The reality of the eigenvalues of certain integral equations

By Ulf Hellsten

With 4 figures in the text

§ 1. Introduction

In this paper we shall study the reality of the eigenvalues in some integral equations of the Fredholm type

$$
\varphi(x)=\lambda \int_{0}^{1} K(x, y) \varphi(y) d y .
$$

The kernel $K(x, y)$ is assumed to be 0 above a certain curve in the square $0 \leq \begin{aligned} & x \\ & y\end{aligned} \leq 1$ where it is defined. Below the curve we suppose that $K(x, y)=$ $=P(x) Q(y)$. Let the curve have the equation $y=f(x)$ and make the following assumptions:
($\alpha) f(x)$ is non-decreasing,
(β) $\lim _{t=+0} f(x-t)>x$ except possibly for $x=0$ and $x=1$,
$(\gamma) P(x) Q(x)$ is integrable in $0 \leq x \leq \mathbf{1}$.
We shall study two types of kernels:
Kernel A: The curve does not pass through (0,0) nor through (1,1) (fig. 1).
Kernel B: The curve goes through (0,0) or (1,1) or both points (fig. 2).
In [1] I have obtained explicit expressions for the corresponding denominators of Fredholm. In equation A they are polynomials in λ of degree depending only on the curve $y=f(x)$. I shall give an account of the formulas in question.

Let $f^{2}(x)$ mean $f(f(x))$, generally $f^{n}(x)$ the nth iterated function. We also introduce the in an appropriate way defined inverse $f^{-1}(x)$ which we give the value 0 for $0 \leq x \leq f(0)$. In the integral equation A, restricted to the square $0 \leq{ }_{y}^{x} \leq \alpha$, the denominator of Fredholm becomes:

$$
\begin{equation*}
D(\alpha, \lambda)=1-\lambda F_{1}(\alpha)+\lambda^{2} F_{2}(\alpha)-\cdots+(-\lambda)^{n} F_{n}(\alpha), \tag{1}
\end{equation*}
$$

u. hellsten, The reality of the eigenvalues of certain integral equations

Fig. 1.

Fig. 2.
where n is determined by the inequality

$$
f^{n-1}(0)<\alpha \leq f^{n}(0)
$$

The coefficients $F_{1}(\alpha), F_{2}(\alpha), \ldots$ are obtained from:

$$
\left\{\begin{array}{l}
F_{1}(\alpha)=\int_{0}^{a} P(y) Q(y) d y \tag{2}\\
F_{2}(\alpha)=\int_{0}^{a} F_{1}\left(f^{-1}(y)\right) P(y) Q(y) d y \\
\cdots \cdots \\
F_{\nu}(\alpha)=\int_{0}^{a} F_{v-1}\left(f^{-2}(y)\right) P(y) Q(y) d y \\
\ldots \ldots
\end{array}\right.
$$

The denominator of Fredholm in the equation B regarding the square $0 \leq_{y}^{x} \leq 1$ is an integral function

$$
\begin{equation*}
D(\lambda)=1+\sum_{r=1}^{\infty}(-\lambda)^{v} F_{v}(1) \tag{3}
\end{equation*}
$$

with coefficients determined by (2).

Fig. 3.

We shall show that the eigenvalues of A and B are real, if $P(x) Q(x) \geq 0$ (almost everywhere). For this purpose we shall examine the succession of kernels which we get with a fixed curve $y=f(x)$ and a variable square $0 \leq{ }_{y}^{x} \leq \alpha$, $0<\alpha \leq 1$ (fig. 3). When $\alpha \leq f(0)$ the kernel is $P(x) Q(y)$ in the whole square. It has a single eigenvalue which is real. For increasing α the number of eigenvalues is increasing.

§ 2. Proof of the reality of the eigenvalues of equation A when $P(x) Q(x) \geq 0$.

