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On a class of Diophantine equations of the second degree 
in imaginary quadratic fields 

By LARS FJELLSTEDT 

Introduct ion 

The problem of solving the Diophantine equation 

(t) u2-  Dv2= N, 

where D and N are rational integers and where D is not a perfect square, in 
rational integers has usually been treated by using either the theory of quadratic 
forms or the theory of quadratic fields. T. ~AGELL [1], [2], [3], [4] 1 has shown, 
however, how it is possible to determine all the solutions of (1)completely ele- 
mentarily and without using either of the theories mentioned above. 

The purpose of this paper is to show that L~AGELL'S method can also be used 
to determine the solutions in integers belonging to an imaginary quadratic number 
field, of equation (1), when D and N are integers in the field considered, and 
D is not a perfect square in that  field. 

I treat in w 1--w 3 the equation 

(2) X2 __ ~ y2 = ! 1, 

and in w 5 of this paper I will show how the theory developed here can be 
used for studying equation (1). 

In w 4 we make a closer investigation of a special case of (2) and connect 
the equation with the units in certain ,quartic fields. 

w 1. A lemma and its application 

The theory of the Diophantine equation x 2 - ~ y  2= 1, can easily be developed 
starting from the following 

Lemma 1: Let o~ be any complex number which does not belong to the field 
K ( V - m ) ,  where m is a square]ree natural number and where ( ~ m  is taken to 
be i~m.  Then the Diophantine inequality 

(3) Ix- ~yl~ < ~+1/5, 

1 Figures in [ ] refer to the  Bibl iography at  the end of th is  paper.  
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where N (y) denotes the norm in the /ield K ( ~ - m )  with respect to the rational 
number /ield, has an in/initude o[ solutions in integers x and y belonging to the 
/ield K (V - m). 

In the Gaussian number field this Lemma has been proved by DIRICttLET [5]. 

Remark:  Observe that  if inequality (3) is satisfied by the system (x,y) it is 
also satisfied by the system (~x, ~y), where ~ denotes an arbitrary root of 
unity belonging to the field K ( 1 / ~ ) .  In the following it will appear convenient 
not to regard any two such systems as being essentially different and for that  
reason we will agree to regard two systems (x,y) and (x',y') as different if and 
only if I x - :cy l~ , [x ' - : t y ' l ,  for it is obvious that  the systems (x,y) and ($x, ~y) 
satisfy the equation 

Furthermore we exclude the case x = 0, so that  in the following lines x - ~ y  is 
always an irrational number and consequently ~ 0. 

P r o o f :  We consider first the case m -  1, 2 (rood. 4). Let  n be a natural num- 
m + l  

ber and let A satisfy the inequality A > ~ �9 Furthermore let ~ be an integer 

in the field K ( [ / - m ) ,  for which the real part  and the coefficient of ~ - -m  is 
contained among the numbers 

- n , - ( n - 1 ) , -  . . . , - 1 , 0 , + l , + . - . , + ( n - 1 ) , + n .  

To each of the integers ~, the number of which is ( 2 n + l )  2, we determine such 
an integer ~ in K ( V ~ m )  that  in the number ~ - ~  the real part and the 
coefficient of l / ~ m  are positive and less than one. I t  is evident then  that  if 

1 1 1 
P2n and q2n  are the greatest multiples of 2nn which are contained in the real 

part of ~ - a ~  and the coefficient of ~ ) - ~  in the number ~ - ~  respectively, 
the integers p and q are contained in the sequence 

O, 1, 2, 3 , . . . , 2 n - 1 .  

The number of possible combinations of the integers p and q is 4n  2, whereas 
the number of possibilities for the expression ~ -  ~ is (2 n + 1) 2 and consequently 
at least one of the combinations (p,q) has to appear twice. Let  

~ - ~  and ~ ' - ~ '  

be two expressions for which this is the case. If we put 

~ - ~ ' = x  and ~ - ~ ' = y  

we get a new expression x - ~ y  in which y is obviously # O, and in which the 
1 

real part as well as the coefficient of V ~- m are less than 2nn a s  to their abso- 

lute values, and therefore it follows . . . . . . .  : . . . .  
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m + l  
(4) Ix- v[2< 4 n 2 

and consequently [ x - ~ y ]2 < A.  
I f  we now observe that  in y=~-~' the real part and the coefficient of 

~ - m  are certainly both ~ 2 n  as to their absolute values, the inequality 
N (y) < 4 n 2 (m + 1) follows at once. This inequality combined with the inequality 
(4) immediately gives 

Ix_ yi2 < (m+ l) 2. 
N (y) 

I t  remains now to consider the case m = 3 (mod. 4). The integers in K (V~mm) 
are here of the form �89 x~-y (rood. 2). Let  A obey the inequality 

m + l  
A >  4n~n2, and let ~ = � 8 9  be such an integer in K ( V - m )  that  a and 

b ale contained among the numbers 

- n , - ( n - 1 ) , -  . . . .  - 1 ,  0 , 4 ] , §  

To each of the integers ~, the number of which is obviously 2 n 2 + 2 n + l ,  we 
determine such a corresponding integer ~ in K(V ~ m )  that  in the number ~ - ~  
the real part and the coefficient of ~ are positive and less than �89 I t  is 

1 1 ] 
then evident that  if P 2 n  and q~n  are the greatest multiple~ of 2n  which are 

contained in the real part  of ~ - : ~  and the coefficient of ~/~m in the num- 
ber ~ - ~ ,  respectively, the integers p and q are contained in the sequence 

\ 

0, 1, 2, 3 . . . . .  n - 1 .  

The number of possible combinations of the integers p and q is n 2, so that  at 
least one of the combinations (p, q) has to appear twice. Let 

~ - a ~  and ~ ' - a ~ '  

be two expressions for which this is the case. If we put  

�9 ~ - ~ ' = x  and ~ - ~ ' = y  

we get a new expression x - a y  where y is # 0, and hi which the real part as 
1 

well as the coefficient of ~ / - m  are less than ~ as t,~, their ~bsolute values, so 

that  inequality (4) is still valid, and consequently I x - ~ y l a <  d.  
If we now observe that  in y = ~ - 9 '  the real part  and the coefficient of ] / ~  

are certainly both < n, as to their absolute values, the inequality N (y) c ;~ (m + 1) 
follows at once. On combining this inequality with (4) we get 

I - vl2< 
4 (v) 

a result that  is somewhat sharper than (3). 
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When we have now shown how it is possible to determine such pairs of 
integers x and y in K ( V - - m )  which obey (3) as well as (4), and this for A as 
small as we please, it is easy to prove that  the inequality (3)has  an infinitude 
of solutions. To that  effect we consider a set of solutions of (3). Starting from 
this set we find a new set containing solutions different from the previous ones 
if we choose A to be the least of all the numbers l x - : c y l  ~ belonging to the 
first set and, starting from this value of A, repeat the  argument which has 
been described above. 

In employing the results of Lemma 1 we are now able to prove 

L e m m a  2: The Diophantine inequality 

(5) I x ~ - ~ y  ~ ] < (m + 1)(m + 1 + 2 IV~I) 

where ~ is an integer in the /ield K ( ] / ~ m )  which is not a per/ect square, has an 
in/initude o/ solutions in integers x and y belonging to K ( ~ - m ) .  

