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A study of certain Green's functions with applications in 
the theory of vibrating membranes 

B y  ~ K E  P L E I J E L  

Introduction. The first part of this paper contains estimations for x-+ + c~ 
of the Green's functions which satisfy the equation 

(1) a x  ~ u +  Uxx~ u - ~ 2 u = O  

and Dirichlet's or Neumann's boundary conditions. A similar investigation in 
the theory of Laplace's equation was recently carried out in collaboration with 
T. GANELIVS. A previous paper on Green's functions of the biharmonic equa- 
tion has been published in the proceedings of the Symposium on Spectral Theory 
and Differential Problems in Stillwater, Oklahoma, 1951. 

In the second part of the paper, eigenvalue problems of vibrating membranes 
are studied by CAaLEMAN'S methods [1]. By the help of the results of part I 
certain theorems on the asymptotic behaviour of the eigenvalues and eigen- 
functions are obtained. 

In order to simplify the exposition, only membranes with infinitely differ- 
entiable boundaries are being considered. 

P a r t  I.  E s t i m a t e s  for  t h e  Green ' s  f u n c t i o n s .  

1. The e~luation (1), viz. A u - u 2 u = 0 ,  is considered in an open, bounded 
and simply connected domain V of the cartesian x 1 x2-plane. The boundary S 
of V is given by equations x ~=y~(s), i =  1, 2, in which s is the arc-length of 
the boundary, measured in the counter-clock-wise sense, and y~ (s) are infinitely 
differentiable functions. S also denotes the total length of the boundary. The 
distance from a point x =  (x 1, x 2) to S is n, this distance being positive when 
x belongs to V. The letter n also denotes the inner normal of S; n~ = n~ is the 
normal at the point y (s) = (yl (s), y2 (s)). 

The equation (1) has the elementary solution ,)lKo(xr ), where K o is the 

Bessel K0-function and r =  r~,~ is the distance between xl = (x~, x~) and x2 = 
=(x~,x~). We assume u > 0 .  
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Let 

G (x~, x~; - ~ )  = 2~ 

denote any of the two Green's .functions of (1)which satisfy the boundary 
conditions 

G = 0 when xl E S (Diriehlet's condition), 

o r  

~G 
- -  = 0 when xl e S (Neumann's condition). 
~n 

The compensating (or regular) parts u (x) = y (x, x2; ~) of these functions satisfy 
(1) and fulfil the inhomogeneous conditions 

(2) AK u(y)=- 2~ o(Uryx~) when yES, 

~ u  1 
(3) ~n 2~ ~nKo(ur~)_ when y e S .  

The functions u (x )=y  (x, x2; n) are constructed in a well-known way by as- 
suming in the different cases 

(4) u(x)= ~ ~n KO(~r~)~(s )ds ,  
s 

and 

1 fKo(ur~)~f(s)ds  ' ( 5 )  ~ ( x )  = ~. 
s 

where r~=rxy is the distance from x to y=y(s). The conditions that (4), (5) 
satisfy (2) and (3) lead to integral equations of Fredholm's type for the func- 
tions ~ (s). When the unique solutions of these equations are introduced in (4), 
(5) we get formulae for the ~ @1, x2; u) suitable for our study of the~e [unctions. 

If ~ (~1, x~; u) is the compensating part of the Green's function of Diriehtet's 
condition, then 

(6) 
2 ~2 �9 

s 

1 ff K (urx,~).L(s,s')'Ko(,urx~,)dsds', 2~ 2 ~ n~ 0 
s s 

where L (s, s') is defined by the relations 
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K (s, s') ~r ~n~, K~ (~ r~,), 

K (~) (~, s')= ~... ] K (~, s~) K (s, ~) . . .K (s~, s')ds~...ds~, 
S S 

L (s, s') = K (s, s') - K (~) (s, s') + K (~) (s, s') . . . .  , 

r~, being the distance between y(s) and y(s'). 
Similarly, for the compensating part  of the Green's function of Neumann's  

condition, 

1 fKo (7) ~ ( x ,  x~; ~) 2~  ~ (~rx,~)'~Ko(~rx~s)dS 
S 

where 

2zr~ Ko(~r~) .M(s ,  s'). ;-Ko(~rx2~.)dsds' 
S S 

M (s, s') = K (s', s) + K (1) (s', s) + K (~) (s', s) + '" .  

On the basis of (6), (7) the functions y (x~, x2; ~) will be estimated for large 
values of ~. The case when Xl and x2 lie in the neighbourhood of the same 
boundary point is particularly interesting. We first examine the properties of 

K o (~ r~s), ~ Ko (~ rx~) and K (s, s') 

when the distances between x and y (s) and between y (s) and y (s') are small. 

