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On the Diophantine equation xZ+ 8D =yn 

By TRYGVE ~TAGELL 

§] .  

I n  a previous paper  I I showed t h a t  the Diophant ine  equat ion 

(1) x~ + 8 = y  n (n>=3) 

has no solution in positive integers x and y when n is no t  a prime = + 1 (mod 8). 
I f  n is a prime - :  +_ 1 (mod 8), there is at  most  one solution in posi t ive integers. 

I t  is, however, possible to  obtain  the following improvement  of this resul t :  

T h e o r e m  i .  The Diophantine equation (1), where n is an integer > 3 ,  has na 
solution in positive integers x and y. 

The proof will be given in § 5. 
I n  this paper  we shall examine the more general equat ion 

(2) x 2 + 8 D = yn, 

where D is a square-free, odd integer > 1, and  where  n is an  integer ~ 3. 
We  begin by  proving the  following lemma:  

Lemma 1. The equation (2) has no solution in even integers x and y i/ n > 4. 

I ]  n = 3  and i/ the number o/ ideal classes in the quadratic field K ( V - 2 D )  is  
not divisible by 3, the equation (2) is solvable in even integers x and y only when 
D = 6 a2T 1, a integer; corresponding to this value o/ D there is the single integral 
solution y = 16 a*~ 2. 

Proof. Let  x, y be a solution of (2) in integers. I f  x is even, y is so. T h e n  
yn is divisible by  8. Hence by (2) x is divisible by  4. Since D is odd, y~ mus t  
be divisible b y  exact ly  8, and this implies n = 3. If  we pu t  x = 4 x 1 and y = 2 Yl, 
we get 

(3) (2 xl) 2 + 2 D = 2 y~. 

The ideal factors ( 2 x 1 +  V = 2 D )  and (2x I -  ~ / - 2 D )  of the left-hand side have  

the greatest  common  divisor (2, V - 2 D ) .  Hence it follows f rom (3) 

1 See NAOEr.L [1], § 2. Figures in [ ] refer to the Bibliography at the end of this paper. 
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(4) (2 x I + U - 2 D) = (2, ] / ~  2 D) i a, 

where  i is an  ideal wi th  the  norm Yl in K ( ] / ~  2 D). Since 

(2, V - 2 D) s = (2), 
we  get  

(5) (2 x 1 + V - 2 D) s = (2) i s. 

Thus  i e is a principal  ideal. Since, b y  hypothesis ,  the  class n u m b e r  is no t  
divisible b y  3, i t  is evident  t h a t  i S is a pr incipal  ideal. Then  it  follows f rom (5) 

(6) (2x  1+ V - 2 D )  s = 2  ( u + v  l / - 2 D )  a, 

where  u and  v are ra t ional  integers, such t h a t  

(7) y~ = (N i) ~ = u 2 + 2 D v s. 

u is odd,  since Yl is so. I t  follows f rom (6) t h a t  

(8) u + v  I / - 2 D  = (a 1/2+ b V-~-- D) ~, 

where  a and  b are ra t ional  integers. Combining this  equa t ion  wi th  (6) we get  

(9) x~ ]/2 + ~ / -  D = (a V2 + b 1 / - D) a, 

whence  

Th i s  implies b = ± 1 and  

(10) 

T h e n  we get  f rom (7) and  (8) 

(11) 

a n d  f rom (9) 

(11') 

l = 6 a S b - D b  a. 

D = 6 a ~ T  1. 

yl = N i= 2aS + DbS = 2a2 + D=8a2-~  1, 

x t = 2 a  3 - 3 D a b  s= -- 16a  a + 3 a .  

§2. 

We shall now consider equa t ion  (2) for  an odd solution x. L e t  n be the  
p o w e r  of an  odd pr ime q, thus  n = q  ~. Fur the r  we suppose t h a t  the  n u m b e r  of 
ideal  classes in the  quadra t ic  field K ( 1 / -  2 D) is not  divisible by  n. 

W h e n  x is odd, y is also odd, and  the  ideal factors  @ + 2  I / - 2 D )  and  
( x - 2  ~ / -  2 D) of the  le f t -hand side of (2) are re la t ive ly  pr ime.  Hence  

(12) ( x +  2 V - 2 D )  = i " ,  
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where i is an ideal. I f  the class number  h in K(~/- - - - -~)  is divisible b y  
q~ (0 _~ fl < ~) and not by qt~+l, there exist two rational integers / and g such t ha t  

Then  by (12) we get the following equivalence 

~q~ ~ ~ rq~ N 1. 
Hence we obtain from (12) 

x+ 2 ~ =  (u+v V~-2D) q, 

where u and v are rational integers, such tha t  

y~ = (u ~ + 2 D v~) q. 

u is odd since x is so. Then, equating the coefficients of V-~-2D, we get the 
relation 

