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Isomorphisms of abelian group algebras 

By H E N R Y  H E L S O N  

Let G and H be locally compact groups with group algebras L (G)and L (H) 
respectively. If  G and H are isomorphic groups, the correspondence between 
points of G and H given by the isomorphism induces an isomorphism of the 
group algebras. The purpose of this paper is to make a contribution to the con- 
verse question: assuming that  L (G) and L ( H ) a r e  isomorphic algebras, under 
what conditions can it be asserted that  the underlying groups are isomorphic ? 

As a case of the problem, one can ask when an automorphism of a single 
group algebra is induced by  an automorphism of the underlying group. A dis- 
cussion appeared in the author 's  thesis (Harvard,  1950) 1 , where the group was 
assumed to be commutative. The principal result there stated was Theorem 3 
of this paper, except that  only automorphisms were considered. Further informa- 
tion is hard to obtain even for simple groups; for example, i t  is not known 
whether there are any automorphisms of the algebra on the line, except a few 
obvious and trivial ones. 

At a late stage of this work I learned that  J.  WENDEL has obtained Theorem 
3 (for an operator assumed to be isometric) even for non-abelian group algebras. 
More recently he has established all of Theorem 3. While his methods and mine 
undoubtedly are related, it is difficult to make direct comparisons because of 
the complexity of the general case. I am grateful to Dr. WENDEL for correspondence 
about the problem, and for a summary of [7] before it appeared in print. 

We shall consider only abelian groups, where the Fourier transform is a con- 
venient tool. Our m a i n  result, Theorem 4, asserts the following: If T is an 
operator mapping L (G) isomorphically onto L (H) with bou~ul less than two, where 
G and H are locally compact abelian groups, and if the dual group of G or of 
H is connected, then G and H are isomorphic groups, and T is the natural 
isomorphism of algebras induced by the group isomorphism. Since Theorem 3 is 
a corol lary of the more complicated methods used here, we are not giving its 
original proof. 

The argument used to prove Theorem 4 is a modification of a proof of A. BEUR- 
LI~rG for the following theorem: if for each real 2 

e t a~(x) 

1 Most of the content  of w167 1 and 2 and Theorem 3 appeared in m y  thesis. I am pleased 
to record m y  indebtedness to Professor L. H. LooMIs, who directed the thesis. The other  
theorems are generalizations of unpubl ished results of Professor A. BEURLIN~, to whom I am 
obliged for much  advice, and for permission to publish these theorems depending essentially 
an his work. 
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is the Fourier-Stieltjes transform of a measure on the line having total variation 
at most two, then ~ is a linear function. A corollary of BEURLING'S theorem and 
the preliminary sections of this paper is that  any automorphism of the group 
algebra of the line has bound greater than two (as a linear operator), unless it is 
of a trivia] type. 

In the first section a characterization is given of functions which are Fourier- 
Stieltjes transforms of bounded measures. This theorem is used in the second 
section to extend an isomorphism of group algebras to an isomorphism of the 
corresponding algebras of bounded measures. In the third section more analysis 
is performed on group algebras, extending theorems known on the line. The results 
of the paper are proved in the fourth section, and some examples and comments 
are collected in the final section. 

w 1. Fourier-Stieltjes transforms 

L~t G be a locally compact group (always taken abelian) with dual group G, 
and let dx and d& be the t taar  measures on G and ~ respectively. If tt is a 
measure of Radon on G (hereafter called simply a bounded measure), its Fourier- 
Stieltjes transform is given by the formula 

/~ (~) = f (x, ~) d#  (x). 
G 

Then ~ is a bounded continuous function defined on 0. The transform is a linear 
operation, and the convolution of two measures is carried onto the ordinary 
product of their transforms. The set of Fourier-Stieltjes transforms is thus an 
algebra under the pointwise operations and multiplication by complex scalars. 
Call this a]gebra B(0) .  A norm is introduced into the algebra of bounded 
measures, or their transforms, by defining 

II ll = Jl ll = sup  I f  
G 

over measurable functions q with essential bound one. The total mass of tt in a 
set E is defined by the same formula, where q~ is required to vanish outside E. 

