Communicated 5 February 1952 by Harald Cramér

On some expansions of stable distribution functions

By Harald Bergström

1. Introduction

The function $e^{-t^{\alpha}}$ for any fixed value α in the interval $0 < \alpha < 1$ admits a unique representation.

(1)
$$e^{-t^a} = \int_0^\infty e^{-xt} G'_a(t) dx, \qquad 0 \le t \le \infty$$

where $G_{\alpha}(x)$ is a stable d.f. (distribution function) with $G_{\alpha}(0) = 0.1$ P. Humbert has formally given the expansion

(2)
$$G'_{\alpha}(x) = -\frac{1}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^k}{k!} (\sin \pi \alpha k) \frac{\Gamma(\alpha k + 1)}{x^{\alpha k + 1}}$$

for $0 < \alpha < 1$, x < 0, which has later been rigorously proved by H. Pollard. From (1) follows that $G_{\alpha}(x)$ has the characteristic function

$$\gamma_a(t) = e^{-|t|^a} \left(\cos \frac{\pi \alpha}{2} - i \sin \frac{\pi \alpha}{2} \operatorname{sgn} t \right)$$

(sgn: read signum). Now owing to P. Lévy⁴ the characteristic function of a stable d.f., when suitably normalized can be written in the form.

(3)
$$\gamma_{\alpha\beta}(t) = e^{-|t|^{\alpha}(\cos\beta - i\sin\beta \operatorname{sgn} t)},$$

where

¹ S. Bochner, Completely monotone functions of the Laplace operator for torus and sphere, Duke Math. J. vol. 3, 1937.

P. Lévy, Théorie de l'addition des variables aléatoires, Gauthier-Willars (1937) pp. 94—97, 198—204.

Compare also H. Pollard, The representation of $e^{-x^{\lambda}}$ as a Laplace integral, Bull. Amer. Math. Soc. vol. 52 (1946) pp. 908—910.

² P. Humbert, Nouvelles correspondances symboliques, Bull. Soc. Math. France vol. 69 (1945) pp. 121—129.

³ H. POLLARD loc. cit.

⁴ P. Lévy loc. cit.

H. BERGSTRÖM, Expansions of stable distribution functions

$$\cos \beta \ge 0$$
, $\left| \sin \beta \cos \frac{\pi \alpha}{2} \right| \le \cos \beta \sin \frac{\pi \alpha}{2}$

 $0 < \alpha \le 2$. We omit the uninteresting case $\cos \beta = 0$. Then we can give a generalization of Humbert's expansion corresponding to (3) in the form

(4)
$$G'_{\alpha\beta}(x) = -\frac{1}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^k}{k!} \frac{\Gamma(\alpha k+1)}{x |x|^{\alpha k}} \sin k \left(\frac{\alpha \pi}{2} + \beta - \alpha \arg x \right)$$

for $0 < \alpha < 1$ (arg $x = \pi$ for x < 0.) The series in the right side of (4) is divergent for $\alpha \ge 1$. However, we can prove that the partial sum of the *n* first terms in (4) for every *n* is an asymptotic expansion in the case $1 \le \alpha < 2$, i.e. the remainder term has smaller order of magnitude (for large |x|) then the last term in the partial sum,

(5)
$$G'_{\alpha\beta}(x) = -\frac{1}{\pi} \sum_{k=1}^{n} \frac{(-1)^k}{k!} \frac{\Gamma(\alpha k+1)}{|x| |x|^{\alpha k}} \sin k \left(\frac{\alpha \pi}{2} + \beta - \alpha \arg x\right) + 0 \left[|x|^{-\alpha(n+1)-1}\right]$$

(arg $x = \pi$ for x < 0), $|x| \to \infty$.

At the same time we give the convergent series

(6)
$$G'_{\alpha\beta}(x) = \frac{1}{\pi} \sum_{k=0}^{\infty} (-1)^k \frac{\Gamma\left(\frac{k+1}{\alpha}\right)}{k! \alpha} x^k \cos\left[k\left(\frac{\pi}{2} + \frac{\beta}{\alpha}\right) + \frac{\beta}{\alpha}\right]$$

for $\alpha > 1$ and the asymptotic expansion

(7)
$$G'_{\alpha\beta}(x) = \frac{1}{\pi} \sum_{k=0}^{n} (-1)^{k} \frac{\Gamma\left(\frac{k+1}{\alpha}\right)}{k! \alpha} x^{k} \cos\left[k\left(\frac{\pi}{2} + \frac{\beta}{\alpha}\right) + \frac{\beta}{\alpha}\right] + 0\left(|x|^{n+1}\right)$$

for $0 < \alpha < 2, |x| \to 0$.

For the proof we shall use the Fouriertransform.

The asymptotic expansions are of importance in that case when $G_{\alpha\beta}(t)$ is the limiting distribution of a sequence of distributions. We shall return to this question in an other connection.