(13) 2 = ~ .  U q-2k-1 V 2 k + l  ( - -  2 D)  k. 
~.=0 2 .  1 

From this equation it is obvious tha t  v is a divisor of 2 and tha t  quq-lv is 
even. Hence v =  ± 2  since q and u are odd. All the terms on the right-hand 
side in (13) are divisible by  q, except the last  term (for k = ½  (q--1)). Thus we 
get, if D is not  divisible by q, 

- 2 D  2~vq ( - 2  D)½(q-1)=-v(--~ - )  (modq) ,  

whence 

I f  D is divisible by  q, equation (13) is impossible. 
Then, on dividing (13) by v, we have 

(14) ( ~ )  = ½(;~=2) (2 :+ l) Uq-2k-l (-- S D) k. 

Taking equation (14) as a congruence modulo 8 we get 

( - ~ )  =qu "-~-q (mod 8), (15) 

whence it follows 
q--  ± 1  (mod 8). 

Hence, taking in consideration Lemma  1, we have the  following result:  

T h e o r e m  2. Let n be the power el an odd prime q, n ~ 3, and suppose that 
the class number in K (V-~-D) is not divisible by n. 
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1] q=-- q-3 (mod 8), the Diophantine equation (2) has no solution in integers x 
and  y, apart from the case when n = 3 and x and y are even. Likewise, i/ D is 
divisible by q, equation (2) has no integral solution. 

We may also state 

Lemma 2. Let n be the power of a prime q=~ ~ 1  (rood 8), and suppose that 

the class number in K ( V - 2 D )  is not divisible by n. 
I f  the Diophantine equation (2) is solvable in integers x and y, we must have 

n 

yq = un + 8 D, 

where u is an odd integer satisfying equation (14). 

§a. 

Now suppose that  the prime q in (14) is = +__1 (mod8).  If  we put  X = u  ~ 
and Y = - 8 D ,  the right-hand side of (14) becomes a form of the degree 
½ ( q - 1 )  in X and Y with integral coefficients. By  the theorem of EIs~,~ST~I)r 
it  is obvious tha t  this form is irreducible. Hence, according to a famous theorem 
of Taut. ,  equation (14) holds only for a finite number of integral values X 
and Y. Thus we have proved: 

T h e o r e m  3. Let n be the power o/ an odd prime =-- +_ 1 (rood 8), and suppose 

that the class number in K ( V - 2 D )  is not divisible by n. .For a given n~_7, 
there is only a ]inite number of square-free odd integers D ~ I ,  such that the 
Diophantine equation (2) is solvable in integers x and y. 

When q ~ -  1 (mod 8) it follows from (15) 

- 2 D  

When q -  + 1 (rood 8) it follows 

- 2 D  

Hence, in both cases D must be a quadratic residue modulo q. Thus we can state 

T h e o r e m  /~. Let n be the power o/ an odd prime q ~  ± 1  (mod 8), and suppose 

that the class number in K ( ~ - - 2 D )  is not divisible by n. I f  D is a quadratic 
non-residue modulo n, the Diophantine equation (2) has no solution in integers 
x and y. 
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§ 5 .  

Now we suppose that  D - 1  (mod 3). 
If  q - - 1  (rood 8) it follows from (14) 

~(q--1) 
--1----  

k~O 
( 2 : +  1) uq-~k-1 (mod 3). 

This is impossible when u is divisible by 3, since, in that  case, the right-hand 
side is - 1  (rood3). If  u is not divisible by 3, we get 

But  this congruence is impossible since the value of the right-hand side is 2 q--1 
and thus : 1 (mod 3). 

If  q--1 (rood 8) it follows from (14) 

½(q--l) 
(16) q - - l + q ( u  q - ~ - l ) =  -- 

k = l  
( 2 : +  1) uq-~k-1 ( -  8 D)~" 

Suppose q - l = 2 r q l  where ql is odd. Then U q - l -  1 is divisible by 2 r+2. The 
general term in the right-hand sum in (16) may be written 

q ( q - 1 )  ( : f f  )uq_~k_l (_8D)~.  (17) 2k (2k-+]) 1 

Here the numerator is divisible by 2 r+3k. The denominator is divisible by a 
power of 2 which is g 2 k .  Since for all k=>l 

2a~=8~>4k,  

we conclude that  the number (17) is divisible at least by 2 r+l. Hence equa- 
tion (16) is impossible, for q - 1  is divisible by 2 r but not by 2 "+1. 

Thus we can state 

T h e o r e m  5. Let n be the power o/ an odd prime q-++_1 (mod 8), and suppose 
that the class number in K ( V - 2 D )  is not divisible by n. I /  D - 1  (mod3), the 
Diophantine equation (2) has no solution in integers x and y: 

This result is contained in the more general 

T h e o r e m  6. Let n be an odd integer > 3, and suppose that the class number 
in K ( | / ~ )  is not divisible by n. I /  D = - 1 (mod 3) the Diophantine equation (2) 
has no solution in integers x and y. 