2. Coordinates in the ne ighbourhood of  the boundary.  Let h > 0 be suffi- 
ciently small. Then ~ l = s  and ~2=n  can be taken as new coordinates in the 
strip along S where 0 < n_< h. If ~:1 and ~ are plotted in  a cartesian ~1 ~Lplane, 
the image of the strip 0_<~_<h will l~e a strip along the ~-axis  in which 
0_<~2<h. We denote by I a closed i n t e r v a l  of the ~ei-axis and by C( I )  a 
rectangular (closed) domain ~1 E I,  0_< ~2 < d, where (~ < h and the length of I 
is less than S. We also denote the inverse images of I and of C( I )  in the 
x 1 xLplane by the same symbols I and C (I). 

In  what  follows, the letter y is used for points (yl, y2) of the boundary,  and 
the images of these points on the ~Laxis are writ ten ~] = (~1, 0). The distance 
between two points ~:1, ~2 in the ~1 ~eLplane is 

q~,~2:V(~i-~)~+(~-~) ~. 

Let x be a point in a domain C( I )  and let y E I .  The images of x and y 
in the ~el~2-plane are ~e and ~. If r=rx~ and Q=Q~, the relation r=V~2+ ~ (~, ~) 
holds true with ~b (~, ~ )=  0 (~a) when ~ tends to zero. More precisely, if c (~1) 
is the curvature of S in y=y(~l), 
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(~,)]) = -- C (~1) (~1 __ ~1)2 ~2 __ 1 ]  (C (~1))2 (~1 __ ~]1)4 

+ ~ c' (~1) (~ - ~ ) ~  ~ + o @). 

If n is the inner normal of S in y ( ~ ) ,  then 

1 ~r  ~ 
2 ~ n  

~ - T (~,  v ) ,  

where for r tending to zero, ~P (~, ~)= 0 (~) or 

(~, ~) = ~ c (~) ( ~ -  ~*)2 1 ~,)~ 

1 
3 r (~) ( ~ -  v')~ + o @). 

~2 

On account of the regularity of the boundary, the functions q)(~, ~ ) a n d  
T (~, ~) are infinitely differentiable with respect to ~1, ~2 and ~1. 

We finally note the identity 

(8) ~ (xl' x~) - 1 - c (~1) ~.  

3. Local  expansions .  Let x and y be points in C(I) and I having the 
images ~ and ~] in the ~l~2-plane. We consider, with r = r ~  and 9=Q~,, the 
function K o (~ r) = K o (x V9 ~ + ~). According to Taylor's theorem this function 
is written 

K 0 ( u r ) =  ~ (~b)" 1 

If (~  (~, ~))~, v= 1, 2 . . . .  N, are expanded in finite Taylor series of powers 
of ~1_ ~1 and of ~ and with coefficients depending on ~1, the function/go (~ r) 
assumes the form 

(9) Ko(~r)=~*/(~l)(~-*l~)~(~2i  ~ K0(~0)+/ /A (~, ~/, ~)" 

Here ~* denotes a sum of a finite number of terms, in which /(~l) are in- 
finitely differentiable functions and ~, fl, v are non-negative integers. Since 

(~, ~) = 0 (Qa), the inequality ~ + / / >  3 v holds true. 
If C (I) is sufficiently small it is easily seen that  for any given positive in- 

teger A, the function Ko(ur ) has a local development ( 9 ) i n  which the re- 
mainder has continuous derivatives of orders k <  A satisfying the relations 

Dk lKA (~, ~l, u) = O (u-A e-A~q), A =  constant >0,  

when u tends to + o o  and ~ e C ( I ) ,  r / e I .  
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By definition, the integers a + f l - 2  v are called the degrees of the terms in 
(9). Since a + f l > 3 v ,  these degrees are non-negative. We also observe that  
Ko(go ) is the term in the expansion which has degree zero. 

Similarly 

(lO) ~--nKo(gr)= W/--,*/(~l)(~l-71)a(~9) ~ ~ ~ Ko(go)+RA(~, 7, g), 

where the remainder has the same properties as in (9). In (10) the integers 
a, fl, v fulfil the inequalities a + fl >_ 3 v -  2, v > 1. Thus the degrees of the terms 

in (10)are ~ - 1 ;  the term of degree - 1  is - ~ K o ( x 0 ) .  

4. 
ential operator by the equation 

Transformation o f  the local expansions.  We define the inverse differ- 

(11) F (v) = F (t) dt .  
+oo 

With the factor /(~1) omitted, let 

( l d ) "  (12) (~1 __71)a (~2)/~ ~ ~ K0 (nO) 

be a term in (9) or (10). By simple calculations it follows that  (12)is a linear 
combination of a finite number of functions 

where p,  l and m are integers, p 2 0, l>  0. The degree of the expression (13), 
viz. p - l -  m ,  equals the degre~ ~ + f l -  2 v of (12). 