The functions summable on G for Haar measure are an algebra L(G) under 
addition and convolution. Since the convolution of a function and a measure is 
again a function, L (G) is an ideal in the algebra of bounded measures. We 
denote the family of Fourier transforms of summable functions by F(G); then 
F (0 )  is a Banach algebra in the norm inherited from L(G), and is an ideal in 
B (0) by the previous remark. We are going to show that  F (0 )  is not an ideal 
in any larger ring of functions. In other words, if a function ~ defined on 0 has 
the property that ] . ~ q F ( 0 )  for every /qF(G) ,  then ~ is itself an element of 
B(G). 

Theorem 1. Let ~ be a function defined on G. A necessary and sufficient 
condition for ~ to be the Fourier-Stieltjes transform of a bounded measure on 
G is that  ] . ~ q F ( 0 )  for every ] q F ( 0 ) .  
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We only have to consider the sufficiency of the condition. Define an operator 
U in L(G) by setting 

vT= 
that  is, U/ is the unique summable function whose transform is ] .  ~. U is evi- 
dently linear. To show it is continuous, suppose that In converges to /, and 
U/,, converges to g in L (G). According to the closed graph theorem ([1], p. 41), 
it is enough to show that  U~ = g. Now the convergence of summable functions 
carries with it the uniform convergence of the Fourier transforms, so we have: 

U~/n = ]'~. ~ converges to ~, 

in converges to ]. 

The second assertion implies that  

i,," converges to i" 
Hence ]. ~0 = ~, or U! = g. 

Let {ca} be a directed system of functions running through an approximate 
identity for L (G), and set 

Then by hypothesis each ~EF(67),  and the directed system converges to ~ uni- 
formly on compact sets. Define a linear functional F in L (~), the algebra of 
functions summab]e on ~: 

G 

for any summable /~ with Fourier transform h. Then we have 

Hence 

.~(~) = liam f ~ga(X)~(X-1) d ~  
G 

=lim f f (x, ~) Ue~,(x)~(~c-1)dxd} 
a b a 

= h m  f h(x) Uea(x)dx. 
a G 

I~(~)l ~< II ~Ze~ll-llhll~ z II uI l . l lhl l~,  

since U is bounded and each function ea has norm one. 
Of course F is a continuous functional on L (G) for the norm of that space. 

We have just proved the stronger fact that F is continuous with respect to the 
uniform norm of Fourier transforms. A theorem of BOCH~ER [2] and SCaOENBERG 
[6] asserts that  this is sufficient to assure the existence of a bounded measure of 
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norm not exceeding l[ U II whose transform is ~0, and this completes the proof of 
the theorem. We remark that  Bochner and Schoenberg state their theorem for 
the 1eal line, but  Schoenberg's formulation and proof apply to arbitrary groups. 

Theorem 1 has been proved frequently in special cases ([3], [4], and [9]). 
Dr. E. AKUTOWICZ suggested to me the desirability of finding a proof on arbitrary 
abelian groups. 

w 2. Isomorphisms of group algebras 

Let G and H be given groups and let T be a one-one mapping of L (G)onto 
L(H)  such that  

T( /  + g) = T /  + T g  

T ( /  ~ g) = T /  ~ Tg  

T(~ / )  = AT~ 

for any /, g e l  (G) and any Complex scalar ~. T is callecl an isomorphism of 
L(G) onto L(H).  If G and H are the same group, T is an automorphism of 
L (G). Since the topology of a commutative semi-simple Banach algebra is uniquely 
determined, T and its inverse must be continuous. Evidently the inverse of T 
is an isomorphism of L (H) onto L (G). 

The operator T carries the algebraic structtire of L (G) onto that  of L (H), 
and in particular maps regular maximal ideals onto ideals of the same kind. 
~dentifying the regular maxima] ideals of an algebra with points of the dual 
group, we have defined a mapl?ing T of C onto H. 

