2, . . . 
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(8) 

(closure in X). 
is proved. 

where S(u,  1)stands for the n!--sphere of u in I~.  From ( 2 ) w e  have 

(4) fl Un = O 
n = l  

and from (1) we see that  no U~ is void. Hence let us take x~E U~. Then 
x ~ u .  The set U~ is open in X, so that  r-l(Un X (o}) is open in T. Hence, 
since 

{xd x {o}r x {o}), 

we have a neighborllood 0', of o in I '  such that  

{*n} X G e r - ' ( U ~  X {o}), 
o r  

(5) r ({x~} x o;) c v= x {o}. 
t p * 

Now apply lemma 15.1 to the sequence 0', 0~, 00. . . . . .  We get an Ia con- 
rained in all sets 0 ' ,  0~, O' ' 2 , . . .  By (3) and (5) we obtain 

(6) {u} x ( 5 -  {o}) r o, 

(7) r ({xn} X I~) r U~ X {o}. 

For  any m>n we have by (7), since Umr 

({x,,} x 5 ) :  u~ x {o}. 

Thus, since r is continuous and by (6) defined on {u} X ( I ; -{o}) ,  and since 
Xm "--> U~ 

r ({u} X ( I j -  {o})) ~ U~ X {o} for every n 

But U~ c U~_~, so that  (8) contradicts (4). Thus theorem 15.4 

Theorem i 5 . 5 .  Any metric AR(Tychono//) is compact. 
Proof .  Let  X be a metric AR(Tych~)noff). As in the previous proof we see 

tha t  X is separable. Imbed X in I~ and consider the spaces I~ X I' and T 
as above. Since X is an AR(Tychonoff) we have a retraction r :  T-->X X {o}. 

I f  X is not compact, X is not closed in I~ .  Take any point u satisfying 
(1) and (2). Then (3) is true for instance for 0 '=I '  (since O=T). The same 
contradiction as above now proves theorem 15.5. 

1 6 .  -Theorem 16.1. Any AR(compact) is an AR(Tychono]]). 
Proof .  Suppose X is any AR(compact). Let  X be a closed subset of a Tycho- 

noff space Z. Imbed Z in a Tychonoff cube I'. Then X, being compact, is 
closed in I'. But X is an AR(compact) and I' is compact. Therefore X is a 
retract of I'. Hence X is also a retract  of Z. 

T h e o r e m  t6.2.  Any ANR(compact) is an ANR(Tychono//). 
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Proof .  This is proved in an analogous way. 

T h o o r e m  16.3 (Hu). Any  AR(comp. metr.) is an AR(Tychono/]) ([17] p. 1053). 

Proof .  This follows from theorem 16.1. For by theorems 13.1 and 13.2 an 
AR(comp. metr.) is an AR(compact). 

Lerrmaa 16.4. Let a locally compact space X be imbedded in a Hausdor][ 
space X' .  Let X denote the closure o/ X in X' .  Then X is open in X .  (Cf. [7] 
p. 69.) 

Proof .  Let x E X  and let U be a compact neighborhood of x in X. That U 
is a neighborhood of x can be expressed by 

(1) x r X - U 

(closure in X'). Now, since U is compact, U =  U. Hence 

so that  

(2) 

From (1) and (2): 

X = ( X - U )  u U = X - U  u U, 

X - X c X - U .  

xcX-x . .  

Since x is arbitrary this implies that  X -  X is closed. Hence X is open in X.  

R e m a r k  16.5. Among Tychonoff spaces this property characterizes the locally 
compact spaces. For then X'  can be chosen compact, hence X is an open 
subset of the compact space )~. 

T h e o r e m  16.6. Any separable, locally compact ANR(metric) is an A N R  
( Tychono/]). 

Proof .  Let X be a separable ANR(metric). If X is compact it is an ANR 
(Tychonoff) by theorems 13.2 and 16.2. Let X be locally compact but not 
compact. Suppose X is a closed subset of any Tychonoff space Z. 

We need the following spaces and sets: 

a) A Tychonoff cube I ' ,  three subsets Z, X, )~. 

b) A Hilbert cube I~, two subsets Y, :Y. 

They are defined as follows. Imbed Z in a Tychonoff cube I ' .  Let  X denote 
the closure of X in I ' .  Then X is compact. Let further Y be a space homeo- 
morphic to X. Use the well-kno•n fact that  a locally compact space Y can 
be imbedded in a compact space Y, such that  Y -  Y consists of a single point, 
say ~ (cf. [23] p. 23). Since Y is separable metric, /7 is separable metric and 
can therefore be imbedded in a Hilbert cube I~. 

Let  h:X-+ Y be a homeomorphism. Our theorem is proved, when we have 
s h o w n  that there is an extension of h to some neighborhood of X in Z. 

First, extend h relative to ~" to a mapping j : X - + Y  defined by 
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j ( x )=h(x )  for x E X ,  

j ( x )=~  for x e X - X .  

To prove that j is continuous let U be open in Y. Then if ~ e U ,  Y - U  is 
a compact subset of Y. Hence 

j-1(s u) :h-l(~,_ u) 

is compact. Thus j - I (U)  is the complement of a compact subset of X, hence 
open in X. If ~r U, j - I (U)=h- I (U)  is open in X. But X is open in X by 
lemma 16.4. Hence j-~(U) is open in X. Thus i is continuous. 

Secondly, extend j relative to 1~ to a mapping k:I ' -+ I~. This is always 
possible since X is closed in I '  and I~ is an ES(normal) (cf. example 2.19). 

Now Y, being homeomorphic to X, is an ANR(metric). The set Y = Y o {~} 
is closed in I~ so that  Y is closed in Io,-{~}.  Therefore we have a retraction 
r : O - + Y  of a set O, which is open in I~-{~)}, hence also in I~. The set 
k-~(O) is therefore open in I ' .  I t  contains X. Hence 

rk[k-X(O) a Z:k-~(O) n Z-+ Y 

is a neighborhood extension in Z of r k ] X = h .  This proves theorem 16.6. 

R e m a r k  t6.7. The fact that X is closed in Z was never used in this proof. 
That this assumption is superfluous can be seen directly from lemma 16.4. 
For since X is open in )~ (closure in Z), X is closed in some open set in Z, 
i.e. in a neighborhood of X in Z. 

17. Now let us sum up the results about ANR(metric) and AR(metric) obtained 
in w167 13-16. 

T h e o r e m  t7.1. Let X be an ANR(metric). 

a) I /  X is an ANR(/uUy normal) (in particular i / X  is an ANR(coll. normal)), 
then X is an absolute G~. (See 14.1.) 

b) I /  X is an absolute G~, X is an ANR(coU. normal) (hence also an ANR(/ul ly  
normal)). (See 14.2.) 

c) X is an ANR(normal) i/ and only i/ X is a separable absolute G~. (See 
14.1, 14.6, 14.7.) 

d) X is an ANR(Tychono/]) i/ and anly i/ X is separable and locally compact. 
(See 15.4, 16.6.) 