To abbreviate, we introduce the symbol 0 q for the differential operator in 
(13), whereupon this function takes .the form (~2)V~qKo(g0) with q = l + m .  
(The symbol D q is reserved for monomials containing only non-negative powers 
of simple differential operators.) 

From now on the expansions (9) and (10) are written 

(14) Ko (x rxs) = ~* / (~1) (~z)p ~q Ko (g~) + R~ (~, 7, g), 

and 
0 

(15) On--~ K~ (g rxs) = Z* / (~1) (~2)v Oq Ko (xO) + RA (~, 7, g). 

In (14), min ( p - q ) = 0  and in (15) this value equals - 1 .  The terms of min- 

O K0(x0) respectively. imum degree are Ko(go ) and - ~  
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5. ea-functions. Let ~ ,  ~2 be points in the half-plane ~ > 0 ,  and let ~1 and 
0~ be their distances from a variable point ~/ of the ~-alis .  The minimum of 
the sum & + ~  is 

~ = V ( ~  - ~)~ ,~ (~1 ~ + ~)~. 

By ~ and ~g we understand operators of the type eq= ~ ~ .  , l>0 ,  

but which here contain differential operators with respect to ~1 and ~2 instead 
of $. 

We consider certain functions e ~ (~1, ~,  ~) which occur when the expressions 

(ll),  (15) for Ko(xr~)  and for O~-Ko(~r~,) are inserted in (6) and (7). 
~ns 

An e ~ (~, ~2, ~)-[unction is defined /or points ~,  ~2 beloncfing to a suHieiently 
small domain C (I), except when ~ = ~2 ~I .  It has the /ollowing properties. For 
every positive integer A it has an expansion 

[~2~I)~ ~q (16) e~l (~1, ~2, ~) : Z* / (~1) (~12)p, (g2) 1 Ko (~ ~12) ~- RA (~1, ~2, ~) 

in which the /unctions / ( ~ )  are in/initely di/[erentiable, the integers Pl, P2 are non- 
negative and ~ is the minimum o] the integers p~ +p~-q .  The remainder has 
continuous derivatives D ~ R A o/ orders k <_ A with respect to ~a and ~z. For the 
remainder and its derivatives relations 

(17) D ~ R A = 0 ( ~ - A e - a  ue]-.), A = constant > 0, 

hold true when u tends to infinity. We may suppose that ~ cannot be increased 
by trans/orming the right hand side o~ the expansion; its value is then called the 
degree o[ the ca-/unction. 

I t  is easy to see, that  a function which for every A has an expansion 

~* / (~, #~) (~1~) .~ (~)~, e[/Q (~ ~ )  + ~ (~1, ~, ~) 

with infinitely differentiable coefficients /(8~, 8~) i s  an ea(Sr 8~, x)-function. 
The proof follows by expanding the functions / (~ ,~1)  in Taylor series. I t  is 
similarly seen that  F(~I, ~)e~(~l, ~ ,  ~) is an e'(~l, ~2, ~)-function with # ~ t ,  
provided that F (~1, ~2) is infinitely differentiable. If F = ~ - ~ or F = ~1 or 
F = ~ ,  the value of # equals 2+1 .  Clearly a derivative of an ea(~l, ~2, ~)- 
function with respect to ~,  ~,  ~1 or ~ is an e a-1 (~1, ~2, ~r 

Functions ea(~, ~/, u) and e~(~, ~2, u) are de/ined in a similar way as the 
ea($x,~, u)-/unc.tions when ~ C ( I ) ,  ~ I ,  ~ and when ~ T x , ~ I ,  ~ 2 .  
Thus, these /unctions have expansions 

(18) e a (~, ~, jg) = ~* ] (~1) (~2)p ~q K0 (gD~/) ~-/~A (~, ~], ~), 

(19) ea (~1, N,, u) = ~-* ] (~/]) [Sq Ko (u~,,)]~-~,, + RA (~h, ~/2, ~), 

in which /($0,  /07~) are in]initely di]]erentiable and the remainders satis/y (17) 
with ~ replaced by Q~n and ~n,n, respectively. In (18) ~t is the minimum o[ 
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p - q  and in (19) it equals the minimum o/ - q .  It is assumed that ~ cannot 
be replaced by a larger value in the expansions (18), (19). 

