On some expansions of stable distribution functions

By Harald Bergström

1. Introduction

The function $e^{-t^{\alpha}}$ for any fixed value α in the interval $0<\alpha<1$ admits a unique representation.

$$
\begin{equation*}
e^{-t^{\alpha}}=\int_{0}^{\infty} e^{-x t} G_{a}^{\prime}(t) d x, \quad 0 \leqq t \leqq \infty \tag{1}
\end{equation*}
$$

where $G_{a}(x)$ is a stable d.f. (distribution function) with $G_{a}(0)=0 .^{1}$ P. НсмBERT 2 has formally given the expansion

$$
\begin{equation*}
G_{a}^{\prime}(x)=-\frac{1}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^{k}}{k!}(\sin \pi \alpha k) \frac{\Gamma(\alpha k+1)}{x^{\alpha k+1}} \tag{2}
\end{equation*}
$$

for $0<\alpha<1, x<0$, which has later been rigorously proved by H. Pollard. ${ }^{3}$
From (1) follows that $G_{a}(x)$ has the characteristic function

$$
\gamma_{a}(t)=e^{-|t|^{a}}\left(\cos \frac{\pi \alpha}{2}-i \sin \frac{\pi \alpha}{2} \operatorname{sgn} t\right)
$$

(sgn: read signum). Now owing to P. LÉvy ${ }^{4}$ the characteristic function of a stable d.f., when suitably normalized can be written in the form.

$$
\begin{equation*}
\gamma_{a \beta}(t)=e^{-|t|^{\alpha}(\cos \beta-i \sin \beta \operatorname{sen} t)} \tag{3}
\end{equation*}
$$

where

[^0]
h. bergström, Expansions of stable distribution functions

$$
\cos \beta \geq 0, \quad\left|\sin \beta \cos \frac{\pi \alpha}{2}\right| \leq \cos \beta \sin \frac{\pi \alpha}{2}
$$

$0<\alpha \leq 2$. We omit the uninteresting case $\cos \beta=0$. Then we can give a generalization of Humbert's expansion corresponding to (3) in the form

$$
\begin{equation*}
G_{a \beta}^{\prime}(x)=-\frac{1}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^{k}}{k!} \frac{\Gamma(\alpha k+1)}{x|x|^{a k}} \sin k\left(\frac{\alpha \pi}{2}+\beta-\alpha \arg x\right) \tag{4}
\end{equation*}
$$

for $0<\alpha<1 \quad(\arg x=\pi$ for $x<0$.) The series in the right side of (4) is divergent for $\alpha \geq 1$. However, we can prove that the partial sum of the n first terms in (4) for every n is an asymptotic expansion in the case $1 \leq \alpha<2$, i.e. the remainder term has smaller order of magnitude (for large $|x|$) then the last term in the partial sum,

$$
\begin{equation*}
G_{a \beta}^{\prime}(x)=-\frac{1}{\pi} \sum_{k=1}^{n} \frac{(-1)^{k}}{k!} \frac{\Gamma(\alpha k+1)}{x|x|^{a} k} \sin k\left(\frac{\alpha \pi}{2}+\beta-\alpha \arg x\right)+0\left[|x|^{-\alpha(n+1)-1}\right] \tag{5}
\end{equation*}
$$

$(\arg x=\pi$ for $x<0),|x| \rightarrow \infty$.
At the same time we give the convergent series

$$
\begin{equation*}
G_{a \beta}^{\prime}(x)=\frac{1}{\pi} \sum_{k=0}^{\infty}(-1)^{k} \frac{\Gamma\left(\frac{k+1}{\alpha}\right)}{k!\alpha} x^{k} \cos \left[k\left(\frac{\pi}{2}+\frac{\beta}{\alpha}\right)+\frac{\beta}{\alpha}\right] \tag{6}
\end{equation*}
$$

for $\alpha>1$ and the asymptotic expansion

$$
\begin{equation*}
G_{a \beta}^{\prime}(x)=\frac{1}{\pi} \sum_{k=0}^{n}(-1)^{k} \frac{\Gamma\left(\frac{k+1}{\alpha}\right)}{k!\alpha} x^{k} \cos \left[k\left(\frac{\pi}{2}+\frac{\beta}{\alpha}\right)+\frac{\beta}{\alpha}\right]+0\left(|x|^{n+1}\right) \tag{7}
\end{equation*}
$$

for $0<\alpha<2,|x| \rightarrow 0$.
For the proof we shall use the Fouriertransform.
The asymptotic expansions are of importance in that case when $G_{\alpha \beta}(t)$ is the limiting distribution of a sequence of distributions. We shall return to this question in an other connection.

