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T. GANELIUS, Sequences of analytic functions and their zeros
The number of zeros of P,(z) tn the sector
a< arg 2<f

18 called N,(x, B). We say that the zeros of (the polynomials in) the sequence are
equi-distributed if

N, ﬂ)=-ﬁ2—_n—am+o(n,)

for all « and B satisfying 0 <f—a <2x. Evidently this property of the sequence
may depend on the choice of origin.

In his paper [4] CarLsoN also showed that every power series representing
an entire function of infinite order has a sequence of partial sums whose zeros
are equi-distributed.

A theorem useful for the study of equi-distribution was published by Erpos"
and TurAN in 1950 [6]:

Let N(a, §) be the number of roots of

ay+ay,z+--Fanz"=0

m the sector
a< arg z<p.
Then
_B-a Tog P
lN(a,ﬂ) P <cVn-log P
where

=|aol+lall+"'+|a"l

P
Vl a9 an |

and ¢ s a numerical constant.

They showed that the theorem is true with ¢=16 and that SzEc(O’s result
easily follows from it.

From another point of view, the theorem of JENTZscH tells us that every
boundary point of the domain of uniform convergence for the partial sums of
a power series is a limit-point of zeros of the partial sums. This, of course,
is not true for general sequences of polynomials. OsTrROWSKI [16, 1922] and
Szead [21, 1922] have given supplementary conditions sufficient to ensure that
the boundary points of the domain of uniform convergence for a sequence of
polynomials are limit-points of their zeros.

1.2. Let us consider a sequence of polynomials converging uniformly in a
neighborhood of the origin to a limit-function, not identically zero, and let us
suppose that all the zeros of the polynomials belong to a given set E.

In connection with the results mentioned in the beginning of 1.1, it seems
natural to ask: For which sets E s it true that every sequemce of this type con-
verges uniformly at every pownt of the plane {(fo an entire function). A related
problem is treated in the dissertation of Korrvaar [11,1950] and a review of
results in this field is given by OBrRECHKOFF [15, 1942). As we have remarked
above, the existence of a zero-free sector with vertex at the origin is sufficient
in the case of partial sums. For general sequences we have to make more far-

2



ARKIV FOR MATEMATIE. Bd 3 nr 1

reaching assumptions. As a typical example we quote the following theorem of
Linpwarr and P6rya [13, 1914]:

If a sequence of polynomials converges uniformly in a domain containing the
origin, to a limat-function, not identically zero, and if every polynomial has all its
zeros wn the half-plane

n
largzisé,

then the sequence converges umiformly in every bounded domain, the limit being,
therefore, an entire functton. The order of this function does not exceed 2.

If we put {=¢° in a polynomial P({)=> a,(* we get an exponential poly-
. ’ =0 ‘
nomial E (z)=P(*)= 2 a,e**. Only a few of the theorems quoted above have

been generalized to the wider class of exponential polynomials > a, €'?, with
pat}

m

arbitrary real 1,. That a theorem corresponding to JENTzscH’s is true for the
sections of Dirichlet series has been proved by Kworr (the result is communi-
cated in [9]). Examples showing the distribution of zeros of some exponential
polynomials are given in a paper by TURrAN [14, 1948], where he proves that
information on the distribution of zeros of the partial sums of the series for
Riemann’s {-function may increase our knowledge of the distribution of the
zeros of the function.

L3. In this paper we study various types of distributions of zeros for se-
quences of polynomials and exponential polynomials more general than partial
sums of a series.

In the following section, we derive some formulas for zeros of analytic func-

tions which will be used in the sequel. Conditions for equi-distribution of zeros
of sequences of polynomials and the corresponding problem for exponential
- polynomials are studied in the third section. We also prove a theorem on
conjugate harmonic functions which gives a simple proof of the theorem of
Erpos and TurdAN with an improved value of the constant ¢. In section 5 we
study the number of zeros of exponential polynomials in rectangular regions
and give another generalization of the theorem of Erpos and Tur4Aw.

In the sixth section we consider sequences of analytic functions and char-
acterize the distribution of the zeros in terms of certain functions of which

— 1 *
hmn— log | P, (2) |

in the polynomial case is a typical representative. We generalize a recent result
- of RosEnBLooM [17] by proving a theorem which yields the above-mentioned
theorem of Caruson, if applied to the partial sums of functions of positive
order.

In section 7, we prove a theorem of the same type as that of LINDWART
and PéLyA but with weaker conditions on the zero-free region.



T. GANELIUS, Sequences of analytic functions and their zeros
Some formulas concerning the distribution of zeros of analytic functions

21. In the sequel we will use various formulas related to the well-known
theorem of Jensen. We have collected them in this section and give the proofs
in such a way that the relations between them become apparent.

The theorem of Jensen reads as follows.

If f(z) is analytic for |z|<r and |{(0)|=1 then

2x
z r 1
(2.1.1) Zlog—=ﬂflog|f(re”’)|d0
b

y=1 T

where 11, Ty, ..., T are the moduli of the zeros of f(z) in the circle |z|<r, a zero
of order p being counted p times.
A well-known method of proof is based upon Green’s formula

an

2.1.2) f«%AH—H\A@dmw=f(G%g;ﬂag)a
D [0}

which is valid if @ and H are continuous and have continuous derivatives of

. . . 7 . .-
the first two orders in D and on its boundary C (% denotes differentiation

along the outward norma]).

" Let G(z, &) be the Green’s function for D, singular at £, and put H=log|f(2)|,
where we suppose that f(z) is analytic in D. An application of (2.1.2) gives

(2.1.3) zEDG(ZV’ &) +log | F(2)] +%Cf log | f(2) ] g%;ds=0.

We must exclude from D small circles around ¢ and around the zeros z of
f(2) when we apply (2.1.2); the integrals over the corresponding contours give
the first two terms in (2.1.3). If D is the circle [2|<7 and if we put {=0,
we obtain (2.1.1), as Green’s function for the circle is

r—z§

riz—0)|

GC (Z, C) = 10g

We now give the corresponding formula for a sector. Suppose that ¢ is real.
The Green’s function for the region S(A; R) defined by

4

|z|<R, |arg zls2l

and singular at  1s
Zl_cl' R2l+zlcl
GS(Z, C)= —log Za_‘_ci.'Rzz_zzCa
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as is found by the conformal mapping of S(1; R) on the unit cirele |w|<1
by the transformation

Z*+2Z-1 Z_(i)*.
- ZP-2Z-T 7 \R

Calculation of the normal derivatives in (2.1.3) gives

E

cos A0 -log | f( Re”’) [d6

log |1 (2) [+ Z Gs(z, £)= Rz’:l(R“ * R 9R% [ cos 240+ L

-+

(2.1.4) , _ " ,
: Z’ ‘—1 RZ -1 _aid
+7_ICA ! [sz+ g“ﬂR“—l-gug“] log lf ezz f(Qe 21) de.
Some special cases of this formula will be noted.
a) If |f(2)—1]=0(2") when z—0, we divide by {%. Letting £ tend to 0,

we find (z,=71,¢%)

R
z,gs (-;,,,r - E;) cos A6, =

T

=j—tfcosle-log|f(R |d6+— f( )loglf( e“)f(ge—%l‘)

de
e

which i1s a formula used by CarLson in his investigations of sections of power
series [4].

b) Let f(z) be analytm in the sectors S(4; R) for all R and suppose that
there is a pu<AZ such that

1 ;
lim — 1 )| =0
lim % og |f(ee?)|
for |6 js% + Letting R tend to infinity we find that

z,+c Af%ﬁloglf(ee“)f(ee—%)

CZ

(2.1.5) log|f@)l+ > log

2,e8(4; o0)

de.
0

We now  Suppose that f(2) is a polynomial P(z). Equation (2.1.5) is multi-
plied by (™! and integrated with respect to ¢ from 0 to R. When R tends to
infinity we obtain the following result:



T. GANELIUS, Sequences of analytic functions and their zeros

If P(z) is a polynomial of degree m with zeros z=r,¢€% then

gt 1 fm |P(eé) Ploe?)| de
2.1.6 ~lh =5 -+5- |1 e
( ) Iﬂ.,lz«r((p 16D 27 27To * P@F )

A simpler proof is obtained by observing that, according to the factorization
theorem for polynomials, formula (2.1.6) is equivalent to the corresponding for-

mula for P,(z)= 1—5. Putting r=‘—f——‘ we find that we must prove that
1 1
0<|6,|<n)

-

2
fl 1+27 cos Oy + 7 d—z=0§—0?.

(2.1.7) ¢ 1727 cos 0, +7° 1

°
That is easily done, for example, by differentiating with respect to 0,.

2.2. In order to study also exponential polynomials we give formulas for
the strip B, defined by |Im(2)|<b, and corresponding to (2.1.5) and (2.1.6).

The function w=e2?4 maps B on the sector |arg w|<—=. From the formula

=57
(2.1.5) (in the w-plane) one obtains
T mt o b 5
3h 4 o2 1 +3 —3
221) log|1(0)]+ 3, lou |y |- o [ BT iBIm by,
2,€B % atl 2b Z@-0 | =D
e2b — 20 —% erd +e 2?

if, for example, f(z) is of finite order; z are the zeros of f(z). (The same
transformation applied to (2.1.4) gives a result of which a special case is used
in 5.5.)

For an exponential polynomial

E(z)=ayé"* +a, 4% + - + g, én®
in which {4,}§ are real numbers satisfying
An>Ana> > A > 2,=0

and a,a,#0, we deduce, corresponding to (2.1.6), the formula

B 1 °°l |E(z + ib) E(z—1ib)]|
on 2m) OB [E @)

(2:2.2) > b-lwh= da,

1¥y1<

where z, =, + 1y, are the zeros of E(z).