Proo/. Suppose that  equation (2) is solvable in integers x and y. There must 
exist a prime factor q of n with the following property: q~ is a factor of n b u t  
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not of the class number h. Let  us put  m = q  ~, n = m r  and z = y  r. Then the 
equation 

(2') x ~ + 8 D = z m 

should be solvable in integers x and z. But  by Theorem 2 this is impossible 
when q ~  +_3 (mod 8) and m = q  ~ >3.  When m = q ~ = 3 ,  it follows from Lemma 1 
and Theorem 2 tha t  

z = y r =  16a2T 2; 

n 
but  this is impossible since r = ~ > 1. 

When q ~ ± 1 (rood 8) equation (2') is impossible in virtue of Theorem 5. 
In  the special case D = 1 we easily get Theorem 1. In  fact, the class number 

in K (V----2) is = 1. The equation 

x ~ + 8 = y~ 

is possible only for I 1= 1, I v l = a  By r mma 1 the equation 

x ~ + 8 = ya 

is satisfied only for x =  0, y =  2. 

§ 6 .  

We shall prove the following theorem: 

T h e o r e m  7. Let n be the power o I an odd prime q =  ± 1  (mod 8), and suppose 

that the class number in K (V~-2D) is not divisible by n. Then the Diophantine 
equation (2) has at most one solution in  positive integers x and y. 

Prool. Suppose that  equation (14) was satisfied for two values u and u 1 
( u #  ± % ) .  Thus 

( ~ ' - ~ )  ~½(;~:)(2:~_l)q~bq-2k-l(--UD) k~ 

Subtracting this equation from equation (14) we get, on dividing by u 2 - u ~ :  

uq-1 -- uq-1 ½(q--3) ( ) u q - 2 k - l - - u  q-2k-1 
(18) q u 2 - u ~  k=~l 2 : + 1  u ' - u ~  (--8D)k" 

We need the following lemma: 

L e m m a  3. Suppose that m = 2 ~" r, where m,  l ~ and r are positive integers, r odd. 
~uppose /urther that u and u 1 are odd integers u # +_%. Then the integer 

U rn -- U~ 
U 2 -- ~21 

is divisible by exactly 2 ~-1 and not by 2 ~'. 
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Proo[. The lemma is true for m = 2 ,  independently of the value of r. For,  
~ince r is odd, the number  

u~r--u~ _U~,_2+U~_4U~+... +U~-~ 
U2- -U~  

is odd. Suppose tha t  the lemma is true for the even exponent m. Then we 
shall show tha t  i t  is also true for the exponent 2 m. In  fact, we have 

u~m-u~ ~ u~_u~ 
u~_u~ (u~+u?) - 

U 2 -- U~ ~ 

and  urn+ u~, being the sum of two odd squares, is even but  not  divisible by 4. 
Thus Lemma 3 is established by  induction. 

I t  is easy to see tha t  equation (18) is impossible when q-= - 1 (rood 8). For, 
b y  Lemma  3, the left-hand side of (18) is odd in this case. But  the right- 
hand  side is divisible by  8. 

Suppose next  q - 1  (mod 8) and q - 1  = 2st ,  where r is odd and # ~_ 3. Then, 
by  Lemma 2, the left-hand side of (18) is divisible by 2 ~-1 and not by  2 ~'. 
The  general t e rm in (18) may  be writ ten 

( : / 2 )  q(q-1) 23k Uq-2k-1--U~ -2k-1 

1 2 k ( 2 k +  1) u~-u~ (-D)~" 

Since for all k ~ l  
23k > 2 It, 

¢his number  is divisible at  most by 2 ~. Hence the r ight-hand side of (18) is 
divisible by 2 ~. But  we have just shown tha t  the left-hand side of (18) is divis- 
ible by  2 "-1 and not by 2 ~. Thus equation (14) is satisfied by  at  most  one 
value of u S. The corresponding value of y is given by the relation 

(19) yn = (u 2 + 8 D) q. 

This proves Theorem 7. 

§ 7 .  
Fur ther  we prowe 

T h e o r e m  8. Let n be an odd integer >3 ,  and suppose that n and the class 

number  in K ( ~ 2 D )  are relatively prime. I[  the Diophantine equation (2) has 
a solution in integers x and y, n is a prime - ±  1 (mod 8). 

Proo[. Suppose tha t  n is divisible by  a prime q =  --+3 (rood 8). Pu t  

n 

Z = yq 
and consider the equation 

x2 + 8 D =  z q. 
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The class number  h in K ( V - 2 D )  is not divisible by q. I f  q = 3 ,  we get by  
L e m m a  1 

z = 1 6 a 2 ~  2 = y  ~. 