L e m m a  1. z is a homeomorphism of ~ onto fI. 
I t  is trivial to verify tha t  ~ is a one-one maPping of G o n t o / t .  To establish 

its bicontinuity, recall that  a set of regular maximal ideals is closed (that is, 
the corresponding set of points in the dual group is closed) just if the intersection 
of the ideals in the s e t  is contained in no other regular maximal ideal. Since 
this property is preserved under z and its inverse, T is bicontinuous. 

The lemma states in particular that  if the algebras of two groups are iso- 
morphic, then the dual groups are homeomorphic. The homeomorpbisms which can 
arise in this way are not further described, and this is the crux of the problem, 
but one interesting deduction can be made immediately. Suppose the algebra 
L (R) of the line is isomorphic to L (H) for some group H. Then / t  is homeo- 
morphic to /?, and so /q is the line provided with another group operation. But 
the group operation in R is unique, in the sense that  if ~ is  a continuous group 
operation in R, then there is a homeomorphism 9 of R onto itself such that  

x ~ y = ~-1  [9 (x) + ~ (y)] 

for all numbers x and y. So /~ and / t  are isomorphic ~oups,  and R and H 
must be isomorphic too. Hence the real line is characterized by its group algebra. 
However, it does not follow from these considerations that  an automorphism of 
L (R) is the natural one induced by a point mapping of R onto itself. This will 
not be the case unless the homeomorphism ~ is multiplicative. 
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Lemma 2. For any /EL(G) and all x EG, 

That is, if the operator T is looked at as a mapping of F(0)  onto F(/t) ,  i~ 
is determined in the natural way by the point mapping 3. If ~ is any function 
defined on G, let ~ be the function on ~r given b y  the formula 

Then the lemma states that 

i'. 
Since T is homogeneons we only have to show that 

f(~) = 0 is equivalent to T ) (3~)=  0, 

and 

] (~) = 1 is equivalent to 1~/(3x) = 1. 

The first fact is contained in the definition of 3 as a mapping of maximal 
ideals. The second fact is reduced to the first by the observation that ] (~ )=  1 
just if the transform of / ~  g - g  vanishes at ~ for each summable g. 

Lemma 3. A necessary and sufficient condition for a function ~ defined o n / t  
to belong to B (/t) is that ~ = ~0" for some ~ e B(O). 

In other words, the mapping of functions induced by 3, which carries F(0)  
onto F( / / )  by the last lemma, actually carries B(O) onto B(/ t )  as well. 

Suppose ~eB(0), and let ] be an arbitrary function of F(0).  Then 

/ .  ~ e F(d!), 
so that 

/ ' .  = 

Since f represents an arbitrary function of F(H) by Lemma 2, 7"EB(/~) by 
Theorem 1. The same argument applied to the inverse of T shows that all of B (H) 
is so covered, completing the proof. 

The mapping thus defined of B (0) onto B( / / )  is an isomorphism of these 
algebras, which can be interpreted as an isomorphism of the algebra of measures 
on G onto the measures on H. This operator extends T, and we shall use the 
same letter to denote it. We want to show that the norm of T is not increased 
by the" extension. 

According to the  theorem of Bochner and Schoenberg used in the proof of 
Theorem 1, [I/~'1[ is the smallest Constant M satisfying the inequality 

i _< MIIhl [ :o 
/ . /  
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for every summable function s o n / t ,  with transform h. If  {e,} is an approximate 
identity for L (G), ea = T ~  converges to one uniformly on compact sets in /~ 
(using the fact that  ~ is a homeomorphism), and so the left side of the in- 
equality is the limit in a of 

// 

For any :r this is not greater than Ilhll~ multiplied by 

il ; : - ~ J i  = II T ( e o ~ ) i l - <  li Tll'lr e o ~ l i - <  II T]I'II~II. 

So the constant M can be taken as II THII /~II ,  and consequently 

I1~11 = IIT~II-< IITII'II~II. 

Here II TII refers to the norm of ~ defined in L(G), andso  this inequality proves 
that  T has the same bound in the wider space of bounded measures. 