6
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To obtain a proof of this formula in the manner sketched in the text pre-
ceding (2.1.6), we apply (2.2.1) to

B =)
and to
E2 (Z) = Ea( ) e—/lnzq

We put b=g and observe that the general result is afterwards obtained by a

simple transformation from the formula in this special case. The formula for
E, (2) is integrated with respect to ¢ from — co to 0, and that for E,(z) from
0 to oo.

Thus we obtain

0 0
e +é
(2.2.3 a) log|E,(¢)|d¢+ 2 log o di=
oo |Im(.¢:‘,)|<g_°<7
1 r -z ¥ .7
=;farctge -log El(x+z§)E1 (w—zg) dz
and - k
o0 a,,+ :
(2.2.3 b) flog[Ez(C)ld§+ S flog o de=
o |Im(z,,)|<§ Y e €
=lj?arct * log | B, +'7—Z)E w——iy—z) dw
- g ¢ log | By (o t+i5) By 9 X
If o -
= f arc tg e”* -log | By (z)| dz
is subtracted from both members of (2.2.3 a) and
2 o0
;farc tg € -log | By (2) |dx
from those of (2.2.3 b), we find, after addition of these formulas, that
] o0 7_Z — “7_t
IIm(zv)|<g_w er—e 2_ | E (z) ]
0 =
_2 " E; (z) 2 f s E, (z)
ﬂfarc tg ¢ - log 7, (@) dw+ﬂ arc tg e " -log 7 @) dz.
S b
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To obtain this formula we have used the obvious equalities

7
arc tg e”* + arc tg ¢’ = 5

and

E, (a:-{-zg) E, (x—ig> ’_’Ez (m—%—ig) E, (m—ig) '—’E(armg) E(x—z%) ’

| B, (=) - | B, (z)]? - | E () [?

Putting ¢!~ =7 in the first member of (2.2.4), we find, according to (2.1.7), that

241_ (i‘_l |).
=7 2 yv

r

¢%+r

& +é
er—ét ¢¥r—r

(2.2.5) f log di= % f log
—00 0

After a simple transformation the sum of the last two integrals in (2.2.4) may
be written

=]

éf 2 An F B'dx  Ann’
7

E+e® 8

(2.2.6) arc tge " Apxdr= -

L%

] 0

where the second member is obtained through integration by parts. The value
of this integral may be found by a simple contour integration. Insertion of
(2.2.5) and (2.2.6) into (2.2.4) completes the proof of (2.2.2).

Equi-distribution of zeros of polynomials and exponential polynomials

3.1. We are going to study sequences of exponential polynomials {E,(2)}7°
with

y . A(")z
- vy tu
E,(z2)= 2 aYe
p=0
where every 1$’ is real and non-negative.
A sequence of exponential polynomials is said to have its zeros equi-distri-

buted in a strip
B>Im(z)> 4

if the imagmary parts of the zeros of the polynomials form a sequence which
is uniformly dense in the sense of Weyl (cf. ErRDOs-TurAN [5] and references

given there), i.e. if
. Ny(x,f) p—o
plg{.lo 2=z

for all o« and B satisfying B>pf>a>A4. N,(x, 8) denotes the number of zeros
of E,(z) in the strip B>Im(2)=>a, and A,=Max i},
n

8
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For sequences of polynomials a corresponding definition has already been
given in the introduction. To avoid complications when P,(0)=0 for some or

.. 0 .
all », we count a zero at the origin as 5, Zeros in every sector of angle 0.

. . . A .

If Min 2=¢>0 in E,(2) we count this zero at — oo as 2—7—zb zeros in every
I

strip of breadth b.

3.2. Some simple conditions for equi-distribution can be derived from the
formulas of the preceding section.

Theorem. A necessary and sufficient condition that the seguence {E,(2)}7,
should have its zeros equi-distributed in the strip B>Im(z)> A is that

|E,(x+1a) B, w+zﬁ|
()]

for all « and B satisfying B>p>a> 4.
We introduce the notation

dz=0

(3.2.1) lim - J log

y—>00

1 [ |BEtiytn)E@ri—m)|
(WM =5 flog (B w+in)] dz.

That (3.2.1) is a necessary condition is seen from (2.2.2) in the following
way. We suppose that the zeros are equi-distributed in |Im( |<B Other
cases can be handled after performing a translation. Let § be a p0s1b1ve number
less than B. (2.2.2) may be rewritten

B
(3.2.2) fN, —6, 6) d6~§—+e» (0, B)

?’Ir—‘

because

]
Ilﬁ(ﬁ~|yy )= [(B—0)dN, (- 00)—fN( 9, 6) do.
Yy 0

From the assumption of equi-distribution we infer that

1
Iim —N,.(—¢p,<p)=;

P—>00 Z.

for 0<@<B. Since N,(—0,6)<N,(—8,p), %N, (—0, 6) is uniformly bounded
for 0<0<f. Hence "
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1 1 _B
lim fN( 9,6)d0— f}gﬁl (~6,6)d0 =~

S——

and it follows from (3.2.2) that lim & (0, 8)=0. The necessity of (3.2.1) for

equi-distribution follows readily.
To prove that (3.2.1) is a sufficient condition we proceed as follows. After
a translation, (2.2.2) may be written

2

b
Z (b—lyv_‘yl)=%+sv(y:b)

1
3.2.3 —
( ) /L |y, —wl<b

We now integrate both members of (3.2.3) with respect to y from «—5 to
p+0b (cf. 5.8). Every zero of E,(z) in a<Im(z)<f (we suppose that 4 <a<
<B<B) gives a contribution b* in the sum of the left member; some other
zeros may give a contribution and hence

ptb

N,(a,ﬁ)s%(ﬂ—a+2b)+ fe,(y, b)dy.

a-b

b2
2

A corresponding integration from «+b to f—b gives (we suppose that « +b<f—b)

B2 B pe
INv(m,ﬂ)Z—n(ﬂ—a—Zb)ﬁ-fs,,(y,b)dy
at+b
and thus
b1 b 1 ﬁ b 1 B+b
(324) ~ tr | e@ by No(wf)- Qn“sy—ﬁgg & (y, b) dy.
a+b a-b

Let ¢ be a positive number satisfying
1.
6<— Min {B—-8, x -4, f—a}.

If we put b=%t, we have
lim ¢, (y, b)=0

Y—>00

for every y in both intervals of integration. From (3.2.3) it may be seen that

Y
——+20b
b* ( 2 at+f f—o
OSﬂﬁ-e,(y,b)S P +£,,( 5 9 +2b)

10



ARKIV FOR MATEMATIK. Bd 3 nr ]

for a—b<y<p+b and thus our assumption implies that & (y, b) is uniformly
bounded with respect to y for fixed b. Hence

. B-b B+o
lim 7, = lim fa,,(y, b)dy=0, lim J,=lm f &y, b)dy=0.
P->00 P—>00 a+b e d y->00 b
e a’

We now choose », such that |I,|<

follows from (3.2.4) that

3 2
and |J,,|<%t— for »>v,. Then

1 f—a
|Z’Nv(°(,l3)“ﬁ

<eg

for »>v, and the equi-distribution follows. Thus it is proved that (3.2.1) is a
sufficient condition.

3.3. Theorem 3.2 yields immediately a corresponding condition for equi-
distribution’ of the zeros of a sequence of polynomials. We are going to study
this polynomial case a little more thoroughly.

A simple transformation of (3.2.1) shows that the condition for equi-distribu-
tion of the zeros of {P,(2)}¥ is

lim &, (y, ¢)=0

v—>00

for all ¢ and w, where

e X | P, (ré ®*®) P, (ré ¥=9)| 41
(3.3.1) & e) =5 f log | P, (ret) 2 r
[

and where n, is the degree of P,(z).
We introduce the notation

N,(0,0) if 6>0
V.(0)=1 0 it 6=0
—~N,(6,0) if 6<0

where N, («, ) now is the number of zeros of P,(z) in the sector f>arg z > .
If 6>2x we define N,(0, 6) by

N,(0,0)=N,(0,0—27)+mn,

and in a similar way V,(9) is defined for every value of 8. With these nota-
tions, (2.1.6) gives

{3.3.2) -;:J‘ (¢—|6|)dVv(0)=2(£—n+ev(0, ®).

11
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Integration with respect to ¢ from 0 to m gives on the left side

b4

[Ode (0 + ).

2n,‘
-7

(3.3.3) ;Hdq;f(qo—]e|)dV,(e)=2—1n:f(n—|o|)2dVy(
0 —@ -

In the right member we change the order of integration and apply Jensen’s
formula (2.1.1) written in the following form

TML) _if |P,(ré'®) (re‘“”)l'
(3.3.4) f ” du——2n0 log dep.
°

| P, (0)

R, (u) is the number of zeros of P,(z) in |z|<u. We obtain in this way from
equation (3.3.2), applied to P,(z€'¥), that

dr,

,

1 fp ey L[ [Rlg,
(3.3.5) meﬂ &V, (0 +yp+a) 6-m![0 ” du—log

The common value of the members is called d,(y), that is

P, (ré¥)
P, (0)

2

(3.3.6 a) o, (w =2i—f02dg 0+1p+7z)~—

-

and

(3.3.6 b) 6p(1/1)=ft£v(zp, ¢)d¢=%fUr1‘)’”§‘2d

]fﬂ.
7
Eyidently 6,(y) has the period 2z.
Formula (3.3.5) establishes a connection between the distributions of the
moduli and of the arguments of the zeros of a polynomial.

