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On the exceptional points of  cubic curves 
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w 

1. If  the curve 

Introduction 

y e = x a - A x - B  (4 A 3 - 27 B 2 :~ 0) (1) 

is represented by the elliptic ~9-function with the invariants 4A and 4B and 
a primitive pair of periods co, c o ' :  

x=~(u);  y=�89 

a point (x; y) on (1) may  be called the point u, where u 
m o d  o), (~ ' .  

If the points ul,  us, u3 lie on a straight line, we have 

is determined 

ux +u~+u3==-O (rood co, ~o'). 

I t  follows that  the tangent in the point u cuts the curve in - 2 u .  If the 
number u is commensurable with a period, and if n is the smallest natural 
number that  makes n u a period, then u is called an exceptional point o/ 
order n; this notion has been introduced by NAGELL [11]. The point of order 1 
is the infinite point of inflexion, the points of order 2 are given by y = 0, and 
the points of order 3 are the finite points of inflexion. 

Now suppose that  A and B belong to a field f2. Then u is said to be a 
point in ~, if its coordinates belong to this field. If u x and u2 are exceptional 
points in f2, the same is true of u l +  u2, and in this way the exceptional points 
in f2 form an Abelian group, the exceptional group in Q on the curve (1) (see 
CHATELET [17]). If  f2 is an algebraic field, it follows from a theorem due to 
WEre [16] that  this group is finite. If p is a prime, the group contains at 
most two independent elements of order p, since there are only two independent 
periods (see BILLING [1], p. 29); consequently a group of order 
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where pl, P~ . . . . .  pr are differerent primes, m a y  be of 

types, which will be denoted by  

where 

(p~', pI'-~l, . . . ,  p~, p~r-~), 

v~ <=2~ <=2v~ (i = 1, 2, . . . ,  r). 

Two independent elements of order p cannot  occur, if p is an  odd prime 
and /2 is real (see NAGELL [10], p. 105--108). 

I n  the case / 2 = k ( 1 )  the following result has been obtained by  LEVI [7], 
HURWITZ [6], NAGELL [10], [15], BILLING [1]--[4], MAHLER [9] and LIND [8]: 

T h e o r e m  I .  There exist curves (1), whose exceptional groups in k (1) are o/ 
the /oUowing types: (1), (2), (3), (2,2), (4), (5), (2,3), (7), (4,2), (8), (9), (2,5), 
(2, 2, 3), (4, 3) and (8, 2). There does not exist any curve (1), whose exceptional 
group in k (1) contains a sub-group o] the type (l l) ,  (2, 7), (3,5), (16), (2,2,5), 
(4, 5), (g, 2, 3) or (8, 3). 

If  / 2 = k  (~/ -3) ,  we m a y  have the group (g, 3) (NAGELL [15]). 

2. Sometimes it is possible to find parametric  expressions for A and B, if 
the exceptional group in /2 on (1) has a given sub-group. The following results 
are due to NAaZ~L [13]--[15]; some substitutions have been made in order to 
simplify the formulas:  

T h e o r e m  2. I] there is a point o~ order 3 in ~ on the curve (1), A and B 
are given b y  the /ollowing /ormulas, where c and d are numbers in /2 which 
make 4 A a - 2 7  B24=0: 

A = 3 ( 9 c a - 2 d ) c ;  

- B = 5 4 c e - 1 8 c 3  d +d2; 

4 A a - 27 B ~ -- 27 d 3 (4 c 3 - d). 

A point o] order 3 is (3 c2; d). 

T h e o r e m  3. I /  there is a point o] order 5 in 12 on the curve (1), A and B 
are given by the [ollowing /ormulas, where m and n are numbers in ~ which 
make 4 A 3 - 2 7 B 2 4 0 :  

A = 27 (m4+ 12 ma n +  14m~n 2 -  12mn3+n4);  

- B = 5 4 ( m ~  + n  2) (m4 + 1 8 m 3 n +  7 4 m ~ n 2 - 1 8 m n a  +n4); 

4 A a - 27 B 2 = - 2 s. 313 m 5 n s (ms + 11 r a n -  n2). 
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The finite points o] the group are: 

-4- u [3(m~ +6mn+n~);  _ + 1 0 8 m n 2 ] ;  

+ 2 u  [ 3 ( m 2 - 6 m n + n ~ ) ;  _+108m2n] .  

T h e o r e m  4. I /  there is a point o/ order 7 in Y2 on the curve (1), A and B 
are given by the ]ollowing ]ormulas, where 5, m and n are numbers in Y2 which 
make  4 A 3 - 2 7 B 2 # 0 :  

3A =54 ( m 2 - m n + n  2) (m~- 11 man+ 30 m4n ~-  1 5 m a n  a -  1 0 m ~ n 4 + 5  mnS+n~); 

- 27 B = 2 5 ~ (m 1~ - 18 m u n + 117 m I~ n 2 - 354 m 9 n 3 + 570 m s n 4 - 486 m 7 n 5 + 

+ 273 m 6 n e - 222 m 5 n 7 + 174 m a n s - 46 m 3 n 9 - 15 m 2 n 1~ + 6 m n  11 A- n 12) ; 

4 A 3 - 27 B 2 = 2 s 5 ~2 m 7 n:  (m - n) 7 (m 3 - 8 m s n + 5 m n 2 + n3). 

The ]inite points o/ the group are: 

+_u [~52(m4+6man-9m2n~+2mna+n4);  +_453m,3n(m-n)2]; 

• 2u [~52(m4-6m3n+15mZn2-10mn3+n4);  +_453mn2(m-n)~]; 

_ + 3 u [ 3 5 2 (  m 4 - a m  3 n + 3 m  2n ~ + 2 m n  3 + n  4); _+453m 2n  3 ( m - n ) ] .  

NAGELL [13], [15] has  also f o u n d  p a r a m e t r i c  f o r m u l a s  co r respond ing  to sys t ems  
of t he  t y p e s  (2, 2), (4), (2, 3), (3, 3) a n d  (9). U n d e r  t h e  a s s u m p t i o n  f 2 = k ( 1 )  
LIND [8] has  i n v e s t i g a t e d  t h e  cases (5, 2), (8 ) , ' (2 ,  5), (2, 2, 3), (4, 3) a n d  (8, 2). 

3. I f  B =  0, we get  t h e  ]tarmonic c u r v e  

y ~  = x ~ - A z .  ( 2 )  

I t s  e x c e p t i o n a l  g roup  in  k (1) is g i v e n  by  the  fo l lowing  t h e o r e m  due  to  NAGELL 
([11], p. 17-~s): 

T h e o r e m  5. I/ A is rational, the curve (2)has the/ollowing exceptional group 
in k (1): 

(2), if  A # C  ~, # - 4 C 4 ;  

(2,2) ,  if  A = C  2; 

(4), if  A = - 4 C 4. 

Here C denotes any rational number. 

If A = 0, we  ge t  t he  r c u r v e  

y~ = x 3 - B. (3) 
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Its exceptional group in k (1) is given by the 
FUETER [5]: 

following result due t(> 

Theorem 6. 
in k(1): 

I] B is rational, the curve (3) has the/ollowing exceptional group 

(1), if B # C  3, # - C  2, #432C6; 

(2), if B = C  3, # - C e ;  

(3), if B = - C  2 or =432C e but # - C  8; 

(2, 3), if B = - C  e. 

Here C denotes any rational number. 

4. In this paper we shall determine parametric expressions for A and B 
corresponding to groups of the types (4,2), (8), (2,5), (2,2,3), (4, 3), (4, 4), 
(8, 2) and (2, 3, 3). Further, We shall find the exceptional groups on the curves 
(2) and (3) in algebraic fields of degree n, where n =  2, 4 or an odd number in 
the harmonic case, and n = 2 ,  3 or a number indivisible by 2 and 3 in the 
equianharmonic case. 

5. 

it is known that  

w  

Some properties of the 9-function 

If n is a natural number and the function ~v~ (u) is defined by 

(n u) 
~ (u) = [~ (u)]~,  

/ P~ [9 (u)], if n is odd, 

~vn (u) = i 9' (u) Qn [9 (u)], if n is even, 

,~ {wre Pn and Q,~ are polynomials. 

\ s  usual we put 9 (u)=x and 9' (u )=2y .  

~ l l l ( [  

Then 

4 y 2 = 4 x 3 - 4 A x - C ,  where C = 4 B ,  

PI (x) = ], Q2 (X) = -- 1, 

P3 (x) = 3 x 4 - 6 A x 2 - 3 Cx  - A2; 

Q4 (x)= - 2 x  e+ ] 0 A x  4+ 10Cx 3 + 1 0 A  2x ~ + 2 A C x - ( 2 A  3 - C  2) 
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/ P,,+I = (4 y2)2 8 p3 Q2,+2Q~-P~-~ ~+1, 
p 2 Q4,+2=P2~+x [ 2~-, Q2~+2-P2,+a  Q~] ,  

I P4r+3:P2r+~ 3 3 P2~+1 - (4 y~)2 Q2, Q2r +~., 

P2r+a--Q:r+~ ~r+l] 

(4) 

for r > 0. Consequen t ly  

P5 = - (16 y4 Qa + P~) = 5 x ~2 - 62 A x 10 - -  95 C x  ~ - 105 A 2 x s + 60 A C x  7 + 

+ 15 (20 A 3 - C 2) x ~ + 174 A ~ C x  5 - 5 (25 A a - 24 C 2) A z 4 - 5 (4 A a - 5 C 2) C x 3 + 

+ 5 (10 A a - 3 C 2) A 2 x 2 + 5 (5 A 3 - 2 C 2) A C x  + (A ~ + 2 A n C 2 - C4), 

a n d  genera l ly  

Q~ = Pa (Q~ - P~), 

Pv = P5 P~ + 16 y4 Q~, 

Qs = - Q4 ( P ~ +  Q,P~)  

P .  (x) = n x ~ (n~- l )  + ~ n ,  2 X�89 (n2 -1 ) -2  -~- " '"  ~- (Xn, ~ ( n ~ - l ) ,  

where a . ,  m a n d  ft., m are po lynomia l s  in  A a n d  C wi th  in teg ra l  coefficients.  
I f  n u is n o t  a period, i t  is also k n o w n  t h a t  

V ( n u ) = {  x x 

Par t i cu l a r l y  we f ind  

which m a y  be wr i t t en  

4 yZ Q-+I O . - ,  
p~ , if n is o d d ;  

n 

P . + I  Pn-1 
4 2 ,r Y ~ .  

if n is even.  

(2 u) = (x2"+A)2+ 8 B x  
4 y~ 

(2u) + 2 x =  ( 3 x 2 -  
\ 2 y  l 

I n  the  fo rmula  

a (2 u) 
~' (u) = - ~ (u) [~ (u)]' 

we change  u in to  n u a n d  f ind  

~' (n u) = - a (2 n u) ~2.  (u) 
[ .  (nu)]' = [~ .  (u)] ~" 

(5) 
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I f  n e i t h e r  n u n o r  2 u is a pe r iod ,  i t  fo l lows t h a t  

Q2~ if  n is o d d ;  ~ ' (~ )=  ~ '  

~ '  (u) Q2n if  n is even .  
16 ~ Q~' 

(6) 

6. I n  t h e  h a r m o n i c  case  t h e  p r e c e d i n g  f o r m u l a s  a re  s impl i f i ed  i n  t h e  fol low- 
i ng  w a y  : 

P 3 = 3 x 4 - 6 A x 2 - A 2 ;  

Q 4 =  - 2 ( x 2 + A )  ( x4 -6Ax2+A2) ;  

Ps= (5 x4 - 2 A x~ + A2) (xs - 1 2  A x e -  26 A2 x4 + 52 A3 x2 + A4) ; 

Q e =  - ( 3 x  4 - 6 A x  2 - A  *) (x 4 + 6 A x  2 - 3 A  2) (x 8 - 2 8 A x  e + 6 A  *x  4 -  

- 28  A 3 x 2 + A 4) ; 

P7 = 7 x 24 - 7.44 A x ~ - 7.422 A 2 x 2s + 7.2836 A 3 x ~s - 7.5033 A 4 x le + 

+ 7.11752 A 5 x 14 - 7 .15988 A s x 1~ + 7.6024 A 7 x 1~ + 7.2239 A s x s - 

- 7 .2108 A 9 x s + 7 .186 A 1~ x a - 7.28 A n x 2 - A 12 ; 

(7) 

(x  2 + A ~ * .  
~ o ( 2 u ) = \  2 y  ] (8) 

I n  t h e  e q u i a n h a r m o n i e  case  we ge t  t h e  fo l lowing  e x p r e s s i o n s :  

/)3 = 3 x (x a - C ) ;  

Q 4 =  - 2 x  e +  1 0 C x  3+C a; 

P5 = 5 x 12 - 95 C x 9 - 15 Ca x G + 25 C a x 3 - Ca ; 

Qe = - 3 x (x 3 - C) (x 12 - 55 C x  9 - 111 Ca x e + 5 C 3 x 3 - 2 C 4) ; 

P7 = (7 x e + C x 3 + Ca) (x 18 - 141 C x 15 - 363 Ca x 12 + 1924 Ca x 9 - 741 C 4 x s + 

+ 48 CS x3 + Cs). 

