On the Diophantine equation $x^{2}+8 D=y^{n}$

By Trygue Nagell

§ 1.

In a previous paper ${ }^{1}$ I showed that the Diophantine equation

$$
\begin{equation*}
x^{2}+8=y^{n} \quad(n \geqq 3) \tag{1}
\end{equation*}
$$

has no solution in positive integers x and y when n is not a prime $\equiv \pm 1(\bmod 8)$. If n is a prime $\equiv \pm 1(\bmod 8)$, there is at most one solution in positive integers.

It is, however, possible to obtain the following improvement of this result:
Theorem 1. The Diophantine equation (1), where n is an integer $\geqq 3$, has no solution in positive integers x and y.

The proof will be given in $\S 5$.
In this paper we shall examine the more general equation

$$
\begin{equation*}
x^{2}+8 D=y^{n} \tag{2}
\end{equation*}
$$

where D is a square-free, odd integer $\geqq 1$, and where n is an integer $\geqq 3$.
We begin by proving the following lemma:
Lemma 1. The equation (2) has no solution in even integers x and y if $n \geqq 4$.
If $n=3$ and if the number of ideal classes in the quadratic field $\boldsymbol{K}(\sqrt{-2 D})$ is not divisible by 3, the equation (2) is solvable in even integers x and y only when $D=6 a^{2} \mp 1, a$ integer; corresponding to this value of D there is the single integral solution $y=16 a^{2} \mp 2$.

Proof. Let x, y be a solution of (2) in integers. If x is even, y is so. Then y^{n} is divisible by 8 . Hence by (2) x is divisible by 4 . Since D is odd, y^{n} must be divisible by exactly 8 , and this implies $n=3$. If we put $x=4 x_{1}$ and $y=2 y_{1}$, we get

$$
\begin{equation*}
\left(2 x_{1}\right)^{2}+2 D=2 y_{1}^{3} \tag{3}
\end{equation*}
$$

The ideal factors $\left(2 x_{1}+\sqrt{-2 D}\right)$ and $\left(2 x_{1}-\sqrt{-2 D}\right)$ of the left-hand side have the greatest common divisor ($2, \sqrt{-2 D}$). Hence it follows from (3)
${ }^{1}$ See Nagell [1], § 2. Figures in [] refer to the Bibliography at the end of this paper.
T. nagell, On the Diophantine equation $x^{2}+8 D=y^{n}$

$$
\begin{equation*}
\left(2 x_{1}+\sqrt{-2 D}\right)=(2, \sqrt{-2 D}) \mathrm{i}^{3} \tag{4}
\end{equation*}
$$

where \mathfrak{j} is an ideal with the norm y_{1} in $K(\sqrt{-2 D})$. Since

$$
(2, \sqrt{-2 D})^{2}=(2)
$$

we get

$$
\begin{equation*}
\left(2 x_{1}+\sqrt{-2 D}\right)^{2}=(2) j^{6} . \tag{5}
\end{equation*}
$$

Thus j^{6} is a principal ideal. Since, by hypothesis, the class number is not divisible by 3 , it is evident that j^{2} is a principal ideal. Then it follows from (5)

$$
\begin{equation*}
\left(2 x_{1}+\sqrt{-2 D}\right)^{2}=2(u+v \sqrt{-2 D})^{3} \tag{6}
\end{equation*}
$$

where u and v are rational integers, such that

$$
\begin{equation*}
y_{1}^{2}=(N \mathrm{i})^{2}=u^{2}+2 D v^{2} \tag{7}
\end{equation*}
$$

u is odd, since y_{1} is so. It follows from (6) that

$$
\begin{equation*}
u+v \sqrt{-2 D}=(a \sqrt{2}+b \sqrt{-D})^{2} \tag{8}
\end{equation*}
$$

where a and b are rational integers. Combining this equation with (6) we get

$$
\begin{equation*}
x_{1} \sqrt{2}+\sqrt{-D}=(a \sqrt{2}+b \sqrt{-D})^{3} \tag{9}
\end{equation*}
$$

whence

$$
1=6 a^{2} b-D b^{3}
$$

This implies $b= \pm 1$ and

$$
\begin{equation*}
D=6 a^{2} \mp 1 \tag{10}
\end{equation*}
$$

Then we get from (7) and (8)

$$
\begin{equation*}
y_{1}=N \mathrm{j}=2 a^{2}+D b^{2}=2 a^{2}+D=8 a^{2} \mp 1 \tag{11}
\end{equation*}
$$

and from (9)

$$
x_{1}=2 a^{3}-3 D a b^{2}=-16 a^{3} \pm 3 a
$$

§ 2.