The properties of the ea($, 7, ~)- and ea(~, 7~, z)-functious are essentially 
similar to those of the functions e a (St, Sz, ~-) and need not be listed. We ob- 
serve that  

lim e a ($~, $~, ~), lim e)" (~1, $2, X) 

are e u ($~, ~/2, ~)- and e ~ (~h, ~2, ~)-funetions with /~ _> L 
The formulae (14), (15) show, that  with respect to a sufficiently small domain 

C(I) the functions Ko (zr) and -~-K (u r) are eLfunctions. Thus, an  0 

Ko(xr=u)=e~ 7, ~), ~ K 

when xEC( I ) ,  y e I  and x r  The only term of degree - 1  in the e-Lex - 

pansion of 0n-~ K~ is - - - K ~ ( u ~ ) ,  which is zero when $2=0. I t  

1 
follows that K(s ,  s ' ) = ~  ~n-~Ko(ur~,) is locally an e~ 7~, g)-function if we 

put s = 7~, s' = 7~. 

6.  A t h e o r e m  o n  e ~ - f u n c t i o n s .  I /  the /,unctions e ~ ($1' 7' ~) and e ~ ($2 7, g) 
are de/ined in C ( I  0 and C (I~) and i/ I is an interior part o/ I1 ~ 1~, then the 
integral 

(20) f ea' (},, 7, ~) e~'~ ($~, 7, u)d71=ea'+a'+' ($x, $~, u) 

is a n  e~,+~12+i($1, $2, u)-/unction in every domain 0 (I) ~ 0 (I1) N C(I2). This is 
true, provided that when one or both points St, $2 belong to I, the value o/ the 
integral is de/ined as its limit value when $1 and $2 approach I ~tom the in- 
terior o~ C (I). 

The proof of this theorem depends on the study of the expressions 

(21) f RAI ($ t ,  7], ~g)RA2 ($2, 7, g ) d 7  1, 
lli-ll ~ 

(22) ($~)" f OqIK0 (~/~t) t~A'($2, 7, ~)d7 t, 
Ix~I2 

(23) 

(24) 

( ~22)~2 f RAx($1' 7]' g)~176 1, 
IIFII 2 

I1~112 
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where 01=0~,,  0a=0~,, and where the integers Px, P2, ql, q~ satisfy the in- 
equalities ~ >_ 0, ~ >_ 0, Pl - qx >- ~ ,  P3 - q2 ~> 22. 

Let A be an arbitrary positive integer. Then if A 1 and  As are taken suf- 
ficiently large, it is clear that  (21) has the same properties as the remainder 
in (16). The same is true also for (22)and (23). This is easily seen when 
P l - q l  and p~-q2 are large. In other cases it follows after partial integrations, 

if one observes that,  when applied to K 0 (u0~), the operators ~-1'  ~ may 

be replaced by 0 and ~ -  . Surpassing the details of this dis- 

eussion we examine functions of ~he type (24), which give the principal part 
of the expansion of e ~+~'§ (~1, ~2, u)- To do this we first deduce an integral 
theorem. 

7. An )ntegral  theorem. Let ~1, ~2 be points in ~z > 0 and put 01 = 0~ ~, 
02=0~,~, 0 3 = 0 ~ ,  where ~ = ( ~ ,  - ~ ) .  For ~=~1 we have ~2=~x2 (see sec- 
tion 5). 

By Green's theorem for the upper half-plane one obtains the formulm 

(25) Ko (u 01)" Onn K~ (u 02) - Ko (u 03)" 0 n o (u 01) d ~1 = 0, 
(~z=) 

0 Ko (~ 01)] d ~  1 + 2 ~ K o (7r 01~') = 0; (26) f [Ko(uO1).:nKo(u~2)-Ko(u~2).~- n 
(~=0) 

since ~ is here a point on the ~l-axis it is replaced by ~/= (~1, 0) in accord- 

ance with our earlier conventions; n is the normal of the ~Laxis so that  

On 0~ 2 " 
For ~ =~  (point on the ~l-axis) it is clear that  K 0 (u ~2)= Ko (u 0~) and that  

~nnKo(u~3) = - ~ n K o ( u e , ) =  ~ K o ( ~ 0 2  ). Hence, from (25) and (26) i t  fol- 

lows that  

g o  (,~ 01)" ~ K .  (,~ 0,) d,~l = _ ,~ g o  (,~ ~12)- 

Let I and I '  be closed intervals of the ~l-axis of which I is an interior subset 
of I'. According to the last equation 

(27) f 0 Ko (~ 01)" 0 ~  K~ (~ e~) d ~11 = - :z K o (~ ~12) + R (~1, ~2, x). 
I" 

I t  is easy to verify that  R (~D ~2, n) has continuous derivatives of all orders 
with respect to ~1 and ~2 when ~1, ~1 E I and that,  with positive constants c 
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the relations 

(28) D ~ R (el, ~2, ~/) = 0 (e -cn) 

are fulfilled when ~ tends to infinity. 