(9) 

7.  I f  A is g i v e n  t h e  deg ree  2 a n d  B t h e  degree  3, i t  is  eas i ly  s h o w n  b y  
i n d u c t i o n  t h a t  P n  or  Q~ is h o m o g e n e o u s  of deg ree  �89 (n  ~ - 1) or  �89 (n  ~ - 4), a cco rd -  
ing  as  n is o d d  o r  even .  

I t  also fo l lows  f r o m  t h e  f o r m u l a s  (4) t h a t  i n  t h e  case  A = 1, B=O 

p n ( 0 ) = ( - 1 ) v ~ - l )  a n d  Pn(1)=Pn(--1)=(--1) �89 ~'*-1). 
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Let  79 be an odd prime, put  7 0 2 - 1 = 8 N ,  and let Xl, x 2 . . . .  , x4N be the roots 
of Pv(x)=O, while +-Yl, +-Y2,. . . ,  +__Y4N are the corresponding values of y. 
Then 

4N 4N 

l - I  y~ = I I  (x~ - A x, - B) = Co A 6 N + cl A s N-a B ~ + . . .  + c2 N B '  N, 
i=1 i=1 

(10) 

where co, Cl . . . .  , c2~ are certain constants. Since the numbers  y~ are always 
# 0 ,  the last member of (10) may  be written 

kv (4 A 3 - 27 B2) 2 ~. 

I n  order to determine kp we put  A = I  and B = 0 .  Then 

4N 4N 4N 4N 1 

H II x, II (x,-1) II (x,+ l)= pv(o)Pp (1)pp (-1)= 
i= l  1 1 1 

1 
= 70- ~ ( - 1)�89 ('-1). 2 4 ~, and hence 

Bu t  then 
4N 

_____ IiI1 y t = ~ 2  (4 A 3 -  27  B 2 ) N V (  - 1) �89 l):p, 

and we have proved the following theorem:  

1 1)�89 

Theorem 7. Let 70 be an odd prime, and let Q be a field which contains A 
and B. I~ the exceptional group in Y2 on the curve (1) has a sub-grouT0 o~ the 
ty70e (70, 70), then the number 

V(- 70 
bdongs to D. 

8. Let  A 
equation 

w  

Parametric expressions for A and ,B corresponding to certain systems 
of exceptional points 

and B belong to the arbi t rary field Q, and suppose tha t  the 

has a solution z = ~ M in Y2. 

by introducing the variables 

z 3 - A z - B = O  (11) 

Then we m a y  t ransform the curve (1) into 

~ = ~3 + M~2 + N ~  (12) 

~ = x - ~ M ;  ~= y ,  
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but it must be observed that  the representat!on (12) is not unique, if (11) has 
more than one root in f2. 

Conversely, if (12) is given, A and B are determined by 

Further, 

I 3 A = M * - 3 N ;  

[ - 2 7 B = M ( 2 M 2 - 9 N ) .  

D = 4 A 3 - 27 B ~ = N 2 (M 2 - 4 N). 

(13) 

If the tangent to (12) 
we have 

in the point (~1; 71) cuts the curve in (~2; 72), 

( ~ - N ] ' ,  (14) 
~2=~ 2 71 ] 

and this formula may be transformed into 

(Compare LIND [8], p. 19--20.) 

9. We begin with five cases, where a group of order 2" is given. The first 
theorem is due to NAGELL ([13], p. 20). 

T h e o r e m  8. 
given by 

I] the curve (1) has a point o] order 4 in a field ~ ,  it is 

3 A=a2  (a2-4  ac + c2), 

- 27 B=aa ( a -  2c) ( 2 a 2 - 8 a c - c 2 ) ,  

D = a T c 4 ( a - 4 c ) ,  

where a and c are numbers in ~ and D#O.  

Proof .  We may use the equation (12) and suppose that  the tangent in 
(~1; 71) cuts the curve in (0; 0). Then, by (14), N = ~ I  2, and M is deter- 
mined by 

7~ = ~ + M ~ + N ~x = ~ (2 ~1 + M). 

Since ~171#0, we may put 71=~1a and ~ = a c ,  and hence 

M = a ( a - 2 c ) ;  N = a 2 c  ~. 

Finally A and B are given by (13). 
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T h e o r e m  9. [1/ some exceptional points in ~ on the curve (1) ]orm a group 
o/ the type (4, 2), the curve is given by 

3 A = ~4 n4 (m4- 2 m3 n + 5 m2 n2 -  4 m n~ + n4), 

27 B = J e n e ( 2 m ~ - 2 m n + n  2) (m2 + 2 m n - n  ~) ( m 2 - 4 m n +  2n~), 

D = 5 TM m 4 n 14 (m - n) 4 (2 m - n) ~, 

where (~, m, n are numbers in ~ and D #  O. 

Proof .  Let  zl, z2, z3 be the roots of ( l l) .  I n  this case these numbers  belong 
to Q, and hence 

D = [(z 1 - z2) (Z 1 - -  Z3) (Z 2 - -  Z3) ]  2 

is a square. Since there is also a point of order 4 in ~2, the preceding theo- 
rem may  be applied, and consequently we can put  

where a, c, e are numbers in f2. 

we find 

a ( a - 4 c ) = e  2, 

I f  this curve is cut  by  the straight line 

m 
c = ~ (a  - e ) ,  

a = d n  , 

c = ~ m ( n - m ) ,  

e = ~ n ( 2 m - n ) ,  

(~, m, n m a y  be supposed  to be numbers in ~ .  If  M is chosen as in where 
theorem 8, the group contains the following finite points on the curve (12): 

• u 1 [62 m n ~ (m - n)  ; _+ (53 m n a ( m  - n)  (2 m = n)]  ; 

2u l  [0; 0]; 

u2 [ ' ( ~ m ~ n 2 ;  0]; 

2 u l + u 2  [ - ~ n 2 ( m - n ) 9 ;  0]; 

_+Ul+U2 [ - ~ 2 m n ~ ( m - n ) ;  T~amn  4(m-n)] .  
Finally, 

M=(~n2 (2m~-  2 m n  +n2); 

N = ~4m2 n 4 ( m  - n)  ~. 
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T h e o r e m  10. I /  tire curve (1) has a point  o/ order 8 in  2 ,  it  is  given by 

3 A = ~4 (aS - 8 a7 c + 1 2  a6 ca + 8 a5 ca - l O a4 c4 + S aa cS + 1 2  a2 c~ - S a c7 + cS), 

- 27 B =  2 (~S (a4 - 4 a3 c - 2 a2 ca - 4 ac3 + c 4) (aS - 8 a7 e + 1 2  a6 ca + 8 a5 e 3 - 

- 34a4 c4 + 8a3 cS + 1 2 a 2  c e - 8 a e T  +cS), 

D = 2 s (~12 a s c s (a  - c) 4 (a + c) a (a 2 - 6 a c + ca), 

where ~, a, c are numbers  in  ~ and D #  O. 

P r o o L  Let  u be a point  of order 8 on the curve 

y~ = xa - Ao x -  Bo , 

and let the point  4 u  have the abscissa �89 Then the curve may  be trans- 
formed into 

~ = ~3 + M o  ~a + N o  ~. 

The points u and 2 u on this curve will be denoted by  (~1; ~/1) and (~2; ~a), 
respectively. Then, by  (14), 

~ - N 0  a 
~2 = ( - ~ - )  and N o = ~ .  

Since ~z#0 ,  we m a y  put  

~e~ _ No 

2 ~ 
and ~ l = a c ,  

and hence 
~ 2 = a S ;  N 0 = a  4; 2 7 1 = a ( c  2 - a  a) 

and 
4c  z M  0 = a  4 - 4 a  3 c - 2 a  2c ~ - 4 a c  3 + c  4. 

I n  order to avoid fractional expressions for A and B we mult iply a and c 
by  2 ~ c. The curve (12) obtained in this way will have the coefficients 

M = 82 (a t _ 4 a 3 C - -  2 a 2 c ~ -- 4 a c a + c4), 

N = 16 (~4a4c 4, 

and the curve (1) is given by  (13). 
The group contains the following finite points on the curve (12): 

_+u [4(~2aca; + 4 ( ~ a a c a ( c a - a ~ ) ] ;  

_+ 2 u [4  (~a a 2 c 2 ; • 4 (~3 a a c ~ (a  - -  c) 2] ; 

•  [4 (~a3c ;  ++45aaac(c~-a~)] ;  

4u  [0; 0]. 
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T h e o r e m  l i .  I /  some exceptional points in Q on the curve (1) form a group 
o/ the type (8, 2), the curve is given by 

3 A = 54 (m TM - 8 m 14 n s + 12 m is n 4 § 8 m TM n e + 230 m s n s + 8 m e n 1~ + 12 m 4 n TM - 

- 8 m s n la § n16), 

- 2 7 B = 2 5 6  (m s - 4 m  en 2 + 2 2 m  an 4 - 4 m  s n  e + n  s) (m s - 4 m  en 2 - 2 6 m  an 4 -  

- 4 m  sn  6 + n  s) (m s - 4 m  en s - 2 m  4n a - 4 m  2n 6+ns) ,  

D = 2 8 5 r~ m s n s (m + n)  s ( m -  n)  s (m s + nS) 4 (m s + 2 m n - nS) s (m 2 - 2 m n - n2)  2, 

where ~, m, n are numbers in ~ and D ~  O. 

P r o o f .  W e  use  t h e  f o r m u l a s  of t h e  p r e c e d i n g  t h e o r e m  a n d  s u p p o s e  D to  
b e  a square ,  s ince  t h e  t h r e e  r o o t s  of  (11) b e l o n g  t o  Q.  T h u s  

a s - -  6 a c + c 2 = e s, 

a n d  if  t h i s  c u r v e  is c u t  b y  t h e  s t r a i g h t  l ine  

2 m + n  
c - - e  ~ - - a ,  

we f ind  

{ a = ~ n ( m - n ) ,  

c = S m ( m + n ) ,  

e = - (~ ( m s  - -  2 m n -  n~), 

w h e r e  O, m,  n m a y  b e  s u p p o s e d  to  b e l o n g  to  T2. 
I f  M is c h o s e n  as  i n  t h e o r e m  10, t h e  g r o u p  c o n t a i n s  t h e  fo l lowing  f in i t e  

p o i n t s  o n  t h e  c u r v e  (12) :  

•  [4(~Sm3n (m+n)  3 ( m - n ) ;  

-{- 4 53 m 3 n (m + n)  3 (m -- n)  (ms § n s) (m s § 2 m n  -- n~')] ; 

• 2 u I [4 53 m s n 9 (m s - nS) 2 ; ~ 4 ~3 m s n s (ms _ nS)S (ms _~ n2)2] ; 

• 3 u l  [4 (~s m n 3 (m + n)  (m - n)  3 ; 

• 4 j3 m n s (m + n) (m - n)  3 (m 2 + n 2) (ms § 2 m n - nS)] ; 

4 U  1 [0 ;  0 ] ;  

u 2 [ - 1 6 5 2 m  4 n  4 ; 0 ] ;  

•  +u2 [ - 4 5 S m n 3 ( m + n ) 3  ( m - n ) ;  

_ 4 ~s m n s (m + n)  3 (m - n)  ( m  2 -~ n2 i  (m s - 2 m n - n2)] ; 
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+_ 2 u l  + u2 [ - 4 0 2 m s n ~ (m 2 - n 2 )  u ; 

___ 4 (~a m 2 n s (m 2 _ n2)S (m 2 + 2 m n  - n s) (m s - 2 r n n  - n 2 ) ]  ; 

3 U l + U ~  [ - 4 ( ~ 2 m Z n ( m + n )  ( m - n ) a ;  

_+ 4 5 a m a n (m + n) (m - n) a (m u + n s) (m u - 2 m n -  nS)] ; 

4 u~ + us  [ -  5 s (ms - n~) ~ ; 0].  

Fina l ly ,  
M = 5 2 ( m S - 4 m e n 2  + 2 2 m a n a - 4 m 2 n 6  +nS); 

N = 16 54 m 4 n a (ms - nS) 4. 

T h e o r e m  t 2 .  I]  some exceptional points in ~ on the curve (1) /orm a group 
o] the type (4,4), then ~2 contains ] / ~ 1 ,  and the curve is given by 

3 A = 54 (a s + 14 a 4 c 4 + cS), 

27 B = 2 5 a (a 4 + c 4) (a s + 2 a c - c 2) (a s - 2 a c - c ~) (a 4 + 6 a s c s + c4), 

D = 24 5 TM a a c 4 (a 4 - c4) 4, 

where (5, a, c are numbers in Q and D # O. 