In order to obtain a relation between denominators of Fredholm corresponding to different squares we note that (2) gives:

$$
F_{\nu}(\alpha)=F_{\nu}(\beta)+\int_{\beta}^{\alpha} F_{\nu-1}\left(f^{-1}(y)\right) P(y) Q(y) d y
$$

Introduce this into (1):

$$
\begin{equation*}
D(\alpha, \lambda)=D(\beta, \lambda)-\lambda \int_{\beta}^{\alpha} D\left(f^{-1}(y), \lambda\right) P(y) Q(y) d y \tag{4}
\end{equation*}
$$

In the following we shall generally denote by $\lambda_{1}^{(\alpha)}, \lambda_{2}^{(\alpha)}, \ldots, \lambda_{n}^{(\Gamma)}, \ldots$ the eigenvalues corresponding to the square $0 \leq \frac{x}{y} \leq \alpha$ arranged so that their moduli form a non-decreasing sequence. We first suppose that $P(x) Q(x)>0$.

Theorem 1. When $P(x) Q(x)>0$, the eigenvalues of A are real, positive and simple. Further, if $f^{-1}(\alpha) \leq \beta<\alpha$, we have

$$
\begin{equation*}
0<\lambda_{1}^{(\alpha)}<\lambda_{1}^{(\beta)}<\cdots<\lambda_{n-1}^{(\alpha)}<\lambda_{n-1}^{(\beta)}<\lambda_{n}^{(\alpha)}<\lambda_{n}^{(\beta)} . \tag{5}
\end{equation*}
$$

We have assumed that $f^{n-1}(0)<\alpha \leq f^{n}(0)$. Note that $\lambda_{n}^{(\beta)}$ is missing if $f^{-1}(\alpha) \leq \beta \leq f^{n-1}(0)$. (5) indicates that every eigenvalue is decreasing for increasing α. If we let α decreasing tend to $f^{n-1}(0), \lambda_{n}^{(\alpha)}$ tends to $+\infty$. Hence theorem 1 involves that the new eigenvalues, gradually appearing as α increases, are entering from $+\infty$. The theorem is proved by induction.

1. Theorem 1 is valid when $0<\alpha \leq f(0)$.

In this case $K(x, y)=P(x) Q(y)$ in the whole square and the single eigenvalue is

$$
\lambda_{1}^{(a)}=\frac{1}{\int_{0}^{a} P(y) Q(y) d y} .
$$

Since $P(x) Q(x)>0 \quad \lambda_{1}^{(\alpha)}$ is positive and decreasing for increasing α, which proves theorem 1 .

U. hellsten, The reality of the eigenvalues of certain integral equations

It remains to show that if theorem 1 is valid when $\alpha \leq f^{n-1}(0)$, it is valid when $\alpha \leq f^{n}(0)$, too. We illustrate the method by first proving:
2. Theorem 1 is valid when $f(0)<\alpha \leq f^{2}(0)$.

We treat the cases $\beta \leq f(0)$ and $\beta>f(0)$ separately.
2 a. $f^{-1}(\alpha) \leq \beta \leq f(0)$.
To the square $0 \leq{ }_{y}^{x} \leq \beta$ belongs a single eigenvalue $\lambda_{1}^{(\beta)}$. We shall prove that $0<\lambda_{1}^{(\alpha)}<\lambda_{1}^{(\beta)}<\lambda_{2}^{(\alpha)}$ by examining the sign of $D(\alpha, \lambda)$, when $\lambda=0, \lambda=\lambda_{1}^{(\beta)}$ and $\lambda=+\infty$. Putting $\lambda_{1}^{(\beta)}$ for λ into (4) we get:

$$
\begin{equation*}
D\left(\alpha, \lambda_{3}^{(\beta)}\right)=-\lambda_{1}^{(\beta)} \int_{\beta}^{a} D\left(f^{-1}(y), \lambda_{1}^{(\beta)}\right) P(y) Q(y) d y \tag{6}
\end{equation*}
$$