8. The express ion ( 2 4 ) .  Let I be an interior subset of I'  = I 1  ;~ I2. 

result of applying the operator ~q~:~--'l~-:~ -~ to formula (27)is  

The 

f / \ ~ -1 
(29) J ~ '  Ko (~Q1)"~ Ko ( ~ O x ) d B l = -  J r ~  ~ ~ 0  Ko (~ ~12) 

I~a~2 

For a function F (t) which tends exponentially to zero when t tends to + oo 

(301 ~ F ( ~ +  ~)  = . ~  F (~1 ~ + ~). 

Thus, in the first term of the right hand side of (291, the operator ~q'~q~ ( ~ )  -1 

may be replaced by a similar monomial containing exclusively differentiations 
with respect to ~.  According to (28) the last term in (29) and its derivatives 
are of orders 0 (e -~ )  when ~l, $2~ C(I) and ~ tends to infinity. 

Our study of the expression (24) completes the proof of the theorem which 
was announced in section 6. 

9. We alse consider integrals of the type 

(31) f e ~' (~el, v], ~) e ~ (~]2, 7], ~) d~] 1 
1111I~ 

where e ~ (~/2, ~], z) is defined when ~2, ~ ~ 12. We suppose that C (I) is part of 
C(I1) and that I is contained in the interior of I1  ~ I2. 

The examination of (311 depends on the study of expressions similar to (21), 
(22), (23), (24) but with p2=0  and with ~q~K0(~Q2) and RA~(~2, ~?, ~) replaced 
by lira ~q~ K 0 (z 02) and R ~ (~2, 9, ~). The investigation of the expressions cor- 
responding t o  (21), (22) is done in the way indicated in section 6. If X2~0, 
i .e.  if q2-> 0, the limit values of the integrals in (23), (24) when 22 tends to 
92 are obtained by performing the transition to the limit under the integral 
signs. Therefore, if ~2 ~ 0, the results obtained for (23), (24) are immediately 
transferred into similar results for the corresponding expressions occurring in 
the study of (31). It /ollows that, i/ ,~2> O, the integral 

(32) f e~ (~=1, ~], ~) e~ (~]2 ~], ~) d~] 1 = e~'+~'~+I (~1, 92, u) 
111"1I 2 
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is an e ~+~'~§ /]2, ~)-/unction when ~ I E C ( I ) ,  V e I .  When $1EI,  ~-1#/]2 the 
value o/ (32) is de/ined as the limit o/ the integral when ~ tends to zero. 

Similarly,  when XI>0, 22>_0 and when I is an interior part o] I l O Iz the 
integral 

(33) f e21 (/]1, /], ~) e'~ (/]2 /], ~) d/]1 = e).1+22+1 (?]1, V2, ~) 
i1.~1i 2 

is an e ~+~':+I (~h, ~ ,  ~)-/unctio~, de/ined when ~1, zi2E I, /]1~/]2. 

10. E~-funetions. Let xl, x~ be points in V + S and let ~'12 be the minimum 
of the sum r ~ + r x , ~  when y varies in S. 

Functions defined in the large and having the local properties of e~-functions 
are called E~-functions. More precisely: A n  E ~ (xl, x2, z)-/unction is de/ined and 
infinitely di/[erentiable with respect to x 1 and x2, when these points belong to V + S 
except when x 1 = x 2 ~ S .  I /  D k E ~ is a derivative o/ order k (D ~ E ~=E~), and i/ 
5 is an arbitrary positive number, a relation D k E~=O(e-C~), where c=c((~) is a 
positive constant, holds true /or r~2 >_ 5 when ~ tends to in/inity.  With respect to 
every su//iciently small domain C (I) the /unction is an e" (~1, ~2, u)-/unction with 

Similarly E ~ (xl, y~, ~)- and E ~ (y~, y~, u)-/unctions are defined when x~ ~ V + S, 
y~ ~ S, x~ ~ y~ and w~en y~, y~ ~ S, yl ~ y~. They are locally equal to e" (~ ,  ~ ,  ~)- 
and d'(/]~,/]~, u)-]unctions with ft>_,~. When r x , ~ 5 > 0  and when r ~ > _ 5 > 0  
the /unctions E ~ (Xl, y~, u) and ~ (y~, y~, ~) and their derivatives tend e$ponen- 
tially to zero in the same way as the E ~ (x~, xe, ~)-]unctions and their derivatives. 

In  an E~-/unction it is assumed that ,~ cannot be replaced by a larger value; 
2 is called the degree o/ the /unction. 

We observe that  the functions of section 1, vie. K0(~r~,),  ~nnKo(ur~)  and 

K (s, s') are E ~ (x, y, ~)-, E -~ (x, y, z)- and E ~ (y~, y~, ~)-funetions (y~=y(s), 
Ye = Y (s')). 

