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On the exceptional points of cubic curves

By Gosta BErRcMAN

§1
Introduction
1. If the curve
y=*—Adx—B (443—27B%*+=0) )

is represented by the elliptic p-function with the invariants 44 and 4B and
a primitive pair of periods w, o’ .

r=pu); y=1p (u),

a point (z; y) on (1) may be called the point u, where u is determined
mod w, w’.
If the points u,, u,, u; lie on a straight line, we have

Uyt Uy +u;=0 (mod w, »).

It follows that the tangent in the point u cuts the curve in —2u. If the
number u is commensurable with a period, and if » is the smallest natural
number that makes nwu a period, then w is called an exceptional point of
order n; this notion has been introduced by Naerrr [11]. The point of order 1
is the infinite point of inflexion, the points of order 2 are given by y =0, and
the points of order 3 are the finite points of inflexion.

Now suppose that 4 and B belong to a field 2. Then u is said to be a -
point 1n L2, if its coordinates belong to this field. If w, and u, are exceptional
points in {2, the same is true of u;+u, and in this way the exceptional points
in 2 form an Abelian group, the exceptional group in 2 on the curve (1) (ses
CHATELET [17]). If ©Q is an algebraic field, it follows from a theorem due to
WEIL [16] that this group is finite. If p is a prime, the group contains at
most two independent elements of order p, since there are only two independent
periods (see BrLring [1], p. 29); consequently a group of order
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G. BERGMAN, On the exceptional points of cubic curves

where py, Py, ..., pr are differerent primes, may be of
(e [3])
3=1 2

(p:zl'l) pzl -117 RS ] pﬂr’ p:f—lr)’

types, which will be denoted by

where
’Vi§2)»i§21}i (’I;-‘-‘-l, 2,...,7’).

Two independent elements of order p cannot occur, if » is an odd prime
and Q is real (see NageLn [10], p. 105—108).

In the case Q2=£k(1) the following result has been obtained by Levi [T7],
Hurwirz [6], NaceLL [10], [15], Bmrine [1}-{4], MaHLER [9] and Linp [8]:

Theorem 1. There exist curves (I), whose exceptional groups in k(I) are of
the following types: (1), (2), (3), (2,2), (4), (5), (&,3), (7), (4,2), (8), (9), (2,9),
2,2,3), 4,3) and (8,2). There does not exist any curve (1), whose exceptional
group n k(1) contains a sub-group of the type (11), (2,7), (3,6), (I6), (2,2,5),
4,%), 4,2,3) or (8,3).

If Q=k(/—3), we may have the group (3,3) (NaceLL [15]).

2. Sometimes it is possible to find parametric expressions for 4 and B, if
the exceptional group in £ on (1) has a given sub-group. The following results
are due to NagerLL [13]-[15]; some substitutions have been made in order to
simplify the formulas:

Theorem 2. [f there is a point of order 3 in £2 on the curve (1), A and B
are given by. the following formulas, where ¢ and d are numbers in £2 which
make 4 A®—27 B*+0:

A=39—-2d)c;
—B=54c*—-18c%d+d?;
4 AP 2T B*=2Td% (46— d).
A point of order 3 is (3¢%; d).

Theorem 3. If there is @ point of order 5 in 2 on the curve (1), A and B
are given by the following formulas, where m and n are numbers in 2 which
make 4 A*—27 B®+0:

A=2T(m* +12m® n+ 14 m* n* — 12 mn® + n*);
— B=54 (m*+ n®) (m*+ 18 m* n+ T4 m® n® — 18 m n® + n?);
4 A% 2T Bt = —2%. 32 S (m? + 11mmn—n®).
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The finite points of the group are:
+u [3(mP+6mn+n?); £108mn];

+ 2u [3(m®—6mn+n?); +108m?n).

Theorem 4. If there s a point of order 7 in Q on the curve (1), A and B
are giwen by the following formulas, where 6, m and n are numbers m 2 which
make 4 A*—27 B2+0:

3A4=06"(m*—mn+n?) (m® — 11 m® n+ 30 m* n? — 15 m® n® — 10 m® n* + 5 mn® + nb);
—27B=26%(m"®—18m" n+ 117 m'® n® — 354 m® n® + 570 m® n* — 486 m™ n® +
4+ 273 m® n® — 222 m® w7 + 174 m* n® — 46 m® n® — 15m> n'® + 6 mn't + n'?);
4 A -2TB =288 m" 0’ (m—n)" (m® — 8 m?n+5mn®+n°).
The finite points of the group are:
Tu B H6mPn—9mPni+2mnd +nt); +46°mPa(m—n)?);
+2u [16° (m* ~ 6 mPn-+15m* n® —10m n® +n?); £48°mn? (m—n)’];
T3u1 (M —6mPn+3m*n®+2mnd+nt); +48°m®nd (m—n)l
Nagern [13], [15] has also found parametric formulas corresponding to systems

of the tvpes (2,2), (4), (2,3), (3,3) and (9). Under the assumption 2=F (1)
Linp [8] has investigated the cases (4,2), (8), (2,5), (2,2,3), (4,3) and (8, 2).

3. It B=0, we get the harmonic curve
yi=a'— Az (2)

Its exceptional group in k(1) is given by the following theorem due to NaceLL
((11], p. 17-18):

Theorem 5. If A is rdtz'(mal, the curve (2) has the following exceptional group
wm k(1):
(2), i A+C? + —4C*,;

(2,2), if A=C%
(4), if A=-40
Here C denotes any rational number.
If A=0, we get the eguianharmonic curve
v'=2"—B. (3)
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Its exceptional group in % (1) is given by the following result due to
Fueter [5]:

Theorem 6. If B s rational, the curve (3) has the following exceptional group
i k(1):
(1), if B+C® +—C? +432C";

2), if B=0C° + —(%
(3), if B=—C% or =432C® but =+ —C%
(2,3), if B=—-C"

Here C denotes any rational number.

4. In this paper we shall determine parametric expressions for 4 and B
corresponding to groups of the types (4,2), (8), (2,5), (2,2,3), (4,3), (4, 4),
(8,2) and (2,3,3). Further, we shall find the exceptional groups on the curves
(2) and (3) in algebraic fields of degree n, where n=2,4 or an odd number in
the harmonic case, and n=2,3 or a number indivisible by 2 and 3 in the
equianharmonic case.

§ 2
Some properties of the p-function
5. If n is a natural number and the function v, (u) is defined by

_ o(nu) ,
O

it is known that
I P, p (w)], if » is odd,

be (u)=1 9 (u) @Qn[p (w)], if n is even,

»here P, and @, are polynomials.
As usual we put p (u)=x and p'(u)=2y. Then
4y*=44>—4 Az~ C, where C=4B,
Pi(x)=1, Qy(x)= -1,
Py(x)=3a2"—6A42*—3Cax— 4%
Qi (@)= ~22°+1042*+10C2*+10 4% +24Cz— (24>~ C?)
anl
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Pyrii=(49") Qorra Q3r — Par-1 Pir,
Qurs2=Pars1 [Par-1 @3r 2~ Parss Q] @
Pyri3="Poris Piri1~ (49°)° Q2r Q3rsa,
] Qir+0=Qars2[Qzr Piris— Qoriq Pirin]

for r>0. Consegnently
Py=—(164*Q,+P3)=522—62 A2°—95C2° — 105 422° + 60 4 C2" +
+15(20 4%~ C*a® + 174 A2 Ca®— 5 (25 4>~ 24 C) A2~ 5 (4 A2 -5 C?) O +
+5(104°-3C*) 4*2*+5(54°— 20 ACa+(4°+2 43 C*— (%),
Qs = Py (Q5— Ps),
P,=P,P3+164*(Q;,
Qs = — Qu (P3+Q, P}

and generally
P, ($) =pt (n2—1>+ otn,gx* n2-1)-2 + o,y m2-ny,
Q- ()= —2naz? (n?-9 +ﬂn,2$% F-9-2 4 .;_)3,2’ 3-8,

where «n,m and B . are polynomials in 4 and C with integral coefficients,
If nu is not a period, it is also known that

_ 4 .7/2 Qn+1 Qn<1

z 2 , if » is odd;
nu) = " ()
P x—}—)—"“—Pn_—l if »n Is even
4y Qn '
Particularly we find
P+ A+ 8Bz
p2u)= (—4‘7/2— >
which may be written
3z%— 4\?
p(Zu)+2x—( 2 ) .
In the formula
o (2u)

¥ ('u) =Y (u) = [O’ (’M)]4
we change % into nu and find

, __0Q2nu)_ _ yen(u)
Y T T e (wF
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If neither nu nor 2u is a period, it follows that

) —%4", if »is odd;

plvg_y 5 ©)
¢ () 1 if nis even
16y* Q%' )

6. In the harmonic case the preceding formulas are simplified in the follow-
ing way:

Py=3a*—6Aa®— A%

Q= —2(@+A4) (2" -6 Ax*+ A%);

Pi=(5a"~2 A2+ A% (28—~ 12 42" — 26 A2a* + 52 A3 2® + 4%);
Qo= —(32"—6A42°— A} (' + 6 42>~ 3 A% (*— 28 42°+ 6 A% 2" —

(7)
—28 A% 2* + 4%);
P,=Ta*— 744 A2 —7.422 A 2™ +7.2836 4> 2'® — 7.5033 A* £'% +
+7.11752 4% 2" — 7.15988 A4° 1%+ 7.6024 A7 21° + 7.2239 A8 2° —
—7.2108 A% 2° +7.186 A0 & — 7.28 A1 2% — 4%
2>+ A\?
9 y) = .
o 20)-(254) (®
In the eguianharmonic case we get the following expressions:
Py,=3x(z*—0C);
Q= —22°+10 02+ C;
Py=52"-95C2"—15C%2°+ 25 C®s® — C; )

Q= —30(x®*—0) (22 —55C2" - 111 C* 2t + 5 C®* — 2 C%);
P,=(1a*+C2®+ 0% (¢"® ~ 141 C ' — 363 C2 22 + 1924 C* 2° — 741 C* 2 +
+48 05 2+ C°).