T h e o r e m  17.2. Let X be an AR(metric). 
a) I[ X is an AR(/ully normal) (in particular i~ X is an AR(coU. normal)), 

then X is an absolute G~. (See 14.1.) 
b) I[ X is an absolute G~, X is an AR(coll. normal) (hence also an AR(/ully 

normal)). (See 13.1, 14.2.) 
c) X is an AR(normal) i/ and only i] X is a separable absolute G~. (See 13.1, 

14.1, 14.6, 14.7.) 
d) X is an AR(Tychono]]) i] and only i~ X is compact. (See 15.5, 16.3.) 

Example  17.3. A closed interval is a compact AR(metric) and so it is an 
AR(Tychonoff). Also a Tychonoff cube is an AR(Tychonoff) (by theorem 16.1). 
(Cf. example 2.19.) 
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E x a m p l e  17.4. A real line is a separable locally compact AR(metric). Hence 
it is also an absolute G0 and therefore an AR(normal). I t  is an ANR(Tychonoff) 
and contractible. But  it is not an AR(Tychonoff) since it is not compact. 

E x a m p l e  t7.5.  The topological product of a countable number of real lines 
is an AR(normal) (cf. 2.17). Hence it is an absolute Go. I t  is not locally 
compact, however, and therefore it is not an ANR(Tychonoff). 

Exa rnp le  17.6. Any Banach space is an AR(coll. normal). If  it is not 
separable it is not an AR(normal). 

E x a m p l e  17.7. The author gave in [14] p. 381 an example of a space which 
is an AR(sep. metr.) but  not an absolute Go. This is therefore not an AR(fully 
normal). Whether it is an AR(Lindel6f) is still an unsolved problem. 

E x a m p l e  17.8. I t  is easy to prove that  if a product X = X  1 • X 2 of Tycho- 
neff spaces X x and X~ is an ANR(Tychonoff) then so are also X 1 and X2. 
Thus we see from example 17.5 that  the product of uncountably many real 
lines is not an ANR(Tychonoff). This space is a Tychonoff space which is not 
normal ([29] p. 981). I t  is an ES(normal). (Cf. example 2.20.) 

E x a m p l e  t7 .9.  Let  X be the space I ' - { 0 }  of lemma 15.2. I t  is not normal. 
I t  is an open subset of I '  which is an ES(normal). Hence X is an NES(normal) 
(cf. 2.16). Since X is contractible it is an ES(normal) by theorem 12.3. 

We assert that  X is an ANR(Tychonoff). In fact this can be proved by 
the method used in the proof of 16.6. For X is locally compact, and adding 
the single point o to X we get the eompact space I '  which is an ES(normal). 
We leave the details to the reader. (Cf. example 23.3.) 

Local NES (Q) 

18. We now take up the following problem: Is the property of a space X 
to be an NES(Q) a local property? The answer is yes if all Q-spaces are fully 
normal. I f  Q is the class of collectionwise fformal spaces or the class of normal 
spaces it is true when X satisfies some conditions. This problem has been 
studied for compact metric spaces by YAJI~A [35] and for separable metric 
spaces by  the author ([15] p. 392). 

First we need some facts on coverings and their nerves. Let ~ =  {'Uz} be a 
covering of a space X. By the nerve of :r we mean the abstract  simpliciai 
complex whose vertices are the sets U~ and in which 

. . . ,  n} 
is a simplex if and only if 

n 
fl U~ # O. 

fffil 

This simplex will often be denoted by 

(~1 . . . . .  ,~n). 

I f  a and al are simplices of nerve ~ we mean by 

O" "~o" 1 o r  o ' l ~ - a  
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that  a is a proper face of o~. Let St o denote the star of o, i.e. the set of 
simplices Ol such tha t  o1~-a. 

Some properties of the covering :r correspond to certain properties of nerve 
a. Thus :r is star-finite if and only if nerve :r is locally finite, i.e. the star of 
each vertex is a finite complex. 

Now suppose that  in nerve ~ the star of each vertex is finite dimensional. 
Then for each U~ E :r there is an integer m. such that  each point of U~ belongs 
to at most n~ elements of :r We call such a covering elementwise uniformly 
point-finite. 

C. H. DOWKEa ([9] p. 209) has proved the following lemma. 

L e m m a  18.1. Let ~ be a locally /inite open covering o/ a normal space X. 
Then :r has a locally /inite open re/inement which is elementwise uni/ormly point- 
finite. 

19. Defini t ion 19.1. A space X is called a local NES(Q) if each p o i n t  of 
X has a neighborhood which is an NES(Q). 

This terminology is justified by 2.16. A local NES(Q) has an open covering 
by  NES(Q)'s. 

We give in w167 21 and 22 the proofs of the following three theorems. 

T h e o r e m  19.2. Let all Q-spaces be /ully normal. Then any local NES(Q) is 
an NES(Q). 

T h e o r e m  19.3. Let all Q-spaces be collectionwise normal. Then any ]ully 
normal local NES(Q) is an NES(Q). 

T h e o r o m  t9.4.  Let all Q-spaces be normal. Then any Lindel6[ space which 
is a local NES(Q) is an NES(Q). 

The proofs will be essentially the same for all three theorems. Since they 
are technically a little complicated, let us first give the main ideas. 

Consider the simple case when X is the union of two open NES(Q)'s, say 
X = 0 1  u 0 v Lvt (Y, B) be a Q-pair and ] : B ~ - X  a mapping. Then we shall 
prove tha t  / has a neighborhood extension (cf. [15] p. 392). This proof will be 
divided into two parts. 

The first part  consists of some preliminaries, which in this simple case are 
rather  trivial. B is covered by the two open sets 

/-1 (01) and /-1 (0~), 

and Y is covered by the two open sets 

/-~(0~) u ( Y - B )  and /-~(0~) u ( Y - B ) .  

Since Y is normal there is a closed refinement of this covering, say Y = I11 u ](2. 
Put 

B I = Y l n B  and B~.=Y~nB.  

To avoid a trivial case, let B~ n B 2 # O. We have 

/ ( B 1 ) c 0 1  and / (B2)r  v 

In  the second par t  we use the fact that  O, and 0~ are NES(Q)'s. We extend 
][Bx relative to 01 to a mapping FI :  U i--> 01, where U1 is a neighborhood of 
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B 1 in ]71. Similarly we take a neighborhood extension F~: U2~O 2 of / ]B 2 
relative to 02. 

Now if 

(1) F l ( u ) -  Fz(u ) for UE U 1 n Us, 

we could define a mapping F: Ux u Uz->X uniquely by 

F (u) = F1 (u) for u E U;, 

F ( u ) = F  2(u) for u e U  z. 