(m + 1) 2 has an infinity Proof. According to Lemma, 1 the inequality I x -  0r y [3 < N (y) 

of solutions in integers x and y belonging to K ( I / - - m )  and furthermore we 
have 

Ix +~yl<=lx-~yl+12~yl. 
This gives us 

1 

and on multiplying with the inequality for I x - ~ Y l  we find 

( m -  ])2 ~ 2 ( m +  1)1~1. ix ~_ ~2 y~ I < N (y) 

Since y is an integer in K ( V -  m) and consequently N (y)> 1 this can be written 

Ix~- ~y~l < (m+ 1)(m+ 1 + 21~l). 

If  we put ~ = Y~ here, where ~ is an integer in K ( V ~ m )  which is not a perfect 
square, our conditions in Lemma 1 are obviously fulfilled, and Lemma 2 is 
proved. 

After these preliminaries we are now in a position to prove 

T h e o r e m  1:  I] ~ is an integer in K (~--m) which is not a per/ect square there 
exists at least one pair o/ integers x and y in K ( V - m ) ,  y~O,  which satis]y the 
Diophantine equation 

( 6 )  x 2 _ 6 y2 = 1. 

Proof. According to Lemma 2 the inequality (5)has an infinitude of solutions 
in integers x and y belonging to K ( ~ / ~ ) ,  and since, furthermore, N ( x ~ - 6 y  2) 
is a natural number which is less than (m+ 1)~(m+ 1 § 2IV-~I) ~, there exists at 
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leas t  one integer  2 in K (V ~ m) such t ha t  x 2 - 5 y2 = ~ for inf ini te ly  m a n y  integers 

x and y in K ( ~ / - m ) .  Among  these inf ini te ly  m a n y  pairs  t he re  mus t  be a t  least  
two, (Xl, Yl) and  (x2, y2) which sa t is fy  the  congruences 

(7) xl =- x~ (mod. 2), y ~ -  y~ (mod. 2). 

This depends  on the  fact  t h a t  the  remainders  of t he  four integers xl, x 2, Yl 
and  Y2 can only be combined in a f ini te  number  ( =  N(~)  4) of ways,  and  con- 
sequent ly  we m a y  assume 

(s) 

w h e r e  Xl, Yl, x2 and Y2 sa t is fy  the  congruence condit ions (7). We form the ex- 
pression 

(xi - y~ VS) ( ~  + y~ VS) = Xl x 2 -  6 yly~ + (x, y~ - x~ yl) VS. 

F r o m  (7) and  (8) i t  follows 

xl x2 - (~ Yl Y~ ~ x~ - ~ y~ =- 0 (mod. ~) 
and  

Xl Y2 - x2 Yl ~ xl Yl - xl Yl - 0 (mod. ~) 
and  therefore  

x l  x 2 -  ~ y l  y2 = ]~ u 

and  

Xl Y2 - x2 Yl = 2 v, 

where U and v are integers in K (V~m) .  I t  now follows 

(Xl - y~ V-~) (x~ + y2 V~) = ~ (u + v V~) 
and  

(Xl + yl  V~) (x2 - y2 V~) = ~ (u - v V~). 

On mul t ip ly ing  toge ther  member  b y  member  we have  

(x~ - ~ y~) (x~ - ~ y~) = ~2 = )2 (u ~ _ (~ v ~) 

and  we f inal ly  get  

u 2 - ~ v ~ = 1. 

In  this  equa t ion  we have  v ~ 0, because if we had  v = 0 we would get  x 1 Y2 = x,  y~ 
and  u = + 1 and f rom this  i t  would follow 

(Xl -- Yl V~) (X 2 + Y2 V~) (X 2 -- Y2 V~) = __~ ~ (X 2 -- Y2 ~ )  

or when we divide  by  2 

X l -  yl V~ = + ( x 2 -  y2 V~) 
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which implies x t = • x2 and y~ = _+ Y2. According to our a~eemen t  in Lemma 1 
this would mean that  the systems (xl, yl) and @2, Y2) were not different. But  
we can choose ]xl]#[x2].  Thus Theorem 1 is proved. 

R e m a r k  1. I t  is an incompleteness in the theory of equation (6) just devel- 
oped, tha t  from the reasoning which led to Theorem 1 we did not obtain an 
upper bound for the solution. I t  is easy, however, to modify the proof of the 
theorem in such a way tha t  an upper limit may  be determined. 

We content ourselves with the case m-=- 1, 2 (mod. 4). Adopting the notations 
of Lemma 1 we consider the integers x + y V~ which obey inequality (4). Assum- 
ing xn+ynV-6 to be one of these where n has the same meaning as in Lemma 1, 
we have assuming n > �89 ] / ~  1 

I~2-Oy~l=l~. +y.~ll~. + y . ~ -  2y.~l< 

m + l  Vm+l 
< 4n~ - + -  

Vm+ 1 . 2  n V ~ - i  I V51 < 1 + (m + 1)1VSI. 
2n 

Given nl we determine n2 so tha t  

n 2 ~ l  >=]y=,l>nl~. + l >ly,,I. 
N o w  

Ix.,+~.,VSl= 
In  order that  

it is obviously sufficient tha t  

6 2 1 I~,- y.~l > 
Ix,,, +y,q|~-  2yn,~/~[ l + 2n, V~+-* lll/51 

< 
2n, I + 2nIV~T-11V51 

o r  

Generally we put 

and consequently we have 

l / m + l  1 

2n2 < I + 2 n ,  V~TilVSI 

n,>  n111 + (m+ 1)I V;il 1. 

nt = [i + (m+  1)I~IY=~ 

ly.,+,l>ly.,I. 

Putt ing R = 4~0 e, ~04+ 1 at least among the R different integers 

Y n , ,  Y n ,  , . .  �9 , Y n  R 
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give the same value for 

Suppose that  only ~4 of the integers y .  (i = nl, n2 . . . .  , ha) gave the same value 
for kn t. The number of possibilities for kn t is < 4 q~z. Thus the total number of 
possibilities is < 4 ee < R - 1. 

Among the q4+ 1 different pairs of integers (x., y.)  such tha t  

there are at least two pairs {xi, y~) and {x~, y,) which satisfy the congruence 
conditions 

x~ ~ x~ (mod. k), y~ ~- yr (rood. k). 

We can now proceed as in the proof of Theorem 1. With 

we have 

Putt ing 

we find 

and 

(z,-u~V~) (xT + uTVg) = k (u+vV3) 

u 2 -  ~ v ~ = 1. 

l u l <  1 +lv~l[ly, l+lu~l]<~ a + 2 U ~  I Val, , .  = 

=l + 21/g-711~l(l + (~+ l)ll/al),~+,..+1,~,~r,'. 
Further  we have 

lvl<=lu.l+ly, l<=~,,=z(l +(m+ l)lVal)','+("+.t~a,, '. 

Thus we have found an upper limit /or the integers u and v which satisfy the 
equation {6). Obviously we have not tried here to find a best upper limit, but 
merely shown the possibility of determining such a limit with aid of the 
DIRmHLET principle. R~MaK [6] has given a similar limit for the fundamental 
solution of the ordinary Pell equation. 