2. Proof

As $\left|\gamma_{\alpha \beta}(t)\right|$ is integrable in $(-\infty, \infty)$ for $\alpha>0, \cos \beta>0$, the inversion

$$
\begin{equation*}
G_{a \beta}^{\prime}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i t x} \gamma_{a \beta}(t) d t \tag{8}
\end{equation*}
$$

is permitted. We consider real x with $|x|>0$. Then we can put

$$
\begin{equation*}
G_{a \beta}^{\prime}(x)=\frac{1}{2 \pi}[u(x)+\overline{u(x)}] \tag{9}
\end{equation*}
$$

with

$$
\begin{equation*}
u(x)=\int_{0}^{\infty} e^{-i t x} \gamma_{\alpha \beta}(t) d t . \tag{10}
\end{equation*}
$$

It is now possible to choose φ_{0} in the interval $\frac{--\pi}{2} \leq \varphi_{0} \leq \frac{\pi}{2}$ such that

$$
\beta_{1}=\pi-\beta+\alpha \varphi_{0},
$$

and

$$
\beta_{2}=\frac{3 \pi}{2}-\arg x+\varphi_{0}
$$

belong to the interval $\left(\frac{\pi}{2}+\delta, \frac{3 \pi}{2}-\delta\right)$ with some $\delta, 0<\delta<{ }_{2}^{\pi}$. (We choose $\varphi_{0}<0$ for $x>0$ and $\arg x=\pi, \varphi_{0}>0$ for $x<0$).

We can then transform the integral in the right side of (10) into

$$
\begin{equation*}
u(x)=e^{i \varphi_{0}} \int_{0}^{\infty} e^{\tau|x| e^{i \beta_{2+\tau}} e^{i \beta} \beta_{1}} d \tau \tag{11}
\end{equation*}
$$

For that reason we consider

$$
\int e^{-i t x-t^{a} e^{-i \beta}} d t
$$

taken along a contour C in the $r e^{i \varphi}$-plane where C is defined by the following relations:
$\varphi=0, \varphi=\varphi_{0}, r$ between r_{0} and $r_{1}, r=r_{0}, r=r_{1}, \varphi$ between 0 and φ_{0}.
This integral is zero and the part of the integral taken along the curved portions of C vanishes when $r_{1} \rightarrow \infty, r_{0} \rightarrow 0$. Thus (11) holds. Consider the expansion

$$
\begin{equation*}
e^{z}=\sum_{k=0}^{n} \frac{z^{k}}{k!}+z^{n+1} M_{n+1} \tag{12}
\end{equation*}
$$

Here M_{n+1} is smaller than a constant only depending on n, if $R(z) \leq 0 .{ }^{1}$
Putting $z=\tau^{a} e^{i \beta_{1}}$ and combining (11) and (12), we obtain

$$
\begin{align*}
& u(x)=\sum_{k=0}^{n} \frac{1}{k!} e^{i k \beta_{1}+i \varphi_{0}} \int_{0}^{\infty} e^{\tau|x| e^{i \beta_{2}}} \tau^{\alpha k} d \tau+e^{i \varphi_{0}+i(n+1) \beta_{1}} . \tag{13}\\
& \cdot \int_{0}^{\infty} M_{n+1} e^{\tau|x| e^{i \beta_{2}} \tau^{\alpha(n+1)}} d \tau .
\end{align*}
$$