We shall now consider equation (2) for an odd solution x. Let n be the power of an odd prime q, thus $n=q^{\alpha}$. Further we suppose that the number of ideal classes in the quadratic field $K(\sqrt{-2 D})$ is not divisible by n.

When x is odd, y is also odd, and the ideal factors $(x+2 \sqrt{-2 D})$ and $(x-2 \sqrt{-2 D})$ of the left-hand side of (2) are relatively prime. Hence

$$
\begin{equation*}
(x+2 \sqrt{-2 D})=\mathrm{i}^{n} \tag{12}
\end{equation*}
$$

where i is an ideal. If the class number h in $K(\sqrt{-2 D})$ is divisible by $q^{\beta}(0 \leqq \beta<\alpha)$ and not by $q^{\beta+1}$, there exist two rational integers f and g such that

$$
f q^{\alpha}-g h=q^{\beta}
$$

Then by (12) we get the following equivalence

$$
\lambda^{\alpha^{\beta}} \sim \lambda^{f^{\alpha}} \sim 1
$$

Hence we obtain from (12)

$$
x+2 \sqrt{-2 D}=(u+v \sqrt{-2 D})^{q}
$$

where u and v are rational integers, such that

$$
y^{n}=\left(u^{2}+2 D v^{2}\right)^{Q}
$$

u is odd since x is so. Then, equating the coefficients of $\sqrt{-2 D}$, we get the relation

$$
\begin{equation*}
2=\sum_{k=0}^{\frac{1}{2}(q-1)}\binom{q}{2 \underset{y}{k}+1} u^{q-2 k-1} v^{2 k+1}(-2 D)^{k} . \tag{13}
\end{equation*}
$$

From this equation it is obvious that v is a divisor of 2 and that $q u^{q-1} v$ is even. Hence $v= \pm 2$ since q and u are odd. All the terms on the right-hand side in (13) are divisible by q, except the last term (for $k=\frac{1}{2}(q-1)$). Thus we get, if D is not divisible by q,

$$
2 \equiv v^{Q}(-2 D)^{\frac{1}{2}(q-1)} \equiv v\left(\frac{-2}{q} \frac{D}{}\right)(\bmod q)
$$

whence

$$
v=2\left(\frac{-2 D}{q}\right)
$$

If D is divisible by q, equation (13) is impossible.
Then, on dividing (13) by v, we have

$$
\begin{equation*}
\left(\frac{-2 D}{q}\right)=\sum_{k=0}^{\frac{1}{2}(q-1)}\binom{q}{2 k+1} u^{q-2 k-1}(-8 D)^{k} . \tag{14}
\end{equation*}
$$

Taking equation (14) as a congruence modulo 8 we get

$$
\begin{equation*}
\left(\frac{-2 D}{q}\right) \equiv q u^{q-1} \equiv q(\bmod 8) \tag{15}
\end{equation*}
$$

whence it follows

$$
q \equiv \pm 1(\bmod 8)
$$

Hence, taking in consideration Lemma l, we have the following result:
Theorem 2. Let n be the power of an odd prime $q, n \geqq 3$, and suppose that the class number in $K(\sqrt{-2 D})$ is not divisible by n.
T. NAGELL, On the Diophantine equation $x^{2}+8 D=y^{n}$

If $q \equiv \pm 3$ ($\bmod 8$), the Diophantine equation (2) has no solution in integers x and y, apart from the case when $n=3$ and x and y are even. Likewise, if D is divisible by q, equation (2) has no integral solution.

We may also state
Lemma 2. Let n be the power of a prime $q \equiv \pm 1(\bmod 8)$, and suppose that the class number in $K(\sqrt{-2 D})$ is not divisible by n.

If the Diophantine equation (2) is solvable in integers x and y, we must have

$$
y^{\frac{n}{Q}}=u^{2}+8 D
$$

where u is an odd integer satisfying equation (14).

§ 3.