R e ma rk  2. Theorem 1 states obviously that  as soon as N(O)> 1, equation 
(6) has at least one solution x+yl/O in which x and y are both different from 
zero (about the definition of the concept of solution see w 2). When N ( 6 ) =  l, 
we may have, as will be shown in w 2, improper solutions x + y V~ of {6) where 
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x - 0 .  In  this case Theorem 1 gives no information about  the existence of proper  
solutions of (6). 

We shall now make  a complementa ry  investigation and show tha t  the equa- 
t ion (6) always has a t  least one proper  solution. For  this purpose we have to 
s tudy the following equations: 

a) x e + y2 _ 1. We leave the field K (i) out of consideration since - 1 is a perfect  

square in t ha t  case. The equat ion a) has always a proper  solution in K ( I / -  m) ,  
m >  1, of the form u + v V - ~ l / ~ ,  where u and v are na tura l  numbers ,  which 
satisfy the equat ion u 2 - m v  2= 1. I t  i~ wellknown tha t  this equat ion has proper 
solutions. 

b) x e + ~ y 2 = l ,  where Q = � 8 9  This equat ion has for instance the so- 

lution 2 + �89 (3 + V- -3)  V~-~. 

c) x e § ~2 y2 = ], where ~2 = �89 ( _ 1 - 1/~-3). This equat ion has for example  the 
solution 2 + �89 ( - 3 + V-~3) V~-~e 2. 

We t rea t  here for later  purposes also the equat ion 

x 2 _ y2 = 1, 

al though 6 is a perfect square in this case. If  m ~ l ,  2 (mod. 4) we put  x =  

= a + b V ~  and y = c + d V -  m, where a, b, c and d are rat ional  integers. This 
gives us 

a 2 - m b  2 -  (c 2 - m d  2)= 1 

a b = c d  

or if we eliminate a 2 between these two equat ions 

( d  ~ - b 2) (c 2 + m b 2) = b 2, 

which is obviously impossible if b r  0. I f  we assume b =  0, we mus t  also have 
c = O  and we get a 2 + m d  2= 1 which has only the  following solutions: a =  ++_ 1, 
d = 0 .  

I f  m---3 (mod. 4) we put  x = � 8 9  and y = � 8 9  ~ m )  and find 
analogously the equat ion 

(d  2 - b 2) (c 2 + m b 2 ) = 4 b 2" 

Here we cannot  have  d 2 -  b~> 1 because m > 3. F rom d 2 -  b 2 = 1 it follows b =  
= c = 0, and we get the equat ion aS+ m d ~= 4. In  this equat ion we mus t  have  

a - ~ d  = - 0 (rood. 2) since we have  assumed x and y to  be integers in K ( I / ~ ) .  
If  we put  a = 2 a l  and d = 2 d l ,  we get a ~ + m d ~ = l ,  so t h a t  we mus t  have  
d 1 = 0  and a 1 = •  Thus our result  is t ha t  the equat ion x 2 - y 2 = 1  only has 
improper  solutions in K ( - V - m ) .  
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w 2.  The Diophant ine  equation x 2 -  d y  2 =  1 

In paragraph 1 we showed that  the Diophantine equation (6) is always solv- 
able in integers x and y of the field K(l/Zmm). If equation (6) is satisfied by 
the integers x and y we say that the number x + y ~  is a solution of the equa- 
tion. To ge t the value of l/~ uniquely determined we prescribe the imaginary 
part of V~ to be positive. Solutions x+y l /~  of (6) in which either x or y is 
zero are called improper. When we speak of solutions in the following lines we 
shall always mean proper solutions, i.e. solutions in which both z and y are 
different from zero. 

In this paragraph we shall study a little closer the properties of the solutions 
and begin with a few remarks. 

The only improper solutions of (6) are the following 

1) x = + l , y = 0 .  

2) x = 0 ,  x = i @ f o r 0 = - @ w h e r e @ = � 8 9  

3) x = 0 ,  y =  •  w h e r e @ 2 = - � 8 9  

4) x = 0 ,  y =  •  f o r 0 = - - l a n d K ( V - m ) # K ( i ) .  

The improper solutions enumerated above obviously satisfy the equation 

(9) I x + y ~ / g l  = 1, 

and we further  assert that  there are no proper solutions of (6) satisfying (9). 
Our assertion is .obviously equivalent to the following proposition: The equa- 

tion 

(10) Ix +yt/ 12 + lx-y7 12= 2, 
has only the solutions enumerated above. 

If we observe that  for any two complex numbers r and s we have the identity 

Ir + st2 + l r - s l 2 =  2(lrl2 + lsl 2) 

equation (10) may be written 

Ix12§ 
Since the absolute values of x, y and 0 are > 1 if they are different from zero 
it follows that  we can have no proper solution of (6) satisfying (9). Thus we 
have only the following possibilities: x =  +1,  y = 0  or if N ( 0 ) = 1  

a) 0 = - 1 .  In every imaginary quadratic field the equation x 2 + y 2 = l  has 
solutions with x=O, y = •  and x = •  y=O, but in K(i) - 1  is a perfect 
square. 

b) 0 =  •  As is seen at once the equations x2+iy2=l, have no improper 
solutions in K(i) except x= +1,  y = 0 .  

c) 0 =@ or @2, where @ = � 8 9  +~ / -~ ) .  In these cases 0 is a perfect square. 
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d) ~=  - ~  or _~2. The Diophantine equations x 2 + ~ y  ~= 1 and x 2 + ~ y  2= 1, 
have only the solutions e ~ / - ~  and e ~ V - ~  respectively, apart  from x =  • l, 
y=O. 

We now assert that  two solutions x+yV~ and x' + y '  ]/~ of (6) satisfy the 
condition I x + y V~ [ = ] x' + y' ]/~ [ if and only if x' = + x and y' = • y, where the 
upper signs correspond. I t  is evident that  to the two solutions x +yV~ and 
x' + y '  V~ there exists a new one ~ + ~ /~  of (6) which satisfies the equation 

If we identify here the rational parts and the coefficients of V~ we get 

~ = x x ' - O y y ' ,  ~ = x y ' - y x ' .  

But for the solution ~ + ~1/~ we have 

and if N ( 8 ) =  1 we have to consider the following cases: 

a) ~ =  - 1 .  Here we have either ~ = x x ' + y y ' = O  which implies x'= +y and 
y ' =  • x, or ~ = 0 which implies x'= •  and y'= +_y. Because of the symmetry 
of x2+ y2= 1 our proposition is true. 

b) ~ =  + i .  Here we have ~ = 0  which implies x'= +_x and y'= •  

c) ( ~ = - Q ,  where Q = � 8 9  Suppose that  we have ~ = x x ' + ~ y y ' = O  
and ~ = x y ' - y x ' =  • ~=0 implies either x= • y= ~x '  leading to 7 = 
= +(x'~+~y'2) = +~ which is impossible, or x= +y', y= -TQx' and here we get 

_-~2 (~ x,~ + y,2) __-~ ~. On multiplication with Q~ we find x '~ + ~ y,2 = + 1, where 
we must have the minus sign. If we combine the equations x'2+ ~y'~= 1 and 
x '2 + ~ y'~ = - 1 we get 

x'2(~ - 1 ) =  1 + ~ =  - ~ ,  

which is again impossible. Thus we must have y = 0 and it follows x'= + x and 
y , = •  . 

d) 8 = - ~ ,  w h e r e ~ 2 = - � 8 9  Suppose that  we h a v e ~ -  ' 2 , _  - x x  +~ yy  - 0  
and ~ = x y ' - y x ' =  +_ ~2. There are now three possibilities: 

1) x =  +_q~y', y= Tx',  which implies 7 = +(~2y'~+x'~)= +Q2, orx,2+~y,2= 
= + ~ ,  but  this is impossible. 

