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By J. WERMER 

Introduction 

A .  BEURLING,  in [1], introduced the class of normed rings L:  with the norm 
o o  

H/H = f ]f(x)l(~(x)dx, a(x) being a weight function such that  (~(x+y)~ 

_< a (x)a (y). This paper has its origin in Prof. Beurling's suggestion to use the 
methods and results of [1] in studying a more general class of spaces. The 
writer wishes to take this opportunity to express his sincere thanks to Prof. 
Beurling for his stimulating advice and kind encouragement 

We are concerned with certain spaces of functions defined on the real line. 
Let  L be a Banach space of functions summable on ( - c ~ ,  c~), and let L con- 

sist of all ~s with f- I f (x) ]. I ~ (x) ] d x < cx~ if / e L. We shall use the following 
- - o o  

o o  

notation: if /, geL, [~g(x)= f / ( x -y )g (y )dy ,  while if / e L ,  ~ e L ,  / ~ ( x ) - -  

= f ]  (y-x)sf  (y)dy. We shall consider the following conditions on L: 
o ~  

(1) L contains the characteristic functions of all finite intervals. 
(2) If / eL  and geL and ]/(x) l=lg(x)l a.e.,  then II]ll-=llgH. 

(3) If for a measurable function / we have f l/(x)J']w(x)]dx<~, for all 
- - o o  

y~ in L,, then /EL.  

(4) Every bounded linear functional ~ on L is of the form ~ ([) = -~- / (x) ~ (x) dx, 

where ~ e L ,  for all ~ in L; conversely, every ~ in L defines a bounded func- 
tional in this way. 

(5) The translation operator T~:T~f (x)=] (x-~) is bounded on L for each 
real v. 

(6) L is a normed ring under convolution, i.e.,  if ], g e L, then ~ * g e L and 
I l l  * g II-< k II! I1" II g II, where k is a cons tan t .  

1 Most  of th i s  paper  fo rms  p a r t  of the  a u t h o r ' s  d i sser ta t ion  (Harvard ,  1951). 
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5- WERMER, On a class of normed rings 

If we assign to each ~0 in L a norm equal to the norm of the corresponding 
functional on L, then L becomes a Banach space isomorphic to the conjugate 
space of L. I t  is easily seen that every space L satisfying (1) through (4) is 
separable. If in addition L satisfies (5) we may note the following: log I1 T~ tf 
is a suhadditive function finite for all real 3. By known properties of sub- 
additive functions we have that II T~II is bounded on every finite interval of 
values of v. (Cf. Hille, [7], Chap. VI.) Since the constant 1 is in /~ ]1T~ ]1 >-1 
all 3. If 3~ converges to T, T ~ /  converges to T~ ] for every ] in L in the norm 
of i .  Finally, as 131 tends to c~, IIT~ll=0(e AI~I) for some finite A. 

If at last L satisfies (6), i .e. L is normed ring, we can say the following: 
Every complex-valued homomorphism of L has the form: ] maps into ] ( s )=  

= f / (x)ei~::dx where s is some complex number determined by the given 

homomorphism. We shall consider in this paper only such spaces L for which 

II :/'~ H = 0  (e~l~l) for each positive s. Hence e ~ is i n / , i f  and only if s is real and 
hence the space of regular maximal ideals of L coincides with the real line. 

We shall denote by J the class of normed rings L satisfying (1) through (6). 
In Section 1 we shall consider for the spaces L in J the following questions 
which are of interest in the general theory of normal rings: 

(A) Given a point p on the real line and an open set around p. Does L 

contain a function ] with / ( p ) =  f ](x)e~'Xdx#O while ](2) is identically 0 
- o r  

outside the open set? 
(B) Is the set of / in L with ](2) identically 0 outside a compact set dense 

in L? 
(C) Does every closed ideal I in L which is not all of L have a zero, i .e.  

can we find p with / ( p ) = 0  for all ] in I?  

In section 2 we shall consider spaces L satisfying (1) through (4) and discuss 
a problem concerning trigonometric approximation in L. In Section 3 we shall 
use the results of Section 2 to answer the following question for a subclass of J:  

(D) How may one characterize the ideals which have precisely one zero? 