Now suppose that the prime q in (14) is $\equiv \pm 1(\bmod 8)$. If we put $X=u^{2}$ and $Y=-8 D$, the right-hand side of (14) becomes a form of the degree $\frac{1}{2}(q-1)$ in X and Y with integral coefficients. By the theorem of Eisenstein it is obvious that this form is irreducible. Hence, according to a famous theorem of Thof, equation (14) holds only for a finite number of integral values X and Y. Thus we have proved:

Theorem 3. Let n be the power of an odd prime $\equiv \pm 1(\bmod 8)$, and suppose that the class number in $K(\sqrt{-2 D})$ is not divisible by n. For a given $n \geqq 7$, there is only a finite number of square-free odd integers $D \geqq 1$, such that the Diophantine equation (2) is solvable in integers x and y.

§ 4.

When $q \equiv-1(\bmod 8)$ it follows from (15)

$$
-\mathbf{1} \equiv q \equiv\left(\frac{-2 D}{q}\right) \equiv-\left(\frac{D}{q}\right)(\bmod 8)
$$

When $q \equiv+1(\bmod 8)$ it follows

$$
l \equiv q \equiv\left(\frac{-2 D}{q}\right) \equiv\left(\frac{D}{q}\right)(\bmod 8)
$$

Hence, in both cases D must be a quadratic residue modulo q. Thus we can state
Theorem 4. Let n be the power of an odd prime $q \equiv \pm 1(\bmod 8)$, and suppose that the class number in $K(\sqrt{-2 D})$ is not divisible by n. If D is a quadratic non-residue modulo n, the Diophantine equation (2) has no solution in integers x and y.

§ 5.

Now we suppose that $D \equiv 1(\bmod 3)$.
If $q \equiv-1(\bmod 8)$ it follows from (14)

$$
-1 \equiv \sum_{k=0}^{\frac{1}{2}(q-1)}\binom{q}{2 k+1} u^{q-2 k-1}(\bmod 3)
$$

This is impossible when u is divisible by 3 , since, in that case, the right-hand side is $\equiv 1(\bmod 3)$. If u is not divisible by 3 , we get

$$
-\mathrm{I} \equiv\binom{q}{1}+\binom{q}{3}+\cdots+\binom{q}{q}(\bmod 3)
$$

But this congruence is impossible since the value of the right-hand side is 2^{q-1} and thus $\equiv 1(\bmod 3)$.

If $q \equiv 1(\bmod 8)$ it follows from (14)

$$
\begin{equation*}
q-1+q\left(u^{Q-1}-1\right)=-\sum_{k=1}^{\frac{1}{2}(q-1)}\binom{q}{2 k+1} u^{Q-2 k-1}(-8 D)^{c} . \tag{16}
\end{equation*}
$$

Suppose $q-1=2^{r} q_{1}$ where q_{1} is odd. Then $u^{q-1}-1$ is divisible by 2^{r+2}. The general term in the right-hand sum in (16) may be written

$$
\begin{equation*}
\frac{q(q-1)}{2 k(2 k+1)}\binom{q-2}{2 k-1} u^{q-2 k-1}(-8 D)^{k} \tag{17}
\end{equation*}
$$

Here the numerator is divisible by $2^{r+3 k}$. The denominator is divisible by a power of 2 which is $\leqq 2 k$. Since for all $k \geqq 1$

$$
2^{3 k}=8^{k}>4 k
$$

we conclude that the number (17) is divisible at least by 2^{r+1}. Hence equation (16) is impossible, for $q-1$ is divisible by 2^{r} but not by 2^{r+1}.

Thus we can state
Theorem 5. Let n be the power of an odd prime $q \equiv \pm \mathbf{1}(\bmod 8)$, and suppose that the class number in $K(\sqrt{-2 D})$ is not divisible by n. If $D \equiv \mathbf{1}(\bmod 3)$, the Diophantine equation (2) has no solution in integers x and y.

This result is contained in the more general
Theorem 6. Let n be an odd integer >3, and suppose that the class number in $K(\sqrt{-2 D})$ is not divisible by n. If $D \equiv 1(\bmod 3)$ the Diophantine equation (2) has no solution in integers x and y.