P r o o f .  I n  th i s  case the  curve  (12) m a y  be w r i t t e n  

~s = ~ (~ _ U) (~ - V). 

Suppose  t h a t  t h e  t a n g e n t s  i n  (~1; ~h) a n d  (~2; ~]s) cu t  th is  cu rve  in  ( U ;  0 ) a n d  
(0; 0), respect ively .  B y  (14) 

u u. 
2 */1 / 

T h u s  U = e 2, a n d  b y  (15) ~1 = eS ++- e Ve s - V = e (e + g), where  V = e s - g,. 
On  the  o the r  hand ,  the  fo rmula  (14) gives 

~= v v .  

T h u s  ~ =  e~V a n d  c o n s e q u e n t l y  V = / s .  Now e, / ,  a n d  g are  re la ted  b y  

e 2 = / 2  + g2, 

a n d  if th i s  cu rve  is cu t  b y  the  s t ra igh t  l ine 

e - g = c - / ,  
a 
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e = ~ (a 2 + cS), 

] = 2 r  

g = ~ (a s - c 2 ) ,  

where 6, a, c are numbers in ~ .  Now 

M =  - ( U +  V ) =  -(52(a a + 6 a  uc s+c4), 

N = U V = 4 (~4 a 2 c s (a s + c2)2, 

and  the group contains the following finite points on the curve (12): 

+ u  1 [2(52a 2(a 2+c2);  + 2 • 3 a  2(a 4 _ d ) ] ;  

+u2  [ - 2 6 2 a c ( a 2 + c 2 ) ;  + _ 2 i S a a c ( a S + c  z) (a+c)S];  

+(Ul+U2)  [ -  2 i SS a c  (a + ci)s  ; Yr 2 (~a a c  (a ~ -  c 2) (a + ci)~] ; 

+ (u 1 - u2) [2 i ~ a c (a - c i) 2 ; T 2 (~3 a c (a s - c s) (a -- c i)2] ; 

~- U 1 -~ 2 U 2 [2 ~2 c 2 (a 2 + c 2) ; T- 2 ~3 c s (a 4 _ ca)] ; 

2 u l  + u  s [2~2ac (aS  +c2);  T - 2 i J 3  ac (a2  + c  2) ( a - c ) 2 ] ;  

2 u  x [52(a s+ce)s;  0]; 

2us [0; 0]; 

2 u l + 2 u  2 [462a~cS; 0]. 

10. As was shown by  LIND ([8], p. 32, 44), a point  of order 16 in k(1) is 
impossible. However,  in theorem 10 we m a y  choose ~ = c = 1 and a = h ~, where 
h is a rational integer different from 0 and + 1. Let  the tangent  in a point 
(to; ~/0) on the curve (12) pass through the point - u ,  whose coordinates are 

[4 h ~ ; 4 h s (h a - 1)]. 

Then  (15) takes the form 

[ ~ - 4 h ( h a  + 2 h  - 1)~o+ 16h s] [ ~ + 4 h ( h 4 -  2 h  - 1 ) ~ 0 + 1 6 h 8 ] = 0 .  

One root  of this equation is 

to = 2 h [h 4 + 2 h - 1 + (h - 1) V(h a - 1) (h z + 2 h - 1)]. 

Since - 4 h 7o = ~o 2 -  N,  the point (to, ~/o) belongs to the field generated by  
] / ( h a - 1 ) ( h 2 + 2 h - 1 ) ,  and it is easily seen tha t  we obtain in this way  an in- 
finity of quadratic fields: 
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T h e o r e m  13.  A point o/ order 16 on the curve (1) is possible in an in/inity 
o] quadratic ]ields. We may even suppose A and B to be rational. 

If  there is a group of the type (8, 4) in $2 on the curve (1), we may sup- 
pose u to be a point of order 8 and define M by  } M = ~ ( 4 u ) .  Then the 
abscissa of the point 2 u on the curve (12) ought to be a square, and hence, 
by theorem 12, 

2 a c (a 2 + c a) = e 2, 

where a, c, e are numbers in -(-2 and a c (a 4 - c  4) =~0. If  we put  

we must have 

[ a i = c X ,  ~ 

l e = c 2 ( l + i )  Y, 

y2 = X a _ X. 

According to NAGELL ([12], p. 11--19) the only solutions of this equation in 
i; ( V ~ )  are X=O,  + l ,  •  but  these values cannot be used, since they make 
D=O. I t  follows tha t  the group (8, 4 ) i s  impossible in k (V--l) .  

However, in theorem 12 we may choose 

a =  - m 2 + 2 m + l ,  

c = m 2 + 2 m - 1 ,  

3 = 1 ,  

where m is a rational integer different from 0 and + 1. Then the point u l 
gets the following coordinates: 

[4  ( m  2 + 1) 2 ( m  2 - 2 m - 1)  2 ; - 32  m ( m  2 - 1) ( m  2 § 1)  2 ( m  2 - 2 m - 1)2] ,  

and by (15) the tangent in (~o, ~/0) passes through this point, if 

~o = 4 ( m  2 + 1) ( m  2 - 2 m - 1) [ m  4 + 2 m 2 - 6 m - 1 § 4 ( m  + 1)  Um (1 - m 2 ) ]  

and 

~o ~ - N = 2 ( m  2 + 1)  ( m  2 - 2 m - 1) .  
2~o 

Since Vm ( 1 - m  2) generates an infinity of quadratic fields, we have the follow- 
ing result : 

T h e o r e m  1~.. A group o] the type (8, d) on the curve (1) is impossible in 
k (~/-  1) but exists in an infinity o] quartic ]ields ]r ( ~ / ~ ,  Vd), where d is a 
natural number. We may even suppose A and B to be rational. 
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11. I n  the  remaining  cases there  is a point  of order  6 or 10 in /2. Theo- 
rem 15 is due to )~AGELL ([10], p. 120-122).  

T h e o r e m  15. I f  the curve (1) has a point o] order 6 in ~ ,  it is given by 

3 A = ( s + t )  (s3 + 3 s 2 t -  3st2 + t3), 

- 2 7 B = ( s  2 + 2 s t - 2 t  2) (2s 4 + 8 s  3 t + 2 s t  a-t4), 

D = s  3t s ( 2 s - t )  2 ( s + 4 t ) ,  

where s and t are numbers in [2 and D 4 0 .  

P r o o f .  I f  (a;  c) is a po in t  of inflexion on the  curve (12), the  equat ion (]4) 
gives 

a \-~c-c ] :4:0. 

Thus if we p u t  a s - N = 2 c t  and  c = s t  2, we f ind a = t  2 and  

M = s 2 + 2 s t - 2 t 2 ;  

N = t 3 ( t  - 2 s ) .  

The group contains  the  following f ini te  points  on the  curve (12): 

+_u [ t ( t - 2 s ) ;  •  

-{-2U [t2; ~8 t2 ) ,  

3u [o; 0). 

T h e o r e m  16. 1] some exceptional points in ~ on the curve (1) /orm a group 
o/ the type (2, 2, 3), the curve is given by 

3 A = ~4 (m2 + m n + n2) (me + 3 mS n - 5 ma na + 3 m n5 + nr 

- 27 B =  8s (2 m 4 + 4 m  a n -  2 mna - n 4) (m a -4- 2 m s n +  2 m n  a - F n 4 )  �9 

. (m4 + 2 ma n -  4 m n3 - 2 n4), 

D = d 1~ m s n ~ (m + n) 6 (m - n) 2 (m + 2 n) ~ (2 m + n) ~, 

where (~, m, n are numbers in /2 and D ~-O. 

Pz.oof. Theorem 15 m a y  be applied,  b u t  in this  case D ought  to be a 
square,  since the  three  roots  of (11) belong to s Thus 

s ( s + 4 t ) = r  ~, 

5O3 



G. BERGMAN, On the exceptional points of  cubic curves 

a n d  if  t h i s  c u r v e  is c u t  b y  t h e  s t r a i g h t  l ine  

m 
t=  ~ n  ( s - r ) ,  

we f ind  

r= - ~ n ( 2 m + n ) ,  

s = 5 n 2, 

t = 5 m ( m + n ) ,  

w h e r e  5, m, n m a y  b e  s u p p o s e d  to  b e l o n g  t o  f2. N o w  

M = 5 2 ( - 2 m 4 - 4 m Z n +  2mn3+n4) ,  

N = ~4 m3 (m + n) ~ ( m -  n) (m + 2 n), 

a n d  t h e  g r o u p  c o n t a i n s  t h e  fo l lowing  f in i t e  p o i n t s  o n  t h e  c u r v e  (12) :  

_+ul [ (~2m(m 2 - n  s ) ( m + 2 n ) ;  _+53ran  2(m 2 - n  ~ ) ( m + 2 n ) ] ;  

_+ 2 u l  [5 s m 2 (m + n) 2 ; + 53 m 2 n s (m + n) 2] ; 

3 u ,  [0 ;  0 ] ;  

u~ [ 5 ~ m 3 ( m + 2 n ) ;  0] ;  

---- Ul + u2 [(~s m 2 (m s _ n 2) ; T 53 m 2 n (m ~ - n e) (2 m + n)]  ; 

•  2 [(~2m(m+n)2 ( m + 2 n ) ;  -~ -53mn(m+n)  s ( m + 2 n )  ( 2 m + n ) ] ;  

3 n 1 + u2 [52 (m + n)  a ( m -  n)  ; 0]. 

T h e o r e m  t 7 .  I[  the curve (1) has a ~oint o] order 12 in f2, it is given by 

3 A = 54 (m4 + 2 m3 n + 2 mna + n4) (m12 + 6 mll n +12 ml~ n2 +14 mg na + 3 mS n4 - 

- 1 2 m T n S - 2 4 m e n  e -  12mSn  7 + 3 m 4 n  s + 14m3  n9 + 12 m 2 n  1~ § 

+ 6 m n  n + nl~), 

- 2 7 B = 2 5 e ( m S + 4 m T n + 4 m S n 2 + 4 m S n 3 - 2 m 4 n 4 + 4 m a n 5 + 4 m 2 n e +  

+ 4 m n  7 + n s) (m le + 8 m 15 n + 24 m 14 n 2 + 40 m la n a + 44 m 1~ n 4 + 

+ 2 4 / 1 1  n 5 _ 32 m TM n 6 - -  8 8  m 9 n 7 - -  114 m s n s - 88 m v n 9 - 32 m ~ n TM + 

+ 24 m 5 n 11 + 44 m 4 n TM + 40 m a n la + 24 m 2 n 14 § 8 m n  15 + rile), 

D = 2 s 512 m TM n TM (m + n) e (m - n) ~ (m s + m n  + n2) 4 (m 2 + n2) a (m 2 + 4 m n  + n2), 

where 5, m, n are numbers in ~ and D : ~ 0 .  
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Proof .  Let  u be a point  of order 12 on the curve (1) and define M by  
} M = p  (6u).  Then the theorems 8 and 15 ma y  be applied and give two ex- 
pressions for M and  N :  

{ M = a 2 - 2 e = s 2 +  2 s t - 2 t  2, 

N = e 2 = t a (t - 2 s), 

where e has been subst i tu ted for ac. If  e is eliminated, we get 

4 a  2t ~ + 4 s  (s 2 - a  2) t + ( s  2 - a 2 )  s = O ,  

and  hence, since a ~ O, 

1 1 
t = 2 a ~ (s~ - a s )  ( - s +_ V s  ~ - a 2) = ~ a  ~ (s 2 - a 2) (b - s), 

35 505 

where 
s 2 = a 2 + b 2. 

If this curve is cut  by the straight line 

m §  
b §  

m - - n  

we find 

a = 8 (m § n) ~ (m a - n 2) ; 

b=8 ( r e + n )  2 . 2 m n ;  

s = 8 (m § n) 2 (m 2 § n2). 

Consequently t = - 2 ~ m 2 n ~ and  

M = 82 (m 8 + 4: m T n + 4 m e n 2 + 4 m 5 n 3 - -  2 m 4 n ~ + 4 m 3 n 5 §  4 m ~ n 6 + 4 m n 7 -~ ~t 8) ; 

N = 16 84 m e n 6 (m 2 + m n  + n2) 2. 