When $\beta \leq y \leq \alpha$ we have $f^{-1}(\beta) \leq f^{-1}(y) \leq f^{-1}(\alpha) \leq \beta$. By 1 the zero $\lambda_{1}^{\left.f^{-1}(y)\right)}$ of $D\left(f^{-1}(y), \lambda\right)$ is $\geq \lambda_{1}^{(\beta)}$. Since $D(\alpha, 0)>0$ it follows that $D\left(f^{-1}(y), \lambda_{1}^{(\beta)}\right)$ is ≥ 0 in the right member of (6). To show that this expression cannot be zero identically we note that there exists an interval $\beta \leq y \leq \beta+\Delta \beta$, where $f^{-1}(y)$ is $<\beta$ on account of the conditions (α) and (β) on $f(y)$. In this interval 1 involves that $D\left(f^{-1}(y), \lambda_{i}^{(\beta)}\right)>0$. By $P(x) Q(x)>0$ we conclude from (6) that $D\left(\alpha, \lambda_{1}^{(\beta)}\right)<0$. Thus

$$
\begin{aligned}
& D(\alpha, 0)>0 \\
& D\left(\alpha, \lambda_{1}^{(\beta)}\right)<0 \\
& D(\alpha,+\infty)>0 .
\end{aligned}
$$

We see that the zeros of $D(\alpha, \lambda)$ are real, positive and simple and

$$
0<\lambda_{1}^{(\alpha)}<\lambda_{1}^{(\beta)}<\lambda_{2}^{(\alpha)}
$$

2 b. $f(0)<\beta<\alpha$.
By 2 a both $D(\alpha, \lambda)$ and $D(\beta, \lambda)$ have two positive, simple zeros. We have to prove that

$$
\begin{equation*}
0<\lambda_{1}^{(\alpha)}<\lambda_{1}^{(\beta)}<\lambda_{2}^{(\alpha)}<\lambda_{2}^{(\beta)} . \tag{7}
\end{equation*}
$$

Put $\lambda=\lambda_{\nu}^{(\beta)}, \nu=1,2$, into (4):

$$
\begin{equation*}
D\left(\alpha, \lambda_{\nu}^{(\beta)}\right)=-\lambda_{\nu}^{(\beta)} \int_{\beta}^{\alpha} D\left(f^{-1}(y), \lambda_{\nu}^{(\beta)}\right) P(y) Q(y) d y \tag{8}
\end{equation*}
$$

Since when $\beta \leq y \leq \alpha$ we have

$$
f^{-1}(\beta) \leq f^{-1}(y) \leq f^{-1}(\alpha) \leq f(0)<\beta,
$$

2 a shows that the single zero $\lambda_{1}^{\left(f^{-1}(y)\right)}$ of $D\left(f^{-1}(y), \lambda\right)$ satisfies

$$
\lambda_{1}^{(\beta)}<\lambda_{1}^{\left(r^{-1}(y)\right)}<\lambda_{2}^{(\beta)} .
$$

Hence

$$
D\left(f^{-1}(y), \lambda_{1}^{(\beta)}\right)>0 \quad \text { and } \quad D\left(f^{-1}(y), \lambda_{2}^{(\beta)}\right)<0 .
$$

From this and from $P(x) Q(x)>0$ we infer by (8)

$$
D\left(\alpha, \lambda_{1}^{(\beta)}\right)<0, \quad D\left(\alpha, \lambda_{2}^{(\beta)}\right)>0 .
$$

Since $D(\alpha, 0)>0$ this proves (7).
3. Assuming that theorem 1 is valid when $0<\alpha<f^{n-1}(0)$, it is valid also when $f^{n-1}(0)<\alpha \leq f^{n}(0)$.

3 a. $f^{-1}(\alpha) \leq \beta \leq f^{n-1}(0)$.
By the assumption $D(\beta, \lambda)$ has $n-1$ positive, simple zeros $\lambda_{1}^{(\beta)}, \lambda_{2}^{(\beta)}, \ldots, \lambda_{n-1}^{(\beta)}$. We have to prove that the n zeros of $D(\alpha, \lambda)$ are positive and simple satisfying (5), where $\lambda_{n}^{(\beta)}$ is missing.