11. Integral relations for E~-funetions. From (20), (32), (33) one easily 
deduces analogous properties of the E~-functions. Thus, the integral 

(34) f E ~1 (Xl, y (s), ~) E ~ (x~, y (s), ~ ) d s = E  ~+~+~ (x~, x~, ~) 
S 

is an E ;'~+~+~ (x~, x~, u)-function, p~ovided that  when one or both of the points 
x~, x~ belong to S, the value of the integral }~e defined as a limit value. 
Similarly, if ~ _>_ 0 

(35) f E ~ (x~, y (s), ~ ) E  ~ (y~, y (s), ~ )ds  = E ~ + ~  (xD Y~, ~), 
S 

and if 2~ ~ 0, 2~ >_ 0, the relation 

(36) f E ~ (y~, y (s), ~) E ~ (y,, y (s), ~r ds  = E ~'+~+~ (y~, yz, ~) 
S 

holds true. 
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12. Estimates for E~-fnnetions. We insert a remark on the asymptotic be- 
haviour of the functions (we make a momentary exception from our conventions 

regarding the notation) ~z \ ~ !  K~ where l, m are integers, l>O, 

l + m = q .  The operator ~ is defined according to (11)and  r=l/;x22~+y ~. 

Then, with A = constant > 0, the ielations 

(37) 

are valid. 

Sine6 it is readily 

follows from (37) that  

0 (s ~ e- A ~) when q < 0, 

K o (~. r) = / 0 ([1 + I log n r [] e -n xr) when q = O, 

[ O ( r  qe -A*~) when q>O, 

^ 

seen that lira r12=1 when rl~ (or ~1,) tends to zero, it 

E "t (Xl, X2, ~ ) =  

[ 0 ( r ~ e  ) when ~<  0, 

i O([l +llogx;i~l]e -A~;'~ when ~=0 ,  

[O(u-~'e-A~;~" 0 when )l>0. 

Similar relations hold true for E ~ (Xl, Y2, ~)- and E ~ (Yl, Y2, u)-functions. 
A derivative of an E~-function is an E~-Lfunction. Hence, it is superfluous 

to assign special estimates for the derivatives of E~-functions. 

13. Consequences for Green's functions. In the case of Dirichlet's boundary 
condition the compensating part of Green's function is given by the formula (6). 

Since ~.o~:K~ ) and K0(ur~,s ) are E~-functions with X = - 1  and ~=0 ,  it 

follows from (34) that the first integral in (6) represents an /~~ x2, u)- 
function. 

The kernel K (s, s') is an E ~ (Yl, Y2, ~)-funetion if we put Yl -Y (s), Y2 =Y (s'). 
Therefore, according to (36) the iterated kernel K (")(s, s') is an E" (Yl, Y2, ~r 
function. Thus, for n > k  and with r=ry~y~, we obtain the inequalities 

I D k K ~"~ (s, s')[ _< constant ~-~+~ e -a ~.  

By the help of these inequalities it is readily seen that 

LN(S, S')= ~ (--1)~K(VN)(s, S') 
V=0 

is an E N (Yl, Y2, ~)-function. Hence, 

L (s, s ' )=  ~ ( - 1 )  ~' K (~) (s, s') ~ 
v=0 

S 

N 
(-t)~K(~) (s, s " ) L N ( s " s ' ) d s "  

v=0 
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is an E ~ (YI, Y2, ~)-function. i t  finally follows tha t  the second i n t e ~ a l  in (6) 
is an E 1 (x .  x~, z)-function. Thus, 7 ( x .  x~, ~) is a n E  ~ (Xl, x2, ~)-/unction. This 
is also true /or the compensating part o/ Green's /unction in the case o/ Neu-  
mann's  boundary cvn~titian, as can be seen by a similar investigation o/ the 
/ormula (7). 

As immedia te  consequences we obtain the relations 

and 

^ 
~2 (Xl, X2, ;g) = 0 ([1 + I log z ~ ]] e -~ ~ )  

Dk 7 (xl, x2, :~) = 0 (r,2 ), k = 1, 2, . . . . 

14. More precise es t imates .  The e~-expansions of ~ K o ( U r x l ~  ) 

Ko(Urxl~ ) can be wri t ten 

~n~ go  (~ r ~ )  = - ~ 1  ~ K o (x e~l,) + e~ (~1, ~, x), 

and of 

K o (z r~ , )  = K o (z Q,~) + e 1 (s ~, ~). 