The group contains the following finite points on the curve (12): 

+_u [ - 4 8 ~ m n S ( m ~ + m n + n 2 ) ;  +_483mnS(m2+mn+n 2)(m a-n4)]; 

_ + 2 u [ 4 8 2 m  2n 2(m 2 + m n + n s )  2; +_483m 2n 2(m s + m n + n 2 )  s ( m + n )  s(m s + n s ) ] ;  

+_3u [ - 4 8 2 m  an a (ms + m n  +n  2); Jr48 am an 3 (m ~ + m n  +n  2 ) ( r e + n )  a ( m - - n ) ] ;  

_+4u [48Sm4na; +_483m4na(m+n)S(m2+nS)]; 

+_5u [--482m5n(m2 + m n + n S ) ;  +_483mSn(mS + m n + n  2) (m4-na)]; 

6 u  [0; 0]. 
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T h e o r e m  18. I f  some exceptional points in D on the curve (1) /orm a group 
o] the type (2, 3, 3), then V - 3  belongs to f2, and the cum, e is given by 

A = 6 t (s 3 - ~ / -  3 s 2 t - 3 s t 2 + V---3 t 3) (~ / -  3 s a + 3 s ~ t - / / - - - 3  s t 2 - ta) �9 

�9 ( - V ~ 3 s 6 -  6 s 5 t + 3 V -  3 s t t 2 -  3 V -  3 s ~ t '  - 6 s t  5 + V -  3 t6), 

B = 2 6 6  (s 2 + t  2) (s 2 - 2 0 s t - t  2) (s 2 + 2 ~ 2 s t - t  ~) (s 4 - 2 V  ~ 3 s  3 t - 4 s  2t ~ +  

+ 2 ~ / -  3 s t  a + t  t) (s t -  2 0  s3 t +  202 s ~t 2+  2 ~ st  a + t t) (s t + 2 ~ s a t + 

+ 2 0 s 2 t e - 2 0 2 s t a  +tt) ,  

D = 2 s (~_~)36~2 s 6 t 6 (s - 0 t) 6 (s + 02 t) 6 (s - t) a (s + t) 3 (V%-- 3 s + t) 3 (s - ~/~- 3 t) 3, 

where 6, s, t are numbers in ~ ,  D #  0 and 0 = � 8 9  + l / ~ ) .  

P r o o f .  Accord ing  to t heo rem 15 the re  are on  the  curve  

~2 = ~3 + Mo ~2 + No  

two poin ts  of in f lex ion  w i th  the  coord ina tes  (s2; sZa) a n d  (t2; t2b), where 
s 2 # t 2, a n d  hence  

Mo=a2  + 2 a s - 2 s 2 = b 2  + 2 b t -  2t2; 

N O = s 3 (s - 2 a) = t a (t - 2 b). 

If  b is e l iminated ,  we get  

4 (s t + s 2 t 2 + t 4) a 2 - 4 s (s 2 - t 2) (s 2 + 2 t 2) a + (s 2 - t2) 2 (s 2 + 3 t 2) = 0. 

Suppose  s t + s 2 t 2 + t t :V 0. T h e n  

a ~  
(s 2 - t  2) ( s - ~ t ) ,  

2 ( s - - e t )  (s+o2t)  

a n d  if s a n d  t are  mul t ip l i ed  b y  2 6 ( s -  0 t ) (s  + 02 t), we f ind  

M = [2 6 (s - 0 t) (s + 02 t)] 2 M o  = - 3 62 (s 2 + t 2) (s* - 2 0 s t - t*) (s 2 + 2 02 s t - t*) ; 

N = [2 6 (s - 0 t) (s + 02 t)]* N O = - 16 V ~ 3 6'  s a t a (s - 0 t) 3 (s + 02 t) a. 

I f  s 4 + s  2 f + t  t = 0 ,  i t  is easy to ver i fy  t h a t  we get the  same curves  as if we 
p u t  s = - e t  or  s = 0 2 t  in  the  general  formulas .  
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The group contains the following finite points on the curve (12): 

++-ul [ - 4 V ~ 3 ~ 2 s 3 t ( s - ~ t ) ( s + ~ ) ~ t ) ;  ~ 4 ] / ~ 3 3 ~ 3 s 3 t ( s - ~ t )  (s+~2t)  �9 

�9 ( s  2 - t 2) ( ] / ~  3 s + t)];  

_+2U a [462t 2 ( s - Q t )  2(s+Q2t)2; ~4Oa t  2(s_~)t)  2(s+~)2t)2(s z_ t2) .  

� 9  

-+u2 [4OZs e ( s _ e t )  z ( s+O 2t) u; _+40 as z ( s - e t )  u (s§  ut) u(s u- t~)  �9 

" ( s - V - 3 t ) ] ;  

3u  l+__u 2 [ - 4 ] / ~ 3 ~ 2 s t  a ( s - e t ) ( s + e  zt) ;  _ 4 ] / - - - 3 6 8 s t  a ( s - e t ) ( s + ~ ) ~ t ) .  

�9 (s  2 - t 2) ( s  - ] / -  3 t ) ] ;  

___(2u 1+u2) [462e ~s 2t 2 ( s - Q t )  2; _+4Oae2s 2t 2 ( s _ e t )  2 ( s - t ) ( ] / - 3 s + t ) "  

�9 ( s - I / -  3t)] ;  

___(2u 1 -u2 )  [462e s2 t2 ( s+e  2t) ~; •  a~)s 2t ~ ( s + e  2t) ~ ( s + t ) ( l / ~ 3 s + t ) .  

�9 (s  - ~ / ~  3 t ) ] ;  

+_(ul+u2) [ - 4 ~ - - 3 t 2 e 2 s t ( s - e t ) S ( s + ~ 2 t ) ;  u  s ( s+e~ t ) .  

�9 ( s+t )  (1/-  3 s + t )  ( s - ] / ~ -  3t)];  

_ ( U l - U 2 )  [ - 4 V - ~ 6 2 ~ s t ( s - Q t ) ( s + ~ 2 t ) s ;  T 4 V  ~ 3 6  s e s t ( s - ~ t ) ( s + ~ t )  3. 

�9 ( s - t )  ( ] / - 3 s + t )  ( s - I / - -  3t)];  

3 ul [0; 0]. 

If 6 =  1, s = - Q ,  t = l ,  we obtain the curve 

~]2=~:3-39~2+9.27~ or y 2 = x S + 6 4 5 x + 1 3 . 8 1 4 .  

T h e o r o m  19. I] the curve (1) has a point o] order 10 in ~2, it is given by 

3 A = 6 a (a is - 4 a ~1 c - 6 a TM c ~ + 20 a 9 c s + 15 a s c 4 - 24 a 7 c a - 4: a 6 c a + 24 a a c 7 + 

+ 1 5 a a c S - 2 O a S c g - 6 a S c l ~  

- 2 7  B = 2 (~a ( a  s + c 2) ( a  4 _ 2 a s c - 6 a s c s + 2 a c s + d )  ( a  x~ - 4: a ~x c - 6 a ~~ c ~ + 

+ 2 0 a  9c s+  15 a s c a - 4 8 a  7c a - 2 8 a  6c ~ + 4 8 a  ac 7+ 15a ac s - 2 0 a  sc 9 -  

- 6 a s c ~~ + 4 a c  ~ + c~Z), 

D = 23 6 TM a ~~ c TM (a - c) a (a + c) a (a s + ac - c~) s (a s - 4 ac - ca), 

where 6, a, c are numbers in [2 and D #  O. 
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Proof .  Let  u be a point of order 5 on the curve 

with the coordinates (~1; 71), and let (~2; 72) be the point  - 2  u. Then, by  (14): 

and ~ 1 = \  272 ] 

we find 

Now the relations 

~ - No ~ -  No 
- - -  c and - a, 

2 ~1 2 72 

7~ = a2 ( a4 + Me a 2 + No) ; 

7~ = c2 ( c4 + Me e ~ + No) 

may  be writ ten 
a 4 - No) ~ = 4 a ~ c ~ (a 4 + Me a 2 + No) ; 

( c '  - N o )  ~ = 4 a 2 c ~ (c  4 + M e  c ~ + N o ) .  

Here we eliminate Me and find 

N ~ -  2a2 c~ N o - a 2  d (a4 -  3a2 c~ + c4)=O. 

The roots of this equation are 

a c [ a c + ( a ~ - d ) ] ,  

and since a and c can be interchanged, we may  write 

N o = a c  (a~ + ac-c~).  

i J , and c are multiplied by  2 6 a c, we find 

M = (2 6 ac) "~ Me = 62 (a ~ + c 2) (a 4 - 2 a a c - 6 a ~ c ~ + 2 a d  + c 4) ; 

N = (2 6 ac) 4 N o = 16 64 a 5 c 5 (a ~ + a c -  c2). 

{ ~ l=a~  { a a - N ~  
and 

~2 = c2 c 4 - N o  = 2 a 7~- 
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The group contains the following finite points on the curve (12): 

_+u [462ac a(a 2 + a c - c  2); _+46 aac s(a z + a c - c  2 ) ( a - c )  2(a+c)] ;  

+ 2 u  [462a2ct; ~ 4 6 3 a e c 4 ( a - - c )  (a+c)2]; 

___ 3 u [4 62 a 3 c (a 2 + ac - c e) ; T- 4 6 3 a 3 c (a ~ + ac -- c 2) (a -- c) (a +c) 2] ; 

_+4u [462a4c2; +_463a4c~(a--c)e(a+c)];  

5u [0; o]. 

12. According to LIND ([8], p. 46), the groups (4,2, 3) and (2, 2,5) are im- 
possible in k(1), but if we put 6 = n = l  in theorem 17 and let m be a rational 
integer, it is seen that  ]/D generates an infinity of quadratic fields. In the 
same way we may choose 6 = c = 1  in theorem 19 and let a be a rational in- 
teger. Thus we conclude: 

Theorem 20. The groups (4, 2, 3) and (2, 2, 5) are possible in an in]inity o/ 
quadratic ]ields, and we may even suppose A and B to be rational. 

w 

The except ional  group in  the  h a r m o n i c  case 

13. If ~2 is an algebraic field and if A is a number in ~2, it is sometimes 
possible to determine the exceptional group in f2 on the curve 

y2 = x 3 _ A x. (2) 

In the case f ) = k ( 1 )  the group is given by theorem 5. ~2~AGELL ([14], p. 6-I1)  
has also examined the exceptional points on (2) in quadratic fields, but A is 
still supposed to be rational. 

If cr is an integer in the algebraic field K and if p is a prime ideal in K, 
it will be convenient to introduce the notation p~//:r if a is divisible by pm 
but not by pm+l. 

14. We begin with two preliminary theorems: 

L o m m a  t .  I]  there is a point in [2 o] order 7 on the curve (2), then 
contains an algebraic ]ield o] degree 12, and in this field 2 is the square o] a 
prime ideal. 

]Proof. Let (x; y) be a point of order 7 on the curve (2). 
it follows from (7) that  

A 
X 2 

Since P:  (x) = O, 
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is a number  in ~ sa t is fying 

z TM + 7.28 z 11 - 7.186 z x~ + 7.2t08 z 9 - 7.2239 z s - 7.6024 z 7 + 7.15988 z e - 7.11752 z 5 + 

+ 7.5033 z 4 - 7.2836 z a + 7.422 z 2 + 7.44 z - 7 = O, 

and  b y  Eisenste in ' s  i r reducibi l i ty  cri terion,  z is of degree 12. 
On the  other  hand,  i t  follows f rom theorem 4 t h a t  there  is a number  

m 

n 

in /2, which satisfies the  equat ion 

t TM - 18 t n + 117 t 1~ - 354 t 9 + 570 t s - 486 t: + 273 t 6 - 222 t 5 + 174 t 4 - 46 t 3 - 15 t 2 + 

+ 6 t + 1 = 0 ,  (16) 

and  if t is a number  sat isfying 
Consequently (16) is i r reducible  in k (1). 

I f  we pu t  

ta-6t~ + 3t + l 
V 

t ( t -  1) 
i t  is easy to ver i fy  t h a t  

v a + 6 v a + 3 v  2 - 4 6 v + 9 = 0 ,  

(16), a poin t  of order  7 is possible in k (t). 

(17) 

(18) 

and  since (18) is i r reducible  in k (1), we see t ha t  k (t) contains  a sub-field k (v) 
of degree 4. 

Since the  norms of v and  v + l  are bo th  odd, there  is no pr ime ideal  in 
k (v) wi th  the  norm 2. I f  we pu t  

we f ind 

s=�89  

s4-10s3 + 90s~-4 .41s-4 .19=O.  (19) 

If  p is a pr ime ideal  in k (v) which divides 2, i t  follows f rom (19) t h a t  p/s. 
But  then  p3/4 and  consequent ly  p~/2. Since the  no rm of p is a t  leas t  equal  
to  4, we have  2 = p  2 . 