As in 2 we use (4) to determine the sign of $D\left(\alpha, \lambda_{v}^{(\beta)}\right)$ where $\nu=1,2, \ldots, n-1$. The result is once more formula (8).

When $\beta \leq y \leq \alpha$ we have further

$$
f^{n-3}(0)<f^{-1}(\beta) \leq f^{-1}(y) \leq f^{-1}(\alpha) \leq \beta \leq f^{n-1}(0) .
$$

$D\left(f^{-1}(y), \lambda\right)$ has $n-2$ or $n-1$ zeros, which by the assumption are located according to

$$
\begin{equation*}
0<\lambda_{1}^{(\beta)} \leq \lambda_{1}^{\left(\rho^{-1}(y)\right)}<\cdots<\lambda_{n-2}^{(\beta)} \leq \lambda_{n-2}^{\left(f^{-1}(y)\right)}<\lambda_{n-1}^{(\beta)} \leq \lambda_{n-1}^{\left(f^{-1}(y)\right)} . \tag{9}
\end{equation*}
$$

The signs of equality are applicable to the case $f^{-1}(y)=\beta$ only. Since $\lambda_{p}^{(\beta)}$ is situated between the $(\nu-1)$ st and ν th zeros of $D\left(f^{-1}(y), \lambda\right)$, we infer that

$$
\begin{equation*}
(-1)^{p^{-1}} D\left(f^{-1}(y), \lambda_{v}^{(\beta)}\right) \geq 0 \tag{10}
\end{equation*}
$$

On account of the conditions (α) and (β) on $f(x)$ there exists an interval $\beta \leq y \leq \beta+\Delta \beta$ where $f^{-1}(y)<\beta$. For y in that interval the sign of equality cannot appear in (9) and (10). Since $P(x) Q(x)>0$ we infer by (8)

$$
(-1)^{v} D\left(\alpha, \lambda_{v}^{(\beta)}\right)>0, \quad \nu=1,2, \ldots, n-1 .
$$

As $D(\alpha, 0)>0$ this proves (5).
3 b. $f^{n-1}(0)<\beta<\alpha$.
In consequence of $\mathbf{3} \mathbf{a} D(\alpha, \lambda)$ and $D(\beta, \lambda)$ both have n positive, simple zeros. It is required to prove the inequality (5). We again use (8) for examining the sign of $D\left(\alpha, \lambda_{p}^{(\beta)}\right), \nu=1,2, \ldots, n$.

u. hellsten, The reality of the eigenvalues of certain integral equations

For y in the interval $\beta \leq y \leq \alpha$ we get

$$
f^{n-2}(0)<f^{-1}(\beta) \leq f^{-1}(y) \leq f^{-1}(\alpha) \leq f^{n-1}(0)<\beta
$$

The $n-1$ zeros of $D\left(f^{-1}(y), \lambda\right)$ satisfy by $\mathbf{3}$ a

$$
0<\lambda_{1}^{(\beta)}<\lambda_{1}^{\left(f^{-1}(y)\right)}<\cdots<\lambda_{n-1}^{\left(f^{-1}(y)\right)}<\lambda_{n}^{(\beta)}
$$

We infer that $(-1)^{\nu-1} D\left(f^{-1}(y), \lambda_{\nu}^{(\beta)}\right)>0$ in the whole interval $\beta \leq y \leq \alpha$. By (8) we find $(-1)^{\nu} D\left(\alpha, \lambda_{v}^{(\beta)}\right)>0$ for all ν, which proves (5).

The proof of theorem 1 is now completed. Our next object will be to relax the restriction $P(x) Q(x)>0$.