7. If A is given the degree 2 and B the degree 3, it is easily shown by
induction that P, or @, is homogeneous of degree } (n®—1) or } (n®—4), accord-
ing as » 18 odd or even.

It also follows from the formulas (4) that in the case A=1, B=0
P, (0)=(—1}"" and P,(1)=P,(—1)=(—1"D.2t0"D,
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Let p be an odd prime, put p*~1=8N, and let z,, #,, .. ., Zs» be the Toots

of P, (z)=0, while +y,, +y,, ..., Tysy are the corresponding values of y.
Then
4N 4N N
=1l (- Az, —B)=co A*Y +¢, A°¥ 2 B>+ - + ez B*Y, (10)
=1 i=1
where ¢, ¢;, ..., c2y are certain constants. Since the numbers y; are always

+0, the last member of (10) may be written
kp (4 4% — 27 B3V

In order to determine k, we put 4=1 and B=0. Then

'
k4

4N 4N 4 N 1
yi= 1:[9511:_[(23, (r;+1) pP,,(O)Pp(l)Pp(—l)=

1

-
I
"

=l3(—1)*""1’-2“v, and hence kp=$(—1)*“’"l).
D

But then

H—

4N
157 =l2 (4 4°—27 BV /(= 1)i® Oy,

and we have proved the following theorem:

Theorem 7. Let p be an odd prime, and let Q be a field which comtains A
and B. If the exceptional group in Q on the curve (I) has a sub-group of the
type (p, ), then the number

V(_1)§(p~1)1)
belongs to Q.

§ 3.

Parametric expressions for A and ‘B corresponding to certain systems
of exceptional peints

8. Let 4 and B belong to the arbitrary field £, and suppose that the
equation

22— Az—B=0 (11)
has a solution z=3M in £2. Then we may transform the curve (1) into
P=8+ME+NE (12)
by introducing the variables
E=a—tM; n=y,
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but it must be observed that the representation (12) is not unique, if (11) has

more than one root in £.
Conversely, if (12) is given, 4 and B are determiuned by

[ 34=M?>-3N,;

1 —-27B=M (2 M*—9N).
Further,
D=4 A4%—-927B*=N?(M*—4N).

If the tangent to (12) in the point (&;; 7,) cuts the curve in (&;; 7.),

we have
= E___%“N)2 14
a- (] (14

and this formula may be transformed into
52—2(5 +ﬁi)§ +NH%—2(§ —”—E)g +N]=o. (15)
[ 1 2 VEg 1 3 2 Vfg 1

(Compare Linp [8], p. 19-20.)

9. We begin with five cases, where a group of order 2" is given. The first
theorem 1s due to NageLn ([13], p. 20).

Theorem 8. If the curve (I) has a point of order 4 in a field 2, it s
given by
3A=a’(@®—4ac+cd),
—2TB=a*(a—2c) (2a*—8ac—c?),
D=d ct(a—4c),
where a and ¢ are numbers in 2 and D=+0.

Proof. We may use the equation (12) and suppose that the tangent in
(£,; ;1) cuts the curve in (0; 0). Then, by (14), N=£i, and M is deter-
mined by

M=8+ME+NE=E2E+M).
Since &,7,+0, we may put n,=& a and & =ac, and hence
M=a(a—2c); N=a*c"
Finally 4 and B are given by (13).
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Theorem 9. If some exceptional points tn 2 on the curve (1) form a group
of the type (4,2), the curve s given by

34=8n"(m*—2m*n+5min’—4mn®+nt),
2TB=0n*(2m*—2mn-+n%) (m*+2mn—n?) (m*—4mn+2n?),
D=56"%m*n (m—n)* (2m—n)?,
where 8, m, n are numbers in £ and D<0.

Proof. Let 2y, 2,, 23 be the roots of (11). In this case these numbers belong
to £, and hence

D=[(2,—2) (2.~ 2) (2.~ 2]

is a square. Since there is also a point of order 4 in £, the preceding theo-
rem may be applied, and consequently we can put

ala—4c)=¢,
where @, ¢, ¢ are numbers in £. If this curve is cut by the straight line

m
C“Q‘n(““e),

we find
a=0n2

e=d8m (n—m),

e=0n(2m—n),

where J, m, n may be supposed to be numbers in 2. If M is chosen as in
theorem 8, the group contains the following finite points on the curve (12):

tu, [*mn®(m—n); +8mn® (m—n) (2m—n)];
2u, [0; 0];
U [%62m2n2;0];
2uy+uy [0 (m—n)?; 0];

tuytuy [~ mn®(m—n); FPmn (m—n)].
Finally,
M=8n2m*—2mn+n?);

N =8 m?nt (m—n).
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Theorem 10. If the curve (I) has a point of order 8 in £, it s given by
34=0"(0*—8a"c+12a°+8a°—10a*c* +8a®®+12a°c*—8ac’ + ),
—2TB=28%(a"—4a°c—2a>F—4ac®+c*) (®*—8a"c+12a°c*+8a°c®—
—34a*c* +8a%c®+12a%c® —8ac' +cb),
D=288%a P (a—c) (a+c) (a®—6ac+c?),

where 0, a, ¢ are numbers in 2 and D=+0.

Proot. Let u be a point of order 8 on the curve
y2=$s—Aow*Bo,

and let the point 4% have the abscissa 3 M,. Then the curve may be trans-
formed into
N =8+M&+N,é.

The points u and 2u on this curve will be denoted by (&; n,) and (&;; 7s),
tespectively. Then, by (14),

E2__N 2
§2=(——‘2n1 °) and Ny=&.

Since &,+0, we may put

E%_No
S a and & =ac,
and hence
&=a%; Ny=a*; 2y =a(*—a®)
and

4t My=a*~4a*c—~2a*P—4ac®+ct

In order to avoid fractional expressions for 4 and B we multiply a and ¢
by 2dc. The curve (12) obtained in this way will bave the coefficients

M=8(*—4dc—2a’c*—dac*+c),
N =1648%a*c,

and the curve (1) is given by (13).
The group contains the following finite points on the curve (12):

tu [48%acd®; H48ac® (®—a?)];
+2u[48%ac?; +48%aPP (a—c)];
+3u 4% ac; +48d®c(P—a?)];

4u[0; 0].
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Theorem 11. If some exceptional points in Q on the curce (1) form a group
of the type (8,2), the curve is given by

34="05" (m"—8m" n® + 12 m'® nt + 8 m'® n® + 230 m® n® + 8 m® n!® + 12 m* n'* —
—8m? n't + n'%),
—27B=206" (m® — 4 m® n®+ 22 m* n* — 4 m? n® + n®) (m® — 4 m® n® — 26 m* n* —
—4m® n® + 2®) (m® — 4 m® n® — 2m* nt — 4 m? n®+nb),
D =288 m® n® (m+ n)® (m—n)® (m?+ 02t (m?+ 2mn—n®)? (m> —2mn—n?)?,

where 8, m, n are numbers in § and D=+0.

Proof. We use the formulas of the preceding theorem and suppose D to
be a square, since the three roots of (11) belong to 2. Thus

a*—6ac+ci=¢,

and if this curve is cut by the straight line

2m+n
c—e= a,
n
we find
a=0dn(m-—mn),
c=34dm (m+n),
e=—0(m*—2mn—n?),

where 4, m, n may be supposed to belong to £. o
If M is chosen as in theorem 10, the group contains the following finite
points on the curve (12):

tuy [42mPn(m+n)® (m—n);
488 mn (m+n)? (m—n) (m* +n®) (m* + 2mn—n*)];
+2u; [482m?n® (m?—n2)?; +46°m?n? (m?—nd)® (m?+ud)];
t3u; [488mn® (m+n) (m—n);

+4 B mn® (m-+n) (m—n)® M+ 0% WP+ 2mn—n?)];
4u, [0;0];

uy [—16 *m*nt; 0];
FTup+uy [—482mn® (m+n)® (m—n);
+4 8 mn® (m+ n)® (m—n) (m®+n?) (m2—2mn—n2)];
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+2u, +uy [—4Fm?n? (m?—n?)?;
+ 4 8% m? n® (m? — n?)? (m*+ 2mn—n?) (m*—2mn—n?)];
+T3uy+uy [—48mPn (m+a) (m—n)d;
+4 8 m® n (m+n) (m—n)® (m?+n?) (m*—2mn—n?)];
duy +uy [— 6% (mP—nd)t; 0]
Finally,
M =8 (m®—4mPn?+ 22 m* n® — 4 m?n® +n®);
N =16 6" m* n* (m? — n?)*.

Theorem 12. If some exceptional poinis in Q on the curve (1) form a group
of the tyve (4,4), then Q contains V —1, and -the curve is given by

3A4=06"(0%+14a"ct + &),
27T B=268%(a*+c* (a®*+2ac—c?) (a*—2ac—c?) (a* +6a® P +cY),
D=2*§"a'c* (a* - %),
where 8, a, ¢ are numbers in Q and D=0,
Proof. In this case the curve (12) may be written
n"=EE-U)(¢-T).
Suppose that the tangents in (£;; ;) and (&,; %) cut this curve in (U; 0) and

(0; 0), respectively. By (14)
2 2

2m

Thus U=¢? and by (15) &, =e*+elVe?—V=e(e+g), where V=6"—g"
On the other hand, the formula (14) gives

g=UV.
Thus £=¢*V and consequently V=f2. Now e, f, and ¢ are related by
A= +g?,
and if this curve is cut by the straight line
c
e—'g_(;f )
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we find
e=0(a®+c?),
f=2dac,
g=6 (a2 ___02)’

where 6, a, ¢ are numbers in £2. Now
=—(U+V)=—8(a*+6a*c+c"),
N=UV=46ac(a®+ ),
and the group contains the following finite points on the curve (12):
tuy [28%°a* (a®+c%); +28%a% (a* - cY)];
tuy, [—28%ac(@+c?); £210%ac(a®+c®) (a+c)’];
Fustuy) [—2i8ac(a+er)?; T28ac(a®~ %) (a+ci)l;
F(uy—uy) (298 ac(a—c1)?; F28ac(a—c®) (a—ci)];
tuy+2u, [28 ¢ (@P+P); F280 P (e —cY)];
2uyTu, [28%ac(a®+c%); F2i8%ac(a®+c®) (a—c)];
2u, [0%(a®+c%)?%; 0];
2usy [0; 0];

2uy+2u, {482 a%c%; 0]

10. As was shown by Linp ([8], p. 32, 44), a point of order 16 in k(1) is
impossible. However, in theorem 10 we may choose =c=1 and a =A% where
h 18 a rational integer different from 0 and +1. Let the tangent in a point
(%0; my) on the curve (12) pass through the point —u, whose coordinates are

[4h%; 4% (B*—1)].
Then (15) takes the form

[(E5—4h (B +2h—1)E,+ 16 R8] [E5+ 4 h (B* —2h— 1) &, + 16 %] =0.