Then F would be the sought-for neighborhood extension of /. 
However, in order to get the equality (1) we have to start by taking a 

neighborhood extension of / IBt  n B z in Y1 n Y2 relative to 01 n Oz. The whole 
process can be described as follows. 

The nerve of the covering {Y~} consists of three elements, the 1-simplex 
(1, 2) and the 0-simplices (1) and (2). Starting with the set Y1 n Yz, which 
corresponds to the 1-simplex (1, 2) we take a neighborhood extension of / IB~ n B z 
in Y1 n Y2 relative to 01 n 0~. Thereafter define neighborhood extensions in the 
two sets 

Y1 - ( Y1 n Yz) and Y2 - ( Y1 fi Yz), 

which correspond to the 0-simpliees (1) and (2). This will be done in such a 
way that  the final function defined by the three extensions, is continuous. 

In the general case we shall have instead of the two sets Y~ and Yz a 
closed covering {Y~} of a closed neighborhood ]~ of B in Y. This covering 
{ Y~} will be locally finite and elementwise uniformly point-finite. The first part  
of the proofs of theorems 19.2, 19.3, and ]9.4 will be to construct this covering. 
This will be done in w 21. 

The second part will be an induction. For each a e nerve {Y~} we will make 
a neighborhood extension. These extensions will be taken in such an order 
that  the extension corresponding to a simplex a is taken before the extension 
corresponding to any face of a. Since {Y~}' is elementwise uniformly point- 
finite, St a is finite dimensional for each a e nerve {Y~}. Because of this the 
induction will work. 

This second part will be found in w 22. In w 20 we prove some lemmas, 
used in w167 21 and 22. 

20. L e m m a  20.1. Let (Y, B) be a normal pair, {U~} a locally /inite open 
covering o/ B and {V~} a locally /inite open covering o/ Y such that 

V ~ n B c  U~. 

Then there is a closed neighbgrhood ~ o/ B in Y and a closed covering {Y~} 
o/ Y such that 

a) {Yx} is locally /inite, 
b) Y ~ a B c U ~ ,  
c) YA, n . . . n  Y ~ O  implies U ~ n . . . n U ~ . ~ O  /or any /inite collection o/ 

indices. 
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Proof.  We shall take Y~. as a subset of V~.. Then a) and b) are satisfied. 
Y is normal and {Vx} is locally finite. Apply lemma 3.4. We get an open 

covering {Wx} of Y such that  

Take any point y E Y. Since {W~.} is locally finite, y is contained in only a 
finite number of sets W~., say W~ . . . . . .  W~,~. Let us call y admissible if for 
the corresponding sets U~. . . . . .  , U~.~ we have 

U~ln . . .  n U~.,~O. 

Evidently all points of B are admissible. 
Let us prove that  the set of all admissible points is open in Y. In fact, by 

lemma 3.5, an admissible point y has a neighborhood meeting only the sets 
W~ . . . . .  , W~,, that contains y. But then all points of this neighborhood are 
admissible. 

Since Y is normal we can take a closed neighborhood ~" of B in Y such 
that  all points of ][~ are admissible. Put  

Y~, : W~ n ~'. 

Then {Yx} is a closed covering of ~- and Y ~  V~.. We still have to prove c). 
Suppose 

Y~n . . .  n Y~ ~ O .  
Take a point 

yE Yhn . . .  n Y~n" 

Then y E ~', so that  y is admissible. But this implies 

U~ n . . .  n U~ ~ 0. 

L e m m a  20.2. Let B be a subset o~ the space Y and {Y~} a locally /,inite 
closed covering o/ Y. Suppose that /or each ,~ there is a neighborhood Ca o/ Y~ n B 
in Y~. Then 

C= uC~ 

is a neighborhood o/ B in Y. 

proof .  Let  b E B. We want to show that  b is an interior point of C. Since 
{Yx} is locally finite b belongs to a finite number of sets Y~, say Y~, . . . ,  Y~.. 
Then by lemma 3.5 there is an open neighborhood O' of b in Y such that  

Y~ n O' ~ 0 only for 2=~1 . . . . .  2=. 

Since C~i (i= 1, . . . ,  n) is a neighborhood of b in Y~i there is an open set 
OA i in Y for which 

b ~ 0~ n Y~ c C~. 
Then 

0 = O' n O~ n . . .  n 0 ~  
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is open in Y and contains b. Finally we shall show 

(1) OcC. 

But if yEO, y EY~. for some 2. From y E O '  we obtain that  2 is one of 
21 . . . .  , 2n, say 21. Then y E O  h implies 

y E O h n  Y~. cC; . :cC.  
This proves (l). 

Lerr~-~a 20.3. Let (Y, B) be a normal pair and Y' a closed subset o/ Y. 
Put B '=  Y ' n  B. Suppose there is given a closed neighborhood C' o/ B' in Y' .  
Then there exists a closed neighborhood C o~ B in Y such that 

(2) C '=  Y' n C. 

Hence we can write 

where 
C=C'uC* ,  

C * c Y - Y ' .  

Proof .  Let U' be an open neighborhood of B'  in Y' contained in C'. Then 
Y ' - U '  and B are two disjoint closed sets in the normal space Y. Therefore: 
we can take a closed neighborhood V of B in Y such tha t  

Hence 
Vn(Y'-U')=O. 

(3) Vn  Y ' c U ' c C ' .  

Put  
C = C ' u V .  

Since V is a neighborhood of B in Y, C i s ' a  neighborhood of B in Y, and  
since C' and V are closed in Y, C is closed in Y. That  (2)holds,  follows 
from (3). 

2 i .  P roo f  of t h e o r e m  19.2 ( f i rs t  par t ) .  Suppose that  al] Q-spaces are 
fully normal. Let  X be a local NES(Q), and let (Y, B) be any Q-pair and 
/ : B - > X  any mapping. We want to find a neighborhood extension of / .  

Let r162 be a covering of X by open NES(Q)'s. Then {/-1(0~)} is an 
open covering of B.  Since B is fully normal there is a locally finite open 
refinement {U~) of {/-1 (0'~)}. Because of lemma 18.1 we may  assume tha t  
{U~} is elementwise uniformly point-finite. For each 2 choose an element of ~r 
say 0k, such that  / (Ua)~Oa.  By lemma 7.4 there is a locally finite open 
covering {Ira} of Y such that  V~n B =  U~. 

Apply lemma 20.1. We get a closed neighborhood I 7 of B in Y and a lo- 
cally finite closed covering {Y~} of 17. Since Y, n B c U~ we have 

�9 / ( Y ~ n B ) ~ O a .  
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Finally {Y;.} is elementwise uniformly point-finite. For this follows from 20.1 
c) and from the fact that  {Ua} is elementwise uniformly point-finite. 