We digress to show how T can be extended in another way. By its definition, 
T maps the characte~rs of G onto those of H. Define an operator T* mapping 
trigonometric polynomials on H into polynomials on G by setting 

(2 c ^ ~ ^ . .  
T $ i T Xi et x~ 

f 

Lemma 2 expresses the fact that  for any trigonometric polynomial P on H 
and heL(G), 

f P(y)Th(y-1)dy = f T*P(z)h(x 1)dx. 
H G 

Hence T*, where it  is defined, is the operator adjoint to T, mapping the con- 
jugate space of L (H) onto the conjugate space of L (G). I t  is well-known (and 
easily verified) that  the norm of the adjoint of an operator is equal to the norm 
of the operator itself. So if a sequence of polynomials P ,  converges uniformly 
on H, the sequence T* P~ converges uniformly on G, and in both cases the limit 
function is almost-periodic. We obtain in this way an operator T* mapping the 
almost-periodic functions of g onto those of G. T* is linear with bound [[ T H, 
and furthermore distributes over the convolution operation defined for almost- 
periodic functions. This isomorphism of the spaces of almost-periodic functions on 
the groups seems to embody the essential features of the situation, but  I have 
not been able to deduce anything from it. 

w 3. Mean values 

The isomorphism of B ((~) onto B (/t) which exists by  Lemma 3 carries a point 
mass on G into some measure on H, whose Fourier-Stieltjes transform must have 
absolute value one at  every point. The r object of this section is to prove Theorem 
2 below, which provides information about measures of this type. 

I f  # is a bounded measure on  G, at  most a denumerable number of points 
have positive mass. So ~ has a unique decomposition 
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where the a~ are complex constants, f f~,~ is the measure having unit mass at 
the point p~, and v is a measure vanishing on single points; the sum of the 
absolute values of the coefficients converges since ff is finite. We call a sum of 
point masses a discrete measure, and v a continuous measure. 

Theo rem 2. If the Fourier-Stieltjes transform of ff has absolute value one at 

point, then ,~l at 12 = 1. every 

This remarkable fact was found by Professor BEURLING on the real line; it is 
related to a theorem of WIENER ([8], p. 146). The idea of the proof is that  the 
transform of the continuous part of # is small in mean value: 

r 

nm • ( = o, 
r -~  2r  J 

and so the discrete part cannot be small. In generalizing to arbitrary groups we 
have to describe this entirely on G, for want of a suitable averaging process on 
d. This is accomplished by the following lemma. 

L e m m a  4. Let (Va} be a fundamental system of neighborhoods of the identity 
in G. Let ea be the function equal to 1/Vm V,~ on V~, and  zero elsewhere (m V, 
is the Haar measure of V~). Then for any bounded measure r, e~ + ~ exists almost 
everywhere and belongs to L~(G). If  v is a continuous measure, then e~ ~e v con- 
verges to zero in L 2 (G). 

Thu last assertion contains the force of the lemma, and of course is trivial in 
the case of a discrete group, where every measure is discrete. We exclude this 
case. Then there are neighborhoods of the identity with Haar measure as small 
as we please; and if v is continuous, there are neighborhoods of the identity con- 
taining as little of the total mass of ~ as we please. For Haar measure and r 
are regular measures. 

The norm of e~ is constantly one in L2(G), but the system tends to zero in 
the norm of L (G). Thus it is immediate that e~ ~-v tends to zero in L (G), 
whether or not v is continuous. In L 2 (G) the situation is more delicate. 

Each e, is summable, so e, ~ v exists almost everywhere. By the Plancherel 
theorem for square-summable functions; the Fourier transform ~ of e~ belongs 
to L ~ (G), and so ~,. ~ is also square-summable. Since this function is the trans- 
form of e~ ~ v, the convolution belongs to L ~ (G), proving the first part of the 
lemma. 