(17) gives the  i r reducible  equat ion  in k(v) sat isf ied b y  t: 

t 3 - ( v + 6 )  t * + ( v + 3 )  t + l = O ,  (20) 

and  the  number  ~ = t 2 + t + 1 satisfies 

}a _ (v2 + 11 v + 39) }~ + 4 (v ~ + 10 v + 30) } - (3 v ~ + 27 v + 73) = O. (21) 

The coefficients of (21) are  divisible b y  02, p 4 and  On, respect ively.  Le t  ~ be 
a p r ime  ideal  in k (t) which divides p. Then i t  is seen t h a t  ~ / ~ ,  and  if ~ / p ,  
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we find ~2/~. If  ~3/p,  the second term of (21) will be divisible by ~ o ,  and 
hence ~a/~. I t  follows that  p/s and consequently the number 

~=�89  + 2t2 + t + 1)=-~-(t4-:t 2 -  1) 

is an integer. 
the numbers 

If  N 1 denotes the norm relative to k (v), i t  will be found that  

N~ (9) = �89 (4 v 3 + 45 v 2 + 187 v + 263), 

N~ (~ + 1) = �89 (3 v 3 + 32 v 2 + 124 v + 151), 

N~ (~ + t 2) = - (v a + 9 v 2 + 26  v + 10) ,  

N~ (9 + t2 + I) ~ �89 (9 v a + 97 v 2 + 381 v + 486) 

are indivisible by ~. However, if p is not a prime ideal in k (t), there must 
be a prime ideal ~ in k (t) with the norm 4, but this is impossible, since the 
five numbers 

O, 9, ~ + 1 ,  ~?+t 2, 9 + t 2 + 1  

are incongruent mod ~.  Consequently p remains a prime ideal in k (t). 

T h e o r e m  21. Let s be an algebraic ]ield containing the number A,  and 
suppose that there is a point o/ order q in ~ on the cu~ve 

y2 = x a _ A x, (2) 

where q is an odd prime. Then 2 is the square o] an ideal in ~ ,  and i] there 
is a prime ideal in Y2 with the norm 2 or 4, we have q <5. 

Proof .  We may suppose that  A is an integer and that  the exceptional 
points in s on (2) have inte~al  coordinates, for otherwise it would be suffi- 
cient to multiply A by the fourth power of a suitable natural  number. 

Let  ul be a point in ~ of order q, and let p be a prime ideal dividing 2. 
Among the points Ul, 2ul,  3u~ . . . . .  ( q - 1 ) u l  we choose a point u with the 
coordinates (x; y) in such a way that  x is divisible by the lowest possible 
power of p. 

If  v=- �89  (raodw, o)'), we have 2v-~u,  and then it follows from (8) 
that  x ~ z 2, where z belongs to D. 

Now suppose pro//2, ph//z and pa//A. Let P~ and Q~ denote the polynomials 
defined in w 2. 

I f  a < 4 h ,  we find pa+2h/y2 and o2a//Pa, and hence, by (5), p2h/p(2u) ,  and 
if a>4h,,  we find p6h/y2 and psh//p3, and hence p2hTL~h(2U). But the point 
u is chosen in such a way that  p (2 u) is divisible by p~ , and consequently 
a = 4 h .  
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We put y = z t  and find 

t 2 = z 4 - A ; 

P3= 3 t4-4 A2; 

-Q4  =2  (t2+ 2A) ( t 4 -4A t 2 - 4A~) .  

If p4h+m~t3, it is seen that  ~sh§ but  p6h+2~/4y3, and hence p~h~io(2u ). 
If ~94h+m+l/t3,  v " - -3 ,  we find and y3, and then p3h~to(2u ). psa+e'~//p3 peh+3m+~/4 
Consequently O4a+'n//t 3, and it follows that  m is even. This proves the first 
statement of the theorem. 

Put  m = 2 n  and h + n = r .  Then we know that p6r//4y3 and p2a+~//t, and 
since peh/~(2u)-z~,  we have psh§ 3. If we put t 3+2A=s ,  we find 
p'~+3~/s and 

P a = 3 s  3 -  12A s+SA~;  

Q4 = - 2 s ( s 3 - S  As  + S A2) �9 

Since psa+6~/P3, we see that  p4h§ If p4a§ it is found that  
pSh+6n//P 3 and p~a§247 But then it follows from (4) that p2'U+lSa//Ph, 
and then, by (5), p3h~d (4 U). Consequently p~h+~//s. 

8 h + 7 n  2 2 8 h + 7  n J_ 1 2 h + l l n  24 h + 2 1  n If P h ~s + S A ,  we find ~ ,P3 but p /Q4, and hence O ~P5 
and p3 ~t~(4u). If psh+7~+~/s3+8A2, we find psh+7~//P 3 but p12(h+~/Q 4, and 

2 4 h + 2 1  n 2 h  8 h + 7 n  2 2 8 h + 7 n  hence ~ lips and ~ ~ta(4u). Consequently p / IS-t-SA, ~ /P3 
and pl~//Q4. 

If ps~-~//p3, where c>0 ,  it follows from ( 4 ) t h a t  p~r O,(8~-~)//Q~, 
p~(8~-r and p~~ 8. Then we may suppose 

p i t y  ~ 1 ) ( 8 r  ,)/ip,, if v is odd; 

p~(~-4)(s~-c)//Q,, if v ~ 2  (mod 4); 

p(~-~)~-t(~-~)C/Q~, if v~O (mod 4). 

This has been verified above for v < 8 and can be proved generally by induc- 
tion, if the formulas (4) are used. But this implies Pqg= 0, which is impossible, 
since u is a point of order q. Consequently psr/P s. 

Now suppose q>3 .  If psr+l/p3, we find p24r//ph, paar+1/Q6, p48r//p7, p6~ 
and the formulas 

p(~-l)r//p~, if 3 ~  and r is odd; 

p(~,-4)r//Q,, if 3~v and ~ is even; 

p(~*-l)r+l/p,, if 3/v and v is odd; 

p(~2_,)r+i/Q,, if 3Iv and v is even 

are easily proved by induction. But this contradicts Pq = 0, and consequently 
0 8"11P3. 
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As yet  we have not supposed anything about the norm of p. Now we shall 
examine the two simplest cases and begin with N (~)= 2 and q >  5. Then it  
follows from (4) that  p2'"+~/P~, Ps2"//Q6, p4s"//P7, P6~ Ps~ Pg~+I/Qxo 
and generally 

~(~ 1.//p. 

.p~ ' 

.p(,, ' --,-+x/p,,,  

. ~ o , ' - 4 - + , / 0 , ,  ' 

if 57% and v is odd; 

if 57% and v is even; 

if 5Iv and v is odd; 

if 5/v and v is even. 

But this contradicts Po = 0, and consequently q < 5, if there is a prime ideal 
in /2 with the norm 2. 

Next suppose N ( p ) = 4  and q >  7. Let ~ represent a primitive residue class 
mod p ; then 

~2-=r162 (modp)  and a3_~l (modp) .  

Let  z be an integer satisfying p4~//~. Then 

p z ~ z ~ ,  = ~ 2  or ~_~2a2 (mod ~)8r+1), 

and since ~zt or ~2 z may be substituted for Jr, we may suppose 

Further, 

*03----~r + (mod psi+l). 

16y4~_~3, _-m~3 or ~cr 3 (mod ~)12r+l), 

but  since r162 and ~2 may  be interchanged, it is sufficient to consider the first 
two cases. 

First suppose 1 6 y 4 ~ z  a (modplZ~+l). If Q 4 ~  3 (mod p12~+1), we find 
P5-= 0 (mod p2,r+l), Qe ~ jrs (mod p32r+l), P7 ~ ~12 (mod p4s~+l), Q8 =-~15 (mod p60r+l) 
and generally 

p __-~zt(~ ~ 1) (mod p(,~-l)r+l), 

Q~-=~ t(~ 4) (mod p(,~-4)~+x), 

P, -= 0 (rood p(~'-l)r+l), 

Qv --- 0 (rood p(v~-4) r+l), 

if 5~v and v is odd; 

if 5r and ~ is even; 

if 5/v and v is odd; 

if 5/v and v is even, 

but  this is impossible, since P q = 0  and q>5 .  If  Q 4 ~  a (mod pl2r+l), we may 
suppose Q4~-ct~r3 (mod p12r+l), but then it will be found that' 
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P . ~ i ( ~ ' - x )  (rood p(u~-l)r+l), if v---I+1 (mod 18); 

p ~ ( . ' - 1 )  (mod p(.'-Z)r+i), if V------ +-7 (mod 18); 

P.-=~2~�88 (mod 9(~'-1)r+1), if r~- +-5 (mod 18); 

Q.---~z i(''-~) (rood p(,'-4) r+i), if ~ +-2 (mod 18); 

Q.-=a~ �88 (rood p(,,'-~)r+~), if r~- +-4 (rood 18); 

Q.-=~'~("'-~) (mod p(.,-~)~+i), if v-= +-8 (rood 18); 

P .~ �88 (mod p(~'-D.+l), if v-=3 (mod 6); 

Q.-= 0 (mod p(~'--4) r+l), if v-~ 0 (mod 6), 

and this contradicts Po = O. 
Consequently 16 y4 ~ ~ ua 

according as Q4 ~ ~3, == ~ a  or =- ~2 ~3 (mod p12r+i): 
If Q4-=~ a (mod plz~+~), the formulas (4) give the following 

P ~ i ( ~ - ~ )  (mod p(~-~)r+i), +-3, +-7 

P,--- ~ � 8 8  (v2-1) (mod 

p,  _= ~2 ~d (~-1) (mod 

Q. --- 7d (~-4) (mod 

Q __ ~ �88  

Q. -= 0 (mod 

and this is impossible. 
If Q4-= a~3 (mod p12r+l), 

p .  =- ~t (~-1) (mod 

P.-= (X :T/:�88 (,2-1) (mod 

(mod pl2r+l). Then we must distinguish three cases, 

result : 

if v-= _+ 1, (mod 24); 

p(~,-1)~+1), if v-=+_9 (rood24); 

O(v~-l)r+l), if ~,~ +5,  +-11 (mod 24); 

p(~*-4)r+l), if V~- +-2, +-4, +10  (mod 24); 

p(**-4)r+l), if ~ +-6, 12 (mod 24); 

p(~t-4)r+l), if V ~ +-8, 0 (mod 24), 

P ,  ~ 0r �88 (mod p(.~-1)~+1), 

P .  -= 0 (rood ~) (v~-l) r+l), 

Q~ ~ ~�88 (,2_4) (rood p(,~-4) r+a), 

Q ~ t ( ~ : - 4 )  (mod O(v2-4)r+1), 
Q~ ~ ~2 ~t(~-4) (mod p(~-4) r+l), 

Q. --- 0 (mod p(~-4)~+1), 

but this is impossible, since q>  7. 
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we get the following congruences: 

p(~-l) r+l), if v - = •  _3 ,  _+13 (mod42);  

p(~-~)r+l), if v - - + 5 ,  +15,  +19 ( rood42 ) ;  

if v--- _+9, +11,  •  (mod 42); 

if v--- •  21 (rood 42); 

if v - = + 2 , _ 6 ,  +16  (rood42); 

if v-= + 4, + 10, + 12 (mod 42); 

if v-=_+8, +18,  + 2 0 ( m o d 4 2 ) ;  

if v~- + 14, 0 (mod 42), 
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If Qa~0~27e 3 (mod 012r+l), it will be found that 

P ~ a  t(~'-1) (rood pr,,-1)r+l), if r--- +-1, _+3, i l l  (rood 30); 

P , ~ z ~  t(~2-1) (rood p(,2-1)r+1), if ~ +7 ,  +_13 (rood 30); 

P ~ : r  i(~2-1) (rood p(~-l)~+~), if v-= +_9 (mod 30); 

P , ~ 0  (rood p(,,-1),+1), if ~ -  +_5, 15 (rood 30); 

Q ~ ( ~ , - 4 )  (rood p(~,-4)~+1), if ~--- +_2, +_8 (mod 30); 

Q _az~<::-4) (mod ~0(++~-4) r+1), if V--= _+6 (mod 30); 

Q __:r (rood 0<~-4)~+1), if v--- +_4, _+12, +_14 (rood 30); 

Q: ~ 0 (rood p<::-4)~+~), if ~--- +_ 10, 0 (rood 30), 

and this is impossible, too. 
I t  follows that  q < 7, if there is a pr ime ideal in g2 with the norm 4. How- 

ever, lemma 1 shows that q=  7 is impossible. Thus q< 5, and theorem 21 is 
proved. 

15. Theorem 21 may be applied to any field, whose degree is 2, 4 or an 
odd number, and we shall now examine these cases in detail. 

If the degree of Y2 is odd, the order of the exceptional group in Y2 on the 
curve (2) is a power of 2. If there is a point of order 4, we may put B = 0  
in theorem 8, and this requires 

012 

a - 2 c = 0  

2 a ~ - 8 a c - c 2 = O .  

Since ~ does not contain V2, the latter possibility is excluded. Consequently 
a-~ 2 c and A = -  4 c 4, and the curve is equivalent to 

y~ = x 3 § 4 x. (22) 

Since this curve has oi~ly one point of order 2 in ~Q, the only points of order 4 
are (2; •  and there is no point of order 8, since otherwise 2 ought to be 
a square, according to (8). 