One root of this equation is

Eo=2h[R+2h—1+(R—1)VE—1) B®+2k—1)].

Since —4hny=&—N, the point (&, 7,) belongs to the field generated by
V(rt—1) (B*+2h—1), and it is easily seen that we obtain in this way an in-
finity of quadratic fields:
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Theorem 13. A pownt of order 16 on the curve (I) is possible tn an infinity
of quadratic fields. We may even suppose A and B to be rational.

If there is a group of the type (8,4) in 2 on the curve (1), we may sup-
pose u to be a point of order 8 and define M by $ M =p (4u). Then the
abscissa of the point 24 on the curve (12) ought to be a square, and hence,
by theorem 12,

2ac(a®+ ) =¢,
where a, ¢, ¢ are numbers in 2 and ac(a*—c*)+0. If we put
[ ai=cX,

1 e=c*(1+1)Y,
we must have
Yi=X3-X.

According to NagrLL ([12], p. 11-19) the only solutions of this equation in
k(/—1) are X=0, +1, +4, but these values cannot be used, since they make
D=0. It follows that the group (8,4) is impossible in % (/ —1).
However, in theorem 12 we may choose
a=-m+2m+1,
c=m*+2m-—1,

6=1,

where m is a rational integer different from 0 and +1. Then the point u,
gets the following coordinates:

A (mP+1)2 m*—2m—1)%; —32m (m?*—1) (m®+1)* (m*—2m —1)7],
and by (15) the tangent in (&, 7,) passes through this point, if

Eg=4 (M2 +1) (m*—2m—1)[m*+2mP—6m—1+4 (m+1) Vm (1 —m?)]
and
§-N

=% (m?+1) (mE—2m—1).
%7, ( ) ( )

Since Vm (1—m?) generates an infinity of quadratic fields, we have the follow-
ing result:

Theorem 14. A group of the type (8,4) on the curve (I) is vmpossible in
E(V=1) but exists in an infinity of quartic fields k(Y -1, Va), where d is a
natural number. We may even suppose A and B to be rational.
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11. In the remaining cases there is a point of order 6 or 10 in Q. Theo-
rem 15 is due to NaceELL ([10], p. 120—122).

Theorem 15. If the curve (I) has a point of order 6 in Q, it is given by
3A=(s+1t)(*+3s%t-3s2+1%),
~2TB=(+2st—28%) (2s*+8st+2s*— "),
D=s5(2s—1)2 (s+41),

where s and t are numbers in Q and D=+0.

Proof. If (a;c) is a point of inflexion on the curve (12), the equation (14)

gives
2 2
a= (a N) +0.

2¢
Thus if we put a®— N=2ct and c=s¢°, we find a=# and
M=s*+2st—2¢;
N=£@-2s).
The group contains the following finite points on the curve (12):
Tu [t(t—2s); Lst(t—29)];
T2u [ tst?);

3u[0;0).

Theorem 16. If some exceptional points in Q on the curve (I) form a group
of the type (2,2,3), the curve ts given by

34 =20"m?+mn+n?) (mb+3mPn—B5mdnd+3mn®+nd),
—2TB=02m* +4m® n—2mn®—nt) (m* +2m® n+2mn®+nt)-
c(mt 4 2mEn— 4 mnd— 20,
D=382mbu® (m+0)® (m—n)? (m+20)% (2m+n),

where 8, m, n are numbers in £ and D=+0.

Proof. Theorem 15 may be applied, but in this case D ought to be a
square, since the three roots of (11) belong to 2. Thus

s(s+4t)=r%
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and 1if this curve is cut by the straight line

we find
r=—0n(2m+n),

s=0dn?,
t=4dm(m+mn),
where 8, m, n may be supposed to belong to £2. Now
M=0(-2m*—4m*n+2mn®+n?),
N =68*m® (m+n)® (m—mn) (m+2n),
and the group contains the following finite points on the curve (12):
tu; [0*m (mE—n?) (m+2n); +Emn® (m®—n?) (m+20)];
+2u, [*m? (m+n)?; £ m*n® (m+n);
3u, [0;0];
uy [62m?® (m+2n); 0];
tuy +u, [Fm?(m®—n?); TEmPn (m?—n’) 2m+na)];
+2u;+uy [0*m (m+n) (m+2n); TFmn(m+n) (m+2n) (2m+n)];

Buy +uy [0 (m+n)® (m—n); 0].

Theorem 17. If the curve (1) has a point of order 12 in £, it is given by
3A4=0(m*+2mPn+2mnd+nt) (m2+ 6m* n+12m° n? + 14 m® n® +3m°n' —
—12m n® —24 m® n® — 12 m° n” + 3 m* n® + 14 mP n® + 12 m?* n!® +
+ 6 ma! +n'%),
~2TB=28(m*+4m ' n+4mbn®+4m*n®—2m* n* +4mPn® +4mPn®+
+ 4 mn” +n®) (m®+ 8 m® n + 24 m® n® + 40 m'* n® + 44 m'2 0 +
+ 24 m' n® — 32 m'® n® — 88 m® n” — 114 mE n® — 88 m” n’ — 32 m® n'* +
+ 24 m5 0!t + 44 m® n1® 4 40 m® n2® + 24 m® 0t + 8 mat + n'?),
D =288 m® n'® (m +n)® (m—n)? (m?+mn+n)* (m*+ 0P (m®+ 4 mn +n?),
where 8, m, n are numbers in Q and D-0.
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Proof. Let u# be a point of order 12 on the curve (1) and define M by

1M =p (6u). Then the theorems 8 and 15 may be applied and give two ex-
pressions for M and N:

M=a>-2e=s*+2st—21¢%
{ N==8({—-2s),
where ¢ has been substituted for ac. If e is eliminated, we get
40P +4s(s2—a®)t+(s*—a®)?=0,

and hence, since a+0,

where

£=a+ b

If this curve is cut by the straight line

m+n
b+s= a,
m—n
we find
a=4 (m+n)* (m*—n?);
b=0d(m+n)®-2mn;
s =0 (m +n)? (m*+ n?).
Consequently t= —2dm?n? and

M= mP+4m n+4m®n?+4mPn® - 2mint + 4 md nd+ 4 mPnb+4ma’ +2°);
N =16 6" m® n® (m® + mn + n?)?.
The group contains the following finite points on the curve (12):
tu [—48mn®(m*+mn+n?); +48mna® (m®+mn+n®) (m' -n')]:
+2u [4 2 mEn® (mP+mn+n2)?; +48m?e? (m?+mn+n?)? (m+n) (m?+a%)];
+3u [—48mPn® (m?+mn+n?); +48m®n® (m®+mn+n?) (m+n) (m-n);
+4u [482mtnt; +48m*nt (m+n)® (m?+n?)];
+5u [ —48mPn (m*+mn+n?); +48mn (m?+mn-+n?) (m'—n)];

6u [0; 0].
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Theorem 18. If some exceptional points mn 2 on the curve (1) form a group
of the type (2,3,3), then V —3 belongs to Q, and the curve is given by

A=V —3st—3s2+V—-38) (V-3 +3st—) 352~
=V =38 —655t+3V—3s'2—3V 352" — 655+ =319,
B=28(*+) (" —2pst— ) (S + 20> st— ) (s~ 2V — 31— 42+
+2V =352+ (s*—203t+ 202 P2+ 20583 + 1Y) (' + 2077t +
+2052 2 —20%st? +1%),
D=28(/ =3P 82818 (s—p 1) (s+020)° (s— 1) (s +8)° (V —3s+1)* (s— V= 31)%,

where 0, s, t are numbers in £, D=0 and g=-%(—1+1/——3).

Proof. According to theorem 15 there are on the curve
=8+ MyE+Ny¢

two points of inflexion with the coordinates (s?; s°a) and (¢*; *b), where
s>+1®, and hence

My=a®+2as—2s*=b*+2bt—21%;
Ny=s*(s—2a)=2>(t—20b).
If b is eliminated, we get
4(s* 422+t a—4s (=) (P + 210 a+ ()2 (P + 31F) = 0.

Suppose s*+s*2+¢*+0. Then

(=) (s—V -39

= 3

2(s—pt) (s+0%t)

and if s and ¢ are multiplied by 26 (s—pt) (s+0%¢), we find
M={26(s—pt)(s+e*t)E My= —3*(s*+ %) (s*—20st—17) (*+ 2% st—1);
N=[28(s—0t)(s+e* ) No= —16V —38*2* (s —0t)® (s + 02 ¢)>.