P,(ré")
P, (0)

3.4. We prove the following theorem and show how a well-known sufficient
condition for equi-distribution is derived from it.

Theorem. A mnecessary and sufficient condition that the zeros of {P,(2)}¥
should be equi-destributed is that

(3.4.1 a) lim Ma,x Oy () =0.

V-3 00

An equivalent condition s that

(3.4.1 b) lim Min 8, () =0.

V=200

The function d,(y) is given by (3.3.6).

12
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We first prove that the conditions (3.4.1 a) and (3.4.1 b) are equivalent by
showing that each one implies the other.
From (3.3.6 a) it is easily seen that

[ 8, (w)dyp=0.
That
(3.4.2) |8 (@w+h)—8(v)|<2n|R|

follows, for instance, from a study of a single term in the sum, giving &, (yp),
in (3.3.6 a).
Suppose that
Max 8, (y) = 2,
v

and that
Min 6, (p)= — A <0.
v

According to (3.4.2), the graph of the function to the right of the minimal
point must be situated below a straight line with slope 27 through the minimal
point. To the left of this point the graph is below a line with slope —2a.
Hence, if
& () =Max {5, (y), 0}
and
& (y)=Min {6, (y), 0},

we evidently have

f6+ ydyp<2mx,

and
- A
B
Now - '
f5+ Ydy+ fa ydy= fé('(p)dtp 0,
and hence

d< 27 Vo,

Thus (3.4.1 a) implies (3.4.1 b) and a similar discussion shows that implication
is also valid in the other direction.

By aid of this preliminary result, theorem 3.4 follows from theorem 3.2, as
it is seen from (3.3.1) and (3.3.6 b) that

(3.4.3) 276 (9, 9)=20,(y) =4 (p + ) — 0 (p — @),
and from (3.3.6 b) that
(3.4.4) 8, (p)= Oj &, 9)dg.

13
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Equation (3.4.3) yields the sufficiency of the conditions given in theorem 3.4,
and equation (3.4.4) yields their necessity, because the sequence e, (v, @)} is
bounded according to (3.2.3) and because &, (y)<2m.

3.5. Among the sufficient conditions for equi-distribution the following con-
dition is perhaps the best known one.
Put

P,(z)= Z al 2"

and
M,=Max | P, (¢°)].
14

“A sufficient condition that {P,(z)}? should have its zeros equi-distributed is
that simultaneously

(3.5.1a) Im — " log M,=0,
(3.5.1b) lim %’ log |af’ ai)| =0

(We suppose for simplicity that af’#0 for all ».)

This condition is equivalent to the condition for equi-distribution which follows
from the previously quoted theorem of Erpés and TurAN. We are going to
study this theorem more closely in the following section.

We now show how this condition can be derived from theorem 3.4. Ii we put

Ty

re=Tf(1-2)
with

2u=gu e
and form the polynomial

- (z)=lﬁ1(1~z-e-i%),

then it is true (ScHUR [19]) that

i i M”
(3.5.2) m,,=MiX |p, (¢%)] < VI e (,,) Ma X |P,(€%)]= ViaPa?| )
The proof of (3.5.2) is obtained by observing that
if2 ]. . 658 2
Oull — Py =+ o —2cos (0—0,)=2—2cos (0—-0,)= ‘1 - o

Hence

14
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fi' ] eio 2> ﬁ . eie 2
-—| =z — |
u=1g# Zu #1 e#

and the result easily follows.
To prove that the zeros of {P, (2)}}° are equi-distributed, we consider {p, (z)}¥°,
as the zeros of p,(z) have the same arguments as those of P, (2).

All zeros of the polynomials p,(z) have modulus 1 and thus the function
5, () defined by (3.3.6 b) is

1 %0
_l iy ﬂ lf M?i_w)
mf log |, (r€'?)| e log
[} 1

™

A
-

I

& ()

v

1
- l iy -iy ﬂ
= nVIIOgIPV(re )a, (re )| r’

0
where :

n 1
0=}
We define m, by

m, = Mi,x lg. (€%)|= Mix [p, (€7)].

According to a theorem related to Schwarz’s lemma (see e. g. KoeBE [10,
p- 59]) :

2r
1 iy <
og |p, (ré?)| < 1+r10g m,

for 0<r<1, and ¢, (z) satisfies the same inequality. Thus

. —5f(zp)s—$—-4-log2-log%
and by (3.5.2)
_4-log2 ) M,

og ———
n, V]a§a®

Min 6} () >
v

Hence the equi-distribution follows from theorem 3.4 if (3.5.1) is satisfied.

3.6. As an example, we consider a power series

wich radius of convergence 1 (a,# 0).
Then, if

P,(z)= 3 a,2"

15
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there is a sub-sequence {P,, (z)}{2, for which

. 1 for r<1
hm Max |P”i(”¢)\vl— \r for r>1
and
1
lim |a, ["=1.

()

Hence the zeros of the polynomials in the sub-sequence are equi-distributed as
is seen from (3.5.1) and this conclusion is the previously mentioned result of
SZEGO.

That the above statement is true for the partial sums of a function of in-
finite order was first shown by Carrson [3, 4]. Using the estimates given by
CarrsoN [4, p. 5—6], we can, by a transformation z=K,{ in the »th partial
sum, obtain a sub-sequence fulfilling the requirements given in (3.5.1).

This method cannot successfully be applied to all sequences with equi-distrib-
uted zeros. We give an example of a sequence which cannot in this way be
brought to satisfy the condition that

.1 M, _
{3.6.1) ,IEZ py log ———— Vl oy 0.
Let

Pe-11(1- %) - Swe,
u=1 z
with
4 Iu A dpni
@) _ 2v+1,
2 se6 5 i

The zeros all satisfy |Re(z’)|=1 and they are evidently equi-distributed.
We put z=4%C in P,(z), and write 4, ({)=P, (k) and m,= Ma,xlp "]

We now try to determine k, so that

lim L log T
y—>o0 V Vlbsv) ]f:l

lim - log |6 = log 5

y=>00

a suitable value of k, must be > 2.
A simple calculation shows that

2 (.2
lim —logIP (re"”)]— 1. 1 (r +471|600ss|+4)’

if r]coss|>1.

16
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Hence
ky (k,+2)
1 m 1 4 o1 k421
im = log ——~— > lim ; log ——— = lim > log =5~ > ; log 2,
oy loe V[P k?| = lim 5 log —5 lim 5 log =5~ = 5 log

and (3.6.1) cannot be satisfied.

A theorem on comjugate harmonic functions

4.1. In the previous section, we referred to a theorem of ErpDOs and
TurAN [6]. In their proof no use was made of the results of the theory of
analytic functions. Their theorem is a generalisation of a result of Schmidt and
ScuuR [19] which gives an upper- bound for the number of real roots of a poly-
nomial. A simple function-theoretic proof of the theorem of Schmidt has been
given by LitTLEwoopn and Orvorp [14].

We are going to prove a theorem for a pair of conjugate harmonic functions,
which implies the result of Erpos and TurAN and which gives a better value
of the constant occurring in that theorem.

4.2. 1f the inequality of ScHUR (3.5.2) is compared with that of Erpos and
TurAN given in the introduction, we see that it is sufficient to prove that f

P(z)= ﬁ(l—z-e‘wﬂ), 0<6,<2n

v=1

and +f N (a, B) is the number of 0, such that

0<a<B,<f<2m
then

4.2.1) N« B)— ﬁ—Z;—“n <cVn- Max log [ P (¢7)].

(A proof which does not require ScHUR’s inequality follows from the investiga-
tions in the following section.)

To show the connection with the theorem on harmonic functions, we observe
that the function (z=p¢'®)

1
() = — log | 1— e @]
1
which is harmonic for p <1, has as a conjugate function

vy (2) = % arg (1—pe @),
It is easily seen that
dvy(ed’) _ 1
—_— = < ———
o0 2n
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for p<1. On p=1, »,(z) takes the boundary values

6
Vi (0)=0C+ 2_7; —uy (6)

where C; is an appropriate constant and u, (0) is defined by

01if 6<0
) = I L
#O=11 i 90,
Thus it is seen that a harmonic funetion »{z) conjugate to
(4.2.2) u(2) = —31; log [P (0€'?)]
has the boundary values
(4.2.8) . V(0)=Cy+ nf -N(0,0)
27
on p=1. The derivative satisfies
ov n
(4.2.4) 8—0 < ﬂ

if p<1.
In the sequel we do not restrict 6 to the interval (0, 2z). The value of
N (0, 0) is given by the periodic continuation of ¥ (6) if 0 does not belong to

this interval.
If (4.2.2), (4.2.3) and (4.2.4) are compared with (4.2.1) it seems natural to

state the following theorem.

4.3. Theorem. Suppose that f(z)=wu+1tv, f(0)=0 4s a funclion which s
reqular for |2]<1 and suppose that

(4.3.1) w<d, 2—'6’<K
for |z|<1. Then
(4.3.2) |v(z)|<CVHK

for |z| <1 where C is a constant e.g. 13.
Remark. It will be seen below that the value of C' cannot be smaller than

7. Since it follows from :—;<K and

2fv(gei”)d0=2:rw(0)=0

0

that |v(2)]<m K the theorem is obvious if H>K. We may suppose in the
sequel that H<K.

18
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ov

As 50" ga— the theorem holds true if (4.3.1) is replaced by

(4.3.1) u<H, —379<K.