Theorem 2. When $P(x) Q(x) \geq 0$ the eigenvalues of A are real, positive.
Define $[P(x) Q(x)]_{\varepsilon}$ as $P(x) Q(x)$ if $P(x) Q(x) \geq \varepsilon$, as ε if $P(x) Q(x)<\varepsilon . \quad(\varepsilon>0)$.
To $f(x)$ and $[P(x) Q(x)]_{\varepsilon}$ there corresponds an integral equation of type A, for which theorem 1 is applicable. Its denominator of Fredholm $D(\varepsilon, \alpha, \lambda)$ is:

$$
\begin{equation*}
D(\varepsilon, \alpha, \lambda)=1-\lambda F_{1}(\varepsilon, \alpha)+\lambda^{2} F_{2}(\varepsilon, \alpha)-\cdots+(-\lambda)^{n} F_{n}(\varepsilon, \alpha) \tag{11}
\end{equation*}
$$

with

$$
\left\{\begin{array}{l}
F_{1}(\varepsilon, \alpha)=\int_{0}^{a}[P(y) Q(y)]_{\varepsilon} d y \tag{12}\\
F_{2}(\varepsilon, \alpha)=\int_{0}^{\alpha} F_{1}\left(\varepsilon, f^{-1}(y)\right)[P(y) Q(y)]_{\varepsilon} d y \\
\cdots \\
F_{\nu}(\varepsilon, \alpha)=\int_{0}^{\alpha} F_{\nu-1}\left(\varepsilon, f^{-1}(y)\right)[P(y) Q(y)]_{\varepsilon} d y \\
\ldots \ldots
\end{array}\right.
$$

For every fixed y the integrands of (12) are positive functions of ε, nonincreasing for decreasing ε, converging to the integrands of (2) when ε tends to 0 . Hence, when ε tends to 0 , every $F_{v}(\varepsilon, \alpha)$ converges to $F_{\nu}(\alpha)$ and we infer that the polynomial $D(\varepsilon, \alpha, \lambda)$ converges to $D(\alpha, \lambda)$. The zeros of $D(\alpha, \lambda)$ are the limits of the zeros of $D(\varepsilon, \alpha, \lambda)$ when ε tends to 0 . As limits of real, positive numbers they are real, positive.

Theorem 3. When $P(x) Q(x) \geq 0$ the eigenvalues of A are non-increasing for increasing α.

Take out an arbitrary eigenvalue $\lambda_{y}^{(\alpha)}$ of the integral equation. It is the limit when ε tends to 0 of an eigenvalue $\lambda^{(\alpha)}(\varepsilon)$ of the integral equation used in the proof of theorem 2. By theorem $1 \lambda_{\nu}^{(\alpha)}(\varepsilon)$ is a decreasing function of α. Hence $\lambda_{\nu}^{(\alpha)}=\lim _{\varepsilon=0} \lambda_{\nu}^{(\alpha)}(\varepsilon)$ is non-increasing.

Theorem 4. Let the "existence-square" of the kernel of A be $\alpha \leq{ }_{y}^{x} \leq 1$. If $P(x) Q(x) \geq 0$ its eigenvalues are non-increasing for decreasing α.

By the change of variables $\xi=1-y, \eta=1-x$ the integral equation A is transformed into another of the same type with the same eigenvalues. The square $\alpha \leq_{y}^{x} \leq 1$ is transformed into the square $0 \leq{ }_{\eta}^{\xi} \leq 1-\alpha$. Thus theorem 4 is an immediate consequence of theorem 3 .

To conclude this study of equation A we shall show that the assumption $P(x) Q(x) \geq 0$ is essential in order that the eigenvalues shall be real. We shall give a simple example of an equation of the type A where $P(x) Q(x)$ changes its sign and the eigenvalues are complex.