Examples of spaces L satisfying (1) through (4) may be obtained as follows: 
1 1 --~ 

Let r > 1, - + - = 1, and let p (x) be positive and summable and a (x) = (~ (x)) r 
r 8 

oo 

If L~ denotes the space with norm II]11 r=  f l / ( x )  l ra ( z )dx  and L~ the space 
- o o  

with IIq~ll s= ; Ic f (x)  l~p(x)dx, then L~ is a space L satisfying (1) through (4) 
- o r  

and L~ is its conjugate space L. Furthermore, if sup p ( x - 3 ) <  c~ for all 
. . . . . .  ~ (x) 

real 3, then L~ also satisfies (5). Regarding (6) we have the following Lemmas: 
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L e m m a  1: Let L be a space which satisfies (1) through (5). For such q~ in 
-L let T(~:)= [[ q~ (x + v)II, - < v <  ~ .  i / , / o r  each q~ in L, ~ 6 L u n d  ]] T II-< k ]l ~ II 
where k is a constant, then (6) h~)Ids ]or L. 

Proof: We first note that  if ~EL  then for every real v and [ in L, 

r  

- - o O  - -o0  

since / ( x - v )  EL by (5). Thus q (x+~)EL .  If now / , gEL ,  then / and g are 
summable and so / ~  g is summable. Take any q~ in L. Then 

- - o o  - - r  - -~o  - - r 1 6 2  

oO 

<- f Ig(y) lll/ll" ~' (y)dy<-Ilgll'll ~l[ll/ll.  
--oO 

Therefore / *  g (x).~ (x) is summable for every T in L whence by ( 3 ) / *  g E L. 
From (4) we get that 

I I / ~  gil = ]]ePJI=ISUP I ft*g(x)q~(x)dxl_ 

and so, siace ItTIl_<kltq~ll, we have I I / *g l l< -~ l l / l l ' l l g l l .  

L e m m a  2: Let L~ have the same meaning as above and s< ~ .  I /  q:'EL~, 
let ~ (7:) = H qJ (x + v)I]. Then, /or every V, H ~ I[ <- k II q~ H where k is a konstant, i~ 

r 1 6 2  

and only i[ f p (x - ~) p (T) d v ~ k ~ p (x). 
- - o o  

P r o o f :  

I I~(x+~) l l  ~= f I ~ ( ~ + ~ ) l ~ v ( x ) d ~  = I~(x)i~p(x-~)d~ 
--oO - - o o  

[[TII'= ]I~(x+v)[l*p(v)dv= f Icy(x)]*dx f p(x-~)p(~)d~. 
- a r  - o o  - o o  

oo 

Clearly II ~ II-< k I[ ~ II if and only if f p ( x -  ~) p (~} d v ~< k* p (x). 

We note that  the condition f p{x-v)p(v)dv<_kp(x) is satisfied for iw 
- - o o  

1 
stance for p ( x ) =  l + l x l a ,  e > l ,  or p ( x ) = e  -Ixl~, O < e < l ,  while it is not sati- 

fled for p (x) = e-I x I 
Thus a space L~, r > l ,  is in J provided the above-named conditions on p(:~! 
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are satisfied and also f p ( x - ~ ) p  (v)d~_< k p (x). A space L~ is in J provided 

a (x) > 1 and a (x + y) < a (x) a (y). In particular, for a identically 1, the ring L' 
of all summable functions is in J and every L in J is, on the other hand, a 
sabring of L'. 

S e c t i o n  t :  In [1] Beurling proved the following for the spaces L~: If a(x) 
is non-decreasing and a (x + y)_< a {x) a (y), then (B) holds whenever (A) holds, 

r162 

and (A) holds if f log a(x)dx< oo. Under this assumption, he showed that 
1 + x  ~" 

every proper closed ideal generated by a single element has a zero. (C) follows 
easily from this last fact provided that  a (x) is an even function. 

Let now L belong to J and let T~ be the operator of translation by T. 
If Q(3)=IIT,  H, then clearly e(~l+V2)--<~(v~)Q(T2) and so L~ is a ring. We 
assert: 

L e m m a  3: Properties (A) and (B) hold in L provided that they hold in L'q. 

Proof:  Let F be in L~ and / in L. We assert that  then F * /  is in L a n d  
II F .  ! II-< I I ! l l - I I  F II, ~here II F II is taken in L~ and II ! II and II F .  ! II are taken 

in L. For I I F * / I I  i~ ,:ae supremum of ~l~(x)l.IF.I(~)ldx over all ~ in~  

with II ~ II = 1. But 

~1~(~)1 IF* / (~) ld~_< ~ IF(y) ldy ~ I/(x-y)e(x)ld~< ~ IF(Y)I'IIT~/Ildy- 

Hence 

HF * /H <_ ~ IF(y)I~(y)dy.I]/II=HFH.II]H. 

r 

Further, the set of functions F *  g where geL, F6.L o, is dense in L. 
suppose q~ is in L and 

~ qJ (x) F * g (x) dx=O 
- a r  

For 

r for all F in Le and g in L.  