Thus, on account  of (27) we obtain  the relation 

(38) ] f ~Uo(~rxls)'Uo(~rx2s)ds=~lKo(~12)-~el(~l,~2,~), 2 ze 2 Ons S 
which is valid if Xl, x~ belong to a sufficiently small domain  C(I ) .  The 
eX (~1, ~2, u)-function can be es t imated b y  the help of formulae (37). I f  (38) is 
inserted in (6), we see, t ha t  in the case of Dirichlet 's  boundary  condition, 

(~ .  x~, ~) = ! K (~ ~,2) + 0 (~-~ e -A ~'*), A > 0. 27e o 

This gives the local behaviour  of the compensat ing pa r t  when ~12 is small and  
tends to infinity. When  T12 > (~ > 0 the function 7 (Xl, x2, u) is of the order 

r12 0 (e -c~), c > 0. Thus, since lira = -  = 1, 

1 ^ 
7(Xl, X2, g ) =  ~ Ko(~r12)~-O(u- l  e-AXrl~), A > O .  1 

In  the  same way  the  local relation 

(39) 7 (Xl, x~, ~) = - 1 K0 {u ~12) + O (u-1 e-A ~12), A > 0, 

as well as the formula in the large 

1 Estimates of Green's functions in terms of the light-distance ~12 were first given by 
H.  WEYL (see [3]). 
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(Xl, X2 ' ~ )  = ! Ko (~ }1~) + 0 (x -1 e A,q,), A > 0, 
2a  

are deduced in the case of Neumann's boundary condition. 
By equally evaluating terms of higher orders in the ea-expansions, better 

^ 

approximations are obtained, which give remainders of orders 0 (x-ke-A*~ in 
which the integer k can be made arbitrarily large. 

15.  In tegra l s  o f  the  c o m p e n s a t i n g  parts over  V. Since for ~ 2 2 h > 0  the 
function y (x, x, x) is of the order O (e-C~), the integral over V of this function 
can be approximated in the following way (see (8)) 

h S  

J =  f l Y ( x ,  x, g)dx' dx ~= f l Y ( x ,  x, x ) [1 - c (~ l )~2 ]d~ 'd~  +O(e-~) .  
V 0 0 

If the ea-expansion of y (x, x, ~) is introduced in the last integral, one obtains 
an asymptotic series of the form 

k 

(40) J = ~ a~ ~-~ + 0 (~-k-1). 
v = l  

In the cases of the two different boundary conditions, the constants a, are 
calculated from the ea-expansions by the help of the formula (q = 1 + m; when 
1 is odd the integral vanishes) 

h 

0 

] 
d~ 2 

~ ( - 1)~-~ 2 -~-2 - - - - -  
F ( ~  + 1 )  F ( p - q + l + l )  

which is valid for ~ tending to infinity provided that  p - q  > 0. 
The values of the three first coefficients a~ are: 

in the case o~ Dirichlet's condition 

S 1 1 ( 
al= ~, as= - 6, a3= -512 J (e(s)~ds, 

S 

and in the case o~ Neumann's condition 

S 1 7 f 
a l =  - -~, a2= - ~, a n = -  5 1 ~ .  (c(s))~ ds" 

S 

Here e (s) denotes the curvature of the boundary. 
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Part II. Applications to eigenvalue problems 

16. Carleman's method. 
equation 

(41) 

We consider the problems to seek solution of the 

A u + 2 u = O  in V, 

satisfying Dirichlet's or Neumann's boundary conditions, viz. 

(42) u = 0  on S. 

o r  

(43) 0 u = 0  on S. 
~n 

In his study of vibrating membranes [1] Carleman made use of the formula 

(44) G (3C1, Xo; - -  g2 )  __ G (Xl ,  x2;  - ;g2) = _ (x2  _ g2)  ~ ~)v (Xl )  (Pv (x2)  

where 2, are the eigenvalues, and ~ (x) the eigenfunetions of one of these prob- 
lems. The eigenfunetions are supposed to be orthonormalized on the domain 
V. In the problem {(41), (43)} the smallest eigenvalue 40 is zero, in the problem 
{(41), (42)} it is positive. 

When xl, x2 coincide, (44) assumes the form 

1 
(45) 2ze log y. + ~ (x, x, x) - log Xo - y (x, x, x0) = 

:o ( ~  (x))~ 

= (~  - ~ ) , -0  ~ (L + ~2) (2~ + ~ ) "  

1 
For x tending to infinity, the term ~ log y. is the dominating part of the left 

hand side, so that  

( ~  (x)) 2 log x 
(46) ~=o (4 + ~ (2~ + ~ )  ~ 2 ~ ~ "  

On applying a tauberian theorem to this relation, Carleman proved the 
the asymtotie formula 

t 
(47) ~ (q~ (x)) 2~ ~ when t-+ + c~. 

),v<t 

By integrating (45) over V before applying the tauberian theorem, he was also 
able to deduce Weyl's law for the eigenvalue-distribution viz. 