P r o o f  of t h e o r e m  19 .3  ( f i r s t  p a r t ) .  Suppose that  all Q-spaces are collec- 
tionwise normal. Let X be a fully normal local NES(Q), and let (Y, B ) b e  
any Q-pair and ]:B-~X any mapping. We want to find a neighborhood exten- 
sion of /. 

Let {0~} be a zovering of X by open NES(Q)'s. Since X is fully normal 
we may assume that  {0~} is locally finite (ef. 2.16), a~id because of lemma 
18.1, we may assume that  {Oz} is elementwise uniformly point-finite. Put 
]-1 (0~)= Ua. Then {Ua} is a locally finite and elementwise uniformly point- 
finite open covering of B. By lemma 7.3 there is a locally finite open covering 
{Va} of Y such that  V ~ n B c U a .  

Apply lemma 20.1. We get a closed neighborhood I; of B in Y and a lo- 
cally finite and elementwise uniformly point-finite closed covering {Y~} of Y. 
We have 

/ ( Y~ n B) c 0~. 

P r o o f  of t h e o r e m  19 .4  ( f i r s t  part) .  Suppose that  all Q-spaces are normal. 
Let X be a LindelSf space which is a local NES(Q) and let (Y, B) be any Q- 
pair and / : B §  any mapping. We want to find a neighborhood extension of / .  

Let {Oa} be a covering of X by open NES(Q)'s. Since X is a LindelSf space 
we may assume that  {O~} is countable and star-finite (see lemma 6.3). P u t  
/-I(O~)=U~. Then {Ua} is a countable star-finite open covering of B. By 
lemma 7.2 we have a locally finite open covering {V~} of Y such that  V~ n B =  U~,. 
Since {U~} is star-finite it is also elementwise uniformly point-finite. 

Apply lemma 20.1. We get a closed neighborhood l ? of B in Y and a 
locally finite and elementwise uniformly point-finite closed covering {Y~} 
of Y. We have 

/(YanB)r 

22.  P r o o f  o i  t h e o r e m s  19.2 ,  19 .3 ,  a n d  19:4 ( s e c o n d  p a r t s ) .  We have 
the following set-up: 

A class Q such that  all Q-spaces are normal; 
A space X; 
Some open subsets 04 of X, each 04 being an NES(Q); 
A Q-pair ( l  7, B); 
A locally finite and elementwise uniformly point-finite closed covering 

{Y~} of I7; 
A mapping / : B -+ X such that  ] ( Y~ n B) r 0~. 
We want to find a neighborhood extension of /:B--->X -in I 7 (for l 7 is a 

neighborhood of B in Y, cf. lernma 2.1). 
Let E be the nerve of the covering {Y~}. E is a simplicial complex. Since 

{Ya} is elementwise uniformly point-finite the star of each vertex of ~ is finite 
dimensional. Hence for each simplex ~ e E there is an upper bound for the 
dimension of those simplices al which have a as a face. Thus if we define 
I (a) by 

I (a) = max (dim a 1 -  dim a), 
•1 E S t a  
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I (a) is a finite non-negative integer. Notice that 

(1) a, ~- a implies I (G1) < I ( a ) .  

We need some sets in l ~. Pu t  
D=~', 

n 

OYz for a = ( A l , . . .  ~,), Do =f:=l fl Y a ~ -  + ~  

Be = De n B. 

Then {De} is a covering of D by sets which are mutually disjoint, and {Be} 
is the corresponding covering of B. D is a Q-space and B is closed in D. 

Furthermore put  
Ds t e=  O De, and Bs t~=  O Be1. 

a I E S t a  e t CSt a 

Then we have 
�9 n 

(2) Dste = n Y~, for a = ( ~ l , . . . ,  ~t~). 
i = 1  

Hence {Dste} is a closed covering of D. Let  us show that  {Dste} is locally 
finite. In fact {Y~} is locally finite so that  if y E D there is a neighborhood 
W of y in D meeting only a finite number of sets Y~, say Y~'I, ' ' ' ,  Yrm- 
Then, because of (2), W meets Dst ,  only if each 2i is one of 2~ . . . .  , 2~. But 
this is possible only for a finite number of a's. 

Put, for a = ( ~ i , . . . ,  ~,), 

Oe = f l  O ~  i �9 
i = 1  

Then Oe is an NES(Q) (cf. 2.16). We have 

(3) 

and 

a, ~ a implies Oe, c 0e 

(4) / (B~) c 0~. 

We want to define an extension F : C ~ X  of / to a neighborhood C of B 
in D. Suppose for a moment that  this has been done. Then if we set Ce= 
= D~ n C we have 

(5) c = u co, 
aC2~ 

and if we put  

(6) Fo=FICe, 
Fe:Ce~X is an extension of /[Be. 

However we shall do the converse. We shall for each a e E define a set 
C, and a mapping F~,:Co-+X and so define C and F by ( 5 ) a n d  (6). We 
shall do this succesively by an induction on increasing I(a). C, and F~,:C,-+X 
have to satisfy 
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(7) B~=C~=Do, 

(8) F~I Bo = / I  Bo, 

(9) Fo (Ca) = Oo. 
Put 

Csto = 0 C.,, 
~z~3Sta 

and define a function Fsto:Csto---"X by 

Fst~ I Ca1 = ffa~ for al E St a. 

Since C.~=Do~ and the sets D~ are mutually disjoint, Fs t .  is uniquely deter- 
mined. We now also require 

(10) 

(11) 

(12) 

C s t a  is a neighborhood of Bsto in Dst~, 

Cst. is closed in D, 

Fst o is continuous. 

Let a be any simplex of E with I ( a ) = n .  Then n >0.  If n > 0 w e a s s u m e ,  
when defining Co and Fo, that  Col and FO" 1 a r e  already defined for atl al with 
I(al)  < n ,  in particular for all a 1 ~ a (see (1)). 

Put  
19' = Dst. - Do = U D.~, 

o 1 ~ o  

", c ' = u  col,  
a l  ~cr  

Then ~' "~ 
p r t 

Bo"  C~c Do. 

Define a function F~ : C~ u B~ ->X by 

F" I Co, = Fol for al ~ a, 

F:]Bo--/tBo. 
Then we have 

F'o[ C~to, = Fs~,  for al ~ ~, 

F~[ Bst .  = ] [ Bst . .  

But  Fstal is continuous (see (12)) and [[Bst .  is continuous. Hence, since the 
sets Cstal and the set Bsta together make up a locally finite closed covering 
of C'~ u B . ,  F~ is continuous by lemma 3.3. By (3), (4), and (9) we get 

(13) F ;  (C" o B~) = Oo. 
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We can write 
D~ = U Dst,, .  

a I ~a 

Since {Dsta,} is locally finite and since each Dstol 
3.2 that  

is closed we see by lemma 

(14) D~ is closed in D. 