But  this is clearly impossible since ~ > 1. I f  q >  3, i t  follows from Theorem 2 

tha t  equation (2) is impossible. 
Hence n is a product  of primes - ± 1 (mod 8). Let  q be the least of these 

primes and suppose that  n > q. Pu t  
n_ 

z = yq 
and consider the equation 

x2 T $ D = z  q. 

Since the class number  h is not divisible by  q, it follows by  Lemma  2 tha t  

z = u 2 + 8 D ,  

where u is an odd integer satisfying equation (14). _n is divisible by  a prime p 
q 

which is _~q and ~- ± l ( m o d 8 ) .  Now put  

n 

Z 1 = yV q 

and consider the equation 
u ~ + 8 D = z ~ .  

Since the class number  h is not divisible by p, it follows by  L e m m a  2 t ha t  

z1= u~ + 8 D, 

where u 1 is an odd integer. Hence we have 

n 

(20) z = yq = (u~ + 8 D) v >= (1 + 8 D) q. 

l~rom equation (14) it follows tha t  

(8 D ) ½ ' q - 1 ) - ( ~ ) ( m o d  u~q), 

w h e n c e  

u2q ~ (8 D) ½(q-l) + 1. 

Thus we get 

z = u S + 8 D _-< _1 [(8 D) ½(q-l) -t- l]  -~ 8 D. 
q 

But  this contradicts the inequality (20). In  fact, it is easily seen tha t  for all 
D>= 1 and all q ~ 7 ,  we have 
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1 
(1 + 8 D )  ~ > q [(8 D) ½(q-l) + 1] + 8 D. 

Hence  n mus t  be a prime = _+ 1 (mod 8), and  Theorem 8 is proved.  

§8. 
Final ly  we prove 

T h e o r e m  9. Let n be an odd integer > 3, and let D be a positive integer of 
the form 

(21) D = ~ (y= - x2), 

where x and y are odd integers. Then there exists a number D o such that the class 
number in the imaginary quadratic /ield K ( ~  2 D) is divisible by n for all square- 
]ree D >= Do. 

Proof. Suppose tha t  the class number  is no t  divisible by  n. Then  there exists 
a prime factor  q of n wi th  the following proper ty :  q~ is a fac tor  of n bu t  no t  
of  the class number .  Le t  us pu t  m = q  ~, n = m r  and  z = y  r. Then it follows 
f rom (21) 

(22) x 2 + 8 D = z m. 

B u t  by  Theorem 2 this relation is no t  possible for integral  values of x and  z 
when q -  _+ 3 (rood 8) and m = q~> 3. W h e n  m = q~= 3, i t  follows f rom Theorem 2 
t h a t  (22) is not  possible for even x and  z. W h e n  q ~  + 1  (rood 8), in v i r tue  of 
Theorem 3, the relation (22) is possible only for a finite number  of values D. 

This proves Theorem 9. 

Remark. I t  m a y  be shown t h a t  there are infinitely m a n y  positive and square- 
~ree integers D of the  form (21); compare  [2], § 2. 

§ 9 .  

There are several similar results on other  Diophant ine  equat ions  of the type  

(23) x 2 + B = yn, 

where B and n are positive integers, n odd and 
t h a t  the equat ion 

x2+ l = y  ~ 

> 3. Thus  LnBESOVE showed 

has no solution in integers x and y for x # 0; see [3]. 
I n  a previous paper  I examined equat ion (23) when B is a positive square- 

free integer which is either = 1 or = 2  (mod 4), and  showed how all integral  
solutions m a y  be found in m a n y  cases; see [4], § 2. E x a m p l e :  For  B = 5 and  
n >  3 equat ion (23) has no integral solution. 
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LJU~GaREN has treated the case in which B is a positive square-free integer 
of the form 

B = 1 + 22m+l (2 h - 1), 

where m and h are positive integers; when the class number in the field 
K ( V - B )  is not  divisible by  n, he showed that  equation (23) has no integral 
solution; see [5] and [6]. Example:  For B = 9  and n > 3  equation (23) cannot, 
be satisfied by  any integers x and y. 

Equation (23) is a special case of the Diophantine equation 

(24) ax~ + bx + c = d y  ", 

where the left-hand side is an irreducible polynomial of the second degree, 
having integral coefficients; d is an integer # 0. I t  was shown by THU• that, 
this equation has only a finite number of integraI solutions x, y, when n >  3;. 
see [7]. This result was subsequently discovered again by LA~DA~ and 0STROWSKI;. 
see [8]. However, no general method is known for determining all integral solu- 
tions x and y of a given equation of the form (24). 
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