I s*+s**+#1=0, it is easy to verify that we get the same curves as if we
put s= —gt or s=p*¢t in the general formulas.
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The group contains the following finite points on the curve (12):
Fuy [~4V =38t (s—o1) (s+01); T4V —38°t(s—ot) (s+6%0)-
(2= (V —3s+1)];
F2u; (4078 (s—t)? (s+0%0)%; L4 %2 (s— 1) (s+0%1)% (s —17)-
AV =3s+0)];
tuy [40°s* (s—0t) (s+0°1)°; +48°s (s—pt) (s +0*1)* (s —£)-
(s—V=30)];
Buytu, [—4V =388 (s—01) (s+0%t); +4V/ =38 s (s—ot) (s+0%8)-
(2= (s—V =30)];
TQRutuy) [480* P (s—p1)*; £48® 2 (s—ot) (s—1) (/ —3s+1)-
H(s=V=30)];
TQRu—u,) [40%052 82 (s+ %)% 40522 (s+0%0) (s+1) (V —B5+1)-
'(s—l/_:gt)];
+ (w0, + uy) [—4Vi_362@28t(s—gt)3(s+92t); T4V -88% 0 st(s—pt)® (s+0%t)-
S(s+8) (V=3s+8) (s—V—=31)];
g —uy) [—4V =382 0st(s—ot) (s+0t)*; TAV—36pst(s—ot) (s+o°0)°-
(=) (/=3s+8) (s—V—30)];
3w, [0; 0].
If 6=1,s=—p,t=1, we obtain the curve
=E-398+927¢ or y*=2*+6452+13.814.
Theorem 19. If the curve (I) has a point of order 10 in 2, it is given by
34=0"(a"—40a"c—6a"c*+200° P +15a8c*— 24’ P —4a°c* + 24 a® " +
+16a*c®—20a®c® — 6 a*c!® + 4 ac +'?),

—21B=20°(@®+¢") (¢* —2a’c—~6a2c+2ac®+¢*) (¢ —4ac—6a0c® +
+20a°c+15a%c* —48a"c® — 280t + 48a° "+ 15a B — 20 a3 * —
—6a%c®+4ac +c'?),

D=2°6"a"c"(a—c)* (a+¢)° (@®+ac—c?)? (a®*—4dac—c?),

where 8, a, ¢ are numbers in 2 and D=0,
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Proof. Let # be a point of order 5 on the curve
=8 +ME+Nyé&
with the coordinates (&,; 7,), and let (&;; 7,) be the point —2u. Then, by (14):

_ E?"Noz ___(E%"'No)z_
fe () me a5

2

If a and ¢ are defined by

2n 2py
we find
£ =a a*~No=2¢cm
and
£y=¢* A —Ny=2an,

Now the relations
ni=a® (@' + Mya®+ Ny);

ma=c(c*+ Myc*+ Ny)
may be written
(@*—No)P=4a*c (a* + Mya® + Ny);

(*—No)Y’=4a*c® (" + My + Ny).
Here we eliminate M, and find
Ni-2a*c® Ny—a?c® (o' —3a’ P+ ") =0.
The roots of this equation are
acfact (@®—c%),
and since @ and ¢ can be interchanged, we may write
Ny=ac(a*+ac-c?).

it + and ¢ are multiplied by 2dac, we find

M=208ac) My=0"(a*+c* (a*—2d°c—6a’c®+2ac® +¢);

N=(26ac)! Ny=1648'a®c’ (a®+ac—°).
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The group contains the following finite points on the curve (12):
tu [4&act(@®+ac—c*); +48act (a*+ac—c*) (a—c) (a+0)];
+2u [48%a’c*; F48a*c (a—c) (a+c)];
+3u4dd®c(a®+ac—c%); F48adc(@®+ac—c*) (@a—c)(atc)];
+4u[48a?; +48a' S (a—c)(a+0)];
5u [0; 0].

12, According to Linp ([8], p. 46), the groups (4,2, 3) and (2,2,5) are im-
possible in (1), but if we put d=n=1 in theorem 17 and let m be a rational
integer, it is seen that VD generates an infinity of quadratic fields. In the
same way we may choose d=c¢=1 In theorem 19 and let @ be a rational in-
teger. Thus we conclude:

Theorem 20. The groups (4,2,3) and (2,2,5) are possible in an infinity of
quadratic fields, and we may even suppose A and B to be rational.

§ 4.

The exceptional group in the harmonic case

13. If £ is ap algebraic field and if 4 is a number in 2, it is sometimes
possible to determine the exceptional group in £ on the curve

yi=2— Az (2)

In the case Q=1 (1) the group is given by theorem 5. NacEeLL ([14], p. 6—11)
has also examined the exceptional points on (2) in quadratic fields, but 4 is
still supposed to be rational.

If « is an integer in the algebraic field K and if p is a prime ideal in K,
it will be convenient to introduce the notation p™//a, if « is divisible by p~
but not by p™*'.

14. We begin with two preliminary theorems:

Lemma 1. If there is a point in 2 of order 7 on the curve (2), then Q
contarns an algebraic field of degree 12, and in this field 2 is the square of a
prime deal.

Proof. Let (x; y) be a point of order 7 on the curve (2). Since P, (x)=0,
it follows from (7) that

Z =

4
<
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1s a number in 2 satisfying

2%+ 7.28 2 — 7.186 21° + 7.2108 2° — 7.2239 2% — 7.6024 27 + 7.15988 2° — 7.11752 2° +
+17.5033 2 —7.2836 2% + 7.4222° + 7442~ 7=0,

and by Eisenstein’s irreducibility criterion, z is of degree 12.
On the other hand, it follows from theorem 4 that there is a number

33

in Q, which satisfies the equation
218+ 11740~ 354 £ + BT0 12 — 486 47 + 27315 —222° + 174 ¢* — 46 - 157+
+6t+1=0, (16)

and if ¢ is a number satisfying (16), a point of order 7 is possible in % (f).
Consequently (16) is irreducible in % (1).

If we put
P62 +3t+1
pt BT F3EFL (17)
1(t—1)
it is easy to verify that
v+ 613+ 3P—460v+9=0, (18)

and since (18) is irreducible in % (1), we see that k (¢) contains a sub-field & (v)
of degree 4.

Since the norms of » and v+1 are both odd, there is no prime ideal in
k (v) with the norm 2. If we put

s=3(*+v—1),
we find
st—-108*+90s7—4.415-4.19=0. (19)

If p is a prime ideal in k(v) which divides 2, it follows from (19) that p/s.
But then p?/4 and consequently p?/2. Since the norm of p is at least equal
to 4, we have 2=pZ
(17) gives the irreducible equation in k(v) satisfied by ¢:
£—(w+6)2+ (v+3)t+1=0, (20)
and the number £=¢+¢-+1 satisfies
B (P +110+39) 8 +4(*+100+30)E— (32 +2T0+73)=0.  (21)

The coefficients of (21) are divisible by p?, p* and p®, respectively. Let P be
a prime ideal in % (¢) which divides p. Then it is seen that P/&, and if T/p,
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we find P2/£. If PB*/p, the second term of (21) will be divisible by P'°, and
hence PR3/£. It follows that p/&, and consequently the number

N=3E-(C+2E+1+1) =3 — £ 1)

is an integer. If N, denotes the norm relative to % (v), it will be found that
the numbers

N, () =3 (49° + 45¢* + 187 v + 263),
N, (np+1)=3 (30> + 3202+ 124 v+ 151),
Ny (p+)= — (v*+ 902+ 26 v+ 10),

Ny (p+8+1)=4(9¢*+ 97 v* + 381 v+ 486)

are indivisible by p. However, if p is not a prime ideal in k (¢), there must
be a prime ideal B in k(t) with the norm 4, but this is impossible, since the
five numbers

0, g, n+1, n-+&, n++1

are incongruent mod . Consequently p remains a prime ideal in & (¢).

Theorem 21. Let Q be an algebraic field contarming the number A, and
suppose that there is a point of order q in £ on the curve

y'=2'—Auz, (2)

y;here g s an odd prime. Then 2 s the squarec of an ideal in Q, and +f there
15 a prime ideal in Q with the norm 2 or 4, we have q=5.

Proof. We may suppose that 4 is an integer and that the exceptional
points in £ on (2) have integral coordinates, for otherwise it would be suffi-
cient to multiply 4 by the fourth power of a suitable natural number.

Let w; be a point in £ of order ¢, and let p be a prime ideal dividing 2.
Among the points w,, 2u;, 3uy, ..., (g—1)u, we choose a point u with the
coordinates (z;y) in such a way that z is divisible by the lowest possible
power of p.

If v=3(¢+1)u (mod w, »’'), we have 2v=wu, and then it follows from (8)
that z=2% where 2 belongs to 0.

Now suppose p™//2, p"//z and p°//A. Let P, and @, denote the polynomials
defined in § 2.

If a<4h, we find p***"/¢* and p*?//P,, and hence, by (5), p*"#p (2u), and
if a>4h, we find p**/y® and p**//P,, and hence p?"7p (2%). But the point
u is kChosen in such a way that p(2u) is divisible by p*”, and consequently
a=4h.
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We put y=z¢t and find
P=2'—-4;
P,=31-44%
—Q=2(+24)((*—4 4 -4 4.

If p***7/, it is seen that P*"*2™4P,, but p*"*2™/447 and hence V*"1p (2u).
If p*" 71 /¢ we find p***2"//P, and pS**2m*1/44% and then p**Fp (2u).
Consequently p***™//*, and it follows that m is even. This proves the first
statement of the theorem.

Put m=2n and h+n=r. Then we know that p®7//44* and p***//t, and
since p**/p (2u)—2%, we have p***°"/P,. If we put ££+2A4=s, we find
p4h+2n/s and

P,=3s2-12A4s+84%;

Q.= —25(s*—84ds+8.42).

Since p***6*/P, we see that p***®"/s. If p****"*1/s it is found that
p¥*reniiPy and pRrTURTL/Q - But then it follows from (4) that p***+87//p_
and then, by (5), ¥*"#p (4u). Consequently p*"*3"//s.