Define the kernel in $0 \leq{ }_{y}^{x} \leq 1$ by $f(x)=x+\frac{2}{3}$ and $Q(x)=1$. The corresponding denominator of Fredholm is by (1) and (2):

$$
D(\lambda)=1-\lambda \int_{0}^{1} P(y) d y+\lambda^{2} \int_{j_{0}}^{1} P(x) d x \int_{0}^{x-\frac{1}{3}} P(y) d y .
$$

Choose $P(x)>0$ in the intervals $0 \leq x \leq \frac{1}{3}$ and $\frac{2}{3} \leq x \leq 1$, and $P(x)<0$ in the interval $\frac{1}{3}<x<\frac{2}{3}$, so that $\int_{0}^{1} P(y) d y=0$. We get: $D(\lambda)=1+\lambda^{2} C$ with $C>0$, hence the eigenvalues are non-real.

§ 3. Proof of the reality of the eigenvalues of equation \boldsymbol{B}.

When the curve goes through one or both of the points $(0,0)$ and $(1,1)$, the denominator of Fredholm of the kernel defined in $0 \leq_{y}^{x} \leq 1$ is an integral function. We shall examine the reality of its zeros when $P(x) Q(x) \geq 0$.

Restricting the "existence-square" of the kernel of B to $\varepsilon \leq{ }_{y}^{x} \leq 1-\varepsilon, \frac{1}{2}>\varepsilon>0$, we get an equation of the type A (fig. 4, p. 80). We shall show that the denominator of Fredholm $D(\varepsilon, \lambda)$ of the new equation converges to $D(\lambda)$ when ε tends to 0 . Since by theorem 2 the zeros of $D(\varepsilon, \lambda)$ are real, positive, we infer that the eigenvalues of B are likewise real, positive.

Let $[P(x) Q(x)]_{e}$ denote $P(x) Q(x)$ in the interval $\varepsilon \leq x \leq 1-\varepsilon$ and 0 in the intervals $0 \leq x<\varepsilon$ and $1-\varepsilon<x \leq 1$. $D(\varepsilon, \lambda)$ is simply obtained by putting $[P(x) Q(x)]_{\varepsilon}$ for $P(x) Q(x)$ into (2) and (3). We get formulas of the form (11) and (12) where $D(\varepsilon, \lambda)=D(\varepsilon, 1-\varepsilon, \lambda)$ and with n determined by

$$
f^{n-1}(\varepsilon)<1-\varepsilon \leq f^{n}(\varepsilon), \quad n=n(\varepsilon)
$$

Because the integrands of (12) are positive functions of ε, non-decreasing for decreasing ε, and converging to the integrands of (2), every coefficient $F_{\nu}(\varepsilon, 1)$ converges non-decreasing to $F_{y}(1)$ when ε decreases to 0 .

When $|\lambda| \leq R$ the moduli of the terms of the series $D(\varepsilon, \lambda)$ and $D(\lambda)$ are smaller than the corresponding terms of the convergent series

$$
\sum_{\nu=0}^{\infty} F_{\nu}(1) R^{\nu}=D(-R)
$$

Since every term of $D(\varepsilon, \lambda)$ converges to a term in $D(\lambda)$, we conclude that the convergence of $D(\varepsilon, \lambda)$ to $D(\lambda)$ is uniform in every circle $|\lambda| \leq R$.

Theorem 5. The eigenvalues of B are real, positive if $P(x) Q(x) \geq 0$.
Since $D(\varepsilon, \lambda)$ tends to $D(\lambda)$ uniformly in every circle $|\lambda| \leq R$ we can apply a theorem of Hurwitz [2]. By it the zeros of $D(\lambda)$ are exactly the limits of the zeros of $D(\varepsilon, \lambda)$ when ε tends to 0 . As limits of real, positive numbers the eigenvalues of B are real, positive and theorem 5 is proved.