Then f F ( x - y ) ~  (x)dx = 0 if F is in L'e, whence at  last ~ = 0 which yields 

the assertion. 
! 

Suppose now that (A) holds in Ly and consider any real p and any posi- 
t 

tive e. We first choose / in L with [ (p)#  0, and next we choose F in LQ with 
-F (p) # 0 and _F (4) = 0 for 17t - p I > e. Then F * / 6 L and the Fourier transform 
of F*] vanishes outside ( p - e ,  p + e )  and # 0  at p. Thus (A) holds for L. 

P Now suppose (B) holds in L o. Given g in L we can find for each positive 
e some G in Ls and / in L with I Ig-G*/l l<e.  Further, by hypothesis, there 
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exists H in Ls with 11 G -  H II, taken in L;, less than ~ a n d / t  (4) = 0 for 141 _> a 

forsomea .  Then] lg-H* / < g -G* / ]  +I G * / - H * / I I < e +  ]]l.]]G-HI]<2e 
and the Fourier transform of- H * / =  0, ]41> :r 

t Lorrxma 4: Given (r (x) > 1 and (r (x + y) < a (x) a (y). Then (A) holds in Lq i[ 
o o  

and only i/ f l~ a (x) J Y4~ dx<oo. 
- o o  

1 
proof:  Set P (x) = a (x) (1 + x2) " Then P (x) is real, non-negative, is in 

L 2 ( - o c ,  oo) and f [ l o g P ( x ) ]  l + x 2  dx<oo.  

By theorem 12 of Paley-Wiener, [4], there exists F 1 (x) in L 2 with /V 1 (X)=0,  
x > 0 ,  such that F~(x) is the Fourier transform of a function Gl(x) with 
[ G~ (x) [ = P (x). Then I G1 (x) [ a (x) e L' and G~ (x) e L'. Since P ( - x) obeys the 
same conditions as P (x), there exists F (x) in L ~ with Y (x)= 0, x _> 0, such that 
F (x) is the Fourier transform of G(x) where [ G ( x ) [ = P ( - x )  and so 

1 w h e n c e  ] G ( - x) [  a (x) e L',  a ( - x) e L'.  
l a ( x ) l ~ ( - ~ ) =  l + x  ~, 

Set G2 (x) = G ( - x). Then F2 (x) = F ( - x) is the Fourier transform of G2 (x) and 
F2 (x) = 0, x <  0. 

We can now choose numbers cq, :r corresponding to a given point 79 on the 
real line and a given positive ~ so that the Fourier transform of e~alxG 1 (x)r 
for 2=p and = 0  for 2 > p + e ,  while the transform of e~a2XG,(x)r for ~=p 
and =0,  4<p+e.  Then if H(x)=e~",~Gl(x)*e~"~XG~(x), we have t~/(p)~0 
and l~/(4)= 0, [ 4 - p [ >  e. Also HE L'~ since it is the convolution of two func- 
tions in this space. Thus (A) holds. 

o o  

Conversely, suppose ( log_ a (x)2dx J l + x  oo. Given F in L~ we have 
- o o  

N N N 

dx log [F(x)a(X)[l.+x ~ 1+x2 log I F  (x)[ 1 + x ~ = 
- - N  - - N  - - N  

Thus f i  log [F1 + x  2(x)[ d x 
- o o  

_< log { ]F(x)l~(X)dxtl+x. ) - log a(x) l + x  2"dx 
- -o0  - N  

oo. By the theorem of Faley-Wiener quoted above, 
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a .  VgERMEI1, On a class of normed rings 

it follows tha t  if _k vanishes outside a finite interval,  then F = 0 a. e. 
fails in this case. 

Thus (h) 

L e m m a  5: 

f log (71 (X) d x 

1 + x  2 
- .  r 1 6 2  

r holds in L , .  