2) x= +Qy', y= • which implies 7 = • = +~s or (~x')2+ 
+~y,2= •  Here we must have the minus sign. Now from 
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it  follows 

[ x,2 + y,2 = _ e 

x,2 + ~2 y,2 = 1 

y,2 (~)e _ l )  = 1 + ~ = - ~', 

which is impossible. 

3) x =  +_y', y =  TO2x '. I t  follows ~ =  •162 d-_92, and we must have 
x '2+Qy '2= - 1 ,  which combined with x '2+~2y '2=l ,  leads to 

x ' 2 (1 -  ~) = 1 +~)= -Q2. 

This equation, however, is impossible. 

The (proper) solutions of (6) always occur i n  groups of four. In the following 
we shall call such a group a set of solutions. I t  is obvious that  in a given set 
the expression x + y ~/~ assumes four different values which can be expressed by 

+ $  and +1  where $ is an arbitrary of these values, while ]x+yVb] only as- 

two different values I$] and ]~ reciprocal to each other. Since I x+y~/~ I sumes 

assumes only one value > 1 in each set this value may be used for the purpose 
of characterizing the set, because the equation I x § y 1/51 = I x' § y' l/~ l implies that 
x + y V ~  and x '+y ' l / ~  belongs to the same set. We now call the set for which 
]x+yl/(~l assumes its least value greater than one the ]undamental set of the 
equation (6). 

1 .  
Let  ~ be a positive real number. When ~ increases from l, o + -  increases 

e 
from 2. From this it follows that  for the fundamental set the expression 

assumes its least value greater than 2. This may be used as a definition of the 
fundamental set and although it is essentially equal to the previous definition 
it has the advantage of being independent of the condition ] x + y l / ~ [ > l ,  since 
the expression above assumes the same value for every solution x + y V~ be- 
longing to a given set. 

If we have found a solution x l + y l l / ~  of equation (6) it is easy to determine 
the fundamental set. All we have to do is to calculate Ix 1+y1~/~ i ~ which, for 
the sake of brevity, we denote by b, for the given solution, to determine the 
solutions which satisfy the inequalities 

and finally to decide for which one of these solutions the expression I x + g l/~l 
assumes its least value > l. 
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We will now show how it is possible to determine all the solutions of (6) 
starting from the fundamental set. Although we may start from an arbitrary 
solution in the fundamental set for convenience we choose one of these, i.e. 

tile one satisfying the following conditions: I x + y ~ l  > 1 and - ~2 =arg. < y<g.az 

We call this solution the /un&~mental solution of the equation (6). The funda- 
mental solution will for the rest of this paragraph be denoted by x~ + y~l/'& 

We put I xl+yl~/~ I= a and prove 

Theorem 2. I /  d is an integer it~ K ( ~ )  which is not a per/ect square, the 
Diophantine equation (6) has an in/initude o/ solutions x + y V'~. All the solutions 
(one representative ]rom each set) are obtained by the /ormula 

(11) x=+y~Vd=(xx§  ~, (n=:t ,  2, 3 , . . . )  

where x 1 ~.-y~ ~/~ is the /undamental solution. On identi/ying the rational parts and 
the coe//icients o/ Vd we get 

x'=x~+k~-- ( n )  2]c 

0 2 )  
n Yn=k-i(2~--1) X~-2k+iylk-1 (~k-1 

Proof. Clearly it follows from (11) that 

xn - y ~  l / ~  = ( x  I - -  Yl ~/5 )n" 

Then, on multiplying together the corresponding members o[ this equation and 
of equation (11) we have 

(x~ - ~ y~)  = (x~ - ~ u~) ~ = 1. 

Hence x~+yn~/(~ is a solution of (6). 
Suppose now that  ~ + ~/(~ were u solution of (6)which could not be obtained 

by formula (11). Then, since Ixl+ylV~l ~ in monotonously increasing with n, 
such a natural number t would exist that  

In the first case we have [~ + ~ ~/~1 = I xt + yt V~I, a n d  according to a previous 
result this implies ~ = _+ xt, ~ = _+ y~, where the sign is uniquely determined. In 
the second case we get the double inequality 

l <[x~+y,l/al 

and consequently the solution ~ '+  ~' V~ of (6) defined by 
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satisfies the inequalities 

~, + ~,1/,~_ $ + ~ 1 / ~  
Xt -~ Yt 1'/~ 

1 < Ir § n'l/~ I < IXl +y~V~I. 

This, however, is contrary to our definition of the fundamental solution x~+ 
+Yll/~. Hence Theorem 2 is proved. 

In special cases one can immediately find the fundamental solution of equa- 
tion (6). To give an example the equation 

x 2_ (u  s _ ] ) y 3 = ] ,  N ( u ) > l ,  

where u denotes an arbitrary integer in K ( V ~ ) ,  has the fundamental solution 
u + 1/u 3 - -  1. 

More generally we have 

Theorem 3. Let 6 be an integer in the /ield K ( ~ n ~ )  wl~ich is not a per/ect 
square. I /  ~ and ~ are integers in K ( V - m )  which satis/y the inequalities 

(13) 
N (~) ~ - 

N (~) ~ 

N (m § 5) 3 l 
Jr 4 '  for m=-3 (rood. 4) 4 (m+ 1) 3 

N(~ 2) (m+ 1) 3 
§  for m -  1, 2, (mod. 4), 

4 m u 

and i/ ~ = ~ + ~1~ is a solution o~ the equation (6), then ~ is the /undamental 
solution o~ (6). 

Proof. We prove first that  if x 1 + yl]/~ is the fundamental solution of (6) 
i.e. if I x, I 3+ l y113101 assumes its least value > 1, then so does l Yll. According 
to (12) we have 

and hence 

n ~xn--2k+l~ 2k-1 (~k-1 
Y ~ = ~  2 k -  1 1 ]  1 yl 

N(yn )=N(y l )N(u ) ,  ( n = 1 , 2 , 3 , . . . )  

where u is an integer in K ( V Z m ) ,  so that  N(u)> 1. Here the equality sign is 
obviously possible only for n= 1. 

The theorem is true for N(~)=  1. We suppose therefore that N 0 / ) >  1 and 
furthermore that  xl+yl l /~  is the fundamental solution of ( 6 ) a n d  that  1 < 
< N (Yl) < N(~). However we have 

x ~ - I  ~2--1 
y~ r/z , 
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which may be written 

o r  

xl~+Yl~=fll, xl~]-Yl~=fl2, 

where /71, fi2 and f l # 0  are integers in K ( V - m ) .  Now it follows 

x ~ ) = ~ y ( ~ l - & ) < ~ _ ~ ( ~ ! + l  N ( ~ - y ~ ) +  1 
" "~" 4N(y~) - 4N(yl )  4N(yl )  

{ N(v~)(m + 5) ~ 1 
4 ( r e + l )  2 + ~ ,  for m - - 3  (mod. 4). 