2. Proof

As $|\gamma_{\alpha\beta}(t)|$ is integrable in $(-\infty, \infty)$ for $\alpha > 0$, $\cos \beta > 0$, the inversion

(8)
$$G'_{\alpha\beta}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} \gamma_{\alpha\beta}(t) dt$$

is permitted. We consider real x with |x| > 0. Then we can put

(9)
$$G'_{\alpha\beta}(x) = \frac{1}{2\pi} \left[u(x) + \overline{u(x)} \right]$$

with

(10)
$$u(x) = \int_{0}^{\infty} e^{-itx} \gamma_{\alpha\beta}(t) dt.$$

It is now possible to choose φ_0 in the interval $\frac{-\pi}{2} \leq \varphi_0 \leq \frac{\pi}{2}$ such that

 $\beta_1 = \pi - \beta + \alpha \varphi_0,$

and

$$\beta_{\mathbf{2}} = \frac{3\,\pi}{2} - \arg\,x + \varphi_{\mathbf{0}}$$

belong to the interval $\left(\frac{\pi}{2} + \delta, \frac{3\pi}{2} - \delta\right)$ with some δ , $0 < \delta < \frac{\pi}{2}$. (We choose $\varphi_0 < 0$ for x > 0 and arg $x = \pi$, $\varphi_0 > 0$ for x < 0). We can then transform the integral in the right side of (10) into

(11)
$$u(x) = e^{i\varphi_0} \int_0^\infty e^{\tau |x|} e^{i\beta_{2+\tau}\alpha} e^{i\beta_1} d\tau.$$

For that reason we consider

$$\int e^{-itx - t^a e^{-i\beta}} dt$$

taken along a contour C in the $re^{i\varphi}$ -plane where C is defined by the following

 $\varphi=0, \ \varphi=\varphi_0, \ r$ between r_0 and $r_1, \ r=r_0, \ r=r_1, \ \varphi$ between 0 and φ_0 . This integral is zero and the part of the integral taken along the curved

portions of C vanishes when $r_1 \to \infty$, $r_0 \to 0$. Thus (11) holds. Consider the expansion

(12)
$$e^{z} = \sum_{k=0}^{n} \frac{z^{k}}{k!} + z^{n+1} M_{n+1}.$$

Here M_{n+1} is smaller than a constant only depending on n, if $R(z) \le 0.1$ Putting $z = \tau^{\alpha} e^{i\beta_1}$ and combining (11) and (12), we obtain

(13)
$$u(x) = \sum_{k=0}^{n} \frac{1}{k!} e^{ik\beta_1 + i\varphi_0} \int_{0}^{\infty} e^{\tau |x|} e^{i\beta_2} \tau^{ak} d\tau + e^{i\varphi_0 + i(n+1)\beta_1} \cdot \int_{0}^{\infty} M_{n+1} e^{\tau |x|} e^{i\beta_2} \tau^{a(n+1)} d\tau.$$

$$M_{n+1} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{a+iy}}{(a+iy)^{n+1} (a+iy-z)} dy$$

with any a > 0.

¹ We derive the expansion from Cauchy's integral formula and then we can obtain the remainder term in the form z^{n+1} M_{n+1} ,

H. BERGSTRÖM, Expansions of stable distribution functions

The remainder term is here smaller than

$$\max_{z} |M_{n+1}| \cdot \frac{\Gamma[\alpha(n+1)+1]}{|x\cos\beta_{2}|^{\alpha(n+1)+1}} = 0[|x|^{-\alpha(n+1)-1}].$$

By a transformation analogous to that one used for (9) we get

(14)
$$\int_{0}^{\infty} e^{\tau |x| e^{i\beta_{2}}} \tau^{\alpha k} d\tau = e^{i(\pi - \beta_{2})(\alpha k + 1)} \int_{0}^{\infty} e^{-\varrho |x|} \varrho^{\alpha k} d\varrho =$$

$$= e^{i(\pi - \beta_{2})(\alpha k + 1)} \frac{\Gamma(\alpha k + 1)}{|x|^{\alpha k + 1}}.$$

From (9), (13) and (14) we get (5).

In order to obtain (4) in the case $0 < \alpha < 1$ we change e^z in (10) against the infinite Taylor-expansion and observe that term by term integration is permitted.¹

Considering the expansion (10) and the corresponding Taylor-expansion with $z = \tau |x| e^{i\theta_2}$ we prove (7) and (6) in the same way as we have proved (5) and (4). Then we have to observe the relation²

$$\int\limits_{-\infty}^{\infty} \varrho^k \, e^{-\varrho^a} \, d\varrho = \frac{1}{\alpha} \, \varGamma\left(\frac{k+1}{\alpha}\right).$$

We consider the following special cases.

a)
$$\alpha < 1, \quad \beta = \frac{\alpha \pi}{2}.$$

Then every member in the right side of (4) is equal to 0 for x < 0, i.e. we have $G'_{\alpha\beta}(x) = 0$ for x < 0.

b)
$$\alpha < 1, \quad \beta = -\frac{\alpha \pi}{2}.$$

Then every member in the right side of (4) is equal to 0 for x > 0, i.e. we have $G'_{a\beta}(x) = 0$ for x > 0

c)
$$1 < \alpha < 2, \quad \beta = -\pi + \frac{\alpha \pi}{2}.$$

Then every member except the remainder term in the right side of (5) is equal to 0 for x < 0, i.e. we have $G'_{\alpha\beta}(x) = 0 (|x|^{-m})$ with arbitrarily large m for x < 0.

$$1 < \alpha < 2, \quad \beta = \pi - \frac{\alpha \pi}{2}.$$

Then every member except the remainder term is equal to 0 for x > 0, i.e. we have $G'_{\alpha\beta}(x) = 0$ (x^{-m}) with arbitrarily large m for x > 0.

¹ We can apply a test in E. W. Hobson, The theory of functions of a real variable II, Cambridge (1950) p. 306.

² Compare W. Gröbner und N. Hofreiter, Integraltafel II, Springer-Verlag (1950) p. 67.