V 
N ( t ) ~ t  when t ~ + o ~ ,  
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where N( t )  is the number  of eigenvalues less than  t, and V denotes the area 
of the domain V. 

The formulae (46), (47) are valid provided that x be an inner point o~ V. 

17. Asymptot i c  behaviour  o f  e igenfunct ions  on  the boundary.  In  this sec- 
t ion we consider exclusively the membrane  problem with Neumann ' s  boundary  
condition. 

For  x~ = x2 = x the equat ion (39) becomes 

1 

If, according to this equation, the values of y (x, x, ~) and y (x, x, ~o) are in- 
serted in (45), we get a relation in which we can let x tend to a boundary  
point. The result is 

(%, (y))2 1 
(;~2 _ ~),~_o log + 0 (u 1) _j 0 (ZO1). 

;g 

= (L + ~2) (L + ~ )  ~ ~0 

Hence, for ;r tending to infinity, one obtains the formula 

r162 \" (%, (y))2 log 

v=0 

From this relation it follows, in the same way as (47) follows front (46), tha t  
lhe asymptotic /ormula 

t 
( q % ( y ) ) a  when t ~ + o o  and y E S  

Av<t 

holcls true /or the eigen/unctions o] the problem. 

18. On cer ta in  Dir ichle t ' s  series. In  the following investigation we write 
(D and (Do instead of x2 and x~. 

According to (40) an integrat ion of (45) over V gives the result 

(48) tog (D + a~ to- ~ + F ((D) - ~ log (Do - ~Y a~ (D0 2 _ F ((Do) 
v=O v = l  

((D (DO) ~o (L + (D) (,~ + (Do) 

[ _k+l~ 
where F ( ~ o ) = 0 ( ( D  2 )  when o) tends to + o o  

We consider the problem with Dirichlet 's  boundary  condition. Since in this 
problem the least eigenvalue ),o is positive, we can let (Do tend to zero in (48) 
thus  obtaining the formula 
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(49) 
k �9 :r 1 

3L 

- -  o _Zo,  
V lo~,co + ~ a~co ~ + F ( c o ) + C = c o  

4 ~ ~=1 . (~.,~ + co) 

in which C is a constant. 
[When the problem with Neumann's boundary condition is considered, we 

1 1 
subtract - -  - - from both sides of (48). The transition to the limit r then 

(D O O9 

leads to the formula 

V k _"  ~ 1 
4 ~ l ~  ~- l~ a'r176 ~" + co-l + F (co) + C=W~=o~ ;t~ (;t~ + co)" 

Here, of course, the constants a, and C are generally different from the con- 
stants a,, and C in (49).] 

Let H (co) be the function on the right hand side of (49). This function is 
multiplied by 

l 1 co]-Zv iz(n-arg"~), 0<_ argm<2~; 
2~i  ( - co)-~ = 2~--i I 

and the product is integrated along a curve in the complex m-plane. This curve 
is taken from co = + oo to co = a > 0 along the real axis (with arg co = 2 ~), then 
around the circle Ico l=a  and at  last from co=a  back to co= + o o  along the 
real axis (with arg co = 0). According to the calculus of residues, the integral 

equals the sum of the Dirichlet's series ~ 2;L By integrating along the real 
v = 0  

axis, the function H (co) may  be replaced by tile left hand side of (49). In  this 
way we obtain the formula 

(50) y 2 ; z =  V s innz  dco sinzr z a, 
v=O 4 Yl: :7~ J (Dz ~ v = l  d z+  g 

a a (D 

- 6 '  sin ~z ~ ~ sin :~z ; E ( ~ )  
u j o  ~ j co2 do) 

a a 

2g 
• ~l-z  eirCz f 
' ~ H(ae~~ e~~ z)dO. 

a 

The last in te~al  in this formula represents an integral function of z, and since 
( k - 1  (Re  means (co) = 0 r  k~l/ the last but one is analytic for R e  (z) > 2 

real part  of). The other integrals in (5) can be explicitly evaluated. One ob- 
tains the results 
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k 
(51) ~ V 1 +~1 a2v-1 

, , : o  

2 k - 1  
where the ]unction Z (z) is analytic when Re  ( z ) > -  2 

In  the case o] Neuman's boundary condition it is similarly seen that 

~1 a2~-1 + Z (z) 
(52) ~;z V 1 k 

�9 =1 4~  z - l + ~ =  ~ ( z + ~ 3 )  

2 k - 1  
with a /unction Z (z) which is analytic /or Re  ( z ) > -  2 

The values of the coefficients ai, (13 in (51) and (51) are given in section 15. 

The Royal Institute of Technology, Stockholm. 
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