<: 

= N012) (m+l )  24 1 for m - l ,  2 (mod. 4). 
4 m 2 4 '  

By (12) we find NOI)=N(yl)N(y), where N ( y ) > 2 ,  so that  if m ~ 3  (mod. 4) 
m + l  

we must have N ( y ) >  and if r e = l ,  2 (rood. 4) we must have N(y)>m. 
4 = 

Consequently the inequalities mentioned above for N($)  are true. Thus our as- 
sumption that  N (~)> N (Yl) is false and Theorem 3 is proved. 

We have the following corrolary to this theorem: 
Let Yl and u be integers in K(~/-m) where N(u)->_5. If we put 

6=u(uy~ + 2) 
the number 

1 + u y l  2 § Yl V'~ 

is the fundamental solution of equation (6). 
By letting u vary, We obtain an infinity of values 3 for which Yl has the 

same value. 
An important  problem concerning the equation (6) is the following: Given an 

equation of the type (6). How can we determine the fundamental solution of 
tha t  equation? If we write the equation on the form x 2 = S y 2 + 1 ,  and in the 
expression 5y2+ 1 let y successively run through the integers of K ( t / ~ m )  for 
which N ( y ) = l ,  2, 3 . . . .  , we find after a finite number of trials an integer Yl 
for which 5yl 2 + 1 is a perfect square. By our mode of construction the solution 
xl+y~V~ of (6) found in this way belongs to the fundamental set. In  most 
cases it is, however, impossible to use this method of determination because of 
the laborious calculations it requires. In  general, however, it is the only method 
available at present. 

For the Euclidean fields m =  1, 2, 3, 7 and 11, A. STEI~ [7] and A. ARWIN 
[8] have shown how the fundamental solution of (6) may  be determined by the 
expansion of l/~ in a certain type of continued fraction. A STEIN who does 
not consider the equation (6) but the units in relative quadratic fields, treats 
the field K (i) only but makes a more exhaustive investigation than does ARWIN. 
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w 3. The Diophantlne equation x ~-  dy  ~= - 1  

While equation (6) is solvable in integers belonging to K ( ~ / ~ )  for every 
integer 5 in K ( l / - m )  which is not a perfect square, the Diophantine equation 

x 2 - ~ y  2= - 1, 

certain values of ~. Let us consider as an example the 

(14) 

is solvable only for 
equation 

(15) 

in K (~/~22). The equation 

x 2 - (1 + V - -  2 ) y~ = - 1 

~2 _ (1 + V ~  ) y2 = 1, 

has the fundamental solution 

( 1 -  U~-2 ) + ( l / - ~  ) ( 1 +  ~/+ 2. 

Suppose that  ~+~V~ is the fundamental solution bf (15). According to (17) 
we have 2 ~n = _+ ~/-  2, which is obviously impossible. 

If x and y are integers in K ( | / - m )  which satisfy the equation (14), the 
number x + y ~  i~ called a solution of the-equation. The solution is said to be 
proper if x and y are both different from zero, otherwise it is called improper. 
When we speak of solutions in the following lines we shall always mean proper 
solutions. 

We assume in the following that  equation (14) is solvable and shall investi- 
gate the properties of the solutions. I t  turns out that  the field K (i) needs a 
special treatment. 

Let x +  y~/~ be a solution of equation (6) which, as we have seen, is always 
solvable in K(i). Then x i + y i ~  is obviously a solution of equation (14). On 
the other hand, if u + v ~  is a solution of (14) then ui+viV(~ is a sblution of 
(6). Hence the Diophantine equation (14) is always solvable in K(i) and its 
solutions are connected with the solutions of (6) in a very simple way. We have 

Theorem 4. The Diophantine equation (14) is always solvable in integers be- 
longing to K(i) and we obtain all solutions xn + y , , ~  o] the equation (one repre- 
sentative ]rom each set) by the ]ormuIa 

(16) xn+y~U~=i(x+yV~) ~, ( n + 1 , 2 , 3 ,  ...) 

where 2+ y V~ denotes the /undamental solution o/ equation (6). 

Because of Theorem 4 we leave the field K(i) out of consideration for the 
rest of this para~aph,  i.e. we shall always assume K(~/~- m) ~ K(i). 

In analogy with our exposition in w 2 we shall now introduce the concepts 
of fundamental set and fundamental solution. First, however, we will have to 
make a few remarks. 
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Our first remark concerns the existence of improper solutions of equation 
(14). According to theorem 4 we do not take the field K(i) into consideration. 
Since the equation x 2= - 1  is not solvable in K ( l / < m ) ,  r e > l ,  we cannot 
have y = 0  in (14). Thus N(~)= 1 is a necessary condition for the existence of 
improper solutions. This means that we wilt have to study the equation 
_ 6 y 2 = _ l .  Now the only possibilities for ~ are ~ = ~  and ~=Q~, where 0=  
= ~ ( - 1  + 1/-3) ,  but for these values ~ is a perfect square. Hence equation 
(14) has no improper solutions in K ( l / - m ) ,  m > l .  

Let x+yV'~ and x'+x'U~ be two solutions of (14) for which we have Ix+  
+ Y ~/~1 = ] x' + y' ~/~ ]. Then ~' = _+ x and y' = _+ y, where the upper signs corre- 
spond. I t  is evident that to the two solutions x+yl/~ and x'+y'V~ of (14) 
there exists a solution ~ + ~ /~  of the equation (6) such that  

On identifying the rational parts and the coefficients of [/~ we get 

~=r ~=x'y-y 'x .  

But for the solution ~ + ~ t/~ of (6) we have 

1, 1 + 1/51-Ix+yVal 
and according to our result in w 2 it follows ~ = ___ 1, ~ = 0 and consequently 
x ' =  •  y '=-4-y.  

The solutions of (14) always occur in groups of four. In the following we 
shall call such a group a set of solutions. In a given set the expression $ = 
= x+yV~ obviously assumes four different values which may be expressed by 

+ ~ and + _1 where ~ denotes an arbitrary of these values, while I x + y]/~ ] only 

two different values I~l and ~l" Since I x + y ~ l  assumes only assumes one 

value > 1 in each set this value may be used for the purpose of characterizing 
the set, because the equation I x + y I/~ I = I x' + y: V~] implies that  x + y 1/3 and 
x ' +  y'l/~ belongs to the same set. We now call the set for which Ix + y~/~l as - 
sumes its least value > 1 the /undamental set of equation (14). 

For the fundamental set the expression 

I x + y ]/~ 12 
=lx+yV l  +lyl 2) 

assumes its least value > 2, which may also be used as a definition of the 
fundamental set. 
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If we have found a solution X l - ~ Y l ~  of equation (14)i t  is easy to determine 
the fundamental set. All we have to do is to calculate Ix1 + Ylb/~ [ 2 which, for 
the sake of brevity, we denote by b, for the given solution, to determine the 
solutions which satisfy the inequalities 

and finally to decide for which one of these, the expression Ix + yl/~[ assumes 
its least value > 1. 