Denote the zeros of $D(\varepsilon, \lambda)$ by $\lambda_{1}(\varepsilon), \lambda_{2}(\varepsilon), \ldots, \lambda_{n(\varepsilon)}(\varepsilon)$ and the zeros of $D(\lambda)$ by $\lambda_{1}, \lambda_{2}, \ldots$ arranged so that their moduli form a non-decreasing sequence. We have $\lim _{\varepsilon=0} \lambda_{\nu}(\varepsilon)=\lambda_{v}$ for all ν. Combining theorems 3 and 4 we infer that every $\lambda_{\nu}(\varepsilon)$ is non-increasing for decreasing ε.

Theorem 6. Putting $\int_{0}^{1} P(y) Q(y) d y=M$ we have

$$
\sum_{v=1}^{\infty} \frac{1}{\lambda_{v}}=M .
$$

From (11) we get:

$$
\sum_{\nu=1}^{n(\varepsilon)} \frac{1}{\lambda_{v}(\varepsilon)}=F_{1}(\varepsilon, 1)=\int_{\varepsilon}^{1-\varepsilon} P(y) Q(y) d y .
$$

Hence we can to every $\eta>0$ find a number $\varepsilon_{0}(\eta)>0$ such that

$$
M-\eta<\sum_{\nu=1}^{n\left(\varepsilon_{0}\right)} \frac{1}{\lambda_{\nu}\left(\varepsilon_{0}\right)} \leq M .
$$

$\frac{1}{\lambda_{\nu}(\varepsilon)}$ is non-decreasing for decreasing ε. Hence:

$$
M-\eta<\sum_{v=1}^{n\left(\varepsilon_{0}\right)} \frac{1}{\lambda_{v}\left(\varepsilon_{0}\right)} \leq \sum_{v=1}^{n\left(\varepsilon_{0}\right)} \frac{1}{\lambda_{v}} \leq M .
$$

Because η is arbitrary, we get $\sum_{\nu=1}^{\infty} \frac{1}{\lambda_{\nu}}=M$.

Theorem 7. $D(\lambda)$ is of genus $0: D(\lambda)=\prod_{\nu=1}^{\infty}\left(1-\frac{\lambda}{\lambda_{v}}\right)$.
Put $\frac{1}{\lambda_{\nu}(\varepsilon)}=0$ if $v>n(\varepsilon)$. The convergence of the infinite product $\prod_{\nu=1}^{\infty}\left(1-\frac{\lambda}{\lambda_{v}(\varepsilon)}\right)$ is uniform in ε since $\frac{1}{\lambda_{\nu}(\varepsilon)}$ is non-decreasing for decreasing ε and $\sum_{\nu=1}^{\infty} \frac{1}{\lambda_{v}}=M$. Hence

$$
D(\lambda)=\lim _{\varepsilon=0} D(\varepsilon, \lambda)=\lim _{\varepsilon=0} \prod_{v=1}^{\infty}\left(1-\frac{\lambda}{\lambda_{\nu}(\varepsilon)}\right)=\prod_{v=1}^{\infty} \lim _{\varepsilon=0}\left(1-\frac{\lambda}{\lambda_{\nu}(\varepsilon)}\right)=\prod_{v=1}^{\infty}\left(1-\frac{\lambda}{\lambda_{v}}\right) .
$$

Example. The function

$$
D(\lambda)=1+\sum_{\nu=1}^{\infty}(-\lambda)^{\nu} \frac{1}{\left(1+\frac{1}{a}\right)\left(1+\frac{1}{a}+\frac{1}{a^{2}}\right) \cdots\left(1+\frac{1}{a}+\cdots+\frac{1}{a^{\nu-1}}\right)^{2}},
$$

$0<a<1$, is of genus 0 and has its zeros real, positive. The fact is that it is the denominator of Fredholm of the integral equation of type B defined by

$$
f(x)=x^{a}, 0<a<1, P(x) Q(x)=1 .
$$

REFERENGES

[1] U. Hellsten, Determination of the denominator of Fredholm in some types of integral equations. Acta Mathematica 79, 1947, p. 105.
[2] E. C. Titchmarsh, The theory of functions, second edition, Oxford, 1939, p. 119.