We have reached the following result, which is quite analogous to theorem 5: 

T h e o r e m  22.  
in g2, the curve 

Let .(-2 be an algebraic field o~ odd degree. 

y ~  = x a - A x 

1/ A is a number 
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has the ]ollowing exceptional group in f2: 

(2), if A # C  ~, # - 4 C 4 ;  

(2,2), if A=C2;  

(4), if A = - 4 C  4. 

Here C denotes any number in f2. 

16. Now let ~2 be a quadratic field. If Q # k  (V2) and if the curve (2) has 
a point of order 4 in f2, it is equivalent to (22), and among the points of 
order 4 on this curve (2; •  and possibly ( - -2 ;  + 4 i )  belong to f2. The 
remaining 8 points of order 4 do not belong to ~2, since the abscissa of one 
of them is 2 i (1+V2) .  If u is a point of order 8, we must have ~o (2 u) = _ 2, 
but this is impossible, since then (5) gives an irreducible equation of degree 4 : 

(x2-4)  2= + 8 x ( x 2 + 4 ) .  

If ~2=k(V2) and if the curve (2) has a point of order 4 in ~,  it follows 
from theorem 8 that the curve is equivalent to (22) or to 

y2=xa--x.  

In the first case there is only one point of order 2 and no point of order 8. 
In the second case there are 3 points of order 2, and the points of order 4 
are [1 + V2 ; _+ (~/2+ 2)] and [1 - V2 ; + (V2- 2)]. No point of order 8 belongs 
to f2, since 1 • J/2 is not a square in this field. 

If there is a point of order 3 in ~ ,  it follows from theorem 2 that  Q = k  (U3) 
and that  (2) is equivalent to one of the curves 

y2 = x a + (3 • 2 ~/3) x. 

We may choose the upper sign and then have the points of inflexion [1 ; • (1 + V3)], 
and since ~2 does not contain ~/-3,  theorem 7 implies that  the other points 
of order 3 do not belong to ~2. If u is a point of order 9 with the abscissa x 
and if p ( 3 u ) = l ,  we get by (5): 

(1 - x) / )~  (x) = 4 x (x2 + ~ V3) Q, (~), (23) 

where e = 2 + ~/3 and 

P 3  (z)  = 3 (x" + 2 ~ V3 x ~ - e');  

Q4 (x) = - 2 @2 _ e 1/3) @4 + 6 ~ 1/3 x 2 + 3 e2). 
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Let p be a prime ideal in f2(x), which divides l/3. Since P/P3, it is seen that 
p/x,  since otherwise p would not divide the right member of (23). Suppose 
ph//V3; then pah//P a. If ~h/xa, we find ~3h/Q4, and the right member of (23) 
would be divisible by p4h+:, which is impossible. Thus if p~//x, we have 
2 k < h, p 6 k//Q~ and p3 k//x (x a + ~ l/~)" Consequently 4 h = 9 k, and hence h = 9. 
But this implies that  Q (x) is of degree 18. 

If there is a point of order 5 in $2, it follows from theorem 3 that ~ = k  (V'-i-1) 
and that  (2) is equivalent to one of the curves 

y a = x a - ( l _ 2  i) x. 

I t  is easy to show that  there are 10 exceptional points in f2 in this case (see 
•AGELL [13], p. 12). If the upper sign is chosen, the points of order 5 are 
[1; •  and [ - 1 ;  •  

We have proved the following theorem: 

T h e o r o m  23. [1] A belongs to the quadratic field f2, the curve 

y a = x 3 - A x  

has the /ollowing exceptional group in I2: 

1. Qr .k(V~), ~:k(V~). 

. 

. 

(2), if A~:C a, ~=-4C4; 

(2,2), if A = C  a; 

(4), if A = - 4 C  4. 

~=k(V:l). 
(2), if A:#C a, + ( 1 •  

(2, 2), if A = C  a, 4 C  4; 

(4,2), if A=C4;  

(2,5), if A=(I+_2i )C ' .  

Q = k (V~). 

(2), if A:~C a, 4=-4C4; 

(2,2), if A = C  2, 4=C 4; 

(4), if A = - 4 C 4 ;  

(4,2), if A = C  4. 
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4. / 2 = k  ((~). 

(2), 

(2, 2), 

(4), 

(2, 3), 

if A:4:C 2, # ~ 4 C  4, # : - ( 3 _ + 2 V 3 ) @ ;  

if A = @ ;  

if A = - 4 @ ;  

if A = - ( 3 _ + 2 l / 3 ) @ .  

Here C denotes any number in /2. 

17. Finally let /2 be a quart ic  field. I f  the  curve (2) has a point  of order 4 
in $2, i t  is equivalent  to 

y~ = x a + 4 x (22) 
or to 

y2 = x a _ x. (24) 

In  the  former case we m a y  suppose tha t  ~/C 1 does not  belong to /2, since 
- 4  is a fou~rth power in k ( 1 / -  1). 

First  consider the curve (22). The only points of order 4 in /2 are (2; +_4). 
I f  u is a point of order 8 with the abscissa x and if io ( 2 u ) = 2 ,  we find 

x = 2 [ l + l / 2 + V 2 ( l + ~ 2 ) ]  or x = 2 [ 1 - V 2 + _ V 2 ( 1 - V 2 ) ] .  

Thus if x belongs to ~ ,  the field is k ( 1 +V1--+~) or k (V1 - V2) and then, by  (6), 
y also belongs to /2. 

Since the exceptional groups on the  curve (22) in two conjugate fields are 

isomorphic, it is sufficient to examine the case ~2=k  ( V ~  1/2). The points of 
order 8 are 

[ 2 ( e 3 + 8 2 - e ) ,  4 ( 8 s + 8 2 + 1 ) ]  and [ 2 ( - - S 3 + e 2 q - 8 ) ;  •  

where 8 =  V1 + V2. I f  there were a point  of order 16 i n /2 ,  the abscissa of each 
point  of order 8 would be a square (according to (8)), and hence 

z ~ = e a + 82 - -  G 

where z belongs to /2. But  this equation m a y  be wri t ten  

(z - 1) (z + 1) = (1 + 8) ~/2, 

and if we define the ideal O = (1 + 8), we find p4 = 2 and  hence pa//(z - 1) (z + 1), 
which is impossible. 
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Now consider the curve (24). If co is the least positive period and if co' is 
the ]east positive-imaginary period, the points of order 2 are 

�89  0); �89 0); �89 0), 

and the points of order 4 are 

~t~ [1+ V2; +(2+ V2)]; 

_+~+�89 [1-V2; +(2-/2)]; 

_+~(m-o') [i; _+(1-i)]; 

+�88 [ - i ;  +(1+i)]; 

Tl~o'  [ -  1 -  1/2; + i  (2 + 1/2)]; 

+ t w ' + � 8 9  [ - 1  + V2; + i ( 2 -  1/2)]. 

If there is a point of order 8, the abscissa of one of the points of order 4 

must be a square, and hence D = k  (VI+ 1/2) or 12= k (V2, V-1) .  First suppose 

12=k(Vl+l /2 )  and let u be a point of order 8 with the abscissa x. Then 
~) (2 u )=  1 + 1/2 and consequently by (5), 

(~ - 2 x -  1) ~ = 4 �9 ( ~  - 1) g2 .  (25)  

Suppose that  x belongs to 12 and put p = ( l +  VI+ [/:2). By (25), p b / x 2 - 2 x - 1 ,  
and hence p4//x~-1 and, if (25) is used once again, p V / / x 2 - 2 x - 1 .  But this 
is impossible, since 

x ~ -  2 x -  1 = ( ~ -  1 + V2) ( x -  1 - V2), 

and if one of these factors is divisible by p4, the same is true of the other. 
Next suppose 12 = k ([/2, V - 1) and let u be a point of order 8 with the ab- 

scissa x. Then we may put ~o (2 u )=  i and hence 

4 i x  (x ~ - 1) = (x 2 + 1) ~. 
One root of this equation is 

x = i (1 - V2) + V~ ( V 2 - 1 ) ,  

and since 12 does not contain V 1/2-1, x is of degree 8. 
Consequently no point of order 8 on the curve (24) belongs to 12, and we 

have reached the following result: 

L e m m a  2. / /  12 is a quartic ]ield, the points o] order 2 ~ (v > O) in 12 on the 
curve (2) [orm the ]ollowing group: 

1. Q contains neither ~ nor ~ .  

(2), if A~=C ~, + - 4 C 4 ;  

(2,2), if A=C2; 

(4), if A = - 4 C * .  
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2. ~ contains ~ 1 but is # k (~/2, ~/~ 1). 

(2), if A#C~;  

(2, 2), if A = C  2, # C  4; 

(4,2), if A = C  A. 

3. Y2 contains ~/2 but is # k (Vg,, ~ -  1) and # k (1/1+_~). 

(2), if A # C  2, # - 4 C 4 ;  

(2,2), if A = C  2, #C4 ;  

(4), if A = - 4 C  4; 

(4,2), if A = C  4. 

4. 9=k(V~, V~i). 

5. 

(2), if A#C2; 

(2,2), if A = C  ~, 4C4;  

(4, 4), if A = C  A. 

(2), if A # C  ~, # - 4 C 4 ;  

(2,2), if A = C  ~, # C  4; 

(4,2), if A = C 4 ;  

(8), if A = - 4 C  A. 

Here C denotes any number in ~. 

18. Suppose that  there is a point of order 3 in Q on the curve (2). Then 
it  follows from theorem 2 that  the curve is equivalent to 

y~=xS+(3_+2  1/3) x, 

and these two curves are inequivalent except in the case ~9=k  (V3, ~ 1), since 

3 + 2  1/3 

3 - 2  1/'3 
(2 + V3) ~ = [�89 (1 + i) (I + V~)]'. 
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We may choose the upper sign and then find the following finite points of 
inflexion: 

[1; •  [ i (2+I/3) ;  •  

[ - 1 ;  •  [ - i ( 2 + ~ / 3 ) ;  • (1+ i) (2 +1/3)]. 

If u is a point of order 9 with the abscissa x, we have, by (5), 

[9 (3 u) - x] P3 ~ (x) = 4 x (x 2 + 3 + 2 V3) Q4 (x), 

where ~ ( 3 u ) =  _1  or = •  I t  was shown above that this is im- 
possible in the case ~ (3u)= 1, if ~2 is a field of degree < 18, and the proof 
is the same in the other cases. 

This discussion may be summed up in the following way: 

Lenlrna 3. I /  D i s  a quartie /ield, the points o/ order 5" (v > - O) in ~ on the 
curve (2) ]orm the ]ollowing group." 

1. ~ does not contain ~3. 

(1). 

2. ~ contains V:3 but is #k (V3 ,  ] / -1) .  

(1), if A #  -(3+_2 V3)C4; 

(3), if A = - (3 • 2 ]/3) C 4. 

. o=k((~,  V-l). 

(1), if A #  - ( 3 + 2  ]/3) C4; 

(3,3), if A= - (3+2 V~)C'. 

Here C denotes any number in Q. 

19. Finally suppose that a point of order 5 belongs to /2. According to 
theorem 3 we have to distinguish two cases. Either T2 contains ]/-~1, and the 
curve is equivalent to 

y~ = x a - (1 • 2 i) x, (26) 

or f2= k (VlO + 2 ]/5), and the curve is equivalent to 

u~=~3-2 [1 + 35 V~• (1 -2  V~)1V1~+ 2 j/~]~ (27) 
o r  

y 2 = x a -  2 [ 1 - 3 5  V5• (1 +2  ]/5) 1~/~0- 2 ~/5] x. (28) 
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First consider the curves (26). If they were equivalent in/2,  this field would 
contain a number C satisfying 

1 + 2 i  
C 4 ~ (1 + 2 i) 2. (29) 

1 - 2 i  

Hence /2=k  (l/5, 1/~1), but in this field there are two different prime ideals p 
and p' satisfying pp '=  V5, since 5 is the product of two different ideals in 
k ( 1 / ~ ) ,  and then it is seen that  the right member of (29) is not the fouith 
power of an ideal in /2. 

Now we choose the upper sign in (26). Four points of order 5 are 

[1; +_(1-i)] and [ - 1 ;  _ (1+ i ) ] ,  (30) 

and by (7) it is seen that  one of the others has the abscissa 

1 + 2 i  

where C is a number satisfying (29). But then 

y= _ ( I + i ) C  s, 

and consequently this point cannot belong to /2 ,  since C is of the eighth degree. 
Thus (30) are the only points of order 5 in /2. 

Suppose that a point (x, y) of order 25 belongs to ~2. Then, by (5), 

[x - ~ (5 u)] P~ (x) = 4 y2 Q4 (x) Qe (x), (31) 

where ~p(5u)=+_l and O4, Ps, Qe are given by (7). Let p be a prime ideal 
in /2 dividing A and define m and h by pm//A and phi/x; then pro//5. If  
2h>m, we find ~.)2m//P3; O3"//Q4; ph§ p6,n//p5 ; ps~n//Qe ' and it is seen 
by (31) that  this is impossible. If 2h<m, we have h=0 ,  since m < 2, but then 
$)/Ps, while p~y* Q4 Qe, and this is also impossible. Hence 2 h = m = 2. Then 
p2/y, which implies pa/x~-A, but then we find p12//Ps, while Oe/Q4 and pl~/Q~, 
and it follows from (31) that  this is impossible. 