Proof. To simplify the notations we suppose in the proof that f(z) is reg-
ular for |z|<1+e¢ and prove that (4.3.2) holds for |z]=1. The theorem follows
by a simple transformation.

For the proof we use a formula related to (2.1.5) but valid for every harmonic

function regular in |z]<1. We consider the domain consisting of the points z
which satisfy the inequalities

l2]<1, |arg z| < 0=, |z—1|>e.

24° |

Green’s formula (2.1.2) is applied to the functions

G (z) = log i+ 2|, H(z)=u(2€?).
. . oG
G equals zero on the straight lines of the boundary and 5;:0 on the arcs
of the circle |z|=1. If £ tends to zero, the integral f—- H - d s along the arc

of the cirdle [z—1|=¢ tends to mwu (1, ¢) and we find (u (o, 0)=u (0€'%)
1

u(e <P—1)+’“(Q ‘P+£>
MJ ’ 22 22

1+ 0% o tde +
0
21
A6
+ | log cot—z— (L, g +0)d0=mu(l, ).

As
up (L, ¢ +0)=25(1, @ +6)

an integration with respect to ¢ from —¢& to £ gives

31
(4.3.3) flog cotl— [w(1,0+&—v(1,0--8)]d0=
£ 1 ﬂ -
u(e,w—ﬂ)%u(@,qﬂrz—x)
= au(l, p)—21 — i%—g“ Q”‘ldg]d(p
~E 0

19



T. GANELIUS, Sequences of analytic functions and their zeros

ov
Now 8—6<K’ hence

v(l, 0+§)—v(1,6—§)£v(1, 5—;7)+K(%+9) —~

] L ' 7 T A
- [’I)(l, —§+ ﬂ)—K<ﬂ—0)]—’D(], §—ﬂ)~v(1, —*E—*‘ 2_A)+K7
7
fOI' |0|S 2_A
We put y=£&— % and observe that
A 20 A 26 [l 4
4 logt, ., ¢
flog cot ?lde—Zflog cob ?dﬂ—l 1+t2dt— lk
7 1
where
o0 1
- [logt .,  [arctgt, < _ ,,,___1____
k= ————l_szt—f . dt—”zo( 1) (2m+1)2—0'916
1

is known as Catalan’s constant. In this way {4.3.3) is transformed into the
inequality

o(l, ) ~v(l, ~p= K7 -
“frr LA L
1 ulo, (p—2l u\o, ¢ 24
- = 22 o tdo—mu(l, )| de.
4k 1+ 0% ’
”"‘2_”3 0

We interchange the order of integration and use the inequality
B
|[u(e, 0)d0|<Max u(o, 6)-2n<2nH
2 ]

which is evidently true because

2n

[ w(o, 6)d0=27mu(0)=0.
0

Thus

20
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1
n_ 2 27 de o agl_ g% _ 2
We choose .
Kk
r=Vam
and get
(4.3 o1, D—o(t, —p)z ~2x )/ ZHE.

The same result holds evidently for v (1, yo+ ) —v (1, o —y) for every x,.
As there certainly exists a 0, such that v (1, 6,)=0, it follows that

o (1, 0)13%1/%111(.
The result of ErRDGs and TuriAN follows from (4.3.4) since this inequality is
valid for V (0) as given in (4.2.3). We have H= % log Max | P (¢'%]) and K=
[

= and therefore

27
N («, 8) _E:ﬁ

7 2x

< |/27 log Max |P(e'%)]
-V k n

The simple example P(z)=(1+ z)" shows that no number smaller than
Vl—l—é can be substituted for 27% Hence the best possible value of the con-
og

stant C in theorem 4.3 must be larger than = V—loz 9’

On the distribution of the zeros of exponential polynomials

5.1. In this section we give some results concerning the zeros of exponential
polynomials. In combination with a method used in a preceding section these
results lead to a proof of a theorem which is a generalisation of that of ErRDOS
and TurAn.

We are going to study the number of zeros of
EQ@)=ay+a, 1%+ +a,én*
in rectangular regions R (8, T') defined by

[Re(z)| <8, |[Im(z)|<T.
We suppose that
g On #0

21
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and that
l‘u+1 —l,u 2y> 1]

for u=0,1,...,n—1. We put 3,=0. In the sequel we assume that y<1.
The function D (z) is defined by

D(z)=e¢"*? E (2).

We put
e(x)=sup | E (z+1y)|
¥
and
d(x)=sup | D (z+1¥)].
Yy
If

@=lao|+|ay]+ - +]an].
we evidently have
e(x)<Q for z<0

d(x)<@Q for =0.

Q

- V'“oanl

and denote by {2,} the zeros of E(z) in some order.
We are going to prove the following theorem.

Theorem. Let N (8, T) denote the mumber of zeros of E(z) in the region
R (3, T) defined above. Then

We also put

S

- 3[¢#+3‘§] < N—(gn—@ ——gs 6[e%¢%+¢]

where

B 7\ log S.
¢ (T+ '}’) An
For §—>oc this theorem yields the inequality
N (oo, T)ZZ‘_3V(T+ E)logS

An 7 ] A

and if we apply this result to the polynomial case, where we are interested only
in values of 7<2x and y=1, we find

N (o, T -
y

log 8 .
An

T _sy3a
T

It is easily seen that this result implies the theorem of Erpés and TurAN with
c=3V3x.

22
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5.2. To simplify our equations we shall suppose from now on that we have
multiplied E (z) by a suitable constant so that @=1.

Lemma. If T>0 and <0 we have

T

(5.2.1) floglE(:c—i—zy |dy=> — 2n(T+ )log!2|
@

-7
Let { be a number with Re(£)<0. We define
h(z)=E ({+2).

Green’s function for the left half-plane Re(z)<0, singular at —a (a>0) is
z—a
log TTal

A formula, correspondmg to (2.1.3) is clearly valid for the exponential poly-
nomial % (z) if the domain D is the left half-plane. We find

" log | W)I
a®+y?

X, —a
2, log [=
xyeD %, t+a

‘+Iog[k(—a)|—:—;

-0

=0

where {x,} are the zeros of h(z). As the Green’s function is not negative in
D, it follows that

(5.2.2) f ’Ogl’;‘:@”d log [k (—a)].

Now |k (ty)|<1 and thus for u>0

log |h(iy)| , [ log|h(iv)|
dry VT ) Tty

-u -0

1 .
(5.2.3) PR f log |h(iy)|dy = dy,

and if we use (5.2.2) we find that

u 2 2
floglk(iy)ldyZna_ Z“ log | & (—a)|.
Hence, if -a=wu, then

(5.2.4) fIog[k(iy)ldy22nuloglh(—u)[.

We need a lower bound for |A(—u)]|.

23
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According to a result of IncuaM [8]
Vo+ V
|E (z+1iy)| dy = |ao|

V-V

if V=;—f and V, is an arbitrary real number.

. ) . . 2
Thus, for fixed z, there is a y, in every interval of length _y_n such that

|E (z+iy,) | = I—C;’—I

Suppose now that 7, is the real number with the smallest absolute value
which satisfies

7T . (/0
!E(ﬂ)—T“—:}—/'{‘?”i]o) ZLz—l'
Then
4
< .
|770| y

If we put {==z+127n, it follows from (5.2.4) that

‘ 5

(5.2.5) f Iog[E(w+i(y+no))[dy22n(T+7—;) log
-~ (T+$)

7w
E(z—T—;+'mo‘) >

> ﬂ(T—l-y)lgl;]

and as |E (z+1y)|<1 when 2<0 and [nolsg, we get

T T*%
(5.2.6) jloglE(w%—iy)IdyZ f log | B (z+4y+ny)|dz.
- -(743)

But (5.2.5) and (5.2.6) evidently imply (5.2.1) and the lemma is therefore proved.
In the same way it follows that

laa|

(5.2.7) flogID (x+1y) |dy>2n(T+ )l 0og 5~

for >0 and as | D (1y)|=|E (sy)| we also have
24
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T
(5.2.8) flog |E(iy)|dyzn(T+ ’—;) log’—ao%"l-
-7
5.3. We now turn to a study of the function
3 »
1+oé
(531) <p(a)— f log \l_r;‘e;‘g dy
In 4.2 we used the fact that for all o
lp(@)|sp()=4k
where k is Catalan’s constant.
For |o|<1
oo " 0_2m+1
(532) (p(6)=4m§=:0("‘1) W

as is found by a series development of the integrand in (4.3.1). TFor other
values of o, we get @ (o) from the relations

¢ @)= ~o(-0)=p(3)-

For |o|<1, it is true that

, _,arc tg c.
@ (G)_4_a
Thus, for 0<o<],
(5.3.3) n<g (o) <4.
If 2>1 and 0<x26<1 we find
» 1 . !
(5.3.4) (p(za)—(p(;(r)=aftp (so)dsZna(z—;)-
We also observe that for 0<o6<1
1
(5.3.5) g()—g(0)= [ ¢ (s)ds<4(l—0)
0
and
(5.3.6) g(o)s4do.
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5.4. The inequalities of 5.3 will now be used in the proofs of some lemmas
on the distribution of zeros of exponential polynomials. They concern the zeros,
2,=%,+1¥,, of the exponential polynomial E (z) which is supposed to be normed
so that Q@=1.