If p8h+7n7L82+8A2’ we flnd p8h+7nlJ_P3 but p12h+11n’/Q4’ and hence D24h+21n7LP5
and p**7p (4u). If p* 7"/ + 8 A% we find p***7"//P, but p2™/Q,, and
hence p*"*2'*//P. and $*"#p (4u). Consequently p*"*7"//s*+8 4% p*"*7"/P,

and P*7//Q,.
If p~¢//P,, where ¢>0, it follows from (4) that p*®"~9//P; p*® /0,
P&7-9)P, and p"%/,. Then we may suppose

p&(vz—l)(ST*C)//P” if »is odd;
pieto &=/, if »=2 (mod 4);
peHTIROI0e g i = (mod 4).

This has been verified above for »<8 and can be proved generally by induc-
tion, 1f the formulas (4) are used. But this implies P,+ 0, which is impossible,

since % Is a point of order q. Consequently p*7/P,.
Now suppose ¢>3. If p* /P, we find p**7//P;, p**"*[Qq, D**7// Py, p*°7//Qs,
and the formulas

p(pﬂ_l)T//P” 1f 37L’V a.nd v is Odd,
p**071Q, if 37v and » is even;
pe*v7+1/P - if 3/v and ¥ is odd;

p@* =T if 3/v and v is even

are easlly proved by induction. But this contradicts P,=0, and consequently

¥/ P;.
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As yet we have not supposed anything about the norm of p. Now we shall
examine the two simplest cases and begin with N (p)=2 and ¢>5. Then it
follows from (4) that y*" /Py, 1™'//Qs p*"//Ps BV"]/Qs V[P, 17/ Qse
and generally

‘p(vz,l)r//})m if 57v and » is odd;
p** 970,  if 5fv and v is even;
PP it 5/y and v is odd;

pe*r/g  if 5/y and v is even.

But this contradicts P,=0, and consequently ¢=5, if there is a prime ideal
in £ with the norm 2.

Next suppose N (p)=4 and ¢>7. Let « represent a primitive residue class
mod p; then

«?=a+1 (mod p) and o®=1 (mod p).

Let & be an integer satisfying p*’//z. Then
Py=n® =an® or =alz®(mod 1),
and since am or a®’m may be substituted for 7z, we may suppose

Py=7% (mod p*"*?).
Further,

16y*=n% =an® or =o®n® (mod p*"*")

>

but since « and «® may be interchanged, it is sufficient to consider the first
two cases.

First suppose 164* =7* (mod p7*Y). If Q,=2° (mod p?™*), we find
P5£0 (mod p24r+1), Qszns (mod p321+1)’ .‘P7ETC12 (mod p487+1)’ Q85n15 (mod p607+1)
and generally

P,=nt® (mod p** 07+ if 5/v and v is odd;
Q, =7t (mod p®*~97*1) if 5/» and » is even;
P,=0 (mod p®*~V7*1) if 5/y and » is odd;

Q.=0 (mod p®*~*7+1) " if 5/y and » is even,

but this is impossible, since P,=0 and ¢>5. If Q,%#° (mod »'2"*!), we may
suppose Q,=an® (mod p**"*1), but then it will be found that
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P,=nt*"D  (mod p** V7", if wy=i+1 (mod 18);
P,=ant®Y (mod p®*-P7Y), if »= +7 (mod 18);
P,=a®7t%Y (mod p**-07Y), if »=£5 (mod 18);

Qv = ﬂi oi=9

Q. =ant®® (mod p*~¥7*1), if »= +4 (mod 18

P,=gnt®*0

Q=0

and this contradicts P,=0.

Consequently 16 ¢*=o x> (mod plZ r+1).

according as @,=2° =an® or =ala® (mod p*7*):

mod p¢ 7). if = +2 (mod 18);

(
(

Q=o7t*Y (mod p**~P7*Y), if »= +8 (mod 18);
(mod p**~D7H), i w=
(

3
mod p** 7 if »=0

Then we must distinguish three cases,

If Q,=2° (mod p**"*Y), the formulas (4) give the following result:

P,=qt®d

P,=oqnt®-D

2_
mod p(v Ir+1 ,

2_
mod p(v nr+l ,

3

— 24 2—
Qv:dﬂtl(” ) (mod p(v 4)r+1’

QVEO

)
)
Py =2t @?-1) mod p<r2—1)r+1)
)
)
)

(
(
(

Q=at®  (mod po' T,
(
(

2_
mod p(v Hr+l ,

and this is impossible.

If Qu=an® (mod Pm'“), we get the

P,, =gxi -1 (mod p(ﬂ—l) r+1)
P,= owt“”z"l) (mod p(vz—l) r+1),
P,= o2t -1 (mod p(v2—1)7+1)7
P,=0 (mod pe*-PriYy
Qv =gnt -4 (mod p(v2—4) r+1),
Q,=anmt®® (mod p* 07,
Q,=ont o*-4 (mod p(v2~4)7+1)’

Q,.EO (mod p(v2—4)r+1)’

3

but this is impossible, since ¢> 7.
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if v=41, £3, £7 (mod 24);
if y=+9 (mod 24);
if v=245 +11 (mod 24);
if »=+2, +4, +10 (mod 24);
if »=46, (mod 24);
if »=+80 (mod 24),

following congruences:
if »=41, +3, £13 (

if »=415, £15, +19 (mod 42);
it y=+49, £11, 17 (mod 42);
if »=+7 21 (mod 42);

if »y=+4, +£10, +12 (mod 42);

);
);
);
+ )
it y=+2 46, +16 (mod 42);
)
it y=+8, +18, +20 (mod 42);

)

if y=+14,0 (mod 42),
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If Q,=o?2® (mod p™*), it will be found that

P,=xt"D  (mod p**-PT+Y) if p=+1 +3, +11 (mod 30);
P,=ant® P (mod p**-D7y if p=+7, +13 (mod 30);
P,=a?7t"Y (mod po* 07+ if p=49 (mod 30);
P,=0 (mod p®* V7Y if = +5, 15 (mod 30);
Q =nt""Y  (mod p* ) if p=+2 +8 (mod 30);
Q =ant® Y (mod p**7Y), if p=+6 (mod 30);

Q, =27t (mod p** 97+ if y=+4, +12, +14 (mod 30);
Q,=0 (mod p**~HTY if p= 410, 0 (mod 30),

and this is impossible, too.

It follows that ¢ =7, if there is a prime ideal in 2 with the norm 4. How-
ever, lemma 1 shows that ¢=7 is impossible. Thus ¢=5, and theorem 21 is
proved.

15. Theorem 21 may be applied to any field, whose degree is 2, 4 or an
odd number, and we shall now examine these cases in detail.

If the degree of 2 is odd, the order of the exceptional group in 2 on the
curve (2) is a power of 2. If there is a point of order 4, we may put B=0
in theorem 8, and this requires

a—2¢=0
or
26 —8ac—c2=0.

Since £ does not contain V2, the latter possibility is excluded. Consequently
a=2¢ and 4= —4c*, and the curve is eguivalent to

y¥=r*+4z. (22)

Since this curve has only one point of order 2 in £, the only points of order 4
are (2; +4), and there is no point of order 8, since otherwise 2 ought to be
a square, according to (8).

We have reached the following result, which is quite analogous to theorem 5:

Theorem 22, Let {2 be an algebraic field of odd degree. 1§ A is a number
m 82, the curve

y¥’'=a"—Azx
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has the following exceptional group in Q:
(2), if A=*C? +-40%
2,2), if A=0%
4), if A=—40

Here C denotes any number in Q.

16. Now let 2 be a quadratic field. If Q+%(/2) and if the curve (2) has
a point of order 4 in £, it is equivalent to (22), and among the points of
order 4 on this curve (2; +4) and possibly (—2; +447) belong to 2. The
remaining 8 points of order 4 do not belong to Q, since the abscissa of one

of them is 2i(1+l/é). If 4 is a point of order 8, we must have p (2u)= 2,
but this is impossible, since then (5) gives an irreducible equation of degree 4:

(@ —4)2= +8z (2 +4).

If Q=%(¥2) and if the curve (2) has a point of order 4 in £, it follows
from theorem 8 that the curve is equivalent to (22) or to

y=a*—.

In the first case there is only one point of order 2 and no point of order 8.
In the second case there are 3 points of order 2, and the points of order 4

are [1+V2; i(l/2+ 2)] and [1-V2; +(/2-2). No point of order 8 belongs
to £, since 1+V2 is not a square in this field.

If there is a point of order 3 in £, it follows from theorem 2 that Q=F (V?;)
and that (2) is equivalent to one of the curves

P=5+3+2V3)a.
We may choose the upper sign and then have the points of inflexion [1; + (1 + Vi_i)],
and since {2 does not contain ¥ —3, theorem 7 implies that the other points
of order 3 do not belong to 2. If % is a point of order 9 with the abscissa
and if p(3u)=1, we get by (5):
(1-2) Pi(2) =42 (2" +¢V3) Q (@), (23)

where ¢=2+13 and

Py () =3 (" +2eV/32%—&¥);

Qu(@)= —2(@*—&V/3) (@* +6:V32%+3 ).
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Let p be a prime ideal in Q (z), which divides V3. Since p/P;, it is seen that
p/x, since otherwise p would not divide the right member of (23). Suppose

p*//V3; then p*"//P,. If */2* we find p*"/Q,, and the right member of (23)
would be divisible by p*”*!, which is impossible. Thus if p*//z, we have

2k<h, p**//Q, and p*¥//z(a®+¢eV3). Consequently 4h=9%, and hence h=9.
But this implies that Q(z) is of degree 18.

If there is a point of order 5 in £, it follows from theorem 3 that Q=% (V —1)
and that (2) is equivalent to one of the curves

y¥=r’— (1124 =z

It is easy to show that there are 10 exceptional points in £ in this case (see
NaeerL [13], p. 12). If the upper sign is chosen, the points of order 5 are
[1; £(1~2)] and [—1; +(1+92)].