Next consider the curves (27) and (28). Since 

1+35 Vg+6 (1-2V5) ~ V~ _ _ - { � 8 9  }', 
1 + 35 V5- 6 (1 - 2 V5) 1V~o + 2 V5 

the curves (27) are equivalent, and the same is true of the curves (28). How- 
ever, (27) is not equivalent to (28), since 

1 - 3 5 V 5 - 6 ( l + 2 V 5 )  1 0 1 / ~ - 2 V 5 < o < 1 + 3 5 V 5 - 6 ( 1 - 2 ~ / 5 )  Ulo+2V5 
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and /2 is real. Thus if we put 

1V~o + 21/5 = 2 ~r 1/10- 2 V5 =2  s  

we have two inequivalent curves given by 

and 
A =2 [1+35 V5+12 (1 -2  V5) ~] 

A ' = 2  [ 1 - 3 5  1/5 + 12 (1 + 2 V5)~']. 

Since A ' <  0, A' is no square in /2, and since A and A' are conjugates, the 
same is true of A. Since A > 0, A is not of the  form - 4  C 4, and consequently 
the same is true of A'. 

Since /2 is real, there are only 4 points of order 5 in /2. If we Choose the 
upper sign in (27), one of them is 

{ (3+ V5)(2-~) ;  2 1 6 a -  (9+ V5)]}. 

Now let u be a point of order 25 with the coordinates (x, y) and 

(5 u) = (3 + VS) ( 2 -  ~). 

Let p denote the ideal (~); then p 4= 5, and every integer in /2 is ~=0, +1 
or + 2 (mod p). We find A ~ 2 and t~ (5 u) -= 1 (mod 9). Consider the equation 

Ix - ~ (5 u)] P~ = 4 y~ P~ Q4 (Q~- Ps). (32) 

If p/x, 9 will divide only the right member of (32), and if x ~  _+ 1 (rood P), 
9 will divide only the left member. If x ~ - + 2  (mod p), we find y2~_ T 1; 
P a ~ I ;  Q4~-l; P5 ~- - 2 ,  and the two members of (32)become incongruent. 
Thus there is no point of order 25 in /2, and  we have the following result: 

Lornma 4. I] /2 is a quartic /ield, the points o/ order 5 v (v > O) in s on the 
curve (2) ]orm the /ollowing group: 

1. /2 does not contain V--~, and /2~=Ic( tU~0+2 V5). 
(1). 

2. /2 contains ~ -  1. 

(1), if A~:(I+_2i)C4; 

(5), if A = (1 + 2 i) C 4. 
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3. 9=k(V +2 Vg). 
(1), if 

(5), if 

A=~2 [1 +35 ~/5 +6 (1 ~ 2 V5) V1-0~+ 2 V5] C4; 

A = 2  [1_+35 V 5 + 6 ( 1 r  V5) V~_+2 V5]C 4. 

Here C denotes any number in ~.  

20. If the three lemmas are combined, we get the following theorem: 

Theo rem 24. I/  A belongs to the quartic field Q, the curve 

y2 = X a __ A x 

has the following exceptional group in •: 

1. ~ does not contain any of the numbers V ~ ,  ~ ,  V3, 1W~o+ 2 ~ .  

(2), if A + C  ~, + - 4 C 4 ;  

(2,2), if A = C  ~; 

(4), if A = - 4 C  a. 

2. D contains V - 1  but is #k(V2,  V--l),  ~=k(V3, V~ll), =~k(Vl_+_2i). 

(2), if A 4 C  ~, =~(1+2i)C4; 

(2,2), if A = C  ~, 4 C  4; 

(4,2), if A=C4; 

(2,5), if A = ( I •  4. 

3. ~2 contains V2 but is ~-k(V2, V - l ) ,  ~:k(V2, V3), *k( ] / l •  

(2), if A:~C 2, :~-4C4; 

(2,2), if A = C  ~, :~C 4; 

(4), if A =  -4C4 ;  

(4,2), if A = C  4. 

4. ~2 contains V3 but is :#k(V3, V - l ) ,  *k(V3,  ~/2), : #k (V- (3•  
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(2, 2), if A = C  2; 

(4), if A = - 4 C  4; 

(2,3), if A = - ( 3 _ + 2 ] / 3 ) C  ~. 



ARKIV FOR MATEMATIK. B d  2 nr 27  

5. Q=k(V~, V-~). 

(2), if A # C  ~, #(1_+2i)C4; 

(2,2), if A = C  ~, #C4; 

(4,4), if A = C  4; 

(2,5), if A = ( I + 2 i ) C  4. 

6. ~=k (V S ,  1/:1).  

(2), if A4:C 2, : # - ( 3 + 2 V 3 ) C  4, :#(1_+2i)C4; 

(2,2), if A = C  ~, 4 C  4; 

(4,2), if A=C4; 

(2,3,3), if A = - ( 3 + 2 V 3 ) c ' ;  

(2,5), if A = ( I + 2 i )  C'. 

7. ~ = k (V~, V~). 

(2), if A:4=C 2, 4 - 4 C ' ,  # - ( 3 _ + 2 V 3 ) C ' ;  

(2,2), if A = C  2, :~C4; 

(4), if A = - 4 C  4; 

(4,2), if A = C  4; 

(2,3), if A=-(3+_21/3)  C 4. 

8 . . O = k ( V l _ +  ~ ) .  

(2), if A # C  2, # - 4 C  4. 

(2,2), if A=C2; 4C4; 

(4,2), if A=C' ;  

(8), if A = - 4 C  ~. 

9. ~ = k ( l / Z ( 3 _ 2  V3)). 

(2), if A # C  2, # - 4 C ' ,  4=-(3T2V3)C*;  

(2, 2), if A = C  2, 4= - (3_+ 2 ]/3) C 4; 
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(4), if A = - 4 C  4; 

(2,3), if A = - ( 3 T 2 I / 3 )  ca; 

(2,2,3),if A = - ( 3 + 2 1 / 3 ) C  4. 

= k (V1 Jr 2 i) (two di]1erent ]ields). 

(2), if A # C  2, # ( 1 T 2 i )  Ca; 

(2,2), if A = C  ~, :~C 4, #(1_+2i)  C4; 

(4,2), if A=C4; 

(2,5), if A = ( 1 T 2 i )  C4; 

(2,2,5),if A = ( I  +_2i) C 4. 

10. 

11. ~=k(V10+2V~). 

(2), if A # C  2, # - 4 C  4, # 2 [ l • 1 7 7  

(2,2), if A = C  2; 

(4), if A =  - 4 c a ;  

(2,5), if A=2[ l_+351/5+6(1T-21 /5 )  V10_+2[/5]C 4. 

Here C denotes any number in #2. 

w  

T h e  e x c e p t i o n a l  group  in  t h e  e q u i a n h a r m o n i c  case  

21. If B is a rational number, the exceptional group in k (1) on the curve 

y2 = x 3 _ B (3) 

is given by theorem 6, and NAGELL ([14], p. 11--15) has found the exceptional 
group on (3) in quadratic fields. 

We shall now generalize these results and begin with a preliminary theorem: 

T h e o r e m  25. Let ~ be an algebraic ]ield containing the number B, and sup- 
pose that there is a point o I order q in #2 on the curve 

y~=x 3 -  B, 

where q is a prime >3. Then 3 is the square o] an ideal in #2, and i/ there 
is a prime ideal in ~ with the norm 3, we have q = 7. 
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:Proof. Since the number of exceptional points in ~2 is finite, their coordi- 
nates may be supposed to be integral. Let u be a point of order q with the 
coordinates (x; y), and let p be a prime ideal in /2 dividing 3. Suppose 

~'~//3; ~//B; ~'7/z; ~//y. 

We may choose u in such a way that  pn/~(vu) @=2,  3 . . . . .  q - l ) .  The poly- 
nomials P3 (x) and Q~ (x) may be written in the following manner :  

P 3 = 3 x ( y 2 -  3 B); 

Q4 = - 2 (y4 _ 18 B y  ~ - 27 BZ). 
(33) 

If  b # 3 h ,  we find 

2 k < b ;  2 k < 3 h ;  pm+h+2~//p3; O4~//Q,; pz~-~,,~-2h//~(3u)_x, 

but  2 k - 2 m - 2 h < h, and this is impossible, since we have supposed O h / ~ (3 u). 
Hence b = 3 h. 

If  2k<=3h+m, we find pm+h+2k/Pa, p~k//Q4 and ph~io(3u). Consequently 
2 k > 3 h + m and p2 (2 h +,,)//1)3. 

If  4 k > 3 (2 h + m), we find pa (2 h+m)//Q4 ' p6 (2 h+m)//pa, oS (2 h+,,/Qr and generally 

p~(~-l)(2h+m)//Pv, i f  v is odd; 

p}(,~-,)aa+m)/Q, if v is even, 

but this is impossible, since Pq = O. 

If  4 k < 3 (2 h + m), we find pS k+x/p], p, k//Q4 ' ps k//p5 ' ps k/~s  and generally 
x- 3 

p~(~-x)k//p,, if v--- +I (mod 6); 

p~c,~-4)a//Q,, if v--- _+_2 (mod 6); 

p~(~-~)k/P~, if v---3 (mod 6); 
P a  

)r.)~ (r~-12) k l Qv / P a '  if v---0 (rood6), 

and this is impossible. 

Consequently 4k  = 3 (2 h +m),  but then m must be an even number, and the 
first part  of the theorem is proved. 

Now suppose N ( p ) = 3  and q # 7 .  Since k is divisible by  3, we may  put 
k=3n .  Then m = 2 ( 2 n - h )  and n=>-l. We have psn//P3 and p12"/Q 4. 
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If p~2n+l/Q,, w e  find Oz'"//P 5, p32.//Q,, ~,s.  p p6O.+~lQ s // .7' and generally 

p(,*-l) n//p,, if v ~ +_ 1 (mod 4); 

p(,~-4) n//@, if v ~  2 (mod 4); 

O(~,-4)~+I/Q,, if v-=O (mod 4), 

and this is impossible. Hence p 19"//Q4. But it follows from (33) that 

Q4 --- y4 _ 27 B 2 (mod 012 n+l), 

and since the norm of ~ is 3, we must have y4=_ _ 2 7 B  ~ (rood p12~+1). 
by (33), P ] ~  _yS (mod p~4~+1), Q4=-_y4 (mod px2~+a), and we find 

p~y~(~=-l) (mod p(v~-l) n+l), if 

P,-= - -y  ](v2-1) (mod p(,'-l) n+a), if 

P , _  t(v'-9) p(,'-9) n+l), Paa = y (mod if 

P v _  y~(~'-9) (mod p(~,-9) n+l), if 
P3 

P~ ~- 0 (mod p(,~-1),,+1), if 

P--~ ~- 0 (mod p(,'-9) ,+1), if 
P3 

Q, = yt('~-4) (modp(,,-4) n+l), if 

Q,~ --y I(~-4) (mod O('*-4) n+1), if 

Q~-y t('~-12) (mod p(,,-12)n+1), if 
Pa 

Q~-  y t(~-12) (mod p(,,-12),,+1), if 
/'3 
Q,--- 0 (mod p(,,-4),,+1), if 

Q--'--- 0 (mc.d 0 0''-12) n+l), if 
P3 

Then, 

~ 1, 11, 23, 25, 29, 37 (mod 42); 

~-5, 13, 17, 19, 31, 41 (mod 42); 

~ 3, 27, 33 (mod 42) ; 

~- 9, 15, 39 (rood 42) ; 

~- 7, 35 (mod 42) ; 

v-= 21 (mod 42) ; 

=- 10, 20, 26, 34, 38, 40 (mod 42) ; 

v ~: 2, 4, 8, 16, 22, 32 (mod 42); 

v =- 18, 30, 36 (mod 42) ; 

-= 6, 12, 24 (mod 42) ; 

-= 14, 28 (mod 42) ; 

~ 0 (rood 42). 
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But it is seen that  this contradicts Pq = 0, since qr and the theorem is 
proved. 
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22. Let  /2 be an algebraic field, whose degree is indivisible by 2 and 3, 
and let B be a number in /2. Then there is a t  most one point of order 2 
in /2 on the curve (3), since /2 does not contain V-~-3, and it follows from 
theorem 8 tha t  there is no point of order 4 in /2, since ]/3 does not belong 
to Q. 