[^1]The remainder term is here smaller than

$$
\operatorname{Max}_{z}\left|M_{n+1}\right| \cdot \frac{\Gamma[\alpha(n+1)+1]}{\left|x \cos \beta_{2}\right|^{\alpha(n+1)+1}}=0\left[|x|^{\alpha a(n+1)-1}\right] .
$$

By a transformation analogous to that one used for (9) we get

$$
\begin{align*}
\int_{0}^{\infty} e^{\tau|x| e^{i \beta_{2}}} \tau^{\alpha k} d \tau=e^{i\left(\pi-\beta_{2}\right)(\alpha k \div 1)} \int_{0}^{\infty} & e^{-\varrho|x|} \varrho^{\alpha k} d \varrho= \tag{14}\\
& =e^{i\left(\pi-\beta_{2}\right)(\alpha k+1)} \frac{\Gamma(\alpha k+1)}{|x|^{\alpha k+1}} .
\end{align*}
$$

From (9), (13) and (14) we get (5).
In order to obtain (4) in the case $0<\alpha<1$ we change e^{z} in (10) against the infinite Taylor-expansion and observe that term by term integration is permitted. ${ }^{1}$

Considering the expansion (10) and the corresponding Taylor-expansion with $z=\tau|x| e^{i \beta_{2}}$ we prove (7) and (6) in the same way as we have proved (5) and (4). Then we have to observe the relation ${ }^{2}$

$$
\int_{0}^{\infty} \varrho^{k} e^{-\varrho^{\alpha}} d \varrho=\frac{1}{\alpha} \Gamma\left(\frac{k+1}{\alpha}\right)
$$

We consider the following special cases.
a)

$$
\alpha<1, \quad \beta=\frac{\alpha \pi}{2}
$$

Then every member in the right side of (4) is equal to 0 for $x<0$, i.e. we have $G_{a \beta}^{\prime}(x)=0$ for $x<0$.
b)

$$
\alpha<1, \quad \beta=-\frac{\alpha \pi}{2}
$$

Then every member in the right side of (4) is equal to 0 for $x>0$, i.e. we have $G_{a \beta}^{\prime}(x)=0$ for $x>0$
c)

$$
1<\alpha<2, \quad \beta=-\pi+\frac{\alpha \pi}{2}
$$

Then every member except the remainder term in the right side of (5) is equal to 0 for $x<0$, i.e. we have $G_{a \beta}^{\prime}(x)=0\left(|x|^{-m}\right)$ with arbitrarily large m for $x<0$.
d)

$$
1<\alpha<2, \quad \beta=\pi-\frac{\alpha \pi}{2}
$$

Then every member except the remainder term is equal to 0 for $x>0$, i.e. we have $G_{\alpha \beta}^{\prime}(x)=0\left(x^{-m}\right)$ with arbitrarily large m for $x>0$.

[^2]
[^0]: ${ }^{1}$ S. Bochner, Completely monotone functions of the Laplace operator for torus and sphere, Duke Math. J. vol. 3, 1937.
 P. Lévy, Théorie de l'addition des variables aléatoires, Gauthier-Willars (1937) pp. 9497, 198-204.

 Compare also H. Pollard, The representation of $e^{-x^{\lambda}}$ as a Laplace integral, Bull. Amer. Math. Soc. vol. 52 (1946) pp. 908-910.
 ${ }^{2}$ P. Humbert, Nouvelles correspondances symboliques, Bull. Soc. Math. France vol. 69 (1945) pp. 121-129.
 ${ }^{3}$ H. Pollard loc. cit.
 ${ }^{4}$ P. Lévy loc. cit.

[^1]: ${ }^{1}$ We derive the expansion from Cauchy's integral formula and then we can obtain the remainder term in the form $z^{n+1} M_{n+1}$,

 $$
 M_{n+1}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{e^{a+i y}}{(a+i y)^{n+1}(a+i y-z)} d y
 $$

 with any $a>0$.

[^2]: ${ }^{1}$ We can apply a test in E. W. Hobson, The theory of functions of a real variable II, Cambridge (1950) p. 306.
 ${ }^{2}$ Compare W. Gröbner und N. Hofreiter, Integraltafel II, Springer-Verlag (1950) p. 67.