Given a(x) as in Lemma 4. I t  there exists O' 1 (X)=>if(X) with 

< co such that a 1 (x) is even and increasing on (0, ~ ) ,  then (B) 

Proof :  Under  the hypotheses,  we can find a non-null function h ( x ) w i t h  

f l h ( x ) l a ~ ( x ) d x < ~  and ~ (2 )=0 ,121>0c .  (Cf. Levinson, [5].) We m a y  sup- 
--oO 

pose t ha t  ~ h ( x ) d x = l ,  for else we take  ke~V~h(x) which has the same prop- 

erties as h but  for suitable k, p has the integral = 1. For  n =  1, 2, ... we then 
set h~ (3) = n h (n 3). Then 

Let  now F belong to L'.. We have 

IIh.*;~-Fll=sup I~ f hn(3)d3 F<x-3)+(x)dx- . h(3)d3 F(x)~<x)dx 

where r is in the conjugate  space of L" and I1~11 = 1,  

Now 

--o0 o o  

<- f lh(3)[HT~F-Flld~. 

~ ( X ) d x l d 3  

for all T. Also lim II T~ F - F [[ = 0 for all v, whence by  the theorem of dominated 
n~oo 

eonvergence] lh~ .F-FHeonverges toO.  Since ~ �9 ~' (2) : 0 when ~ (2) = ~ (~)  = 0 

and so when 121>_ n ~, (B) holds. 
I t  follows f rom the general theory  of commuta t ive  normed rings tha t  if (A) 
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and (B) hold in a semi-simple ring, then (C) also holds there. (See [8], Th. 38, 
p. 114.) Our rings are semi-simple, since / in L and ] (2 )=0  for all 2 implies 
[ =0.  The preceding Lemmas thus yield: 

T h e o r e m  1: Let L be in J. Then (A) holds in L provided that 

f log IIT~lIdv 
1 + ~  <co  

and (B) and (C) hold in L i/ there exists a I (T) even, increasing on (0, co) with 

f log O" 1 (T) d T 
l+v~  <co and such that [[ T~ll _< ~rl (T ). 

- o o  

L e m m a  5': Let L be in J. For any ] in L and positive e, there is some g 
in L with [ ] / * g - / l [ < e .  

Proof: Set el (v) =lS~P iI1T~ ]1- Then el (T) is non-decreasing and 11T~I] -< 01(T). 

Let h(x) be the characteristic function of (- �89 �89 let hn (x)=nh(nx) .  Then 
c,o 

h(x) d x = l  and each h~ is in L. Also 

o o  oo 

f I h~ (x) l Q~ (x) d x_< J" [h (x)[ el (x) d x < oo. 

An argument like that  of Lemma 5 then yields that  lim Ilhn*/-/ll=0 which 

proves our assertion. 

Sect ion 2: In this Section, we study the problem of approximation of func- 
tions in L by trigonometric polynomials, the approximation being in the weak 
topology of L induced in L by L. If L is reflexive, e.g. if L is a space L~ 
with s > l ,  weak and strong closure is equivalent for subspaces of L, and so 
the approximation here will actually be in the norm Of L. 

We shall not assume that  L is a" ring or even that  L is invariant under 
translation but shall only suppose that  L satisfies conditions (1) through (4). 

The weakly closed subspace of L spanned by trigonometric polynomials 
N 

cr e ~rx coincides with all of L, since if / is in L and if / is orthogonal to all 

e ~x in /~, this means that  /(2) vanishes for all 2 and so ]=0 .  Given now any 
~o (x) i.n ~, there thus certainly exist closed sets A of real numbers such that  
~0 (x) is in the closure of trigonometric polynomials with frequencies in A. If a 
set A has this property for a certain ~0, we shall say that  A "synthesizes" % 

We now ask: Can we assign to each ~0 a set A which consists of those and 
only those frequencies involved in synthesizing ~07 In precise language, our 
question is: Given ~0r 0. If S~ denotes the intersection of all closed sets which 
synthesize ~o, is S~ non-empty? 
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T h e o r e m  2: Let h (0) be a ]unction unbounded at the origin, even, decreasing 
on (0, co) and with f l o g  + h ( a )  d a < ~ .  I] ]or each positive a the norm in L 

0 

o] the ]unction e -"l~l satis[ies the inequality 

(I) Ile-~ ~('> 

then ]or each cf in L, ~ r  0, S~ exists as a non-empty set. 

Corollary: I[ (I) holds in L, then (A) and (B) hold there. 