Similarly, since (11) is true for each al ~ a, 

(15) C'a is closed in D. 

Furthermore lemma 20.2 proves that  

(16) C" is a neighborhood of B~ in D'a. 

For B'a is a subset of D ' ,  {Dstal; al ~ a} is a locally finite closed covering of 
D~, and Csta, is a neighborhood of Bsta,=Dstal n B'a in Dsto, (see (10)). 

The function F'a is the part of Fsca that  is already defined. We want to 
extend it in order to get Fsta. 

Apply lemma 20.3 on the normal pair (Dst,, Bsca), the closed subset D" (see 
(14)), and the closed neighborhood C~ of B~ (see (15) and (16)). Then we get 
a closed neighborhood of Bsta in Dsta of the form 

c;  u c ; ,  
where 

C* c Dst a - D'a = Da. 

Now, Oa is an NES(Q). The set 

C: u Ba = C'o u Bsta 

is closed in C~u C* (see (15)), and C'au C* is a Q-space, since it is closed in 
nsta and therefore in D. Because of (13) we can find a neighborhood exten- 
sion of F'a in C'a u C* relative to Oa of the form 

ga:C" u Ca-~ Oa, 

where Ca c C* and C'a U Ca is closed in C'a u C~, hence also in D. This defines 
Ca. Finally let Fo:Ca-->X be defined by 

Fa (y) = g~a (Y) for y e Ca, 

i.e. Fa and gal Ca are the same mappings except that  Fa is into X and gal Ca 
is into Oa. Let us verify that  (7)-(12) are satisfied. 

We already know that  Ca c C* e- Da. Since 

C~' u C ~  C'a u Ba~ Ba 
and 

C'anBa=O, 

we have B a c  Ca. This shows (7). From 
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We get (8). (9) is immediate. Since 

we see that  (11) is true. (10) follows by lemma 2.1 from the fact that Csta is 
a neighborhood of Bst~ in C~ u C~, and C~ u C~ is a neighborhood of Bst~ in 
Dsr Finally 

Fsto : Cst, -~X and g, : Cst, --> Oo 

take the same values for each yECsta. Since go is continuous so is Fsto. 
This proves (12). 

Hence we have shown that  we can define C~ and F, :C, ->X satisfying 
{7)-(12). By the induction on increasing I (0) we can do this for all simplices 0. 

Now let C and F : C - ~ X  be defined by (5) and (6). We have 

C= U Cst a. 

Hence, since {Dsta} is a locally finite closed covering of D, (10) and lemma 
20.2 show that  C is a neighborhood of B in D. From (6) we get 

F l O s t . =  Fs t .  , 

which is continuous by (12). Since Cst, cDst~, {Cst~} is locally finite, and (11) 
and lemma 3.3 show that  F is continuous. 

Now F I B =  / . For we have 

FIB~=Fo[Bo=]IB ,  

and {Be} covers B. Hence F is an extension of [ to a neighborhood C o f  
B i n  D. 

Thus theorems 19.2, 19.3, and 19.4 are completely proved. 

23. Thoo r e r a  23.1. Let all Q-spaces be normal. Then any /inite union o/ 
open NES(Q)'s is an NES(Q). 

Proof.  This theorem is proved as theorem 19.4. We do not need now to 
have the assumption that  the space be a Lindel5f space. For this was used 
only to get the countable, star-finite covering (0r}. However we already have 
a finite covering. 

E x a m p l e  23.2. Let X be a space with the discrete topology. Then X is 
a local NES(Q) for any Q. Therefore if X has a countable number of points 
X is aft hIES (normal) by theorem 19.4. However if X has uncountably many 
points it is not an NES(norma]), for then by theorem 14.5 it would be a 
LindelSf space, which it is not. But it is an NES (coll. norma]) by theorem 19.3. 

E x a m p l e  23.3. As in the proof of lemma 15.2, we consider in the space 

z = I • I ' -  {o} • {o} 
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the two closed subsets 

Put  
A = ( I -  {0}) x {o} and B = (0) • ( r -  {o)). 

X = A u B .  

Then X is a locally compact space and A and B are two open subsets of X. 
A is known to be an ES(normal) and an ANR (Tychonoff) (cf. theorems 17.1 
and 17.2). The same facts are known about B (cf. example 17.9). Then, .by 
theorem 23.1, X is an NES (normal): However, it is not an ANR(Tychonoff). 
For it is closed in the Tychonoff space Z and it is not a neighborhood retract 
of Z, since A and B do not have disjoint neighborhoods in Z (cf. lemma 15.2). 

E x a m p l e  23.4. BORSUK ([6] p. 226) proved that  if X = X I  u X2, where each 
of X1, X2, arid Xln  X 2 is an ANR (comp. metr.), then X is an ANR(comp. 
metr O . This is not true, however, even for the class of all compact spaces. 
For take in the topological product I X I '  the sets 

X~ = I • {o}, 

X~ = {0} • I ' ,  

X = X1 u X 2 .  

Then X 1 is a closed interval, X~ a Tychonoff cube, and X 1 n X~ a single point. 
Hence each of them is an AR (compact). However, X is not a neighborhood 
retract of I • I', since X -  {0} X {o} is not a neighborhood retract of I • I '  - 
- {0)  x {o}. 

Infinite p o l y h e d r a  

24. I t  is known that  a finite simplicial polyhedron with the usual Euclidean 
topology is an ANR(comp. metr.) (cf. [6] p. 227). Hence, by theorems 13.2 
and 16.2, it  is also an ANR(Tychonoff). Let us now turn to infinite simpli- 
cial polyhedra. 

All our polyhedra will be simplicial polyhedra and we shall therefore usually 
drop the word simp]icial. A polyhedron is infinite if it has an infinite number 
of simplices or, what is the same, an infinite number of vertices. 

By a subpolyhedron of a polyhedron X we mean any  union of closed sim- 
pliees of the simphcial decomposition of X. 

We shall give an infinite polyhedron two, in general different, topologies. 
They both satisfy the following two conditions: 

a) Any subpolyhedron is a closed subset. 
b) Any finite subpolyhedron has, considered as a subspace, the Euclidean 

topology. 

First, let the polyhedron X be locally finite (i.e. the star of each vertex is 
a finite polyhedron}. Then a) and b) determine a unique topology for X. I t  
can be proved that  this topology makes X into a metrizable locally compact 
space. Each point of X has a neighborhood which is a finite subpolyhedron 
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and therefore an NES (coll. normal). Hence, by theorem 19.3, X is an NES 
(coll. normal). If X has a countable number of vertices (cf. lemma 27.1)i t  is 
an ANR(Tychonoff) by theorem 16.6. 