Proof. Suppose that equation (2) is solvable in integers x and y. There must exist a prime factor q of n with the following property: q^{α} is a factor of n but
T. nagell, On the Diophantine equation $x^{2}+8 D=y^{n}$
not of the class number h. Let us put $m=q^{\alpha}, n=m r$ and $z=y^{r}$. Then the equation

$$
x^{2}+8 D=z^{m}
$$

should be solvable in integers x and z. But by Theorem 2 this is impossible when $q \equiv \pm 3(\bmod 8)$ and $m=q^{\alpha}>3$. When $m=q^{\alpha}=3$, it follows from Lemma 1 and Theorem 2 that

$$
z=y^{r}=16 a^{2} \mp 2 \text {; }
$$

but this is impossible since $r=\frac{n}{3}>1$.
When $q \equiv \pm 1(\bmod 8)$ equation (2^{\prime}) is impossible in virtue of Theorem 5.
In the special case $D=1$ we easily get Theorem 1 . In fact, the class number in $K(\sqrt{-2})$ is $=1$. The equation

$$
x^{2}+8=y^{2}
$$

is possible only for $|x|=1,|y|=3$. By Lemma 1 the equation

$$
x^{2}+8=y^{3}
$$

is satisfied only for $x=0, y=2$.

§ 6.

We shall prove the following theorem:
Theorem 7. Let n be the power of an odd prime $q \equiv \pm 1(\bmod 8)$, and suppose that the class number in $K(\sqrt{-2 D})$ is not divisible by n. Then the Diophantine equation (2) has at most one solution in positive integers x and y.

Proof. Suppose that equation (14) was satisfied for two values u and u_{1} ($u \neq \pm u_{1}$). Thus

$$
\left(\frac{-2 D}{q}\right)=\sum_{k=0}^{\frac{1}{2}(q-1)}\binom{q}{2 k+1} u_{1}^{q-2 k-1}(-8 D)^{k} .
$$

Subtracting this equation from equation (14) we get, on dividing by $u^{2}-u_{1}^{2}$:

$$
\begin{equation*}
-q \frac{u^{q-1}-u_{1}^{q-1}}{u^{2}-u_{1}^{2}}=\sum_{k=1}^{\frac{1}{(q-3)}}\binom{q}{2 k+1} \frac{u^{q-2 k-1}-u_{1}^{q-2 k-1}}{u^{2}-u_{1}^{2}}(-8 D)^{k} . \tag{18}
\end{equation*}
$$

We need the following lemma:
Lemma 3. Suppose that $m=2^{\mu} r$, where m, μ and r are positive integers, r odd. Suppose further that u and u_{1} are odd integers $u \neq \pm u_{1}$. Then the integer

$$
\frac{u^{m}-u_{1}^{m}}{u^{2}-u_{1}^{2}}
$$

is divisible by exactly $2^{\mu-1}$ and not by 2^{μ}.

Proof. The lemma is true for $m=2$, independently of the value of r. For, since r is odd, the number

$$
\frac{u^{2 r}-u_{1}^{2 r}}{u^{2}-u_{1}^{2}}=u^{2 r-2}+u^{2 r-4} u_{1}^{2}+\cdots+u_{1}^{2 r-2}
$$

is odd. Suppose that the lemma is true for the even exponent m. Then we shall show that it is also true for the exponent $2 m$. In fact, we have

$$
\frac{u^{2 m}-u_{1}^{2 m}}{u^{2}-u_{1}^{2}}=\left(u^{m}+u_{1}^{m}\right) \frac{u^{m}-u_{1}^{m}}{u^{2}-u_{1}^{2}}
$$

and $u^{m}+u_{1}^{m}$, being the sum of two odd squares, is even but not divisible by 4 . Thus Lemma 3 is established by induction.

It is easy to see that equation (18) is impossible when $q \equiv-1(\bmod 8)$. For, by Lemma 3, the left-hand side of (18) is odd in this case. But the righthand side is divisible by 8.