For any function of G, define 

i (X) = / (x- i ) ,  

with an analogous definition for measures. If  /EL~(G), 

IItI1  = t +/(o). 
We have to show that 

lifo +,11  = e~ ~ ~ + ~,~ [,(0) 
converges to zero in cr 
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Let  us set 

/ ,  (x) = e~ ~ e, (x) = f e, (y) e .  (x  -1 y) dy ; 
G 

then / ,(0) = l, 0 < la(x) _< 1 everywhere, and /~(x) = 0 outside VglV~. Let  
be the measure v ~  v. The expression for the squared norm above becomes 

l~ ~ ~ (0) = f 1~ (y-l)  d ~  (y). 
G 

Taking account  of the properties of ]~ mentioned, the absolute value of the 
integral cannot  exceed the total  mass of z in Vg 1 V~. Now ~ is a measure of 
Radon  which, like v, vanishes on points. So we can find neighborhoods of the 
ident i ty  containing as little mass as we please, and it follows tha t  the absolute 
value of the integral  converges to zero in ~. This finishes the proof of the 
lemma. 

We proceed to the theorem itself, retaining the notat ion already introduced.  
Hav ing  proved our lemma, we can use the idea of BEURL~NO'S proof on the line. 
The t ransform /~ of /t is assumed to have absolute value one at  every point. 
Hence for any  ~ E L  2(G) with t ransform h, 

which implies 
I]  hH, = Hh!l,. 

If  G is discrete, take h to be the function equal to one at  the ident i ty  and 
zero elsewhere. Then # ~ h represents the same distr ibution of mass as/~ itself, 
and is a function of L ~ (G) having norm one. Hence 

oo 

and the theorem holds i n  this case. We assume now tha t  G is not  discrete. 
Wri te  /t as the sum of its discrete and continuous parts:  

# = # o  + v .  

If  {ea) is the directed system of the lemma, 

at  the same time 

converges to zero by  the lemma. Hence 

[ [ eo  ~ coil2 
approaches one. 

Dropping  the convergence index on ea, let ev be the t ranslate  of e by  a group 
element ~ : 

e ,  (z )  = e ( v - i x ) .  
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Then 
~o 

e ~- #0 = ~ia~ ep i I 

Given an integer N ,  we can find ~ so high that  the sets p~ Va are disjoint for 
i =  1 . . . . .  N. For such ~ we have 

i 2 t 

+ ,e,, < ]atl 2-t~/~ 
_ + la ,  l .  

i 2 t i = N + ]  

Since the series 

~_lail 

converges, the last term above converges to 

L~I] a, [2] 1/'- 

At the same time the norm on the left converges to one, so that  

I-  oo 1 1 / 2  

_< l . 

The opposite inequality is obtained from the same calculations. In the chain 
of inequalities above we can reverse the sense of each sign, provided the second 
term is subtracted in each case instead of added. Then the limiting process is 
carried through as before. So the theorem is proved. 

w 4. Isomorphisms with prescribed bounds 

T is an isomorphism of L (G) onto L (H). In this section we shall, give two 
conditions on the bound of T which are sufficient to prove that  G and H are 
isomorphic, and that  T is the natural isomorphism induced by the isomorphism 
of the groups. The first condition is that  T have bound one, and applies to 
any abelian algebras. Our second condition is that  the bound of T be smal le r  
than two, and applies to groups whose duals are connected. The chain of 
argument leading from Theorem 2 to this result is inspired by BEURLING'S theorem 
for the line, although the generalization to groups requires some change in detail. 

T has been extended to be an isomorphism of the algebra of bounded measures 
on G onto the corresponding algebra on H, and the norm of T is not increased 
by the extension. The unit mass at a point p of G is carried by T into a 
measure /~ (p) on H, and for the Fourier-Stieltjes transforms we have the relation 

(3 = ( p ,  

So /~ has absolute value one at every point. Then by Theorem 2, /~ has a 
unique decomposition 

# = ~ o + ~  
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where v is a continuous measure, and ft 0 is discrete: 

o o  

flo =~=la,/zq,,.= , ~ l  a,l~ = 1. 

Let a be one of the coefficients having 
a~. Then we have 

1 <lol~la ,  l-< 
I = 1  

largest absolute value among all the 

lal'll~ll. 

Now /x is the image under T of a unit measure, and so has norm no larger 
than IITH. The last inequality then gives 

1/IITI[_< lal. 
We shall use this inequality in the proofs of both theorems in this section. 