The following notations will be used for the regions with which we are going
to deal. They are all bounded by the lines |Im (2)|=T and by vertical lines.
If § is a non-negative number we define

Wi, T):Re(z)< —6 | Im@)|<T,
Wy, T):6<Re(z) [Im(2)|<T,
R (6, T): —6<Re(2)<0 [Im(z)|<T,
Ry (3, T) :0<Re(z)<? [ Im@)|<T,

W6, T)=W,(6, T)UW,(, T),
R, T)=R, (6, TYUR, (4, T),
W(T) : {Im(z)|<T.

5.5. Lemma. If b>0, then

ﬂlv

(5.5.1) S o<l (T+ b+ ’—‘) log 2 -
d v l“ol

z,eW, 6, T)

For the proof we put A(z)=E(z-+%7) and apply a formula we have mentioned
in the beginning of 2.2, that is the extension of (2.1.4), with B=1, to expo-
nential polynomials. If 2, is a zero of E (2), the corresponding zero of % (z) is
z,—1in. As |h(2)]<1 for Re(z)<0 we find

log | E(C+in)| +

7 (2y~im nl -
(5.52) e 2b 420 1_|-e2—_b(zv‘i n+d)
+ > log | o=~ log | ———— || =0
z,—ine W, (0, b 2@ mg ELIP
y—ine Wy (0, &) ———— (2=t n+l)
¢ 20 _c2b 1—2o

The left member of this inequali.y is now integrated with respect to # from
—T—b to T+b (cf. the derivation of (3.2.1)). According to the definition of
@ (0) we find that, as every term in the sum in (5.5.2) is positive,

T+b

2% nZz,—0 n @+
)y — 2b — 2b
f log |E(C+in)ldn+ nz,,ew,};'o.m[(p(e ) <;o(e )]SO.
)

We put £{= —06<0 and apply lemma 52. Then

(T, +8) 7 (z,-8) 9 - -
{5.5.3) > [(p (e 2b ) —@ (e——“—)} <Z (T +b+ 7—1) log 2
b 4 laol

2,e Wy (0, T)
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The terms of the sum are evidently positive, and if we omit some of them,
the value of the sum is certainly not increased. Hence

(T, +6)

(T~ 8) 2 9
(6.5.4) “Wz«, T)[tp(e 20 )—(p(e zb )]<£(T+b+§) log|—a—|-
v 10 0 .

)
But from (5.3.4) it follows, as z,+46=<0, that

7 (%, +8) 7 (x,—06) ALy [ nd Py 7[26 nx,
(p(e 20 )—tp(e 20 )Zﬂez—b(eﬁ~—e~2—’;)2*—e“

b

3

and if this inequality is applied to the terms of the summation in (5.5.4) the
lemma follows. .

Of course there is a similar result for D(z) and W, (5, T). If the formula
corresponding to (5.5.1) is added to (5.5.1), we obtain

n|z,|

5.5.5 S oEr L 7_”) 4
{ ) 2ye W15, 18 Sé(T+b+y loglaoanl
5.6. Lemma.
2
.6. <96 7 .
(5.6.1) zvekéa'm|x,|_26 (T+ y) logl“ol

From (5.5.3) it is seen that

_Tytd -8 2 2
(6.6.2) ayﬁ%{,, T [tp(e 20 )— <;o(e 2o )] < % (T+b+ g) log ol

Application of (5.3.4) gives, in this case, as @, +0=0

_TE0 A _msf  TE T 1)
(5.6.3) <p(e zo )—q)(e 2b )zn-e 2b(e 20 —e2b)2%6 blz,]|.
We put b=7~2E and (5.6.1) follows from (5.6.2) and (5.6.3), as

T1p+ 7—”<2(T+ ZE)
¥ ¥

for all T if b=72—” and p<1.

_As above, we get a corresponding formula for D (z) and R, (6, 7). Addition
gives

(5.6.4) S Ja,|<2¢ (T+ ) log L.

2,eRG. D) y |ag an |
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5.7. In order to prove theorem 5.1 we note the following two consequences
of our lemmas.

(5.7.1) ) [¢ W) -g (o "Z"')] < ‘%”e‘* (T+ ’7—,’) log Iaoi“nl'

2,e R(3, T)

By (5.3.5)

71,1 7z,
(p(l)-(p(e_—‘z”-)SZI(l—e 2,,)S27t|%|
and (5.7.1) follows by applying (5.6.4).
T 4 7 4
2b y — P
(5.7.2) z,ewzw. T)zp(e ) < 3 (T+b+ 7}) log [eaan]

By (5.3.6)

and (5.7.2) follows from (5.5.5).

5.8. We now turn to the proof of theorem 5.1.
We rewrite (2.2.1) as we have previously done with similar formulas:

2y i:'!’i‘

PN e
5.8. ' |
(5.8.1) loglE‘(w)H2”_,.,72“.,(,,)10g nE

e2b —g 20

mz _nz
e2b+e 2b

_1 log]E(x+i(n+b))E(w+i(17—b))]dx

2b ’
We then integrate with respect to 7 from —7 —bto T +b. We have |E(z)|<1
for Re(2)<0 and |D(z)]<1 for Re(z)=0. Hence, if we put E (z)=e"* D (2)
when Re(z)>0,

T+b T+b °0
. 26 5 (”_) 1 2. a
log |E(in){dn+ 5 P\ Sz—b dn | =z =z _ﬂdx.
eZb 1-e 20
_T_b -T-b [

We apply (5.2.8) to the first integral. In the integral on the right hand side,

26 ..
we put z= g logt. Thus it is seen that
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(5.8.2) > qa(ej;_?)s“" (T +b)+ 2(T+b+ )logl 4(”

2, W(D) 7 2b

where as before

logt
k= fl—i—tz

If we integrate (5.8.1) from —T+b to T'—b, we can obtain a lower bound.

T-b 0
2b 1 Py
—_ 2% —— — —
nzve%a*")(p(e )EQdeW[ e 7242
b4 ¢ 20
—T+b
- 2
T b+ log 2 475(T—b+§) log —
1 o], 1 7) " ]
nz T nT *
28 e e“+e 2% 260 hte 20

We have used (5.2.1) and (5.2.7) to obtain the right member. Further simpli-
fications yield

2,6 W(T) T 2b
(5.8.3)

N (6, T) was defined as the number of zeros of E(z) in R(6, T). We will use
(5.8.2) and (5.8.3) to obtain bounds for N (4, T'). Evidently

LhN@G,T)= 5 ()= ()1 s [pm—pl )]

z,e R(6, T) 2,eR(, T) 2,e B(3, T)

But then the first sum is less than the right member of (5.8.2) and the second
sum is less than the right member of (5.7.1). Hence

4EN (6, T)< 2 k(T+b)+ (T+b+ )log 4 +4” "(T+ )1og—4
l Ay @ nI l“oanl
or
_+ )bn 37’6 ,5 ) 4 2 4
NG, D) Z,, b+2kb (T+ logla0 ] BkIOgI%anl
We choose
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3¢ (T+7—t)
b=mx L4 log 4
2k Ay |agan|
and find

7
T+% :
NG, T) T %V—y——:' 1 4
(5'8'4) 27! T S36 )bn log Iao dnl+8k1n log lao an|

To find a lower bound for N (6, T), we observe that

ane - 3 gz 3 o)z 3 @) s o),

2,e R@.T) 2,e R, T) 2,e W(I) 2,eW©,T)
But then by (5.8.3) and (5.7.2)

4Ank 4

4
T- b——( +’—’)1 (T+b+ )1 :
=9 7) " [agan] 3 € [agan]

In the last term we substitute T+~ for b. This substitution is evidently

4ENG, T)>

4
legitimate if b< T, and if b> T, the inequality only asserts that N (J, ) is not
less than a negative number. Thus

T An 4 4
N(6,T)—;Z,.2——b—m(T+ )IogI e n| 6k(T+ )logm-
We choose
7
b_ Vn(T"F;) lo 4
= 8kAn °[agan]
and find

n

T+Z
NGoT) T V y 4 2 ( ) 4
(5.8.5) A 1.5 7 log [agan] 3Kk T+-) log [aa n|

To remove the restriction imposed by our normalization of E(z), we substitute

QZ

——— for ————. As
|a0an| |aoan|
/Q |ao|+|all+ +l“n|>2
H%anl Vl“oanl
it must be true that
4Q° Q* |ao| +1ay|+ - +]an]
log ——— < log =4 log =4 log S.
|aya | | ag an|* V]agan | '
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We put

(T + j—t) log 8
(5.8.6) b= ———————7’1 ,

note that (5.8.4) and (5.8.5) may be written

N(6 ) T

6e2V¢+2¢> 31/¢,__¢

and theorem 5.1 is proved.

5.9. If the theorem just proved is applied to a sequence of exponential
polynomials it gives a sufficient condition for equi-distribution.
Let {E,(z)} be a sequence of exponential polynomials of the type considered
in 5.1 and suppose that
»

E, ()= Zu‘”’ Ty =Min (A2, - AD).
"

Put
7
T+— y y
L I Ca L
v X(xz og - Vl a(v) a( >
and suppose that
lim ¢, =
P—=>00

If N,(6, T) is the number of zeros of E,(z) in R(d, T), then

T _
76388, 1) =2 +0 (V3.

5.10. In this formulation for the exponential case our theorem gives im-

mediately a bound for the difference between %n, and the number of zeros

of the partial sums of a power series, with radius of convergence 1, in a region

|arg z-—@olsg, l1-¢<R<1l+e.