Suppose next $q \equiv 1(\bmod 8)$ and $q-1=2^{\mu} r$, where r is odd and $\mu \geqq 3$. Then, by Lemma 2, the left-hand side of (18) is divisible by $2^{\mu-1}$ and not by 2^{μ}. The general term in (18) may be written

$$
\binom{q-2}{2 k-1} \frac{q(q-1)}{2 k(2 k+1)} 2^{3 k} \cdot \frac{u^{q-2 k-1}-u_{1}^{q-2 k-1}}{u^{2}-u_{1}^{2}}(-D)^{k}
$$

Since for all $k \geqq 1$

$$
2^{3 k}>2 k
$$

this number is divisible at most by 2^{μ}. Hence the right-hand side of (18) is divisible by 2^{μ}. But we have just shown that the left-hand side of (18) is divisible by $2^{\mu-1}$ and not by 2^{μ}. Thus equation (14) is satisfied by at most one value of u^{2}. The corresponding value of y is given by the relation

$$
\begin{equation*}
y^{n}=\left(u^{2}+8 D\right)^{q} \tag{19}
\end{equation*}
$$

This proves Theorem 7.

Further we prowe

$$
\S 7 .
$$

Theorem 8. Let n be an odd integer >3, and suppose that n and the class number in $K(\sqrt{ }-2 D)$ are relatively prime. If the Diophantine equation (2) has a solution in integers x and y, n is a prime $\equiv \pm 1(\bmod 8)$.

Proof. Suppose that n is divisible by a prime $q \equiv \pm 3(\bmod 8)$. Put

$$
z=y^{\frac{n}{Q}}
$$

and consider the equation

$$
x^{2}+8 D=z^{q}
$$

T. nagell, On the Diophantine equation $x^{2}+8 D=y^{n}$

The class number h in $K(\sqrt{-2 D})$ is not divisible by q. If $q=3$, we get by Lemma 1

$$
z=16 a^{2} \mp 2=y^{\frac{n}{3}}
$$

But this is clearly impossible since $\frac{n}{3}>1$. If $q>3$, it follows from Theorem 2 that equation (2) is impossible.

Hence n is a product of primes $\equiv \pm 1(\bmod 8)$. Let q be the least of these primes and suppose that $n>q$. Put

$$
z=y^{\frac{n}{q}}
$$

and consider the equation

$$
x^{2}+8 D=z^{Q}
$$

Since the class number h is not divisible by q, it follows by Lemma 2 that

$$
z=u^{2}+8 D
$$

where u is an odd integer satisfying equation (14). $\frac{n}{q}$ is divisible by a prime p which is $\geqq q$ and $\equiv \pm 1(\bmod 8)$. Now put

$$
z_{1}=y^{\frac{n}{p Q}}
$$

and consider the equation

$$
u^{2}+8 D=z_{1}^{p}
$$

Since the class number h is not divisible by p, it follows by Lemma 2 that

$$
z_{1}=u_{1}^{2}+8 D
$$

where u_{1} is an odd integer. Hence we have

$$
\begin{equation*}
z=y^{\frac{n}{Q}}=\left(u_{1}^{2}+8 D\right)^{p} \geqq(1+8 D)^{\ell} \tag{20}
\end{equation*}
$$

From equation (14) it follows that

$$
(8 D)^{\frac{1}{2}(q-1)} \equiv\left(\frac{2 D}{q}\right)\left(\bmod u^{2} q\right)
$$

whence

$$
u^{2} q \leqq(8 D)^{\frac{1}{2}(q-1)}+1
$$

Thus we get

$$
z=u^{2}+8 D \leqq \frac{1}{q}\left[(8 D)^{\frac{1}{2}(q-1)}+1\right]+8 D .
$$

But this contradicts the inequality (20). In fact, it is easily seen that for all $D \geqq 1$ and all $q \geqq 7$, we have

$$
(1+8 D)^{q}>\frac{1}{q}\left[(8 D)^{\frac{1}{2}(q-1)}+1\right]+8 D
$$

Hence n must be a prime $\equiv \pm 1(\bmod 8)$, and Theorem 8 is proved.

Finally we prove

§ 8.

Theorem 9. Let n be an odd integer >3, and let D be a positive integer of the form

$$
\begin{equation*}
D=\frac{1}{8}\left(y^{n}-x^{2}\right), \tag{21}
\end{equation*}
$$

where x and y are odd integers. Then there exists a number D_{0} such that the class number in the imaginary quadratic field $K(\sqrt{-2 D})$ is divisible by n for all squarefree $D \geqq D_{0}$.