We have proved the following theorem :

Theorem 23. If A belongs to the quadratic field £, the curve
yY=*—Adz
has the following exceptional group in £:

1. Q+k(V-1), +k(V2), £k (V3).
(2), i A+C? +—-4C%
2,2), if 4=0C%
@), if A= —4C*

(2), i A+C? +(1+20) 0%
2,2), if A=0% +0C4;
(4,2), if 4=0C%

(2,5), if A=(1+24)C"

2), if A+C? +—40%;
(2,2), if A=C% +C%;
(4), if A=-—40%
(4,2), if A=0%
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4, Q=k(V/3).
2), if A+C% +—4CY, +-(3+2V3)C4;
2,2), if A=C%
4), if A=-40C%
2,3), if A= —(3+2V3)C%

Here C denotes any number in £.

17. Finally let 2 be a quartic field. If the curve (2) has a point of order 4
in 2, it is equivalent to

y=r*t+4ax (22)
or to
yr=a®—x. (24)

In the former case we may suppose that ¥ =1 does not belong to £2, since
—4 is a fourth power in &(V—1).

First consider the curve (22). The only points of order 4 in £2 are (2; +4).
If % is a point of order 8 with the abscissa z and if p (2u)=2, we find

e=2[1+V2+V21+V2)] or w=2[1—V2+V2(1-V2)].

Thus if = belongs to £, the field is k(l 1+ VE) or k(Vl — Vﬁ) and then, by (6),
y also belongs to £.

Since the exceptional groups on the curve (22) in two conjugate fields are

isomorphic, it is sufficient to examine the case .Q=k(V1+ l/2_). The points of
order 8 are

[2(+e2—e); +4(+e2+1)] and [2(—+&2+g); T4(—S+8+1)],

where &= Vi+ V2. 1f there were a point of order 16 in £, the abscissa of each
point of order 8 would be a square (according to (8)), and hence

2=+,
where z belongs to £2. But this equation may be written
(-1 (@+1)=(1+¢) V2,

and if we define the ideal p=(1+¢), we find p*=2 and hence p*//(z—1) (2 +1),
which is impossible.
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Now consider the curve (24). If w is the least positive period and if o is
the least positive-imaginary period, the points of order 2 are

(0’ (=1;0); $w+a’)(0;0); to(;0),
and the points of order 4 are
Tio  [1+V2; £@+V2)] fie-o) [ 219
tro+io’ [1-V2; £@-V9; tilw+e) [-i; 21+
Fio [-1-V2; +i@2+V2)];
tiw' +io [—1+V2; £92-V2)]
If there is a point of order 8, the abscissa of one of the points of order 4
must be a square, and hence .Q——*k(Vl_m) or .Q=k(l/§, Vj_l). First suppose

Q=k(V1+V§) and let # be a point of order 8 with the abscissa z. Then
pR2u)=1+ V2 and consequently by (),

@F—2z—1)72=4z(z*—1) V2. (25)

Suppose that z belongs to £ and put p=(1+V1+V2). By (25), p*/a*—2z—1,

and hence p*//z*—1 and, if (25) is used once again, p’/jz*—2z—1. But this

is impossible, since B B
?-20—-1=@—1+V2) (z—1-V2),

and if one of these factors is divisible by p*, the same is true of the other.

Next suppose 2=k (/2, /' —1) and let u be a point of order 8 with the ab-
scissa . Then we may put p(2%)=14 and hence

4oz (@ —1)=(@2*+1)>%
One root of this equation is

z=i(1-V2)+V2(/2-1),

and since 2 does not contain VVé—l, z 18 of degree 8.
Consequently no point of order 8 on the curve (24) belongs to £, and we
have reached the following result:

Lemma 2. If Q is a quartic field, the points of order 2 (vZ0) in L2 on the
curve (2) form the following group:

1. Q contains neither V2 nor V—1.
(2), if A+C% +—-40%
(2,2), if A=0%

@), if Ad=—40"
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2. Q contains V—1 but is +k(V2, V—1).
(2), if A=+C%
(2,2), if A4=C% +(C%
4,2), if A4=C%.

3. Q contains V2 but is =i=k(l/§, V———T) and :I:k(l/ri_l/—i).
@), if A+C, + 40
2,2), if A=C? +C%
@), if Ad=-—40%;
4,2), if A4=0C%.

4. Q=k(V2,V-1).
@), i A+
2,2), if A=C% +C%
(4,4), if A=C

5 2-k(V1+V2).
(2), if A=+C% +-—4C*
2,2), if A=C% +C%
4,2), if A=0%
(8), if A=-—40C"

Here C denotes any number in £.

18. Suppose that there is a point of order 3 in 2 on the curve (2). Then
it follows from theorem 2 that the curve is equivalent to

F=2+(3+2V3)x,
and these two curves are inequivalent except in the case =% (Vg, J —1), since

3+2V3_

3—273 —(2+ V3 =[3 (1 +3) (1 +V3)I%
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We may choose the upper sign and then find the following finite points of
inflexion:

[1; £Q+V3)];  [(@+V3); £(1—15)(2+V3);
[—1; (1 +V3)]; [—i(2+V3); £(1+15) (2+V3)).
If % is a point of order 9 with the abscissa z, we have, by (),
[0 (3u) — 2] P} (z) =42 (2®+ 3+2 V3) @, (a),
where p Bu)=+£1 or = +1 (2+V3). It was shown above that this is im-
possible in the case p (3u)=1, if 2 is a field of degree <18, and the proof

18 the same in the other cases.
This discussion may be summed up in the following way:

Lemma 3. If Q is a quartic field, the points of order 5 (v=0) tn 2 on the
curve (2) form the following group:

1. Q does not contain V3.
(1).
2. -2 contains V3 but is +k(V3, V—1).
(1), if A+ —(3+2V3)0%
3), if A=-(3+2V3)C
3. Q=k(V3,V-1).
(1), if 4+-3+2V3)0%
(3,3), if Ad=—(3+2V3)C*

Here C denotes any number in .

19. Finally suppose that a point of order 5 belongs to 2. According to

theorem 3 we have to distinguish two cases. Either £ contains V:T, and the
curve Is equivalent to

yP=2*- (1124, (26)

or .Q==k(VlO+2V5), and the curve is equivalent to

¥ =2*~2[1+35V5+6(1—2V5)V10+2V5]= (27)
or
P=a—2[1-35V5+6(1+2V5)V10—2V5]z. (28)
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First consider the curves (26). If they were equivalent in £, this field would
contain a number C satisfying

_1+24

4
¢ 1-24

=} (14202 (29)

Hence 2=k V5,V —1), but in this field there are two different prime ideals p
and )’ satisfying pp’'=V5, since 5 is the product of two different ideals in

k(VTl), and then it is seen that the right member of (29) is not the fourth
power of an ideal in 0.
Now we choose the upper sign in (26). Four points of order 5 are

[1; £(1-4¢)] and [~1; £(1+9)], (30)
and by (7) it i1s seen that one of the others has the abscissa

1+25 .,
r=——z—=
V5

b

where C is a number satisfying (29). But then
y=t(1+7)C?

and consequently this point cannot belong to 2, since C is of the eighth degree.
Thus (30) are the only points of order 5 in 0.
Suppose that a point (z, y) of order 25 belongs to £2. Then, by (5),

[z— p (5u)] P (2) = 44" Q4 () Qs (), 8L

where p (bu)=+1 and @, P;, Q are given by (7). Let b be a prime ideal
in  dividing 4 and define m and h by p™//4 and p"//x; then p™//5. If
2h>m, we find F2™//Py; P*7)jQu; P ™y%; B 7[Py; B*7//Qs and it s seen
by (31) that this is impossible. If 2h<m, we have h=0, since m = 2, but then
p/P;, while p7y* @, @, and this is also impossible. Hence 2h=m=2. Then
p?/y, which implies p*/2®— A4, but then we find p'%//P;, while p/Q, and p'®/Q,,
and it follows from (31) that this is impossible.

Next consider the curves (27) and (28). Since

1+35V/5+6(1-2V5)/10+2/5_
1+35V5—-6(1—-2V5)V10+2V5

{3[9+V5—-3V10+2V5]}4,
the curves (27) are equivalent, and the same is true of the curves (28). How-

ever, (27) is not equivalent to (28), since

1-35V5-6(1+2V5) V10-2V5<0<1+35V5-6(1—-2V5)YV10+2V5
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and £ is real. Thus if we put
Vio+2V5=2a; V10—2V5-24,
we have two inequivalent curves given by

A4 =2[1+35V5+12(1-2V5)«]
and .
A4'=2[1-35V5+12(1+2V5)«].
Since 4’'<0, A4’ is no square in 2, and since 4 and 4’ are conjugates, the

same is true of 4. Since 4>0, 4 is not of the form —4 C*, and consequently
the same is true of A4’

Since £ is real, there are only 4 points of order 5 in £. If we choose the
upper sign in (27), one of them is

{(3+V5)(2—a); 2[60—(9+V5)]}.

Now let u be a point of order 25 with the coordinates (z,y) and
p (Bu)=(3+V5) 2 —a).

Let p denote the ideal («); then p*=5, and every integer in 2 is =0, +1
or +2 (mod p). We find 4=2 and p (5%)=1 (mod p). Consider the equation

[z—p (5 w)]Pi=49*P,Q, (Q;— P,). (32)
If p/z, p will divide only the right member of (32), and if z= +1 (mod p),
p will divide only the left member. If z= +2 (mod p), we find ¢*= F1;

Py=1; @,=1; Py=—2, and the two members of (32) become incongruent.
Thus there is no point of order 25 in £2, and we have the following result:

Lemma 4. If Q is a quartic field, the points of order 5° (»=0) in 2 on the
curve (2) form the following group:

1. 2 does not contain V—~1, and Q#k(m).
1).