However, if the polyhedron is not locally finite, we can define two different 
topologies satisfying a) and b). We call them the weak topology and the 
metric topology. 

The weak topology is defined as follows. Let  X be the polyhedron. A set 
A c X  is closed if and only if for each simplex a ~ X  the set A n n  is closed 
in a in the Euclidean topology for a. As is easily verified, conditions a) and 
b) are satisfied. A set O c X  is open if and only if for each a the set On 
is open in o. This topology makes X into a CW-complex in the sence of 
J. H. C. WHITEHEAD ([33] p. 223). I t  is known to be a normal space ([33] 
p. 225). (It can also be proved to be fully normal, but we do not need this 
fact.) 

In order to define the metric topology we need the following notations. 
Let  the vertices of X be {p~). A point x E X is determined by its barycentric 
coordinates {x~.). They satisfy 

O<xx=<l for each 2, 

x~ ~ 0 only for a finite number of X's, 

~ x ~ =  1. 

Now for two points x, x 'EX put 

d(x ,x ' )  = 5.1x -x' l. 
2t 

Then d (x, x') is a metric. The topology defined by this metric is the same as 
the one defined by the metric 

x~) , d I ( x , x ' ) = V - ~ ( x ~ -  ' 2 
2 

called by LEFSCItETZ ([24] p. 9) the natural metric. In this topology a se- 
quence of points xn={x~} converges to x={x~} if and only if, for each 
2, x'~--->x~. A function /:  Y--->X is continuous when each coordinate (/(Y)h of 
/ (y)  is continuous in y. The topology satisfies conditions a) and b). 

When the polyhedron is not locally finite these two topologies do not coin- 
cide. For we see that  the weak topology is not metrizable since it does not 
satisfy the first countability axiom (cf. [23] p. 6). Note that  in both topologies 
the open star of the vertex p~, i.e. the set 

is open. For its complement in X is a subpolyhedron and hence closed in X 
by a). (Conversely: that  all sets St p~ are open implies a).) 

The purpose of the next two paragraphs will be to show that  a polyhedron 
with either of the two topologies is an NES (metric). In the case of the metric 
topalogy we can use this and our previous results in order to determine when 

351 



O. I{ANNER, Mappings of metric and non-metric spaces 

the polyhedron is an ANR(Q) for the classes ~ - 5 .  This will be done in w 27 
(see theorem 27.4). The corresponding problems in the case of the weak to- 
pology are unsolved. 

I t  is a standard trick within the theory of finite polyhedra to imbed the 
polyhedron in a simplex having the same vertices as the polyhedron. In order 
to use this trick in our case we need the following definition. 

Defini t ion 24.1. A polyhedron is called /ull if each finite subcollection of 
its vertices spans a simplex. 

Any polyhedron X can be imbedded in a futl polyhedron Z with the same 
vertices. We give Z the same kind of topology as X. Since X is a subpoly- 
hedron of Z, X is a closed subset of Z. We shall see below that ,  in either 
topology, X is a neighborhood retract  of Z. 

25. T h e o r e m  25.1. Any simplicial polyhedron u, ith the weak topology is an 
N E S  (metric). 

T h e o r e m  25.2. Any /ull simplicial polyhedron with the weak topology is an 
ES (metric). 

P r o o f  of t h e o r e m  25.1. Any polyhedron X can be imbedded in a full 
polyhedron. Hence, because of 2.15, the theorem follows from theorem 25.2 
and the following lemma. 

For the proof of theorem 25.2 see after lemma 25.4 below. 

L e n ~ a a  25.3. Any subpolyhedron X o/ a simplicial polyhedron Z with the 
weak topology is a neighborhood retract o~ Z. 

Proof .  The main trick will be to consider the barycentric subdivision Z '  of 
Z (cf. [24] p. 8). We give to Z' the weak topology. The spaces Z and Z' 
are defined on the same set. Their topologies coincide. For this is true on each 
simplex (~ of Z and follows in general from the definition of the weak topology. 

By subdividing Z we get from X its subdivision X' ,  which is a subpoly- 
hedron of Z' .  We claim that  X'  and Z' satisfy: 

a) Let p~ . . . . .  P'n be vertices of a simplex a ' c  Z', and let them all belong 
to X' .  Then o ' c X ' .  

For since the points {pi'} are vertices of a simplex of Z '  they all lie in a 
simplex a of Z having one of {p[} as its barycenter, say p~. But p~EX', i.e. 
p~EX. Hence a c X  and {pi'/ are certain vertices of the subdivision of o. 
Therefore a '  ~ X' .  

Let  {p',} be all vertices of Z',  indexed by a set M={#} .  A point z EZ' is 
determined by its barycentric coordinates z =  {z~}, where 

~ z ~ =  1. 
ttCM 

p 
Let M0~M be the set of all indices for which p .  EX' .  Consider the real- 
valued function defined by  

a (z) = ~ z~. 
ttCM0 

We have : 
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(1) 

(2) 

a(z) is continuous, 

U = {z [ a (z) > O} is open in Z' ,  

(3) U = X ' .  

Here (3) is trivial since a ( z ) = l  for zEX' ,  and (2 ) i s  d consequence of (1). 
A function on a polyhedron with the weak topology is continuous if it is con- 
tinuous on each simplex. But  on a simplex the function a is a finite sum of 
continuous functions. Hence a is continuous. 

Now define a retraction r:  U-+X' by taking as the image point r(z) of a 
point z E U the point whose barycentric coordinates are 

Z~ 
(r ( z ) ) , -  a (z) for /~E Mo, 

(r (z)), = 0 for ~e E M - Mo- 

These formulas determine a point r (z) of Z '  lying in X' .  For let a ' c Z '  be 
the.  simplex of lowest dimension such that  z E a'. Then z, > 0 if and only if 
p ,  as a vertex of a' .  Hence, since 

(r (z)),, = 1, 

there is a point r (z) = {(r (z)),} of (r'. Since ( r ( z ) ) ,=0  for # ~ M 0 ,  r(z) is a 
point of a simplex with all vertices in X' .  Hence,  by a), r ( z )eX ' .  

We want to prove that  r is continuous. Then we have to show that  r I a' n U 
is continuous for each simplex 0'. But  this is true since each coordinate 
(r(z)), is continuous. 

Finally, for z e X '  we have a (z)= 1 and hence r (z)= z. 
Therefore r :  U-~  X '  is a retraction of a neighborhood U of X '  in Z'.  This 

p r o v e s  lemma 25.3. 

L e m m a  25.4. Let X be a polyhedron with the weak topology and Y a metric 
space. Suppose /: Y - + X  is a mapping. Then i] {St p~} is the open covering o/ 
X by the star o/ its vertices, 0r {/-1 (St'pa)} is a locally/inite open covering o/ Y. 

Proof .  Clearly ~ is an open covering of Y so that  we have to prove that  
it is locally finite. 