P r o o f :  Suppose (A) fails in L. Then there is a point p and a positive e such 

that  if / e L  and / annihilates all e ' ~  with I,~-pl_>e, i.e. f / ( x ) g ~ d x = O  for 
- o o  

these )L, then also ] annihilates e ~p~. But that  means that the set of 2 with 
i ~ - p l _ > e  synthesizes e 'p~. On the other hand, the set consisting of p alone 
synthesizes e ~p~. Thus for ~ ( x ) = e  ~p~, S~ is empty. 

Suppose now (B) fails in L. Then there is some ~ r  0 in L with ~ annihi- 
lating all ] in L with ] vanishing outside some finite interval. Thus for any 
positive ~, if [ in L annihilates all e ~ with ]21>_~, then also ] annihilates ~. 
Hence the set of 2 with i21 > ~  synthesizes ~. Since this holds for each a, 
Sv is empty. 

But by Theorem 2, Sr is non-empty for ~ r 0. Hence both (A) and (B) hold. 
We do not consider the difficult question of finding when S~ synthesizes ~v. 

We shall only show the following: 

T h e o r e m  2': Let S be any set which contains in its interior both S~ and co, 
i.e. contains the complement o] some ]inite interval. Then S synthesizes qp. 

In the proofs of theorems 2 and 2' we shall make use of the theory of the 
spectrum of a function developed by Beurling. Let ~ (x) be any function with 

c~ 

flqJ(x)le-~ if 0 > 0 .  We set: 
- o o  

- o o  

r247 (s)= f q~(x)e-~dx,  a=Re(s)>O; q~- (s)= f q~(x)e-~dx,  a < 0 .  
0 0 

Then ~b + is analytic in the right half-plane and ~5- is analytic in the left half- 
plane. If  the functions ~b + and ~ -  do not cmMnae each other anulytically 
over any interval of the imaginary axis, we say that  ~ has as its spectrum the 
whole real line. Otherwise, there is a function ~ analytic in both half-planes 
and on some subset of the imaginary axis, with q~(s)=r (s) if 0 > 0  and 
~5 (s)= r if ~ < 0. The set of singularities of ~b (s) is then a closed set of 
points i t  on the imaginary axis. The corresponding set of real numbers t is 
defined as the spectrum of q~ and denoted ~ .  In the study of the spectrum, 
the following Lemma is useful: 

L e m m a :  Let h(x) be a /unction unbounded at the 
and with f log + h (x) dx < oo. Then ]or each rectangle 

O 

b'<b, there exists a constant M such that i] u(x, y) 

origin, even, decreasing 
Ixl<_a, lyl<_b and each 

is subharmonic and less 
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than or eq,tal to h (x) in the rectangle, then u (x, y) <- M i[ [x [ <- a, [y ] <- b'. (el. 
SjSberg, [3], ]or a proo/ o] this Lemma.) 

Let now ~0(x) be a function such that  f[~(x)[e-~(~)dx<-keh(~ where h(a) 
- o o  

satisfies the conditions of the Lemma and k is a constant. Beur]ing showed in 
[2] that then ~ empty implies q~ (x)= 0 a.e.  

o o  

L,mma 6: I] ]or all q9 in L flq (x)le- '='dx<_kll lle ~here h(~) is as 
- -  o o  

in the Lemma above, then ]or any closed set A of real numbers, the set CA O] qJ 
with ~v included in A is a subspace o] L closed in the weak topology o ] L .  

Beurling has proved this result in the norm-topology for a class of function- 
spaces. Our proof is a modification of his. 

Proof:  I t  follows at once from the definition of spectrum that  the spectrum 
of a linear combination of two functions is included in the union of their spectra. 
Hence CA is a subspace. I t  remains to prove closure and, since L is separable, 
to prove sequential closure. (Cf. Banach, [6], Th. 8, p. 131). Given a sequence 
~ ,  ~ ,  ... in L with ~ included in A for all n, and with ~on converging to 
% we must show that  ~ is included in A. 