2. Q contains V—1.
L), if Ad+(1+24)0%;
5), if A=(1+24)C%
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3. 2=k(V10+2V5).
(1), if A+2[1+35V5+6(1F2V5) V10+2V5]0%;
6), if A—2[1+35V5+6(1TF2V5) V10+2V5]0"
Here C denotes any number in Q.
20. If the three lemmas are combined, we get the following theorem:
Theorem 24. If A belongs to the quartic field £, the curve
y=a*-Az
has the following exceptional group in £:
1. Q does not contain any of the numbers V=1, V2, V3, Vi0+2 V5.
(2), if A+C% +—-40C%
(2,2), if 4=C%
@), if A=—4Ch

2. Q contains V—1 but is +k(V2,V=1), +k(V3,V=1), +k(V1£24).
@), if A+C, +(1+£24)0C"
©2,2), if A=C% +C%;
(4,2), if A=C%
©@,5), if A=(1+24)C

3. Q contains V2 but is +k(V2,V=1), +k(V2,V3), +k(V1£V2).
@), if A+ +—40%
2,2), if A=C% +C%;
@), it Ad=—4C%
4,2), it A=C.
4 Q contains V3 but is +k(V3,V—1), =k (V3, V2), +k(V —(3+2V3)).
@), if A+CE +—40, + —(3+2V3)C";
2,2), if A4=C
@), if A= —-40C%

2,3), if 4=—(3£2V3)C%
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5 Q=k(V2,V-1).
@, i
©@,2), if
4,4), it
@,5), it

6. Q=k(V3,V~-1).
@), if
@,2), i
4,2), i
(2,3,3), if
@2,5), if

7. Q=k(V2,V3).
@), if
@2,2), if
@), i
4,2), i
@,3), if

8. 2=k(V1+12).
@, i
@2,2), if
4,2), if
®), if

ARKIV FOR MATEMATIK.

A+0, +(14240) 0%
A=C% (4
A=0%
A=(1+29)C"

A+C? + —(3+2V3)0%, +(1+24)0%;
A=C +(4;

A=C4;

A=—(3+2V3)C4;

A=(1+24)0%

A+C% = —404, + - (3£2V3) 0%
A=C? +C;

A=—40%

A=0C4

A= —(3+2V3)C"

A+C + —40*
A=C?%; £C4;
A=0%

A= —4C%

9. Q=k(V-3+2V3)).

(2), if
(2,2), if

A+C + 40 + —(3F2V3)C%;

A=C% + - (3+2V3)C%;

Bd 2 nr 27
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(4), if A= —4C%;
@,3), if A=-3T2V3)CY

(2,2,3),if A= —(3+2V3)C.

10. Q=k(V1+24%) (two different fields).
(2), if A+CE +(1F294) 0%
(2,2), if A=C* *+C%, *=(1£21)C;
(4,2), if A=0%

2,5), if A=(1F24%)C%
(2,2,5), if A=(14217)C%

11. 9=k (V10+2V5).

2),  if A+ +—4C +2[1+35V5+6(1T2V5) V10+2 V5] 0%
2,2), if A=C?

@), if A= —40%

2,5), if A=2[1+35V5+6(1F2V5)Y10+2V5]C"

Here C denotes any number in £.

§ b.
The exceptional group in the equianharmonic case
21. If B is a rational number, the exceptional group in % (1) on the curve
y'=2"—B 3)
is given by theorem 6, and NageLL ([14], p. 11-15) has found the exceptional

group on (3) in quadratic fields.
We shall now generalize these results and begin with a preliminary theorem:

Theorem 25. Let Q2 be an algebraic field containing the number B, and sup-
pose that there is a point of order g tn £ on the curve

y2=1§3—B,

where q 15 o prime >3. Then 3 is the square of an ideal in 2, and if there
18 a prime ideal in Q with the norm 3, we have q¢=1.
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Proof. Since the number of éxceptional points in £ is finite, their coordi-
nates may be supposed to be integral. Let u» be a point of order g with the
coordinates (z; %), and let p be a prime ideal in £ dividing 3. Suppose

Py YUIB; pes bEly.

We may choose « in such a way that ph/p(vu) (v=2,3,...,¢g—1). The poly-
nomials P, (z) and @, (z) may be written in the foilowing manner:

Py=3z(y*~3B);
(33)
@.=—2(y"— 18 By*— 27 B%.

If b+3h, we find
2HSh; 2RSBh; TP PG PR (Bu) -,

but 2k—2m—2h<h, and this is impossible, since we have supposed p"/p (3u).
Hence b=34.

If 2k=<3h+m, we find p™*"*2*/P; p**//Q, and p"#p (Bu). Consequently
2k>3k+m and PPERIMYP,
If 4%>3(2h+m), we find p*@**™)/Q,, p*Ertm P pEE2T™ /0 and generally
ptet-bertmip ity is odd;
pi¢i-herim g - if y is even,

but this is impossible, since P,=0.
If 4k<3(2h+m), we find p**+1 /P p**//Q,, v*¥//Ps, p“/% and generally

3

PPDEIP i y= 41 (mod 6);

PHUOK0,, i =12 (mod 6);

p}(v‘—ﬂ)k/&, if »=3 (mod 6);
P,

212y k Qv :
pé & == 1
/>,

Pty

y=0 (mod 6),

and this is impossible.

Consequently 4%k=3(2%+m), but then m must be an even number, and the
first part of the theorem is proved.

Now suppose N (p)=3 and q=+7. Since %k is divisible by 3, we may put
k=3n. Then m=2(2n—%) and n=1. We have p®"//P, and p'*"/Q,.
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If p21/Q,, we find p*"//P,,

pero P,
p(ﬂ2—4) n//Qv;
p(ﬁ2—4) n+l/Qv’

P22 /Qs, 1 "//P,, P71/ Qg and generally

if »= 41 (mod 4);
if »=2 (mod4);
if »=0 (mod 4),

and this is impossible. Hence p'2"//Q,. But it follows from (33) that

Q4Ey4_27 B2 (mod p12 n+1),

and since the norm of p is 3, we must have y*= —27 B? (mod p'*"*'). Then,
by (33), Pi= —4® (mod p*"*), Q,= —4* (mod p**"*), and we find

P,= yg(vz—l) (mod p(v’—l) n+1)’

Py= — 4" (mod p**0 "),

% = yi 2-9) (mod p(v"—s) n+1),

3

% = yi (+2-9) (mOd p(vz—Q) n+1),
3

P,=0 (mod p(»ﬂ—l) n+1)’

P, 2

FEO (mod p(v —9)n+1),
3

Q, =yt -1 (mod.p(”z"‘) ntly,

Q,= — 4" (mod p**~H "+,

@ = 3 (*-12) @2-12) n+1

p.-Y (mod ),
3

@ = _ 43012 ¥2-12) n+1

p= yt (mod p ),
3

Q=0 (mod p**- 7+,

% =( (m(»d p(v”—m) n+1),
3

But it is seen that this contradicts P,=0, since ¢742, and the theorem is

proved.
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it w=1,11, 23, 25, 29, 37 (mod 42);

it w=5, 13,17, 19, 31, 41
it »=3, 97, 33

it =9, 15, 39

i v=17,35

if »=21

(mod 42);

(mod 42);

(mod 42);
{mod 42);

(mod 42);

it »=10, 20, 26, 34, 38, 40 (mod 42);

it »=2,4, 8,16, 22, 32
it =18, 30, 36

it v=6,12, 2

if v=14,28

if v=0

{mod 42);

(mod 42);

(mod 42);
(mod 42);

(mod 42).
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22. Let £ be an algebraic field, whose degree is indivisible by 2 and 3,
and let B be a number in £. Then there is at most one point of order 2
in 2 on the curve (3), since £ does not contain ¥ —3, and it follows from
the(gem 8 that there is no point of order 4 in £, since V3 does not belong
to £2.

According to theorem 7, at most two finite points of inflexion belong to £,
since £ does not contain V' —3. If these points have the abscissa 0, it is seen
that B= — (% where € is a number in £. Let % be a point of order 9 with
@ (u)==z and p (3u)=0. Then, by (5),

z P () +4 (2*+C% Q, (z) =0,
that is
£+312—24¢+1=0,
4C? . . .
where t=—;;3—. Thus z does not belong to Q, since ¢ is of the third degree.

If (&; %) is a point of inflexion in 2 and £+0, the expression for P; given
in (9) shows that £=4 B and hence

3
- /R
B=432 ( 3 5)
Thus the curve is egunivalent to
yi=a°—432,

whose rational points of order 3 are (12; +36). Let w be a point of order 9
with p (u)=122 and p (34)=12. Then, by (5),

12 (1 - 2) P (12 2) = 4.432 (42°— 1) Q, (12 2),
that is
922 (2— 1P (P +2z+1)2=(42°—1)(22°-102°—1). (34)

Let b be a prime ideal in % (z) which divides 3, and suppose p™//3. If we
put 2=1+9, (34) is transformed into

9 (0+12 (¥ +3v+3)2=
=40*+120*+120+3) (2¢°+120°+ 304 +300° - 18v—9). (35)

Suppose p"//v, and denote the left and right members of (35) by L and R,
respectively. If 34<m, we find p"***”/L, while p°"//R, and this is impossible,
since Th+2m>9h. If 3k>m, pP****™ L and p*™//R, which is also impossible.
Consequently 3%2=m and p*”"//L. We may, however, write

R-}(42*—1)[(42°~1)*~18 (42°~ 1) - 27].
Suppose p*//42°—1; then k23h. If 2k=9h, we find p®**!/R. Thus 2k<9h,
but then p*//R, and hence 3k=13%. But this implies 2=-3 and m=9, and
it follows that (34) is irreducible in k (1).
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We have reached the following result, which is quite analogous to theo-
rem 6:

Theorem 26. Let Q be an algebraic field, whose degree is indivistble by 2
and 3. If B is a number in Q, the curve

y’=2*—-B
has the following exceptional group in £:
(1), if B+C? & —C? +432C%;
(2), if B=C% +-C°;
(3), it B=-C% or =432C° but =+ —C%
2,3), if B=-C"

Here C denotes any number in Q.