Suppose a is not locally f ini te .  Then there is  a point y o e Y  such that  
every neighborhood of Yo meets an infinite number of elements of a. Since 
/(Yo) is a point of some simplex of X, the point Yo itself only belongs to a 
finite number of sets /-1 (Stpa), say for ~ = 2 ~ , . . . ,  2~. 

Now we construct a sequence of points yn E Y and a sequence of indices 
An such that  (for n = l ,  2 . . . .  ) 

(4) Yn --> Y0, 

(5) y .e / -1  (st p~.), 
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(6) ) ,n#2[ for each i =  1 . . . .  ~ m, 

(7) J..#2.~ for n # n  a. 

This is possible by induction. For when choosing 2n we have to avoid the 
finite number of indices 

At t 
z~, . , 2  2 2 �9 �9 m~- I ,  , �9 . ~  7 z - l ~  

and there are, for each neighborhood U of Yo, infinitely many s e t s  / - 1  ( S t  p J l )  

meeting U. Hence we can take y ,  in the intersection of a set /-1 (St Pan)and 
a suitable neighborhood Un of Yo. 

Note that (6) and the definition of the indices 2~ imply 

Hence, by (5), 
Y0 ~/-x (St P~.n)" 

(8) / (Uo) ~ / (Un). 

Now, let O be the complement in X of the set which consists of all points 
/ ( y n ) , n = l , 2 , . . .  By (8), 0 contains /(yo). By (5) and (7) each s i m p l e x a o f  
X contains only a finite number of points /(yn). Therefore 0 n ~ is open in a. 
Hence O is open. 

Finally, (4) and the continuity of / implies 

/ (u.) ~ / (uo). 

But this contradicts the fact tha t  0 is a neighborhood of /(Y0) containing no 
point ] (yn). This proves lemma 25.4. 

P r o o f  of t h e o r e m  25.2. We use theorem 12.3 and prove that  a full poly- 
hedron X with the weak topology is a contractible NES (metric). 

Let  {x~} be the barycentric coordinates for. a point x EX.  Choose some 
2 o E A = { ~ } .  Define h : X •  by 

(h (x, t))a = (1 - t) xx for 2 # 20, 

(h (x, t))ao = (1 - t) xa0 + t. 

For each (x, t) these formulas define a point h (x, t )EX. In  fact, the polyhe- 
dron X is full, only a finite number of coordinates x~ are # 0, and 

,XA(h (x, = ( 1 -  t) XAX  + '  : 1. 

The continuity of h follows from the fact that  h la • I is continuous for each 
a (cf. [33] p. 228)�9 The homotopy h is a contraction of X into the vertex ~ . .  

In  order to prove that  X is an NES (metric) let (Y, B) be any metric pair 
and / : B -4 X any mapping�9 Put  

U~ = t-1 (St v~). 
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Then {U~,} is an open covering of B. I t  is locally finite by lemma 25.4. Ap- 
plying lemma 7.4 we get a locally finite open covering r ~V:~ of Y such that 

s Va n B. 

Each coordinate (/(y)):, of /(y) is a continuous function /z (y) of y defined 
on B. Hence / ~ : B - + I  is a mapping into the closed interval I. We have 

U~- {y lyEB,  /~,(y)>0}. 

Now extend h to a mapping g:: Y-> I by putting 

g~(y)=0 for yl~V~ 

and applying Tietze's extension theorem. Take the function 

a (y) = ~ . g ~  (y),  
), C A  

which is finite and continuous since {V~} is locally finite. If y E B  we have 

Hence the set 

is a neighborhood of B. 
Define F : 0 -+ X by 

a (y) =~eA/~ (y) = 1. 

0 = {y [a (y) > 0} 

g~ (y) (F(y))~= a(y)" 

For each y E 0 this formula defines a point F (y)EX. F is continuous, for so 
is (F(y))a and {V~} is locally finite. Since F I B - ~ ,  F is a neighborhood ex- 
tension of /. 

26. T h e o r e m  26.t .  Any simplicial polyhedron with the metric topology is an 
N E S  (metric). 

T h e o r e m  26.2. Any /ull simplicial polyhedron with the metric topology is an 
ES  (metric). 

Theorem 26.1 is the consequence of theorem 26,2 and the following lemma. 

Lema~aa 26.3. Any subpolyhedron X o/ a simplicial polyhedron Z with the 
metric topology is a neighborhood retract o/ Z. 

proof .  We use the same method as in the proof of lemma 25.3 and only 
need to point out the places where the argument depends upon the topology of Z. 

First we need the fact that the metric topology of Z coincides with the 
metric topology of Z'. However this has been proved by LEFSCHETZ ([24] 
p. 21). Next we shall prove the continuity of 

a (z) = Z z~ . 
# ~Mo 
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But this follows from 
! 

]a(z)--a(z ' )[  <= ~ i z , - z ~ , ]  <= d(z,z ') .  
p C M o  

Finally each (r (z)), is continuous. Hence r (z) is continuous. Therefore r:  U ~ X '  
is a neighborhood retraction. This proves lemma 26.3. 

P r o o f  of t h e o r e m  26.2. We want to use the fact (proved by DUGUNDJI 
[12] p. 358) that  any convex set of a Banach space is an ES (metric). 

Let  X be a full polyhedron with the metric topology. Let  {p~} be its ver- 
tices, A the index set. We imbed X in the Banach space S consisting of all 
s={s~} where s~ are real numbers and ~ s ~  I is convergent. The norm of an 

element of S is defined by 
Ilsll= ls i. 

2 C A  

The imbedding of X in S is the obvious one: if x~ are the barycentric coor- 
dinates of x, {x~} denotes a point of S. I f  x is identified with this point, X 
is imbedded in S. This imbedding is metric since 

d(x, x'): 2Alx -x' l:llx-x'll, 

where x and x' are two points of X and d is the metric on X. 
Since the polyhedron X is full X is a convex set in S. Thus Dugundji 's 

theorem completes the proof. 

27. Now we shall combine theorem 26.1 with theorem 17.1. Therefore we 
want to know when a polyhedron with the metric topology is separable, locally 
compact, or an absolute G~. 

L e r n m a  27.1. A simplicial polyhedron with the metric topology is separable i/ 
and only i/ it has a countable number o/ vertices. 

proof .  I f  it has uncountably many vertices it is certainly not separable. 
I f  it has a countable number of vertices it is the union of a countable num- 
ber of simplices, hence separable. 

L e m m a  27.2. A simplicial polyhedron with the metric topology is locally com- 
pact i/ and only i/ it is locally /inite. 

Proof .  i f  it is locally finite it is certainly locally compact. I f  it is not 
locally finite there is some vertex belonging to an infinite number of 1-sim- 
plices. Hence this vertex has no compact neighborhood. 