Take any s o not in A. Then there is a circle ~, around s o = it  o the interior 
of which does not meet any ~ and hence such that  ~b= (s) is regular inside 

r  

? for all n. Since ~,~ converges to % IIv-ll is bounded and f q ~ , ( x ) / ( x ) d x  
- o o  

oO 

converges to f q ( x ) / ( x ) d x  for each / in L. In particular, for any s = a + i t  
o o  

with a > 0 ,  we can let / be the function which = e  ~ if x>_O, and which 
vanishes identically for x < 0 .  Thus: 

oQ o o  

4. (s)= fv. (x)e-S dx = fV.  (x)/(x)dx. 
0 - - o O  

Then r (s) converges to ~(s)  for each s inside V with a>O, and similarly 
for a < 0 .  By hypothesis, we have for s inside ?: 

and hence the function u,  (a, t) = log ] Cn (a + i (t + to) ) [ is subharmonic in a 
rectangle ]a]_<a, [t] ~< b and satisfies there the inequality 

un (or, t) _< log k' + h (a). 

By the abSve Lemma, then, I~bn (s)[ is uniformly bounded for all s in some 
rectangle centered at s o. Hence some subsequence r (s) convergences uniformly 
in each proper subregion to a function ~0 (s) holomorphic in Lhe subregion. But 
we saw that q~n (s) converges to ~b (s) pointwise except on t~e i':.~.ginary axis. 
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Hence ~b(s)=yj(s) and so O(s) is regular in a neighborhood of s o . Thus 
s o r ~v and so ~ is included in A. Lemma 6 thus  is proved. 

oo 

Proof  of T he o rem 2: Since /Iq~ (x) le -"lzl dx<_ lie -"lzl II" II~ ~ II, our assumption 

on lie -~ yields the hypothesis of Lemma 6. Let A be a set which synthe- 

f 1 and the of sizes 9- If ~ = e  *a~, ~)a(s)= eia~e ~ d x =  s - i ~  S O  spectrum 
0 

consists of the point 4. Hence each ~ with 2 in A belongs to the set of func- 
tions whose spectrum is included in A. By Lemma 6, this set is a weakly 
closed subspace and since it contains each e *~ with 2 in A, it also contains ~, 
since by assumption A synthesizes ~0. Thus X~ is included in A. Also we saw 
above that  X~ is not empty if ~ # 0, under our hypothesis. Hense S~ contains 
the non-empty set Xv and so is non-empty, as claimed. 

Proof  of T h e o r e m  2': Let S be a set which contains S~ in its interior and 
which contains, for some a, all 2 with 121>a. We assert that  if for an f in 

c~ 

L [ (2)=0  for all 2 in S, then f ] (x)~(x)dx=O.  Let A be the set of 2 where 

] (4) ~ 0. Then _4, the closure of A is compact and is disjoint from S~. Since [(2) = 0 

!_/ f] if ]2]>a,  2u  (x)= ( 2 ) e - ~ d 2  and so we have, for positive a: 
a 

f /(x)q~(x)e-"lXldx = f ~(x)e -~lxl f 2:~](2)e-~Xd2dx = 
- c ~  - o o  - a  

](4) 
- a  - o ~  a 

Then 

For 

] 

o o  o o  

/ ](x) cf (x)dx= hm !2(x)cf(x)e '~(Z) dx=O. 
- o o  

lim I~b ( a + i 2 ) -  r ( -  a + i 2 )  [=0  
o ~ 0  

uniformly for 2 in ~ because X is a compact set disjoint from the set of 
singularities of ~b (s), and also I](4) 1 is bounded, and finally /(2). vanishes out- 
side of the finite interval ( -  a, a). The assertion is thus proved. 

Section 3: In this Section we return to the class J of rings L satisfying (1) 
through (6), and shall discuss problem (D) for a subclass of J .  
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Def. :  If I is an ideal in L, h (I) is the set of zeros of I, i.e. the set of k 
with ] (2)=0 for all ] in I. 

Def . :  If q~ is in ~, I~ is the closed ideal of / in L with ] * ~ = 0 .  

T he o r e m 3: Let L be in J and let (A) and (B) hold in L. Then i] ~ is 
in L, S~ = h (I~). 

Proof: Consider any open set O with h (I~) included in O. Let now ] be 
in L and ] vanishes identically on O. We can find g in L with H ] , g - ] l l < s ,  
by use of Lemma 5'. Further, since by hypothesis (B) holds, we can find a 

gl in L with Ug-glll  < ~  and ~ , (k)=0 for I),l>-a for some a. Then 

II / - / *  II < 2 and I g, = 0 

for k in 0 and also =0  for ]k[>~.  Then ]*gl is in I, ,  by a general theorem 
on normed rings in which (A) holds. (Cf. MACKEY, [8], pp. 111-12.) Thus 

oo 

]EI~ and so ](k) vanishing on 0 implies f / ( x ) ~ ( x ) d x = O .  Hence O synthe- 
-or 

sizes ~0 and since this holds for any open set 0 which includes h (I~), S~ is 
included in h (I,). 