23. Now let £ be a quadratic field. If there is a point of order 4 in £,

theorem 8 may be used to show that 2=k (V3) and that the curve is equiv-
alent to

P=2+(3+2V3);

these two curves are inequivalent. We choose the upper sign and find the
points

[3+V3; +3(3+2V3)]

of order 4. Let u be a point of order 8 with p(u)== and p(2%)=3+ V3,
and put é=2+V3. Then by (5),

4[+ (V3P S [z — V3 (1+V3)] =3z [a® +4(V3)* 1. (36)

Suppose that z belongs to & (V3) and put p=(1+V3); then p*=2. If the two
members of (36) are denoted by L and R, we see that p/L and hence p/w,
but if p//z, we find p*/L and p*//R, and if p*/z, we find p°//L and p*/R.
Thus x does not belong to k (V3).

A point of order 9 in £ is impossible, as was shown in no. 22. If the 8

finite points of inflexion belong to 2, we have Q=Fk (V —3), and it was seen in
no. 22 that the curve is equivalent to

v =x—16.27,
but now this curve may be replaced by
y=2+186,
sipce — 27 is the sixth power of a number in Q.
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In order to determine the conditions for a point of order 7 in £ we put
A=0 in theorem 4. If ¢ is a number satisfying

p()=t*—116+30— 152 —-102+5¢+1=0,

and if z=2=31FL Lo fina

t(¢—1)
ZE—112z+25=0;

hence %(f) contains V21. Let p be a prime ideal in k(t) which divides 3.
Since ¢ (0)=¢(1)=1 and ¢ (—1)=43, p does not divide any of the numbers

t,t+1. Consequently the norm of p is >3 and k(f)=k(V/21). It follows that
@ (t) is irreducible in % (1).

Now theorem 4 shows that if there is a point of order 7 in £ on the
curve (3), then 2=k () ~3), and the curve is equivalent to

=218/ -3 (1+3V-3).

These two curves are inequivalent in k(V/ —3). If we choose the upper sign,
the points of order 7 are (41 —3; +12@2V 3), (40V~3; +12¢°V -3) and
(10®V-3; +12 % V=3 3), where e=3%( —1+V—=3). It is easy to show that

there are only 7 exceptlonal points in £ in this case (see NageLL [13], p. 12).
We have proved the following theorem:
Theorem 27. If B belongs to the quadratic field Q, the curve
yz — x:} —B

has the following exceptional group in Q:

1. Q+k(V3), +k(V/-3).
(1), if B=+C3? + —(C?% +4320%;
(2), if B=C% +-(°;
(3), if B=-C* or =432C% but + —C¢;
(2,3), if B=—C"
2. =k (V3).
1), if B+C% + —(? +4320C%;
@), if B=C% +—C% + —(3+2V3)°C°;
4), if B=-(3+2V3)pC;
), i B=-0C% or =432C°* but =+ —C%;

@,3), it B=—C"
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3. Q=k(/-3).

(1), if B+C, +—C% + +8(V -3 (1F3V-3)C";

(2,2), if B=C° +—C°%
3), if B=—C% +—-16C° + —C°;
(3,3), if B=-16C"%;

(2,2,3),if B=—(%;

(1), if B=+8(/—3P(1F3V=-3)C"

Here C denotes any number in £.

24. Finally let ©Q be a cubic field. It follows from theorem 8 that there
is_no point of order 4 in Q on the curve (3), and since 2 does not contain
V' —3, there cannot be more than one point of order 2 and two points of order 3.

If —B is not a square in Q, it was shown in no. 22 that no point of
order 9 belongs to £. If B=—C® and if » is a point of order 9 with the

coordinates (z; y) and p (3u)=0, we have seen in no. 22 that

£+38—24¢+1=0,
407 . . .
where {= - It is convenient to substitute t=3s—1; then

$£—3s+1=0.
It will be found that

_ 16t (y\®

B= (t+4>3(x)’

and if we choose ?£=3, we get

B=—-144(4s*—T75+2); C=112(s*—3s);
z=—4(s"—s—2); y=—12(s*—s—2).
The remaining roots of (37) are
s =52-2;
"= ——s+2,
and if these numbers are substituted for s, we get
B =144(11s*+45—32);
B’= —144 (T2 +11s—4).
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The three curves obtained in this way are, however, equivalent, since

B_G §_'_ 7\6
7= and B,,—(s).

We choose the curve given by (38).

Since s and s+1 are both odd, the ideal 2 is a prime ideal in %k (s). Hence
C is not a cube, since it is divisible by 2 but not by 8, and consequently
there is no point of order 2 in 0.

The number m=s+1 satisfies
B—-3nt+3=0;
hence (%) is a prime ideal p satisfying p*=3. Suppose that « is a point of

order 27 in k (s) with p (u)=42 and p Bu)= —4(s®—s—2)= —4x(n—3). Then
the equation (5)

[p (Bu)—42] Pi (42)=4[(42) — B1Q, (42)

may be written
922 2+ (n—3)] (2 +96%)7=(422+9 %) (22°+90 6% 2° — 81 &%), (39)

where ¢=s—s=(n—1)(n—2); the two members of (39) will be denoted by
L and R. It is seen that p?//z; then p*/L, and since

8R=(422+9&) [(42°+9 &%)+ 162 (425 + 9 ¢?) > — 37 &%),

we have p%/424+96%. If 2=2* (mod 3), it will, however, be found that
p%//422+9 ¢, and hence z=3x—n? where « is an integer. Then p°/z°+9 &
and p*/L. But if p*/R, we must have p''/42°+9¢® and hence p°//2°+9 ¢
Now p**/R and consequently p*/z+z (x—3), which implies p/x. But then

42498 =T[4 P-4 *+4 (32 —n—3)a— (8 2%+ w—15)]
is not divisible by p't.

Consequently no point of order 27 belongs to £2, and we have proved the
following theorem:

Theorem 28. If B belongs to the cubic field Q, the curve
y'=2*—B
has the following exceptional group in Q:
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1.

.Q=Hc(13/§), #k(gls@), =¥=k(g213f2) and +k(s), where £ —3s+1=0.
1), it B=+C3? + —(C? +432(%;

(2), if B=C3 + —C°;

(3), if B=-—0% or =432C% but =+ —C%

(2,3), if B=—C"

3 3 3

Q=k(V2) or =k(oV2) or =k{a®V2).
(1), if B=C® +—C%

(2), it B=C3? =+ —(C% =+27C%

3), if B=-—C? +—C%

(2,3), if B=—(° or =27C"
D=k(s), where $—3s+1=0 (a normal field).

1), if B+C? + -0 +432C%

2), if B=C% +—C°;

)s if B=—-C® or =432C® but + —C°% + —144(4s*-Ts+2)C%;
9), if B=-144(4s*—T7s+2)C%

2,8), it B=-—C"

Here C denotes any number in 2, and o=3(—1+V —3).

534

BIBLIOGRAPHY

Brring, G. Beitrage zur arithmethischen Theorie der ebenen kubischen Kurven vem
Geschlecht Eins, Nova Acta Reg. Soc. Sei. Ups., Ser. IV, vol. 11, n:o 1, Upp-
sale 1938.

BiruiNg, G. and MABLER, K. On exceptional points on cubic curves, Journal London
Math. Soc., vol. 15 (1940), p. 32-43.

BiLving, G. A diophantine equation with seven solutions, Arkiv f. matematik, astro-
nomi och fysik, band 27 A, n:o 14 (1940).

——. A diophantine equation with nine solutions, Arkiv f. matematik, astronomi och
fysik, band 27 B, n:o 8 (1940). '

Fuerer, R. Uber kubische diophantische Gleichungen, Commentarii Mathematici Hel-
vetici, vol. 2 (1930), p. 69.

Hurwitz, A. Uber terndre diophantische Gleichungen dritten Grades, Mathematische
Werke, Bd. 2, p. 446.

Levi, B. Saggio per una teoria aritmetica delle forme cubiche ternarie, Atti Acca-
demia di Torino 41 (1906), p. 739; 43 (1908), p. 99, 413, 672; Atti del IV Con-
gresso internazionale dei matematici Roma 1908, 2, p. 173.



(8]
(9]
(10]

[11]

[12]

(13]
[14]

{15]

[16]

[17]

ARKIV FOR MATEMATIK. Bd 2 nr 27

Linp, C. E. Untersuchungen itber die rationalen Punkte der ebenen kubischen Kurven

vom Geschlecht Eins, Inaugural-Dissertation, Uppsala 1940.

MaureR, K. and Birring, G. On exceptional points on cubic curves, Journal London

Math. Soc., vol. 15 (1940), p. 32—43.

Nacgerr, T. Sur les propriétés arithmétiques des cubiques planes du premier genre,

Acta mathematica, vol. 52 (1928), p. 93.

. Solution de quelques problémes dans la théorie arithmétique des cubiques planes

du premier genre, Skrifter utg. av det Norske Videnskaps-Akademi i Oslo, 1935,
Mat.-naturv. kl., n:o 1.

. Sur la résolubilité des équations diophantiennes cubiques & deux inconnues dans

un domaine relativement algébrique, Nova Acta Reg. Soc. Sei. Ups., Ser. IV,
vol. 13, n:o 3, Uppsala 1942.

. Les points exceptionnels sur les cubiques planes du premier genre, Nova Acta

Reg. Soc. Sci. Ups., Ser. IV, vol. 14, n:0 1, Uppsala 1946.

. Les points exceptionnels sur les cubiques planes du premier genre II, Nova Acta

Reg. Soc. Sci. Ups., Ser. IV, vol. 14, n:o 3, Uppsala 1947.

. Recherches sur larithmétique des cubiques planes du premier genre dans un do-

maine de rationalité quelconque, Nova Acta Reg. Soc. Sci. Ups., Ser. IV, vol. 15,
n:o 4, Uppsala 1952.

WEeIL, A. L’arithmétique sur les courbes algébriques, Acta mathematica, vol. 52 (1929),

p- 281.

CuAteLET, F. Points exceptionnels d’une cubigque de Weijerstrass, Comptes rendus des

séances de I’Académie des Sciences, Paris, t. 210 (1940), p. 90.

Tryckt den 2 juli 1953

Uppsala 1953. Almqvist & Wiksells Boktryckeri AB

535