On some other types of distributions of zeros

6.1. In a previous section we derived certain conditions for equi-distribution
of zeros from formula (2.1.6). ‘

If we want to characterize other types of distributions of zeros, we can pro-

ceed in a similar way. Let us consider a sequence of polynomials {P,(z)}i°
and let us suppose, for example, that

(6.1.1) N, (-, p)=0(n)
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where 7, is the degree of P,(z) and N.(—¢@,¢) is the number of zeros of
P,(2) in the sector |arg z|<e@. If (2.1.6) is applied, we find

| P, (re®?) Py(re~*®)| dr , 2=

1
11 RN ~16,))-
28 e XOT P s, 10D

Thus, if the number of zeros of P,(2) in the sector is o(m,), then

[ PGNPt dr_
(6.1.2) vlluolonvo log 2,0 [ bl

In this section we are going to study the consequences of assumptions anal-
ogous to (6.1.1) from a different point of view. In that way we shall obtain
results that are more suitable for applications than (6.1.2).

6.2. Let {f,(2)}i° be a sequence of analytic functions which converges uni-
formly in a certain domain (that is an open connected set of points). If, for
a point {, there is a neighborhood in which the sequence converges uniformly,
we define the domain of uniform convergence containing ¢ as the largest do-
main D which satisfies’ the following conditions.

A. The sequence is uniformly convergent on every compact sub-set of D.

B. {eD.

If the set of points in which the functions f,(z) take the values a or b (a#b)
is considered, it is well-known (see for instance [9]) that the derived set con-
tains every boundary point of every domain of uniform convergence. Of course
there may be one value a, for which no boundary point is a limit-point of the
a-points of the functions. We give the following example of a sequence of
polynomials,

Example. Consider the sequence {P,(z)}5 where

1 2% Lllos 1 v
P,,(z)— [1 +; (Z+“§+ +ﬁo—g‘v‘])] .
Evidently
lim P, (Z) =g los1-21 1
y—>00 1 —Z

uniformly on every compact sub-set of |z|<1. For |z|>1, lim P,(z) does
P—>00

not exist. There are no zeros in |z|<e(l—¢) if >0 since, in this case,

2 [iog »]

2
z+§ e +[Iog 7]

1
(e(1 —¢&)) ogv= Srlosd-a _ -

<f{log %] {log #]

(We suppose that <1 —eg )
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We do not intend to give additional requirements to ensure that every
boundary point of a domain of uniform convergence is a limit-point of the zeros
of the functions. Instead we shall try. to characterize the limit-points by means
other than the uniform econvergence of our sequence.

From the original proof of JENTZscH’s theorem on the clustering of the zeros
of the polynomial sections of a power series it is seen that the essential fact
is not that the circle of convergence is the boundary of the domain of uniform
convergence. It is the behaviour of the function

— 1
p(2)= lim | P, (z) ™
which is important.

In JENTZSCH’S case obviously p(2)<1, if z is inside the circle of convergence.
That u(z)>1 outside this circle follows from the relation

lim V|a,| o= lim V[P, (0 ¢ |~ | P,oa (0 €®) | < p(0 €9,

v
where P, (z)= Zoa,, v

s

We shall now prove a theorem which is a generalisation of JENTZSCH’S

theorem. It is related to some recent results communicated without proof by
RosenBroom [17]. He derives his results by aid of potential theory and the
theory of subharmonic functions. We prefer to give a rather simple proof of
our theorem based on the classical theory of analytic functions. If our theorem
1s combined with well-known theorems concerning the modulus of analytic func-
tions, sharper results can be found than those given by RosExnsrooM [17, p. 137]
for sequences of polynomials.

6.3. Theorem. Let {f,(2)}° be a sequence of analytic functions, regular in the

closure £ of a bounded domain Q2 and let z, be a point of Q.
Define 1, by

&= sup log |f,(2)|.
We suppose that

_ Ilm 4, = o
and that
i I ‘fv(zo)|2m>0
or all ».

Suppose that there is o domain, containing zy, n which

(6.3.1) lim L lgg |f(z)]=0

y—>00 iy

and let E be the largest domain such that 2y € E and such that (6.3.1) s true for
every zcE.

Let £ be a boundary point of E that belongs to 2. Then, to every neighborhood
V of { there are a positive number k(V) and a sub-sequence {f,;(2)}i21 so that the
number of zeros of f,,(z) in V s not less than k(V)- A,

3 33



T. GANELIUS, Sequences of analytic functions and their zeros

This theorem is an immediate consequence of the following two lemmas.
Let B, C and D represent any domains with the properties

2,€B, BcC, CcD, DcQ
and let ¢, and d, denote the number of zeros of f,(z) in C and D.

Lemma I. If
+
lilg%loglfv(Z)FO
for ze D, then
fim 7.0

Lemma II. I{

A
lim l—log |4 (2)|=0

for ze B, and +f

!;—-
3"1&'

then

li 1 l+ 0
lim -~ og |f.(2)|=

unsformly for z€C.

Proof of lemma I. Let I be a sufficiently regular curve in D such that ¢
belongs to the interior of I We apply Green’s formula (2.1.3) to I and
log | f.(2)|- As singular point in Green’s function we take z,. If the zeros of
f+(2) are called {2’} we find that

fm — 2 GriE) < J[—ﬁ] hml—loglf (2)|ds+ hm }Tlogl 0.

P->00 ]»p z(v)ec ¥y 6

For zeC we have
Gr(z)=6>0

where ¢ is independent of » and hence our lemma is proved.

Proof of lemma II. We may evidently assume that z,=0. The following
simple inequality for polynomials will be used.

If P(z) s a polynomial of degree m and of P(O)— , then every interval
[a, 2a] (@>0) contains a real number r such that

(6.3.2) Moin |P(réf®)|>e®"
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An inequality of this type follows easily from general theorems on the minimum
modulus of analytic functions.! We are content with the result just given and
sketch a simple proof.

We observe that

Min | P(o?)|= TT
[} v=1

1—-9-|
o
where {p,}i are the moduli of the zeros. We write

n

I1

v=1

0

[

e

[

-2l
0r

-1

oy, <4a

- 1I

e,>4a

The second product is certainly >27">e™" for every p<2a. Since

2a

2 f log
gp<ta

a

1-2

v

do=

2a

Qv

2

= zeuflog|1—t|dt2 Eguflogll—tldtz -2> 0,> —8an,

v E‘ v Y v
2y

there is an r in the given interval such that the first product is not less
than e ®",

To prove lemma II we consider the functions

(6.3.3) 9 (2)= W{%;)

where

p=1

m@=ﬁ@:§)

and {20’} are the zeros of f,(z) in D.
Every g,(z) is regular in D and has no zeros there. Let L be a contour in
£ such that the minimum distance from a point in D to L is #>0. Then

1 ¥ P({0)=1, there is a constant C (a, b} such that (a>0)

Max Min |P(ré®)|>¢ 0@,
a<r<b 8

A study of the equilibrium distribution of the unit mass on (@, b) shows that the best

possible. value is
Vo+Va

Vo—Va

c (a, b)= log
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A l ) R\% o
e 2 v ¢
6.3.4 M L (2) | < — LS(—) —>
(6.3.4) Max | g, (2) | mll 7 =\3) m
if Max |z|=R.
2eQ
The funetion
1
b (z) = e oe @

(we choose that branch of log g,(z) which is =0 for z=0) is regular and
single-valued in D and by (6.3.4)

v

L il
— lo (@) | Ay
e l=e "< (B 5
Y 7
m9
for zeD. As
fim =0
we see that
(6.3.5) [ ho(2) | < M

for 2€ D where M is independent of »,
We now choose @ so that the circle |z|=2a belongs to the domain B where

1

. ,
» log | f,(2)|=0.

lim
y—> 00
Then there is a number r satisfying a <r<2a such that

[tz

according to (6.3.2). Since

log | (2) | = 2 log | &) | = - log | :(2) | =5 Tog | £:(0) | =5 log | (2

we 1nfer that

+
(6.3.6) , lim log | A, (r€'?|=0.

.The sequence {A,(2)};° is bounded in D and if k(z) is a limit-function when
»—> 00, we have

R(0)=1
and, according to (6.3.6)
|h(ré®<1
for all 6.
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Thus h(z)=1, and
lim S log g,(z)=0

P> 0 v

uniformly in the closed sub-domain € of D.
Hence lemma II is proved as

o log |va<z>|slo+g 14,0, log |2, ()] , Tog | (2]

A A A
and as
d
ey 2R a
1 L2 = 3 logto—rt<d, log — + 1 n] =
og |1, (2)] El ¢ e o8 |Z(§‘|<a P2
27
2R 1 b (aed®)
atv 1 do.
<d log ~ +2ﬂj‘log 1)

Proof of theorem 6.3. Suppose that there is a boundary point {, of E
with a neighborhood V, such that the number of zeros of /i (2) in V, is o(4).
We consider a domain F such that

tyeF, FcEUV, and FcQ.

According to lemma I and our assumptions the number of zeros of f,(z) in F
is 0(4,) and hence it follows from lemma II that

1 +
lim - log | f, ()| =0

y—>0Q v

in every closed sub-domain of F, that is {, is no boundary point of E. Thus
our assumption that the number of zeros in V, is o(4,) is false and theorem
6.3 is proved.

64. We give five illustrations of theorem 6.3 as applied to polynomials.

In the first three 1, equals the degree of the »:th polynomial but the last two
show other possibilities.

o. (SzeG6, cf. p. 42 below)

/ 2\
1-2° 2
P”(z)zl—z PN . A

{P,(2)}{ is uniformly convergent on every compact sub-set of |z|<1. If 2

is |z]| <3, we have 4,=2v-log 3. then is lz|<1.