Conversely, let A be any set which synthesizes q~. If now ] (k)= 0 for all 
c0 

k in A, then f ] ( x - y ) e ~ d x = ] ( ) . ) e f ~ Y = O  for all y and ~t in A, and so 
oo 

oo 

f / ( x - y )  q~(x)dx=O for all y, whence / is in I~. 

For any ~0 in h(I~), if ] (k )=0  for all k in A, then ](k0)=0. By (A),then, 
2 o is in A. Thus h (Iv) is included in A. Since A was any set which synthe- 
sizes q~, it follows that  h (I~) is included in Sr Thus h (Ir S~, as asserted. 

We next give a criterion, in terms of IIT~II, which assures that condition 
(I) is satisfied for a given L in j ,  and so allows us to apply to L the results 
of Section 2. The criterion turns out to be very close to that  of Theorem 1. 

L e m m a  7: Let L be in J. lJ there exists a ]unclion a s (T) which is even, 

increasing on (0, ~ )  while log al (~) decreases on (0, oo), and with 
T 

oo 

( l o g  O" 1 (T) d T < 

-oo 

such that IIr ll  i( ), then (I) holds. 

P r o o f :  Set 9 (3)=I]T~tl and let Z(x) be the characteristic function of the 
interval (0, 1). Then g e L  and we have for n = 0 ,  _+1, •  
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n+l  1 

f Iv(x)ldx= yl~(x+n)ldx= f Z(x) tv(x+n)ldx<-Ilzll'll~ll'e(n). 
n 0 - o o  

Hence 
~r ~ n+ l  
flv(x)le-~ ~ f [~(x)le-"lXldx<-CIIvll ~ e-~ 

Let u (t)= log al (3). We define N =  N (a) as the first positive integer with 

u(N! < _a Since u(t) decreases to 0 by hypothesis, N ( a ) i s  well-defined for 
N - 2 "  t 

a > 0  and N(a)  grows to oo as a approaches 0. Let  now 0 < ( r < l  and set 
N = N (a). Then 

~ e  alnl Q (n)_<2 ~ e -~n ax (n)= 2 ~ e ~(n) ~n= 2 ~ e ~ (~2-")"  
- ~  0 0 0 

Since u (n) increases with n by hypothesis, we have 

OO (N01 ~ o" ) ( 1 )  a ( ~ )  
~e-~lnl~(n)_< 2 e~(n) + e-~ n <_2NeU(N)+O _<2NeN~+0 . 
-r162 

Let now h ( a ) =  log ~ e-"l~lp(n). Then 

1 1 
h(a)<_C~+logN+N.2+ log _<C~+2N+ log 

where C~ is a constant. 
Therefore f log + h (a) d a < ~ if f log N (a) d a < ~ .  

0 0 

Choose now for each positive a the number z(a) 

N(a)_<e ~ (~)§  and so (~ log N(~)<c2+z ~ 

where C2 is a constant. But 

with u (e z ca)) = or. Then 
e z (a) 

oo 

0 

by hypothesis, and so ~ z ( ~ ) d a < ~ .  This imphes that  f l o g N ( a ) d a < o o  
.1 \ ~ /  I /  
0 0 

which in turn gives f log  ~ h(a)da< o~. Clearly also h(cr) decreases on (0, oo) 
0 

and so h(o) has the properties required in (I). Since t]e -"lzlll~<Ce TM, (Z)thus 
holds, as asserted. 

In particular, if, for some finite n, IIT+II=0(Ivl n) as Ivl approaches ~ ,  
Lemma 7 tells us that  (I) holds. 
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g e n a n a a  8: Let I~v (3) 1=0  (13]n) as 13l approaches co. Then i] Zq consists 
o] the single point O, qJ is a polynomial o] order not exceeding n. 

Proof :  Beurling has shown in [2] tha t  if a function ~v has compact  spect rum 

and if flqJ(x)[e-~iXtdx<_ke T M  where h(a)  is as in Section 2, then  for any  
- o o  

contour  F in the complex plane which surrounds the set of singularities of ~b, 
we have  

,f ( x ) = ~  ~(s) e ~xds. 

I n  part icular  for the ~v of this L e m m a  we can choose F as a circle around the 
origin of arbi t rar i ly  small radius. 