T h e o r e m  3. Suppose T is a norm-decreasing isomorphism of L (G) onto L (H). 
Then G and H are isomorphic groups, T is isometric, and T has the following 
representation: there is an isomorphism y of G onto H, a fixed character ~ of H, 
and a constant k depending on the choice of Haar  measure in H, such tha t  

T/= k.~.V (all/eL(G)). 
Since the bound of T is at most one, the inequality above implies tha t  

]a] = 1. Hence tt (p) is a point mass, with the continuous component v vanishing 
altogether. Let  the mass of # (p) be concentrated at a point q of H, and let 
Q(p) be the coefficient a, having absolute value one. In  terms of Fourier- 
Stieltjes transforms, we have 

(P, x) = r (P) iq, v x). 

I f  ~ maps the origin o f  G onto that  of /~, then ~(p) is one for all ~. We 
assume for the present that  this is the case. Then ~ carries the characters on 

into certain characters on H;  a character g on (~ is carried into Z ~. For 
arbitrary &, ~ e (~ we have 

Since Z was an arbi trary character on ~, 

~ ( ~ )  = ~(~)~(h) .  

is known to be a homeomorPhism of ~ onto H, and has just been shown 
multiplicative. Hence ~ is an isomorphism of ~ onto /t .  I t  follows that  G and 
H are isomorphic groups, but  there is still some computation to show how to 
describe T in terms of an isomorphism. 

Define a mapping 6 of H into G by  the formula 

((~Y, x) = (y, ~x) 
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where ~ and y belong to G and to H respectively. We omit the verification 
that ~ is one-one onto and bicontinuous, and so is an isomorphism of H onto 
G. Now according to Lemma 2, for any / e L  (G) and & q ~, 

f ( x ,  ~)/(~) dx = . f r / (y )  (y, ~ )  dy. 
G H 

Set x = 5y, and let k be the uniquely determined constant such that  

dx = kd~x. 
Then the integral on the right becomes 

.f_ T/~(~y) (~y, ~v) dy= .=.~ f Tf(x)(x,x)dx. 
H G 

The functions / and Tf/k thus have the same Fourier transforms, and must 
be identical. If y is the inverse of ~, we have proved 

T~  = k V ,  

under the assumption that  ~ maps the identity of ~ onto that  of /~. 
In the general case, consider the isomorphism T o defined by 

To/= ~-~. T I 

for an element ~ of I/.  The Fourier transform of To/ is just the transform 
of T/ translated by the fixed group element ~. So for a suitable choice of ~/, 
the ^homeomorphism vo associated with T o maps the identity of (~ onto that 
of H. Applying the previous case, 

T t  = iJ" To f  = k ' i j ' f  . 

The proof that G and H are isomorphic still applies, and T is isometric by 
the representation formula. This completes the proof of the theorem. 

The original proof in the author's thesis did not appeal to Theorem 2, and 
so was more elementary than that  presented here. 

T h e o r e m  4. Suppose that  T is an isomorphism of L (G) onto L (H) with 
bound less than two; moreover assume at least one of ~ and ] /  is connected. 
Then the conclusion of Theorem 3 holds. ~ 

We begin again with the decomposition /~(p)=/~o + v; or taking transforms, 

(~) = Y.a~ q, (~) + ;, (~).  

If q is that  q~ belonging to the coefficient a, 

1 Dr.  WENDEL has  informed me  of two non- isomorphic  f ini te  groups,  whose a l g e b r a s  a r e  
i somorphic  u n d e r  an  ope ra to r  of bound smal le r  t h a n  two. Thus  some hypothes i s  such a s  
comaectedness is necessa ry  for t he  t r u t h  of t he  theorem.  
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for some fixed number e > 0 and all s  For we know that  

lal > 1/[ITIl>1/2.  

Equivalently, there is a number a of modulus greater than one-half and a 
character q on / /  such that  

[/~ (~) q(~) - a I _< 3/2 - 

for all & E I/. Since the values of the product function always lie on the unit 
circle, this inequality shows that  /~ (&)q (5) never takes values in a certain arc 
of positive length on the circle. Of course #, q, and a all depend on p E G. 