V2
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B. P ()=1—-2"(2—2)
The domain of uniform convergence containing z,=0 is the left part of the

lemniscate |2(2—2z)|<1. I £ is |z]<3, then 4, =v-log15. E coincides with
the domain of uniform convergence and the zeros are

6 +37 o®
) i . ain 2.
z)=1te" ¢ 2-8ln )

where 0,(}’)=';—‘27z. u=1,2,...9
Y. P,(2)=1-¢€"?2"(2—-2¢"7)

with @/z irrational. B
{P,(2)}°is uniformly bounded on every closed subset of [z|<l/2—1. The

boundary of E is |z|=V2—1 if we take the same ©Q as in example (8). The
zeros are e '?20 if 2% are the zeros in (B).

. P, (2)= (1 + V%) (1 + (%)) :

If 2 is |z|<2, then A, =log 2-[V%] and E is given by [z]|<1. If Qis|z|<4,

then l,=log§-v and E is given by |z|<3.

L R

lim P,(z)=e * if Re(z)>0.

As £ we take a circle
|z—a]<A

where a and A4 are real numbers satisfying 0<a<4. We put z,=a. Then
Ah=2(4—a) Vv and E is bounded by the imaginary axis. A neighborhood of

a point on this axis and belonging to £ contains C Vo+0(V») zeros of P,(z)
where C is independent of ¥ and positive.

6.5. In the proof of our next theorem we use the following theorem of
Beurring [1, p. 96].

Let F(2) be holomorphic for |z|<R; let 0<r,<r,<R and M (ry)>p>0, where
M (r)=|MlaxlF(z)|. The set wn (ry,rs) where lMlinllf’(z)ls,u is denoted by

E(ry,r5). Then

1(dr
EJT
(6.5.1) log %X_)% 28 og M),
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This result will enable us to prove the following theorem.

Theorem. Let {P,(2)}° be a sequence of polynomials and suppose that
im n,= oo, if n, 1s the degree of P,(z). Put M, (r)=M?x | P,(2)|. Suppose that
=7

»—>00 Iz
(6.5.2) P,(0)=1

for all v, and that there are two numbers 74 and o, ry>0>0, such that

.1
(6.5.3) lim - log M,(g)=0
= 1
(6.5.4) lim o log M, (ry)=%>0.

Then there ewists a sub-sequence {P, (2)}i21 with the following property: for
every domain S containing the origin and containing points arbitrarily far from
the origin, there is a positive number k(S) such that the number of zeros of P,, (2)
wm S s not less than k(S) - ny,. '

In the proof, we consider a sub-sequence which, for the sake of simplicity,
we also denote {P,(z)} and for which

(6.5.5) lim 1 log M, (ry) = 9.

y—>00 My

We shall show that the assumption that the polynomials in this sequence
have o(n,) zeros in 8 leads to a contradiction.
We choose a point z; €8 such that
64 1/7o

|| =R=gren'¢

where 7,=Min (5, 32). This point can be joined to the origin by a polygonaI
line in S. We may suppose that this line has no other points in common with
the circle |z|=R.

There exists-a sub-domain S; of S such that S; containg the line connecting

the origin and 2, and such that §;<8. According to lemma II and our as-
sumptions

.1
lim —log | P,(z)|=0

y—>00

uniformly for all z€S,. We determine », so that

1 3
(6.5.6) - log M, (r0)> %

for >, and », so that

1 7o
P <
”IOgl ,(Z)‘.._ 4
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for zeS, and v>>»,. Then
Min | P, (ré'®) | < etmom
0

for 0<r<R. We put v,= Max (v, v,) and apply BEURLING’s theorem to P, (z)
for v>w, Since

8 /70
R= geh ¢
and ¢ >}¢* for t>0, we infer that R>2r, If u=etm™ we find by (6.5.6) that

R
1rdr

log (M, (R)e ’“T”v) > %eér" i iog (M,. (r)e ’?_041») > 27—‘{—;" (1—{)k .
To

Hence

— 3
(6.5.7) fim L log M, (R)> %(TE) :

y—o00 My 0.

But for every polynomial

P, (z)

Ty

M, (o)

9”

<

2

for |z|=p, and thus according to (6.5.3)

y—>00

(6.5.8) fim — log M, (R) < log %-

The inequalities (6.5.7) and (6.5.8) show the contradiction, since we have chosen

R so that
3 32 r\} E
Z]_o(@) zﬂ(g) en_o(E) >y§(ﬁ)) =210g£'-
4 To 4 To 770 Q Q

Thus our assumption that the number of zeros of P,(z) in S is o(n,) is false
and theorem 6.5 is proved.

An immediate consequence of this theorem is the following. If a sequence
of polynomials satisfies (6.5.2) and (6.5.3) and if there exists a domain S of the
type just considered in which the number of zeros of P,(z) is o(n,), then

-— 1 .*
lim— log | P, {(2)|=0

y—>00 iy

for all z, and the number of zeros in a circle |2]<R is o(n,) for every R, as
follows from Jensen’s theorem (lemma I in 6.3).
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6.6. CarLson’s results for the partial sums of entire functions of order o,
0 <p<vco, may be derived from theorem 6.5. The following example shows in
which way that is done.

Let {P,(2)};° be the sequence of partial sums of

0-5)
@=3"
which is an entire function of order 1.
We put
@0)=7P,(Y)- 3 ap
=
where
()
7 v—u
Then ¢ <e and we see that
v IR Y
(6.6.1) 0@)<s et ]
u=0 e &
for |z| < 1-e,

We have =1 for all » and thus

(6.6.2) Max [, ()| =2

The inequalities (6.6.1) and (6.6.2) show that theorem 6.5 is applicable. As
domain S we take the union of a sector with vertex at the origin and a neigh-
borhood of the origin. We find that Q,(z), and hence P,(z), have zeros in
-every sector with vertex at the origin and we get the estimate, given by
- CarLsoN, for the number of zeros. From (6.6.1) and from Hurwitz’s theorem
as applied to P,(z), we conclude that if « is fixed, the number N, of zeros of
P, (z) in the domain

ve
u<|z|<
1—¢
satisfies
. N,
lim—=1.
p—o0 V

For estimates by general entire functions which show that theorem 6.5 is appli-
cable, we refer to CarLsow 4, p. 5-7].

6.7. In a paper of 1922 Szrc6[21] studied sequences of polynomials which
are uniformly convergent in every domain interior to a curve (. Let the se-
quence be {P, (z)}, with
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P,(z)= > a2".

r=0

SzEGO proved that, if

w=@@)=z2+c¢y+ le_ +
maps the exterior of C conformally on |w|>1y, then
— L |
(6.7.1) lim|a®|” < S

If there is equality in (6.7.1), then every point of C is a limut-point of zeros
of the polynomials in the sequence.

If C, is a curve in the interior of C and ¢, (z) is the corresponding function,
mapping the exterior of C; on |w|>y,, SzEcO considered P, (z) [¢; (2)]*. Since
this function is regular outside Cj, it follows from the maximum-modulus theorem
that

P, (2)
(p &)

(6.7.2) |a®| < Max

2eCy

=l,MaX|P,,(z)|.
Y1 zeCy

The inequality (6.7.1) follows easily from this relation as we can find curves
with 9y, arbitrarily close to y. It may also be seen from (6.7.2) that theorem
6.3 implies the second proposition of SzecS6. We want to prove that every
point of C is a limit-point of the zeros of the polynomials of the sequence.
For that purpose we consider a curve C, enclosing a point ¢ of ¢ but interior
to the union of a neighborhood of ¢ and the interior of €. The curve C; is
taken so close to C that y,>y (cf. SzEeO’s paper). Then it follows from
(6.7.2) that

1

Max lim IP,(z)|;Zh>1
2eC; v—>o0 Y

and 6.3 is applicable. .

SzeEgO points out that the second part of his theorem gives a sufficient but
not a necessary condition that every point of C should be a limit-point. He
gives the example (x) quoted on p. 37. He later showed [22] that equality in
(6.7.1) 1s the necessary and suffictent condition that all but o (v) of the zeros should
be arbitraridy near C for large v.

6.8. Similar problems for partial sums of power series are treated in a paper
by Carison [2]. CarLsoN also studies the number of zeros of arbitrary subse-
quences of the partial sums of a power series with finite radius of convergence.
We conclude this section by proving certain corresponding results for the partial
sums of entire functions.

Suppose that

<

(@)= 2 a2, ag=1

v=0
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is an entire function of order p, that is

log

lim " |a,| 1

=< plogy
‘We consider a sequence of partial sums
n
P,(z)=2 a,?
y=0

where » runs through a sub-sequence {n,} of the positive integers, such that
lim n,=cc. To simplify our equations, we shall only write im and presume

y-->00 n—>o0

that n goes through {n,}. Then, if M, (r)= IMax | Pr (2)],
z|=r

(6.8.1) Qn(2)=log M, (n")=0

will be a convex function of 4 by the three-circles theorem.
Suppose that am, n*mn is the maximal term in P, (n*). Then

M,(#WH<(mn+1)- ]anl’ﬂlmn
and

@A) _log(n+1) log | @m | M

Now m, obviously is a non-decreasing function of n and thus we have either
My <m or lim m, = oco,

n-»00

In the first case
lim g» (1) <0,

n—oc

and in the second case

- —f{log |an
lim g, (A) < lim (M-Fl%)ﬁl— L
n—>o0 n—oo \My lOg My n o

Hence there exists a convex function ¢ (A) satisfying

(6.8.3) 0<q(d)=Tlim g () <Max {o, A %}
n—>c0
by virtue of (6.8.1).
From the convexity of ¢(A) we infer that the limit
lim () _ ’
l—)—él — _é
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exists and from (6.8.1) and (6.8.3) it is seen that 0<q<1. If N, (»n") denotes
the number of zeros of P, (z) in |z|<n’, we put

— A
limz—v—ﬁéizsp(l)sl

N—>00
1
p=2{}
e
We are going to show that for every sequence {n,} p<g. By Jensen’s formula.
it is found that

and

Na(r) J' 2 10 (1)=
0<,},I_I>I:onlognf dr_,}_m Znnlogn log | P (w'¢%)| d0=q e 0,
and
1
-4
ne
lim ! f N"(r)dqu(l+8)~
nso 1 lOg 1 7 0
0
But
l+s
n@ "
f Zv—"rﬂzdern(r@)-6-logn
ne
and thus
1 1
TR
lim N"(")_ e
7—>00 n &

for every £>0, and hence
0<p<g¢gxl.