Le t t ing  x take  on complex values in the preceding formula,  we see t ha t  9v 
is an entire function and tha t  for each positive e 

I~  (z) l = o ( e ' l )  

for all complex z. Thus 9v has order 1 and type  0. 
We now assert  t ha t  any  entire function 9(z)  of order 1 and type  0 with 

I~ (x)] = 0 (I x I k) for real x is a polynomial.  For  k = 0 this is a well-known result. 
Suppose fur ther  tha t  the assertion holds for k =  n - 1  and consider any 9~ satis- 

fying our hypotheses for k = n. Then q~l (z) - ~v (z) - 9~ (0) satisfies the hypotheses 
Z 

for k = n - 1 and hence by  assumpt ion ~v 1 is a polynomial.  Hence ~ (z) = ~ (0) + z 9h (z) 
also is a polynomial.  Thus by  induction the assertion is proved for all k. In  
part icular  the  99 of this a e m m a  is a polynomial.  Since I~ ( x ) l = 0  ([xl k) for real 
x, 9~ is a polynomial  of order not  exceeding k. L e m m a  8 is thus established. 

T h e o r e m  4: Let L be in g and assume IITTII=o(t31 k) as [31 tends to co, 
]or some positive k. Let I be a closed ideal in L with precisely one zero, the 
point p. Then there exists an integer n < k  so that I consists o] all ]unctions 
in L whose Fourier trans]orms vanish at p together with their ]irst n derivatives. 

Proof :  Wi thout  loss of generali ty we m a y  suppose t ha t  p = 0. We claim tha t  
I is invar iant  under  translation. For  else there is some ] in I with ] (x + 30) 
not  in I for some 30. Then we can choose Z in L with Z ( g ) = 0  if g is in I ,  
; / ( ]  (x + z0) ) # 0. B y  continuity,  this implies t ha t  Z (] (x + 3)) # 0 if [ 3 -  z 0 [ < e 
for some positive e. Then we can choose h in L with 

oo a o  oo 

f z(x)/.h(x)dx= fh(-3)d3 f Z(x)/(z+3)dzr 

Since ]*h  is in I ,  this is a contradiction. Hence / ( x + v )  is in I for all 3. 
oo 

Let  I '  denote the set of yJ in L with f ~ v ( x ) f ( x ) d x = 0  for all [ in I .  Con- 
- o o  

sider now any y; in I ' .  Take  any  h in L and set 9 9 = h * ~ .  Then 
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< f lh(u) l  I (x+u)ldu<-IIhll.llwll.lIT ll=o(l l% 

Suppose ~0 E ~ .  In  the proof of Theorem 2 we saw tha t  ~ is included in S~. 
Hence by  Theorem 3, ~ is included in h (I~). I f  ] is in I ,  then  

f t ( x -  ~) ~ (~) dx = 0 
- 0 r  

for all 3. Thus / * ~ = 0  and hence / * ~ = 0 .  Thus ] in I implies ] ~ I ~  and, 
since ~o E h (Iv), this implies ).o E h (I). Since h (I) contains by  hypothesis  only 
the point  0, we conclude tha t  either ~.v is e m p t y  or ~r consists of 0 alone. 
In  the first case ~ = 0 ,  while in the second case L e m m a  8 yields t ha t  ~ is a 
polynomial  of degree not exceeding k. 

r162 

Choose now any / in L with ] / ( x )  x ~ d x = O , v = l , 2 , . . . k .  Then 

f t(x) h*w(x)dx=O 
- c o  

for all h in L. Choose h in L with IIh.l-lll< . This is possible by  L e m m a  5'. 
Then 

Hence f / ( x ) v / ( x ) d x = O .  I t  follows tha t  y~(x) is a polynomial  of degree not  

exceeding k. Then there is an n_< k such t lmt  all ~ in I '  are polynomials of 
degree less than  or equal n bu t  a t  least one ~0 is in I '  having degree n. Since 
I and hence I '  is invar iant  under  translation, I '  contains all functions YJo (x + T) 
and hence I '  contains the functions x ~, v = 0, 1, ... n. Hence I '  is the set of all 
polynomials  of degree not  exceeding n. 

I t  follows tha t  [ is in I if and only if f [ ( x )  x ~dx =O ,  v = 0 , 1 , . . . n  and so 

if and only if ](~)(0)= 0, v = 0, l ,  ... n. The assertion is thus proved. 
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