Proof. Suppose that the class number is not divisible by n. Then there exists a prime factor q of n with the following property: q^{α} is a factor of n but not of the class number. Let us put $m=q^{\alpha}, n=m r$ and $z=y^{r}$. Then it follows from (21)

$$
\begin{equation*}
x^{2}+8 D=z^{m} \tag{22}
\end{equation*}
$$

But by Theorem 2 this relation is not possible for integral values of x and z when $q \equiv \pm 3(\bmod 8)$ and $m=q^{\alpha}>3$. When $m=q^{\alpha}=3$, it follows from Theorem 2 that (22) is not possible for even x and z. When $q \equiv \pm 1(\bmod 8)$, in virtue of Theorem 3, the relation (22) is possible only for a finite number of values D.

This proves Theorem 9.
Remark. It may be shown that there are infinitely many positive and squarefree integers D of the form (21); compare [2], § 2.

§ 9.

There are several similar results on other Diophantine equations of the type

$$
\begin{equation*}
x^{2}+B=y^{n}, \tag{23}
\end{equation*}
$$

where B and n are positive integers, n odd and $\geqq 3$. Thus Lebesgue showed that the equation

$$
x^{2}+1=y^{n}
$$

has no solution in integers x and y for $x \neq 0$; see [3].
In a previous paper I examined equation (23) when B is a positive squarefree integer which is either $\equiv 1$ or $\equiv 2(\bmod 4)$, and showed how all integral solutions may be found in many cases; see [4], § 2. Example: For $B=5$ and $n \geqq 3$ equation (23) has no integral solution.
T. NAGELL, On the Diophantine equation $x^{2}+8 D=y^{n}$

LJUngGren has treated the case in which B is a positive square-free integer of the form

$$
B=1+2^{2 m+1}(2 h-1),
$$

where m and h are positive integers; when the class number in the field $K(\sqrt{-B})$ is not divisible by n, he showed that equation (23) has no integral solution; see [5] and [6]. Example: For $B=9$ and $n \geqq 3$ equation (23) cannot. be satisfied by any integers x and y.

Equation (23) is a special case of the Diophantine equation

$$
\begin{equation*}
a x^{2}+b x+c=d y^{n} \tag{24}
\end{equation*}
$$

where the left-hand side is an irreducible polynomial of the second degree having integral coefficients; d is an integer $\neq 0$. It was shown by Thue that, this equation has only a finite number of integral solutions x, y, when $n \geqq 3$; see [7]. This result was subsequently discovered again by Landau and Ostrowski; see [8]. However, no general method is known for determining all integral solutions x and y of a given equation of the form (24).

BIBLIOGRAPHY

[1]. T. Nagell, Verallgemeinerung eines Fermat-schen Satzes, Archiv der Mathematik, Bd V, S. 53, Zürich 1954.
[2]. - Zur Arithmetik der Polynome, Berichte d. mathem. Seminars d. Hamburgischen Universität, Bd I, § 2, S. 185, Hamburg 1922.
[3]. V. A. Lebesgue, Sur l'impossibilité en nombres entiers de l'équation $x^{m}=y^{2}+1$, Nouvelles Annales de Mathématiques (1), tome 9, p. 178, Paris 1850.
[4]. T. Nagell, Sur l'impossibilité de quelques équations à deux indéterminées, Norsk Matematisk Forenings Skrifter, Ser. I, Nr. 13, Kristiania 1923.
[5]. W. Ljungaren, On the Diophantine equation $x^{2}+p^{2}=y^{n}$, Kong. Norske Videnskabers. Selskab, Forhandl. Bd XVI, Nr. 8, Trondhjem 1943.
[6]. ——On the Diophantine equation $x^{2}+D=y^{n}$, Kong. Norske Videnskabers Selskab, Forhandl. Bd XVI, Nr. 23, Trondhjem 1944.
[7]. A. Thue, Úber die Unlösbarkeit der Gleichung $a x^{2}+b x+c=d y^{n}$ in grossen ganzen Zahlen x und y, Archiv for Mathematik og Naturvidenskab, Bd XXXIV, Kristiania 1916.
[8]. E. Landau and A. Ostrowski, On the Diophantine equation $a y^{2}+b y+c=d x^{n}$, Proceedings of the London Mathematical Society, Ser. 2, Vol. 19, London 1919.