A necessary and sufficient condition that q <1 for a sequence of partial sums given.
by {n,} is that, for u running through the integers given by

{6.8.4) ¢ n<p<n,
where q<q' <1, we have
log !
Iaul

im
e 1 log Py
The necessity is proved as follows.
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For every u<n we have

|au| n** < My (w')
that is
lglal 38 0 0
n log »
and

lim [————log Ia"l-”——log”+l"‘] <q().
pulogu nlogn n

n—>o0
For p given by (6.8.4) we evidently have

— log | a,|
folim —=——+1¢'<q(4).

Jim - g e q(4)
Then there exists a J(¢) such that

q liml—% +2¢' < (l— 1) (g+e)
u—oo o log p e
if
1
AL =+6()

0
that is

AL —.1-5(8)(1—“8)
p—oo Y 10Z H 0

for u given by (6.8.4).
But then we need only choose 6 (¢) so that ¢g+z<¢ and we find

m log |a,] <1
uoo o log p e

for the u:s just mentioned.
The sufficiency of the condition {follows easily from (6.8.2).

Everywhere convergent sequences of polynomials

7.1. We finally turn to the problem of restricting the position of the zeros
of a sequence of polynomials in such a way that the uniform convergence of
.the sequence in some domain implies its convergence everywhere. We generalize
the theorem of LinDwarT and POrva, quoted in the introduction, by weakening
the conditions they imposed on the set occupied by the zeros. Generalizations
of the theorem in other directions, for instance by weakening the convergence
conditions, have been given by Szisz[20] and Korevaar[11].
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7.2. We formulate the following lemma which we will use in the proof of
our theorem.

Lemma. Let g(z) be an amalytic function regular in the sector S, defined by
0<|z|<r,, |arg z|<w, Suppose that

lo(2)|=M
for 0<|z| <y, |arg z| <y, and that (4>0)

Re(g(x)<4
for z€8,. Define 8; by 0<|z|<r,<ry, |argz| <y, <y, Then
(1.2.1) lg ()| <C (S, Sy, 7) (A + M)

for ze8,, where C(Sy, Sy, v) depends on the geometrical configuration but not on
4 or on M.

The proof ' follows from a wellknown theorem of Borel and Carathéodory
(see for instance [23, p. 174]) by conformal mapping of the sector S, on the
unit circle.

7.3. Theorem. Suppose that a sequence of polynomials comverges uniformly
for |2|<1 to a limit-function =20 and suppose that no polynomial has any zeros
either in Re(2)=a, or in the sector of angle & defined by

<p<argz<@+9=

ol &
ol ]

Then the sequence converges uniformly in every bounded domain, the limat-function
being an entire function of order <2.

If a<1 the theorem follows from that of LINDWART and P6Lya, but other
cases are not covered by that theorem. The first part of our proof coincides
with the original proof of LinpwART and POLvA.

We call the sector and the half-plane mentioned in the theorem S cch H
respectively. The polynomials in the sequence are called P, (z) and we may
suppose that P, (0)=1.

We choose a point z, and a positive number & such that a circle with center
2o and radius 26 lies in the interior of both H and S. Let C denote the circle
|z—2,] <8. We consider the sequence of polynomials {@, (2)}i°, where

(1.3.1) Q)= ?il—,‘%)z’
If we put
P)=T1I (1— —Z%)

=1
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we find
n 1- %DT—_:)z n
v Zu v z
(7.3.2) Q@)=1]——= (1 + ——@) .
pris ) =1 29 2y
1- 2
"
Hence
a1
(7.3.3) QO)=3 —5
u=1%29 " 2%
and
, " Re(zg— 2% il 1
(7.3.4) Re(@0)= > —-(—0(‘)—2‘) 220 Z [PAEr2rE
a=1 |Z9 % ' #=1‘zo l

To obtain a bound for |Q, ()| we use the inequality

(7.3.5) Re@+lzl > |1 4 4]
which follows as (z=z+1%)
EVHEIE S 1 4t Lyt 2= (1 4+ 2)2 + R

If we apply (7.3.5) to each factor in (7.3.2) we find, by use of (7.3.3) and of
(7.3.4), that

7.3.6 logIQV(Z)k Z [Re( zﬁf’) ' ; T—zjzﬁz] =

. <lol| 3 L]+ S ekt i@ ol Haol.
Now, as (7.3.1) shows,

(1.3.7) |Q£<0>|=|2im tog & ( E)azc] 2 Max |log P, 2).

i21=

log 1@ () denotes that branch of the function which tends to 0 when z—0,

and is a regular function in the domain formed by S and H. But from (7.3.1),
it is seen that

log IPV(26+Z)I= log |Pt'(zo)[+ log IQV(Z)I

and application of (7.3.6) and (7.3.7) gives

log | P, (zy+2)| < (1+2| d Z(Slz) Ma,ézllogP,,(z)I.
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Hence

(7.3.8) log | P, (5)| < F (|2]) Max | log P, (2)|

where F(|z|) is a quadratic function of |z| whose coefficients depend only on
zo and 6 (and thus cn ¢, ¢ and @) but not on ». (If C is contained in the
ccircle of uniform convergence, (7.3.8) gives an upper bound for |P,(z)| which
is independent of » and the theorem follows with the help of a well-known
theorem of Vitali.)

To obtain the same result in our more general case we consider two bounded
sectors S, and S; of the type studied in lemma 7.2 and such that C<S§; <
=S,<8S.

Then (7.3.8) tells us that

Max log | P, (2)| SK-MaCx [log P, (2)]
2e S, ze

where K is independent of ». Hence, from (7.2.1),

{1.3.9) Masx |log P, (2)| <K-C(S,, 8y, 1) [Maé( |log P, (z)| + M),

f |log P,(2)| <M for zeS and 0<|2z|<1.
Since we want to prove that {|log P,(2)|}s" is uniformly bounded for z¢€C,
1t will be sufficient in the sequel to consider thcse P, (z) for which

Magz |log P, (z)| = M.

We then rewrite (7.3.9) as
(7.3.10) Max |log P, (z)| < L-Max |log P, (2)].
z2e8y zeC
Since C lies in the interior of §,, it follows from the two-constant theorem that

there exists a 4, 0<A<1, such that
{7.3.11] Mag{ |log P, (2)| <[ I\%aig [log P, (2) |1 [Masx |log P, () |1**
ze zeUnS; 2eSy
where U is |z|<1. If (7.3.10) is applied to (7.3.11), we find
Max |log P, (2)| < M* L'* [Macx |log P, (z)[]**
zeC 2e
that is

1-2
A

Ma&x llog P, (2)|<M-L* .
‘We have thus found a bound for Maé( | log P, (z)| which is independent of ».
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From (7.3.8) we infer that {P,(2)}¥° is bounded in every bounded domain
and our theorem follows from the theorem of Vitali.

7.4. As the proof of theorem 7.3 indicates, it is not necessary that the zero-
free domain, connecting the domain of convergence with the half-plane, be a
sector. The assumption that there exists a zero-free half-plane, however, cannot
be removed as the example below shows. Other similar examples may be found
in a paper by SAXER [18] on sequences of rational functions.

Theorem 7.3, like the theorem of LinpwaRT and P6LvA, may be easily ex-
tended to cover the case when there are a bounded number of zeros in the
domains which we have previously required to be free from zeros.

Example. Suppose that w (z)>0 is a function of z satisfying

lim o (z) = oo,

T—>00

lim o (z) -z~ t=0.

T~>»00Q
We consider the sequence of polynomials {P, (z)}7, where

P,(z)= (1 el 2 .)v .

v—iVv o (v) v_—zl/;w(v)

zw (v) 2 g zw (v) 2 )"]
[ e = P (i v e o
The zeros of P,(z) are all purely imaginary with the exception of a zero of
multiplicity » at 2= (v)+il/1).

The sequence converges to €2*° if R e(2)>0 but it is not convergent if
Re(z)<0. If we translate the origin to z=1, we have an example of a sequence
which 18 uniformly convergent in a circle around the origin and which does not
converge to an entire function, although its zeros are situated in a domain that
may, by suitable choice of the function w (x), be made to approximate arbi-
trarily closely the domain in theorem 7.3.

These problems are related to one treated by Korkvaar[11]. According to
him, a set R is regular, if every entire function, all zeros of which belong to
R, is the uniform limit, in every bounded region, of a sequence of polynomials
which have zeros only in R. He characterizes such regular sets. A set of the

type considered in our example is regular in the sense of KorEvaar, but that
of the kind considered in theorem 7.3, is, of course, not regular.
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