According to theorem 7, at  most two finite points of inflexion belong to ~ ,  
since ~ does not contain V - 3 .  If  these points have the abscissa 0, it is seen 
tha t  B = - C  2, where C is a number in ~ .  Let  u be a point of order 9wi th  
$o (u) = x and ~o (3 u) = 0. Then, by (5), 

that  is 

4 C 2 
where t =  x 3 .  

xp~ (x) + 4 (x" + c ~) Q, (z) = 0, 

t3 + 3t2-  24t + l =O, 

Thus x does not belong to /2, since t is of the third degree. 

I f  (~; 7) is a point of inflexion in ~ and $~=0, the expression for P3 given 
in (9) shows that  ~3= 4 B and hence 

Thus the curve is equivalent to 

y2 = x 3 _ 432, 

whose rational points of order 3 are (12; ___36). Let  u be a point of order 9 
with io (u) = 12 z and ~o (3 u) = 12. Then, by (5), 

12 (1 - z) P~ (12 z) = 4.432 (4 z 3 - 1) Q4 (12 z), 
that  is 

9 z 2 ( z -  1)3 (z~+ z + 1 )2= (4 z a - 1) (2 z ~ -  10 z 3 - 1 ) .  (34) 

Let p be a prime ideal in k(z) which divides 3, and suppose pro//3. I f  we 
put z = 1 +v ,  (34) is transformed into 

9v  3 (v+ 1) 3 (v2 + 3 v +  3)2= 

=(4v3+12v2+12v+3) (2v~+12vs+30v4+30va-18v-9) .  (35) 

Suppose pal~v, and denote the left and right members of (35) by  L and R, 
respectively. I f  3h < m ,  we find p7 h+2m/L ' while p9 a//R, and this is impossible, 
since 7 h + 2 m > 9 h. I f  3 h > m, p3 a+2 rolL and p3 '~//R, which is also impossible. 
Consequently 3 h = m and pls h//L. We may, however, write 

R = } ( 4  z 3 - 1 )  [ ( 4  z 3 - 1 )  3 - 1 8  ( 4  z a - 1 )  - 2 7 ] .  

Suppose p~//4z3-1; then k>3h.  I f  2 k > 9 h ,  we find p13h+l/R. Thus 2 k < 9 h ,  
but then psi~/R, and hence 3 k =  13h. But  this implies h==3 and m = 9 ,  and 
it follows tha t  (34) is irreducible in k (1). 
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We have reached the following result, which is quite analogous to theo- 
rel~l 6 : 

T h e o r e m  26. Let f2 be an algebraic ]ield, whose degree is indivisible by 2 
and 3. I /  B is a number in f2, the curve 

y2 = x 3 _ B 

has the ]ollowing exceptional group in 1): 

(1), if B:t :C a , 4 - C  2, :#432C a; 

(2), if B = C  a , 4 - C  6; 

(3), if B = - C  2 or =432C 6 but 

(2,3), if B = - C  e. 

:~ - c a ;  

Here C denotes any number in ~.  

23. Now let ,(2 be a quadratic field. If there is a point of order 4 in ~ ,  
theorem 8 may be used to show that  ~ = k  (~/3) and that  the curve is equiv- 
alent to 

y2=x3§ (3+_2 ~/~)3 ; 

these two curves are inequivalent. We choose the upper sign and find the 
points 

[3+V3;  •  

of order 4. Let u be a point of order 8 with io (u )=x  and ~o(2u)=3+~/3,  
and put  e = 2 + ] / 3 .  Then by (5), 

4 Ix 3 + (V3) 3 e'] [x - V3 (1 + 1/3)] = 3 x [x 3 + 4 (V3) 3 e3]. (36) 

Suppose that  x belongs to k (1/3) and put  p =  (1 + V3); then 03=2. If the two 
members of (36) are denoted by L and R, we see that  p/L and hence p/x, 
but if p//x, we find pS/L and p4//R, and if p~/x, we find OS//L and pa/R. 
Thus x does not belong to k (V3). 

A point of order 9 in ~ is impossible, as was shown in no. 22. If the 8 
finite points of infiexion belong to ~2, we have ~ = k  ( V -  3), and it was seen in 
no. 22 that the curve is equivalent to 

y2 = x a _ 16.27, 

but  now this curve may be replaced by 

y~=x3+16,  

since - 2 7  is the sixth power of a number in f2. 
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In order to determine the conditions for a point of order 7 in ~ we put  
A = 0 in theorem 4. If t is a number satisfying 

( t ) = t  r  5q 30t  a - 1 5 t  a - 1 0 t  e + 5 t + l = 0 ,  

t a - 3 t + l  
and if z , we find 

t ( t - 1 )  
z2 -  11z+  2 5 = 0 ;  

hence k(t) contains V~.  Let p be a prime ideal in k( t )which  divides 3. 
Since ~(0)=~0(1)=1 and ~ ( - 1 ) = 4 3 ,  p does not divide any of the numbers 
t, t •  Consequently the norm of p is > 3  and k( t )4-k(] /~) .  I t  follows that  

(t) is irreducible in k (1). 
Now theorem 4 shows that if there is a point of order 7 in ~Q on the 

curve (3), then Q = k ( V ~ 3 ) ,  and the curve is equivalent to 

y= = x  a__8 (1/~- 3) a (1 •  I / -  3). 

These two curves are inequivalent in k (1/73). If we choose the upper sign, 
the points of order 7 are ( 4 1 / - 3 ;  +12e~1 /73 ) ,  ( 4 e V - - 3 ;  _+12e~V-3)  and 
(4~21 / -3 ;  _+12 ~2 V -  3), where ~ = � 8 9  It  is easy to show that  
there are only 7 exceptional points in ~ in this case (see NAGELL [13], p. 12). 

We have proved the following theorem: 

T h e o r e m  9.7. I ] B  belongs to the quadratic /ield ~ ,  the curve 

y2 = x 3 _ B 

has the ]oUowing exceptional group in ~ :  

1. f2:~k(l/3), #k(V~-3) .  

(1), 

(2), 

(3), 

(2, 3), 

if B=#C a , 4 = - C  2, =t=432C a; 

if B = C  3, # - C e ;  

if B = - C  2 or  ' = 4 3 2 C  a but  

if B = - C  ~. 

- -  C 6 �9 

2. Y2 = k (V3). 

(1), if B # C  a, # - C  2, #432C6;  

(2), i f  B = C  3, # - C  a, . - ( 3 + 2 [ ~ 3 ) a C e ;  

(4), if B = - (3 + 2 1/3) 3 C a ; 

(3), if B = - C  2 or = 4 3 2 C  a but  =#=-C a; 

(2, 3), if B = - C  a. 
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3. 9 = k ( V - 3 ) .  

(1), if 

(2, 2), if 

(3), if 

(3, 3), if 

(2,2,3), if 

(7), if 

B # C  a, # - C  2, # •  

B = C  3, # - C e ;  

B = - C  2, # - 1 6 C  6, # - C 6 ;  

B =  - 16 Cs; 

B =  - C 6 ;  

B =  _+8(~--3)~(1-T3V-3)C 6. 

Here C denotes any number in ~ .  

24. F ina l ly  le t  f2 be a cubic field. I t  follows from theorem 8 t ha t  there  
is no poin t  of order  4 in z'-2 on the  curve (3), and  since $2 does not  conta in  

1/~ 3, there  cannot  be more  t han  one poin t  of order 2 and  two poin ts  of order  3. 
I f  - B  is not  a square in -(2, i t  was shown in no. 22 t h a t  no poin t  of 

order  9 belongs to  ~ .  I f  B = - C  2 and if u is a poin t  of order  9 wi th  t he  
coordinates  (x; y) and  io (3 u ) =  0, we have  seen in no. 22 t h a t  

4 C ~ 
where t = 

X 3 - .  

I t  will be found t h a t  

and  if we choose -y = 3, we get  
X 

ta § 3 t e -  24t + l=O, 

I t  is convenient  to  subs t i tu te  t = 3 s - 1 ;  then  

s a - 3 s + l  = 0 .  

,~ (:): 
(t + 4) ~ 

(37) 

B =  - 1 4 4 ( 4 s ~ - 7 s + 2 ) ;  

x = - 4  ( s 2 - s - 2 ) ;  

The remain ing  roots  of (37) are 

S' = S ~ -- 2 ; 

C =  _+12 ( s 2 -  s) ; 

y = - 12 (s 2 - s - 2). 
(38) 

s " =  - - s  u - s §  

and  if these numbers  are  subs t i tu ted  for s, we get  

B '  = 144 (11 s 2 + 4 s - 32) ; 

B" = - 1 4 4  (7  s 2 + 11  s - 4 ) .  
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T h e  three  curves  o b t a i n e d  in  th is  w a y  are, however ,  equ iva len t ,  since 

B B '  
B--5 = s 6 a n d  B'~' = (s')6" 

W e  choose the  curve  g iven  b y  (38). 

Since s a n d  s + 1 are b o t h  odd,  the  ideal  2 is a p r ime  ideal  in  k (s). Hence  
C is n o t  a cube,  since i t  is d ivis ible  b y  2 b u t  n o t  b y  8, a n d  consequen t ly  
the re  is no po in t  of order  2 in  t2. 

The  n u m b e r  ~r = s + 1 satisfies 

7t3-- 3 ~2-4- 3 =  0 ; 

hence  (z) is a p r ime  ideal  p sa t i s fy ing  p3= 3. Suppose  t h a t  u is a po in t  of 
o rder  27 in  k (s) wi th  ~ (u) = 4 z a n d  ~o (3 u) = - 4 (s ~ - s - 2) = - 4 x (z  - 3). T h e n  
the  e q u a t i o n  (5) 

[~ (3 u)  - 4 z] o. P3 (4 z) = 4 [(4 z) a - B] Q, (4 z) 

m a y  be w r i t t e n  

9 z 2 [z + Jr (vr - 3)] (z 3 + 9 e2) 2 = (4 z 3 + 9 s 2) (2 z e + 90 e ~ z 3 - 81 s4), (39) 

where  e = s 2 - s = ( v r -  1) ( ~ r -  2) ; t h e  two m e m b e r s  of (39) will be  deno ted  b y  
L a n d  R. I t  is seen t h a t  p~//z; t h e n  O24/L, a n d  since 

8 R = (4 z a + 9 e 2) [(4 z 3 -~ 9 ~2)2 "4-162 (4 z 3 + 9 s 2) ~2 _ 37 ~4], 

we have  p S / 4 z a + 9 e ~ .  I f  z---~r 2 (rood 3), i t  will, however ,  be  found  t h a t  
pe//4z3+9e2, a n d  hence  z = 3 ~ - z t  2, where ~ is a n  integer .  T h e n  p 9 / z 3 + 9 s 2  
a n d  pal/L. B u t  if p31/R, we m u s t  have  p n / 4 z 3 + 9 e  2 a n d  hence  p9//z3+9e2. 
N o w  pa2/R a n d  consequen t ly  p4/z+~r (~ r -3 ) ,  which  impl ies  p /~ .  B u t  t h e n  

4 z 3 + 9 e 2 = 27 [4 cr 3 - 4 z2 ~2 + 4 (3 re 2 - vr - 3) ~r - (8 vr 2 + ~ r -  15)] 

is  n o t  divis ible  b y  011 . 

Consequen t ly  no p o i n t  of order  27 be longs  to  ~2, a n d  we have  p roved  the  
fol lowing t h e o r e m :  

Theorem 28.  I] B belongs to the cubic ]ield [2, the curve 

y9 = x 3 - B  

fias the ]ollowing exceptional group in ~: 
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3 3 3 

1. to:4:k(V2), 4 k ( e V 2 ) ,  4 k ( e ~ 2 )  and * k ( s ) ,  where s a - 3 s §  

(1), if B~:C 3, ~ : - C  2, ~ : 4 3 2 C 6 ;  

(2), if  B = C  a, 4 - c e ;  

(3), if  B = - C  2 or  = 4 3 2 C  6 b u t  4 - C  6; 

(2 ,3) ,  if B = - C  6 

3 3 3 

2. to=k(V~) or = k ( e ~ )  o~ =k(e~V~) 

(1), if B:~C a, ~ : - C 2 ;  

(2), if B = C  3, :~ - C  6, ~=27C6; 

(3), if  B = - C  2, ~ : - C  e; 

(2 ,3) ,  if B = - C  6 or = 2 7 C  6. 

3. to=k(s) ,  where s 3 - 3 s + 1 = 0  (a normal /ield). 

(1), if B~=C 3, =4=-C 2, =~432Ce;  

(2), if  B = C 3, =~ - C6 ; 

(3), if  B = - C  2 or  = 4 3 2 C  6 b u t  4 - C  ~, ~ = - 1 4 4 ( 4 s 2 - 7 s + 2 ) C S ;  

(9), if B = - 1 4 4 ( 4 s  2 - 7 s + 2 )  C ~; 

(2 ,3) ,  if  B = - C  6. 

Here C denotes any number in tO, and ~ = � 8 9  + V~-3).  
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