Lem.~aa 27.3. A simplicial polyhedron with the metric topology is an absolute 
G~ i] and only i~ it contains no in/inite /ull subpolyhedron. 

The condition is for instance satisfied if the star of each vertex is finite 
dimensional. I t  is certainly not satisfied if the polyhedron itself is an infinite 
full polyhedron. 

Proof .  Sufficiency. Suppose the polyhedron X with the metric topology 
contains no infinite full subpolyhedron. I claim that  the space X with the metric 
d is complete. 
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Let X be imbedded in the Banach space S as in the proof of theorem 26.2. 
Let  x n=  {x~} be a Cauchy sequence in X. Then, since S is a complete metric 
space, x ~ converges to a point s = {s~} of S. We shall show that  s belongs to X. 

From xn--> s we have, for each 2, 

(1) x~ -~ s~, 

so that,  since 0 < x~ < 1, 

(2) 0 < s ~ < l .  

We also conclude from x" -+  s that  II x" II -+ II s II i . e . ,  since II x" II = 1; 

(3) II s II = X s~ = 1. 
).  

In  A = ( ~ }  let A'  be the set of a l l  indices for which s ~ > 0 .  L e t A  o b e a n y  
finite subset of A'. Then, by (1), for some sufficiently large n 

x ~ > 0  for ~ e A o .  

Hence, since x n E X, the simplex oo spanned in S by the vertices p~., ~ E A o is 
a face of a simplex in X, so that  a o c X .  

From this we obtain tha t  the vertices p~, ~ E A' span a full subpolyhedron 
X '  of X. But  then A'  must be finite and X '  a simplex. By (2), (3), and 
the definition of A '  we have s E X'.  Hence s e X. 

Therefore X is a complete metric space. As was previously remarked, this 
means that  X is an absolute G0. 

Necessity. Let  X be a polyhedron with the metric topology. Suppose that  
X is an absolute G~ containing an infinite full subpolyhedron A. We shall 
show that  this is impossible. 

Without loss of generality we may assume that  A has a countable number 
of vertices. A is a subpolyhedron of X and therefore closed in X. Hence, 
since X is an absolute Go, A is also an absolute G~. Therefore A can be 
given a complete metric. 

But in A the open stars of the vertices are a countable collection of open 
dense sets with a void intersection. By BAIRE'S theorem (cf. [18] p. 160)this 
is impossible in a complete metric space. This completes the proof of lemma 27.3. 

Now by lemmas 27.1, 27.2, and 27.3 and theorems 17.1 and 26.1: 

T h e o r e m  27.4. Let X be a simplicial polyhedron with the metric topology. 
Then 

a) X is an ANR(coll. normal) i/ and only i/ X contains no infinite /ull 
subpolyhedron. 

b) X is an A N R  (normal) i/ and only i] X has a countable number o[ vertices 
and contains no in/inite ]uU subpolyhedron. 

c) X is an ANR(Tychono]/) i/ and only i] X is locally /inite and has a 
countable number o/ vertices. 
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E x a m p l e  27.5. Take in a full polyhedrori the subpolyhedron X consisting 
of all I-simplices and all 0-simp]ices. Give 1o X the metric topology. Then 
X is an ANR(coll. normal). I t  is an A N R ( n o r m a ] ) i f  and only if it has a 
countable number of vertices and it is an ANR(Tychonoff)  if and only if it 
has a finite number of vertices. 

Homotopy theorems 

28. In this final paragraph we shall study homotopy properties of ANR(Q)'s. 
They are all generalizations of theorems already known in the case when Q is 
the class of separable metric spaces. Since many of the proofs are similar to 
those given in the separable metric case we shall omit the details. 

We need to use lemma 12.1. Since this lemma is proved only for the classes 
6-t,  we have to restrict ourselves to these classes. 

T h e o r e m  28.1. Let Q be any o/ the classes ~-t. Then any ANR(Q) is locally 
contractible. 
�9 This is proved by  a method similar to the one proving theorem 12.4. (Cf. 

[15] p. 397, the first half of the proof of theorem 4.2.) 

T h e o r e m  28.2. Let Q be any o] the classes 5-t. Then the homotopy extension 
theorem holds /or mappings o] Q-spaces into an NES(Q). 

Explicitely this means that  if X is an NES(Q), (Y, B) any Q-pair, F0: Y ~ X  
any mapping and / t : B ~ X  any homotopy such that  ]o=FolB, then there 
exists a homotopy F t : Y - > X  such that  Ft lB= / ~ .  

For the proof see [9] p. 205 or [18] p. 86. 

Theorem 28.3. Let Q be any o] the classes (~-t. Then a Q-space X is an 
ANR(Q) i] and only i/ ]or each point x E X there exists a neighborhood V o] x 
such that /or any Q-pair (Y, B) any mapping ] : B--->V has an extension rela- 
tive to X.  

For the proof see [15] p. 398. For the sufficiency we need theorem 19.2. 

T h e o r e m  28.4. Let Q be any o/ the classes 6-t. I /  the homotopy extension 
theorem holds /or mappings el Q-spaces into a locally contractible space X then X 
is an NES(Q). 

For the proof see [15] p. 398. 

Def ini t ion 28.5. Let  o~={U~} be an open covering of X. We call a ho- 
motopy /t:Y--->X an r162 if for each y E Y  there is a U~ such that  
/t (y)E U~ for 0 < t < 1. A space Z is said to dominate a space X if there exists 
two mappings q J : X ~ Z  and y ~ : Z ~ X  such that  ~q~:X-~X is homotopic to the 
identity mapping i : X - ~ X .  If  this homotopy is an ~-homotopy Z is said to 
:c-dominate X.  

DUGUNDJI has proved a theorem ([12] p. 365) which can be reformulated thus: 

T h e o r e m  28.6. Let r be any open covering o/ an A N R  (metric) X. Then X 
is ~-dominated by a polyhedron with the weak topology. 

He asks the question whether it is true that  among metric spaces this prop- 
er ty characterizes ANR(metric) 's .  That this is the case is proved by theo- 
rem 28.8. 
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T h e o r e m  28.7. I] /or each open covering ~ o/ a metric space X t]wrc exists 
an N E S  (metric) ~r X,  then X is an A N R  (metric). 

The proof is essentially the same as in [15] (proof of theorems 7.1 and 7.2). 

T h e o r e m  28.8. I /  /or each open covering o~ o/ a metric space X there exists 
a polyhedron with the wea]~ topology ~-dominating X,  then X is an A N R  (metric). 

This is a consequence of theorems 25.1 and 28.7. 

R e m a r k  28 .9 .  Instead of an ~-dominating polyhedron for each covering ~, 
it is sufficient in theorem 28.8 to assume that there is a suitable sequence of 
polyhedra dominating X, as in [15] p. 405. 
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