One of G and / /  is assumed to be connected; since the spaces are homeo- 
morphic, both are connected. A theorem of MACKEY [5] states that  the union 
of the images of one-parameter subgroups in a connected group is dense. 
Applying this to /~, if r is a non-constant character on // ,  there is a one- 
parameter subgroup A on which r is not constant. Define a function r* on the 
line by setting 

r*(2) = r(A (4)) (hER). 

Evidently r* is a continuous non-constant character of the line, and so winds 
around the circle infinitely often as ~ increases indefinitely. 

In the same way define ~*, a continuous function on the line into the circle. 
For each subgroup A, the product #* q* leaves an arc of the circle uncovered. 

^ 

Let r be any non-trivial character on H, and choose a subgroup A on which r 
is not constant. Since /~*q* is continuous, ~*q*r* winds around the circle in- 
finitely often. This shows that  q is uniquely determined by #. In fact, for any 
character s, either ]~. s fails to cover the circle (as is the case for s = q), or 
else there is a one-parameter subgroup such that  /~* s* winds around the circle 
infinitely often. 

Since T is an isomorphism of measures, the unit mass at the point p p' of G 
is carried into/~ (p) ~r # (p'). So/~2 is the transform of the measure on H associated 
with the point p~. We want to show that  the corresponding character is just q2. 
Indeed, since /~.q does not cover the circle, at least (/~* q*)~ does not wind 
around the circle indefinitely for any subgroup A. By the remark above, q2 
must be the character determined by /~2, and so actually /~ q2 does not cover 
the circle. 

Now the image of /~.q is an arc of the circle, since H is connected. Further- 
more, by repeating the procedure above, none of the powers (ft-q)~n covers the 
circle. This is only possible if the image of ~ . q  is a single point, showing tha t  
/~ is a multiple of a character. The proof of Theorem 3 applies from the place 
where the mass of /~ (p) was known to be concentrated at a single point for 
each p E G, and so the theorem is shown. 

There is no reason to suppose that  two is the best constant in the statement 
of the theorem. The proof does not seem capable of extension. However, the 
method can probably be modified to cover the case IIT II = 2, matching BEURLING'S 
result on the line. 
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w 5. Conclus ion  

Examples are hard to find. Theorem 3 gives two classes of automorphisms 
of an algebra L (G) which always exist. The operation of multiplying summable 
functions by a fixed character of the group is actually an automorphism; among 
all bounded functions, only characters have this property. Then T is simply 
translation in the dual group. Secondly, each group automorphism of G induces 
an automorphism of the algebra (introducing a factor k to compensate for 
expansion of measure). Among all point transformations of G onto itself, only 
the group automorphisms have this property. The homeomorphism ~ is an 
automorphism of G. 

All these automorphisms are isometric. Theorems 3 and 4 state under appro- 
priate conditions that  only these types can arise. The question of finding and 
describing other automorphisms (or more generally, isomorphisms over non- 
isomorphic groups) is not touched in this paper, and seems to be too difficult 
to attack on general groups. 

For compact groups, J. Rxss and L. SCHWARTZ have pointed out a class of 
non-trivial automorphisms. If G is compact, G is discrete. Let v permute the 
points of some finite subset of G, and leave other points fixed. I t  is easy to 
verify that  the class F ( ~ )  is carried onto itself, and it is possible to write 
down the corresponding automorphism T. In particular, G can be taken to be 
the circle group and G the group of integers. 

The problems which suggest themselves are of varied type. Theorem 4 needs 
to be elucidated for the most general abelian and even non-abelian groups, and 
the techniques of Banach algebras and group representations are pertinent. In 
another direction, Theorem 3 states that  a group is determined by its group 
algebra. We have remarked ' tha t  the line is determined by its algebra as a 
topological ring, without reference to the norm itself. Probably there are more 
general theorems of this type. On the other hand, the line and circle groups 
require the more powerful methods of concrete analysis. In particular the 
automorphism problem for the circle group lies in the classical domain of 
Fourier series. 
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