We shall now show how it is possible to determine all solutions of equation 
(14) starting from the fundamental set. Although we may start from an arbi- 
t rary solution in the fundamental set we choose for convenience one of these, 

i.e. the one which satisfies the following conditions: Ix + yV~l > 1 and - ~ < 
2 = 

7g 
< arg. y < ~ .  We call this solution the/undamental solution of the equation (14). 

I t  will in the following be denoted by xl + YI V~. 
The square of a solution of (14) is obviously a solution of equation (6). We 

prove the following 

Theorem 8. Let ~ be an integer in K ( ~ - - m ) ,  m > 1, which is not a per]ect 
square, and suppose that the Diophantine equation (14) is solvable in K ( ~ - m ) .  
Suppose /urthermore that x I + Yl W~ is the /undamental solutions o] the equation. 
Then either the number 

(17) 

or the number - x 2 - Y 2 ~  is the /undamental solution o/ equation (6), according 
g~ g~ 

as - ~ <= arg. 2xl  Yl < ~ or not. 

I/, ]urther, we put 

( i s )  x~ + ~ V~ = (xl + yl V~ )~, 

w]/~re 

(19) 

( n = l ,  2, 3 . . . )  

xo=xr+21t2k)  1 

Y n  = y l  u 
1 2 k - 1  

we obtain by /ormula (18) 

1. All the solutions (one representative /tom each set) o/ equation (14) when n 
runs through all positive odd integers. 
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2. All the solutions (one representative /tom each set) o~ equation (6), when n 
runs through all positive even integers. 

Proof.  Clearly it follows from (18) tha t  

x .  - y .  = - y i  

Then, on multiplying together the corresponding members of this equation and 
of equation (18) we have 

(xi - (~ y:) = y~) = ( -  1) ~. 

Hence x,~ +y~V~ is a solution of (14) or of (6) according as the exponent n is 
odd or even. 

Suppose now tha t  the fundamental  solutions of equations (6) and (14) are 
not related by the formula (17). Then we must  have 

1 < Ix + yV l < + I 

where x + y ~  denotes the fundamental  solution of equation (6), and on multi- 

plication with the number I X l -  Yl l/~ I it follows 

IXl--YlV~I < IXXl--(~yyl + (YX 1 --XYl)V~ I < I Xl + ylY~ I 

where the integers 

Xo=XXl - -Syy  I and y o = y x l - x y l  

satisfies equation (14). On the other hand it is obvious from the properties of 
the solutions x~ - Yl~/~ and x I + y~ ~/~ that  we must  have x o = Y0 = 0, since it 
does not exist any improper solutions of equation (14). From x o = y o = 0  it fol- 
lows x =  +x~ and y =  +y~ which is obviously impossible. Thus (17) is true. As 
a consequence of this result and of Theorem 2 we obtain immediately the proof 
of the last par t  of Theorem 5. 

I t  remains to prove the second par t  of our theorem. Suppose the x + y V~ 
were a solution of (14) which is not obtainable by formula (18) i.e. such a 
one tha t  none of the solutions belonging to the same set as x + y V~ is obtain- 
able by (18). Then such a natural  number t would exist tha t  either 

Ix+yV l=lxl+ lV l ::-1 
or 

+ V 12'-l < lx + y/ l + 

In  the first case we have I x § 2 4 7  and accordirlg to a p:eo 
vious result, x + y ~ and x2t-~ + y~t-1 V~ belougs to the same set. In  the second 
case we get after having divided by Ix l+ylV~l  2t-1 
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Ix+yY l < i l ylV l o 
1 <( [ Xl + y l  ~/~ 12t-1 

For the solution ~ +~U~ of (6) defined by  

x+yV  
(xl + yl f '-1 

we have however 

but  this is impossible, since ( x l + y l ~ )  ~ belongs to the fundamental  set of 
equation (6). Thus the proof of Theorem 5 is completed. 

w 4. The  Diophant ine  equat ion  x ~ - D y  2= +1 

In  this section we study equation (2) for the special case of ~ being a ra- 
tional integer. We first put  ~ = D where D is a natural  number which is not a 
perfect square in K 0 / ~ m ) .  Furthermore we assume VD to be positive and 
consider the equation 

(20) x 2 - D y~ = 1. 

I t  is seen at  once tha t  if x + y V D  is a solution of (20), where x = � 8 9  

+ b 1 ] / -  m), y = �89 (a2 + b~.]/~- m), with ak -= bk (mod. 2) for m -  3 (mod. 4) and 
a~--=bk=0 (mod. 2) for re-=l ,  2 (rood. 4), then ~ + g V D ,  where, ~= �89  1 -  
- bl l / -  m) and ~7 = �89 (a2 - b21 / - m), is also a solution of (20), and for these two 
solutions we have I x+y~ /L ) I=I~+~V1) I .  According to our results in w 2, this 
implies a 1 - b 1 V ~ m = + (al + bl V ~ )  and a, - b2 ~ = -+ (a, + b, ] / -  m), where 
the upper signs correspond, i.e. we have either bl = b2 = 0 or a 1 = a2 = 0. 

Let  us first consider the case b 1 = b2 = O. In  this case equation (20) may  be 
written 

2 2 al - D as = 4 

i.e. the equation coincides "with PelFs equation. 
Let  us now assume tha t  a 1 = a , =  O. Then equation (20) is of the form 

(51 ~ )~ - D (b, ] / - -  m) 2 = 4 
o r  

- m b ~  + D m b ~ = 4 ,  

which is possible only for m =  1. Hence K( i )  is the only imaginary quadratic 
field in which equation (20) has non-real solutions. On observing tha t  an ima- 
ginary solution of equation (20) in K ( i )  may  be regarded as a solution in ra- 
tional integers of the equation 

(21) x ~ - D y  2 = - 1, we can formulate 
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T h e o r e m  6. The Diophantine equation (20) has in the ]ield K (i) either alter- 
nately purely imaginary solutions and real solutions, or real solutions only, ac- 
carding as equation (21) is solvable in rational integers or not. 

For the other imaginary quadratic fields we have 

Theorem 7. The Diophantine equation (20) has in the /ield K(~--m), m> 1, 
only real solutions x + y~I) i.e. x and y are rational integers. 

For the Diophantine equation (21) we have the same result i.e. if equation 
(21) is solvable, the solutions are real numbers. 

We now turn our attention to the equation 

(22) x2 + Dy ~= 1, 

where D is a squarefree natural number such that - D  is not a perfect square 
in K ( V - m ) .  With x=�89 y=�89 where ak=bk (mod. 2) 
for m ~ 3  (rood. 4) and ak - -bk=0  (mod. 2) for m =- 1, 2 (mod. 4), we get 

a~ - m b~ + D (a~ - m b,~) = 4.  

al bl + D a2b~ = O. 

On eliminating a~_ between these two equations we find 

(b~ + D b~) (a~ - m D b~) = 4 D b~, 

and there are the following possibilities to examine 

1) b l = a 2 - 0 .  Putting a1=2c  I and b2=2d~, equation (22) reduces to 

(23) c~- mDd~ = 1. 

I t  cannot occur here that m D is the square of a natural number. 

2) a l=b2=0 .  Putting a~=2c2 and bl=2dl, this implies 

(24) -md~ + Dc~= l. 

While (23) is always solvable, (24) is solvable only for certain values of D. 
If equation (24) is solvable and has the solution dl V - m  + c 2 ] / - D ,  then 

(dl ] / ~  + e2]/- D ) 2= - m d ~ -  Dc~ + 2e~d~ ] / ~  

is a solution of (23). 

3) b~ = 3 D b~, i.e. D = 3. In this case (22) reduces to an equation of type (23). 

4) Finally we may have b~=Db~, i.e. D=I .  Here (22) is of the form 

(25) ( a l + b ~ - - m ) 2 + ( a l - b 2 ~ ) ~ = l  , 

and this equation is solvable if m does not contain any prime p ~ 3, 5 (mod. 8), 
as is seen at once. 
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By Theorem 2 we have 

Theorem 8. I] D > 1 and equation (24) is solvable with the/undamental solu- 
tion x + y V ~  this solution is also the ]undamental solution o~ equation (22). 
Furthermore the solution (x § y Y~-D) 2 belongs to the /undamental set o] equation 
(23), which may be regarded as an ordinary Pell's equation. I~ (24)is  not solvable 
the /undamental solution o/ (22) is equal to the /undamental solution o/ (23). 

I /  D =  1 and (25) is solvable with the ]undamental solution 

al + bl ~/-- m ~ al - bl ]/~ m ]/-- 1 
2 2 

this solution is the ]undamental solution o/ equation (22). I /  (25) is not solvable 
the/undamental solution o/(22) is equal to the/undamental solution o~ equation (2~). 

For the equation 

(26) x 2 + D y~ = - 1, 

we have apart from trivial differences, the same results as for equation (22). 
Our results in Theorems 6, 7 and 8 may be regarded as theorems concerning 

the units x +  y l/D and x+ y ] / - D  with inte~al  coefficients x and y in the fields 
K ( l / - m  ; ]/D) and K (]/---m ; 1 / ~ )  respectively. Leaving t!m roots of unity 
belonging to K ( ] / - m ;  ]/D) and K( -V-m; ] /~D) out of consideration we have 

Theorem 9. The cyclic group G o] units x+  y VD, with integral coe]]icients x 
and y belonging to K ( ~ - m ) ,  in the /ield K ( ] / - ~ ;  b/i)), m > 1, is generated by 
the ]undamental unit o/ the sub]ield K (]/1)). 

In  the field K(V-~-I; l /D) the  group G is generated by ~ + y ] / I ) o r  ~ 

§  where x + y Y D  denotes the ]undamental unit o/ K(]/~)) according as the, 
Diophantine equation (21) is solvable in rational integers or not. 

As to the fields K1/---m; | l --D) we have 

Theorem 10. For D >  I, the group G o] units ~ + ~  D with integral coe//i 

cients ~ and ~ in K ( ] / ~ m )  is generated by  ~ u - + v ] / ~  or u+v] /~ I ) ,  ,where 

u § v ~mD, where u § v ~ is the ]undamental unit in the /ield K ( ~ / ~ ) ,  ~Ic- 
cording as either o] the equations 

( 2 7 )  ( - m x  2 - D y 2 )  2 = 1, 

and 

(28) x 2 - -my 2 . . . .  1, 

are solvable in rational integers or not. 

In  the ]ield K 0 / - m ;  ] / - ~ )  the group G is generated by ~u + v V~ or u + v l~r,, 

where u +v ~m is the ]undamental unit in the ]ield K(~/m), according as either 
o~ the equations 
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x 2 - m y  2= - 1, (29) 

and 

(30) x ~ - m y  ~ = _ 2 ,  

are solvable in rational integers or not. 

w 5. The Diophantine equation x z -  d y  z= 6 

Let /(x,  y) be a binary quadratic form with coefficients belonging to an al- 
gebraic number field ~ .  If then a is an integer in the field considered, the 
question arises whether or not a can be represented by the form /(x, y), or 
expressed in a different way, whether or not the Diophantine equation 

(31) / (x, u) = 

is solvable in integers belonging to ~o. In investigating this problem one may  
use either the theory of quadratic forms or the theory of relative quadratic fields. 

~rhen ~ is the rational number field T. :NAG~.LL [1] [2] [3] [4] has shown, 
as is previously mentioned, how the solutions of (31) can be determined very 
easily and with quite elementary methods. 

Using the theory developed in ~ 1-3, we will show in this paragraph tha t  
the method employed by I~AGELL can also be used when 52 is an imaginary 
quadratic field. 

Obviously it is sufficient to study the equation 

(32) x 2 - ~ y~ = a 

where (~ is an integer in K ( ~ / -  m) which is not a perfect square, instead of 
the more general equation (31). 

If x = u  and y = v  are integers in K(i/-Sm) which satisfy the equation (32) 
we say that  the number 

u+vV~ 

is a solution of that  equation. 
Two solutions u + v I/~ and u' + v' V~ of (32) are said to be equal if and only 

if u =u'  and v = v'. 
A solution u + v I/~ of (32) is said to be greater than another solution u '+ v'I/~ 

of (32) lu+vV l>lu'+r 
�9 In w 1 we have studied the equation 

(33) x2 _ 8 y2 = 1. 
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We showed that  (33) is always solvable in K ( ~ m )  and defined the funda- 
mental solution of that  equation to be the solution which satisfies the conditions 

Yt g~ 
] v + y l / ~ [ > l  and least, and - ~ <  arg. y < ~ .  

Assume now that  equation (32) is solvable and has the solution u+v ~/~. I f  
x + y V~ is a solution of (33), then the number 

(u + v Vg) (v + y V~)=ux + ~vy + (uy + vx) V~ 

is also a solution of (32). This solution is said to be associated with the solu- 
tion u + v V~. The set of all solutions associated with each other forms a class 
o/ solutions of (32). By Theorem 2 every class contains an infinity of solutions. 

I t  is possible to decide whether the two given solutions u + v V~ and u'  + v' 1/5 
belong to the same class or not. In fact, it is easy to see that  the necessary 
and sufficient condition for these two soh~tions to be associated with each other, 
is that  the two numbers 

U U '  - -  ~ V V '  V U '  - -  U V  1 
and 

(Y (1 

be integers in K ( V - m ) .  
Let K be the class consisting of the solutions u~ + v~ V~, i =  1, 2, 3 . . . . .  it 

is then evident that  the solutions u~-  v~ ~/~, i = 1, 2, 3 . . . . .  also constitute a 
class, which may be denoted by /~. The classes K and K are said to be con- 
~ugates of each other. Conjugate classes are in general distinct, but may some- 
times coincide; in the latter case we speak of ambiguous classes. 

Among all the solutions u + v 1/~ in a given class K we now chcose a solu- 
tion u * + v *  ~/5 in the following way: Let N(u*) be the least value of N(u) 

which occurs in K, and furthermore let u* satisfy the inequalities - 2 < arg. 

u* < ~ .  If  K is not ambiguous, then the solution u* + v* I/~ is uniquely deter- 

mihed. If  K is ambiguous, we get a uniquely determined solution u* + v* ~"~ by 
7t  7C 

prescribing also that  - ~  < arg. v*<5.  The solution defined in this way is 

said to be the /undamental solution o/ the class. 
The case N (u*)= 0 can occur only when the class is ambiguous, and similarly 

for the case N ( v * ) =  0. 
If  a = • 1, clearly there is only one class, and then it is ambiguous. 

After these preliminaries we are now in a position to prove 

Theo rem 11. Let u + v ~ be the /undamental solution in the class K o~ the 
Diophantine equation 

(32) u 2 - ~ v 2 = a 
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and let v 1 + Yl V~ be the ]undamental solution o~ the equation (33). Furthermore let 
us assume that ~ takes none o/ the values _+ )/--  1, +_ 2, ___ �89 (3 - ~ / -  3) _+ �89 (3 + 
+ ) / - -3)  and +_ V ~ .  Under these conditions u and v obey the/ollowing inequal- 
ities 

(34) 

and 

(35) 

o<lu~l < lx~- i l  I~F_ 1 I(~1 

o=<lv~l < [ lull + x)  ~,1~,1-1 ~ Iol- 

I /  a is a per/ect square in K ( ~ ) ,  a=~/2, and ~ belongs to the class K we 
have the ]ollowing inequalities as well, which have the advantage o] being also valid 
/or the exceptional values o/ ~ enumerated above. 

(36) o<lul=<l~, l lV~' l  

(37) O= < Ivl = lY, I I V;I. 

Proof .  I t  is evident,  t ha t  the inequalities (36) and  (37) are val id when a is 
a perfect square a = ~  2 and ~ belongs to the class K,  since in this case equat ion 

(32) has the solution x l ~ + y l ~ .  
Let  us then  tu rn  to the other inequalities. I f  (34) and (35) are val id for the  

class K they  are aslo valid for the  conjugate class K.  We form 

(u+vV~)(~ +y, V~)=UXl +~Vy~ +(vx, +uy~) V~ 
and 

(u A- v V~) (x 1 -  Yl W~) = u x 1 - ~ v y, + (v x 1 - u yl) W~ 

Le t  us consider 

ux~+~vy~ and ux~-~vy~ .  

According to the definition of fundamenta l  solution these numbers  bo th  obey 
the inequalities 

]UXl+~vy,  m>mu] and lUX l -~v y l i> iu ] .  

But  it  is evident t ha t  a t  least one of these inequalities, let us assume tha t  i t  
is the first one, m a y  be sharpened to 

i ux,+ avu, I--> I ux~l, 

and here the equal i ty sign holds only if v = 0 so t h a t  we can assume the  in- 
equali ty to be strict, 

iuxl+~Vy, l>iux, I, 
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since if v=0 ,  l u2[ satisfies the inequality [uS[<la[,  which is obviously better 
than (34). I t  now follows 

l u S x i  - ~Sv~yll > lull Ixll 
o r  

l u ~x~-(u 2 - o ) ( ~ -  1) l>lu~ll=ll 
which can be written 

I u=+ o ( ~ -  1) 1 > lull I=1l. 
~ence 

I('[ Ix~-11>1~11-1, 
luSl 

and we get 

Ix~-ll 

under the condition [Xl[ # 1. This condition is always fulfilled except for the 
values of 5 enumerated in the theorem. Thus the inequalities (34) are true. 

From (32) we deduce 

l~llvSl_-<lu~l+l~l 
and it follows 

1 /1:~-11 1)1,~1 

which is in fac't the right hand inequality in (35). 
For those values of ~ which are excepted in Theorem 11 we have 

Theo rem f l a .  Let 5 be one o/ the integers ! V - l ,  •  _+ �89  
_+ �89 (3 § ~/~ 3), or +_ V-- 3. Furthermore let u § v (5 be the ]undamental solution 
o] the class K o/ the Diophantine equation 

(32) u s - ~v s = a, 

and let x s §  s V'~ be the square o] the /undamental solution o~ equation (33). 
Under these conditions u and v obey the /ollowing inequalities 

(38) 

and 

(39) 

<1~-11 ~ 
0<[uSl xs-1  

1)lol.  
~ ~lx~l- 1 

Proof. The proof is exactly that  of Theorem 11. We have only to prove 
that  [xsl ~ 1 is always true, which can be done by a simple calculation. 

From Theorems 11 and 11 a we deduce immediately 

Theorem 12. Let ~ and a be integers in K(-V-m),  where ~ is assumed not 
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to be a per/ect square. Then the Diophantine equation (32) has only a / in i t enum-  
bet o/ classes o/ solutions. The ]undamental solution in each class can be determined 
by a /inite number o/ trials using the inequalities in Theorems 11 and 11 a. 

I] u* + v* ~6 is the ]undamental solution in the class K, we /ind all the solu- 
tions u+ v ~-5 in K by the ]ormula 

u + v V~ = (u*  + v* V~) (x + y V~) 

where x+ y ~6 runs through all the solutions o/ equation (33). 
A supplement to Theorems 11 and 11 a is given by" 

Theorem 13. I /  ~ is a prime in the field K ( V - m ) ,  the Diophantine equation 

(40)  u 2 - ~ v ~ = ~, 

where (5 is an integer in K ( V - m ) ,  which is not a per]ect square and such that 
](~l >= 6, has at most one solution u + v (6  in which u and v satis]y the inequalities 
(34) and (35). 

I /  equation (40) is solvable, it has one or two classes o/ solutions according as 
the prime ~ divides 2 6 or not. 

Proof. Suppose that  u +  v 1/6 and U 1 + V 1 V~ are two solutions of (40) which 
satisfy the conditions in the first part of Theorem 13. 

Eliminating (~ between the equations 

(41) u 2 - 6 v 2 = g  and u ~ - 6 v ~ = ~ ,  

we get 

Thus 
u ' v~ - u~ v 2 = ~ (v~ - v') .  

(42) u v l ~  -~UlV (mod. z) 

for the upper or for the lower sign. 
Further, on multiplying together equations (41) member by member we have 

( u  u~ T- ~ v vl)  2 - ~ (u v l  :T u l  v) 2 = ~ .  
In the equation 

(43) (UUI ~ V V l ) 2 - - ~  (UVI~ UI V)2= I 

let us choose the sign so that  the congruence (42) is satisfied. Then the two 
squares on the left-hand side in (43) are integers. If u vl T-u lv~  O, we conclude 
from (43) that  

(44) ]Uvl-m-ulVl ~ iYl ]l~:i �9 

On the other hand, applying inequalities (34) and (35) we obtain, under the 
condition I(~l > 6, 

iuv~u, , l<ly,  iJ-i, 
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which is contrary to (44). The remaining case is that  u vl T u l v  ~ O, which is 
obviously possible only for u = u ,  and v = v v  Thus the first part  of Theorem 13 
is proved. 

Consequently, there are at  most two classes of solution. Suppose that  u +  v 1/J 
and u - v  1/-~ are two solutions which satisfy inequalities (34) and (35). These 
solutions are associated if and only if ~ divides the two numbers 2 u v  and u2+ 
+ S v  2 = 2 8 v  2 - ~ .  Since v cannot be divisible by ~, the numbers 2u  and 2 

are divisible by ~. But, if 28 is divisible by ~, so is 2u. Thus, the necessary 
and sufficient condition for u + v V~ and u - v  [/~ to belong to the same class 
is that  2 8 be a multiple of z. This proves the second part  of the theorem. 
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